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Abstract. We study properties of the Golomb topology on polynomial rings over
fields, in particular trying to determine conditions under which two such spaces are
not homeomorphic. We show that if K is an algebraic extension of a finite field and
K′ is a field of the same characteristic, then the Golomb spaces of K[X] and K′[X]
are homeomorphic if and only if K and K′ are isomorphic.
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1. Introduction. Let R be an integral domain. The Golomb space of R is the
topological space G(R) having R• := R \ {0} as its underlying set, and whose
topology is generated by the coprime cosets. This topology, introduced by Brown
[3] on Z+ and later studied by Golomb [9, 10], is one of many coset topologies [13],
and it can be used to generalize Furstenberg’s “topological” proof of the infinitude
of primes [8, 4].

Recently two papers, the first one by Banakh, Mioduszewski and Turek [1] and
the second one by Clark, Lebowitz-Lockard and Pollack [5], have started study-
ing more deeply the topology on G(R) and the continuous maps between these
spaces, with the former concentrating on the “classical” case of Z+ and the latter
generalizing several results to integral domains and, in particular, to Dedekind do-
mains. A central problem of both is the isomorphism problem: if G(R) and G(S)
are homeomorphic topological spaces, must R and S be isomorphic rings? More
generally, how much do the continuous maps (and, in particular, homeomorphisms
and self-homeomorphisms) of Golomb spaces respect the algebraic structure of the
underlying rings? In [16], it was shown that the unique self-homeomorphisms of
h : G(Z) −→ G(Z) are the identity or the multiplication by −1; the proof of this
result relies crucially on the fact that the groups of units of the quotients Z/pnZ
(where p is a prime number) are very close to being cyclic.

In this paper, we study the isomorphism problem in the context of polynomial
rings over fields; in particular, we are interested in the more restricted problem of
determining if the existence of a homeomorphism between G(K[X]) and G(K ′[X])
implies that K and K ′ are isomorphic as fields. To do so, we study the closure of
several sets under the Golomb topology and under the P -adic topologies (which can
be reconstructed from the Golomb topology), obtaining several results that allow
to determine algebraic properties of K from the topological properties of G(K[X]).

Quaestiones Mathematicae is co-published by NISC (Pty) Ltd and Informa UK Limited
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While we aren’t able to solve the isomorphism problem in full generality, we show
that if K is an algebraic extension of a finite field, K ′ has the same characteristic of
K and G(K[X]) ≃ G(K ′[X]) then K ′ must be isomorphic to K (Theorem 7.5); in
particular, this implies that the number of distinct Golomb topologies associated
to countable domains is the cardinality of the continuum, answering a question
posed in [5, Section 3.1].

The structure of the paper is as follows. In Section 2, we fix the notation and
recall some results that will be used throughout the paper. In Section 3 we give a
few results about some distinguished subsets of G(R), for an arbitrary Dedekind
domain R. The rest of the paper can be divided into three parts that are essentially
autonomous one from each other.

In Section 4 we show that, for polynomial rings, the Golomb topology allows to
distinguish between zero and positive characteristic (Proposition 4.1), and study
G(K[X]) when K has characteristic 0.

In Section 5 we study the case of separably closed fields in positive characteristic:
we show that we can distinguish them from the other fields (Proposition 5.1) and
that we can recover the characteristic of K from G(K[X]) (Theorem 5.11).

Sections 6 and 7 provide a proof of the main theorem. In Section 6 we generalize
a result of [1] on the image of prime elements under a homeomorphism, while in
Section 7 we use this result to link a (topologically distinguished) subgroup of self-
homeomorphisms of G(K[X]) with the multiplicative group of K (Proposition 7.4),
which allows to prove the aforementioned main theorem (Theorem 7.5).

2. Preliminaries and notation. Let R be an integral domain; we shall always
suppose that R is not a field. Given a set I ⊆ R, we set I• := I \ {0}. We denote
by U(R) the set of units of R (both as a set and as a group).

The Golomb space of R is the topological space having R• as underlying set
and whose topology is generated by the coprime cosets of R, that is, by the sets
x+ I where x ∈ R•, I is a nonzero ideal of R and ⟨x, I⟩ = R. We denote by G(R)
the Golomb space of R, and call the topology the Golomb topology on R. When R
is an integral domain with zero Jacobson radical,1 G(R) is a Hausdorff space that
is not regular; furthermore, G(R) is not compact, and is a connected space that is
totally disconnected at each of its points [5, Theorems 5, 8 and 9 and Proposition
10].

Suppose from now on that R is a Dedekind domain.
Given a subset A ⊆ R•, we denote by A the closure of A in the Golomb topology.

Let x+ I be a coprime coset. If I = P e1
1 · · ·P en

n is the factorization of I into prime
ideals, then [5, Lemma 15]

x+ I =
n∩

i=1

(P •
i ∪ (x+ P ei

i )).

If h : G(R) −→ G(S) is a homeomorphism, then h sends units to units (i.e.,
h(U(R)) = U(S)) [5, Theorem 13]. If the class group of R is torsion then h sends

1The Jacobson radical of R is the intersection of the maximal ideals of R.
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The Golomb topology of polynomial rings

prime ideals to prime ideals, that is, if P is a prime ideal of R then h(P •) ∪ {0}
is a prime ideal of S; more generally, h takes radical ideals to radical ideals [16,
Theorem 2.8].

For every x ∈ R, let V (x) := {P ∈ Spec(R) | x ∈ P}. Given a subset ∆ of
Max(R), we denote by G∆(R) the set of all x ∈ R• such that V (x) = ∆; note
that G∆(R) is empty if ∆ is infinite. If the class group of R is torsion, this set is
again preserved by homeomorphisms: if h is a homeomorphism and x ∈ G∆(R),
then h(x) ∈ GΛ(R), where Λ contains the images under h of the elements of ∆ [16,
Proposition 2.7]. Given a ∈ R, we set pow(a) := {uan | u ∈ U(R), n ≥ 1}; if a
generates P , then pow(a) is exactly G{P}(R).

Let now R be a Dedekind domain with torsion class group and P be a prime
ideal of R. The P -topology to R\P is the topology generated by the sets a+Pn, for
all a ∈ R \P and all n ≥ 1; this is exactly the restriction of the P -adic topology to
R \P . The P -topology can be recovered from the Golomb topology by considering
only the clopen subset of R\P , and thus every homeomorphism h : G(R) −→ G(S)
in the Golomb topology restricts to a homeomorphism between R \ P and S \ Q
(with Q := h(P •) ∪ {0}), where the former is endowed with the P -topology and
the latter with the Q-topology [16, Section 3].

We denote by charK the characteristic of the field K. If q is a prime power, we
denote by Fq the finite field with q elements. If p is a prime number, we denote by
Fp the algebraic closure of Fp.

3. The spaces Gn(R). Let R be an integral domain. We denote by G0(R)
the set of units of R endowed with the Golomb topology; this space is rather more
well-behaved than the whole Golomb space.

Proposition 3.1. Let R be an integral domain.

(a) G0(R) is homogeneous.

(b) Suppose the Jacobson radical of R is zero. Then, G0(R) is discrete if and
only if there is an ideal I such that the restriction G0(R) −→ R/I of the
canonical quotient is injective.

(c) G0(R[X]) is discrete.

Proof. Since multiplication by units is a homeomorphism, we can always send x
to y by multiplying by yx−1; hence G0(R) is homogeneous.

For the second claim, suppose first that G0(R) −→ R/I is injective: then, for
every unit u the coset u + I meets G0(R) only in u, and thus G0(R) is discrete.
Conversely, suppose G0(R) is discrete: then, there is an ideal I such that (1+ I)∩
G0(R) = {1}. For every other unit u of R, u + I = u(1 + I); hence, u is the only
unit in (u+ I) ∩G0(R). Thus, G0(R) −→ R/I is injective.

The last claim follows taking I = XR[X]. 2

When R is a Dedekind domain we can say more.

Proposition 3.2. Let R be a Dedekind domain with zero Jacobson radical.
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(a) G0(R) has a basis of clopen sets.

(b) G0(R) is regular.

(c) If R is countable, then G0(R) is either discrete or homeomorphic to Q (en-
dowed with the Euclidean topology).

(d) If R is countable, U(R) is infinite and every residue field of R is finite, then
G0(R) ≃ Q.

Proof. (a) We need to show that (x + I) ∩ G0(R) is clopen in G0(R) for every
x ∈ G0(R) and every ideal I. Indeed, let I =

∏
i P

ei
i be the factorization of I;

then, by [5, Lemma 15],

x+ I ∩G0(R) =
∩
i

(P •
i ∪ (x+ P ei

i )) ∩G0(R).

Since P •
i ∩G0(R) = ∅, we have x+ I ∩G0(R) =

∩
i((x+P

ei
i )∩G0(R)) = (x+ I)∩

G0(R), i.e., (x+ I) ∩G0(R) is clopen in G0(R).
(b) Let x ∈ G0(R) and V ⊆ G0(R) be a closed set not containing x; then,

G0(R)\V is open, and thus it contains a basic clopen set (x+I)∩G0(R). Therefore,
x and V are separated by (x + I) ∩ G0(R) and G0(R) \ (x + I), and so G0(R) is
regular.

(c) If R is countable, then it has only countably many ideals, and thus R and
G0(R) are second countable. Hence, it is metrizable [11, e-2]. If G0(R) is not
discrete, then G0(R) ≃ Q since G0(R) is homogeneous [15, 6]. Finally, (d) follows
from this and Proposition 3.1. 2

We now introduce a sequence {Gn(R)}n∈N of subspaces of G(R) generalizing
G0(R).

Definition 3.3. Let R be a Dedekind domain. For every n ≥ 0, define

Gn(R) :=
∪
{G∆(R) | ∆ ⊆ Max(R), |∆| = n}.

By [16, Proposition 2.7], if R has torsion class group then the topology of the Gn(R)
is uniquely determined by the Golomb topology, in the sense that if h : G(R) −→
G(S) is a homeomorphism then h(Gn(R)) = Gn(S) and thus Gn(R) and Gn(S)
are homeomorphic.

The results proved above for n = 0 do not generalize to arbitrary n. When
n = 1, we can prove a partial analogue of Proposition 3.2(b) by extending the
proof of [1, Theorem 3.1].

Proposition 3.4. Let R be a Dedekind domain that is not a field, and suppose
that R has finitely many units. Then, G1(R) is a regular space.

Proof. Let Ω be an open set of G(R) and let x ∈ G1(R)∩Ω; we need to show that
there is an open neighborhood O of x such that O ∩G1(R) ⊆ Ω∩G1(R). Without
loss of generality, we can suppose that Ω = x+ bR for some b coprime with x.
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The Golomb topology of polynomial rings

Let P1, . . . , Pn be the prime ideals containing b; then, the set Λ of the prime
elements contained in some Pi is finite (as R has finitely many units). Thus, the
set x−Λ := {x− p | p ∈ Λ} is finite too, and so there are only finitely many prime
ideals that contain some element of x− Λ.

Since R has finitely many units, it has infinitely many maximal ideals; thus,
there is a prime ideal Q that is distinct from each Pi and that do not contain x
nor any element of x− Λ. Consider O := x+ bQ: then, O is a coprime coset, and
thus it is open. By [5, Lemma 15],

O =
∩
i

(P •
i ∪ (x+ P ei

i )) ∩ (Q• ∪ (x+Q)),

where ei is the exponent of Pi in the factorization of bR.
Let p ∈ O ∩ G1(R). By definition, p can be contained in at most one of

P1, . . . , Pn, Q. We distinguish three cases.

• If p is not contained in any of them, then p ∈
∩

i(x + P ei
i ) ∩ (x + Q) =

(x+ bR) ∩ (x+Q) = x+ bQ = O ⊆ Ω.

• If p is contained in Pi for some i, then it should be contained in x+Q, that
is, p− x ∈ Q. However, this contradicts the choice of Q.

• If p ∈ Q, then we must have p ∈
∩

i(x+ P ei
i ) = x+ bR = Ω.

Hence, O ∩G1(R) ⊆ Ω ∩G1(R), as claimed. Thus, G1(R) is regular. 2

Like for G0(R), this implies that if R is countable then G1(R) is second count-
able and thus metrizable.

A homeomorphism of Golomb spaces preserves whether G1(R) is dense in G(R)
or not, and both possibilities can happen (see Propositions 4.3, 5.2 and 6.3); in
particular, for polynomial rings K[X], this property can be used in some cases to
distinguish between an algebraically closed and a non-algebraically closed K (see
Corollary 6.4 or the proof of Theorem 7.5). When G1(R) is dense, we can prove
some properties of Gn(R); we need a topological lemma.

Lemma 3.5. Let X be a topological space, Y ⊆ X a dense subset and Ω an open
subset of X. Then, Ω ∩ Y = Ω ∩ Y ∩ Y .

Proof. Clearly, Ω ∩ Y ∩ Y ⊆ Ω ∩ Y . On the other hand, let x ∈ Ω ∩ Y . If
x /∈ Ω ∩ Y , then there is an open set O of X containing x but disjoint from Ω∩ Y ,
that is, O∩Ω∩Y = ∅. However, since Y is dense and O∩Ω is open it follows that
O ∩ Ω = ∅, and thus x /∈ Ω, a contradiction. It follows that Ω ∩ Y ⊆ Ω ∩ Y ∩ Y .
The claim is proved. 2

Proposition 3.6. Let R be a Dedekind domain with torsion class group such that
G1(R) is dense in G(R). Then, for every n ≥ 2,

(a) Gn(R) is dense in G(R);
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(b) Gn(R) is not regular.

Proof. (a) If x+bR is a coprime coset, we can find p1 ∈ (x+bR)∩(1+xR)∩G1(R);
then, as p1 is coprime with x, the set x + p1bR is open, and thus we can find
p2 ∈ (1 + p1bR) ∩ G1(R), then p3 ∈ (1 + p1p2bR) ∩ G1(R), and so on. Then,
c := p1 · · · pn will be an element of Gn(R) (as each pi is in G1(R) and pi and pj are
coprime for i ̸= j) such that c ≡ x · 1 · · · 1 = x mod bR, i.e., c ∈ (x+ bR) ∩Gn(R).
Hence, Gn(R) is dense.

(b) Fix n ≥ 2, and let p ∈ G1(R). Let Ω := 1 + pR, take x ∈ Ω ∩ Gn(R), and
let O be an open set such that x ∈ O and O ∩ Gn(R) ⊆ Ω ∩ Gn(R). We claim
that O ∩ Gn(R) * Ω. Without loss of generality we can take O = x + bR, with b
coprime to x; furthermore, passing if needed to a power bk we can suppose that b
is a product of primary elements.

If x+ b ∈ pR, then we can write x+ b = py for some y ∈ R, and py + pbR ⊆ O
since x + b + pbR ⊆ x + bR. Let O′ := y + bR; then, O′ is open (if y and b have
a common factor s, then s would divide also x, a contradiction). Since Gn−1(R)
is dense, we can find q ∈ O′ ∩ Gn−1(R); then, pq ∈ O ∩ Gn(R), while pq /∈ Ω as
pq ∈ pR. This contradicts O ∩Gn(R) ⊆ Ω ∩Gn(R).

Therefore, x + b /∈ pR. Let b := b1 · · · bn, where each bi belongs to G1(R) and
bi and bj are coprime if i ̸= j. If bi ∈ pR for some i, let b′ := b/bi; otherwise, set
b′ := b. Then, p is coprime with b′, and thus there is a z ∈ R, coprime with p,
such that pz ≡ x mod b′R. By density, there is a q ∈ (z+ bR)∩Gn−1(R); we claim
that pq ∈ (O ∩Gn(R)) \ Ω. Indeed, it is clear that pq ∈ Gn(R) (since p ∈ G1(R),
q ∈ Gn−1(R) and p and q are coprime), and pq /∈ Ω since pq ∈ pR. By [5, Lemma
15],

O =
∩
i

(P •
i ∪ (x+ biR)),

where Pi is the prime ideal containing bi. If bi is not coprime with p, then pq ∈
P •
i ⊆ O. If bi is coprime with p, then bi divides b

′ and

pq ∈ p(z + bR) = pz + pbR ⊆ pz + b′R = x+ b′R ⊆ x+ biR ⊆ O.

Hence, pq ∈ (O ∩Gn(R)) \ Ω.
Let V := Gn(R) \ Ω: then, V is a closed set of Gn(R). If Gn(R) were regular,

then there would be disjoint open sets O1, O2 such that x ∈ O1 ∩ Gn(R) and
V ⊆ O2 ∩ Gn(R). In particular, O1 ∩ Gn(R) ⊆ Gn(R) \ (O2 ∩ Gn(R)), and the
latter is a closed set; therefore, the closure V ′ of O1 ∩Gn(R) inside Gn(R) would
be disjoint from V . However, by Lemma 3.5,

V ′ = O1 ∩Gn(R) ∩Gn(R) = O1 ∩Gn(R);

by the previous part of the proof, O1 ∩Gn(R) is not contained in Ω, i.e., it meets
V . This is a contradiction, and thus Gn(R) is not regular. 2

4. Characteristic 0. We now start studying the Golomb spaces G(K[X]) of
polynomial rings over fields. In this section, we analyze what happens when the
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The Golomb topology of polynomial rings

characteristic of the field is 0. The first result is that we can actually distinguish
this case from the positive characteristic case.

Proposition 4.1. Let K be a field. Then, K has characteristic 0 if and only
if there is an irreducible polynomial g ∈ K[X] such that pow(g) is closed in the
P -topology for every prime ideal P not containing g.

Proof. Suppose K has characteristic 0, and choose g(X) := X. Let P = (f)
be a prime ideal not containing g, and let λ /∈ (P ∪ pow(g)): suppose that λ is
in the closure of pow(g) in the P -topology. Then, for every n ∈ N+ the open
set λ + Pn contains an element of pow(g). Take n > deg λ + 1: then, there are
m ∈ N+ and u ∈ K• such that ugm ∈ λ+ Pn, i.e., fn divides h := λ− ugm. Since
λ /∈ pow(g), h ̸= 0, and thus m ≥ n. Let H the (deg λ+1)-th derivative of h: then,
λ goes to 0, and thus H is the (deg λ + 1)-th derivative of −ugm = −uXm, that
is, H(X) = cXm−deg λ−1 for some c ∈ K. Since charK = 0 and m > deg λ+ 1, we
have H ̸= 0, and thus its unique zero is 0. This contradicts the facts that f |H and
that f is coprime with X. Hence, pow(g) is closed in the (f)-topology.

Conversely, suppose there is a polynomial g with this property, and suppose
that charK = p > 0. Let a ∈ K be such that g(a) ̸= 0 (which exists since

g is irreducible). Then, f(X) := X − a divides 1 − g(X)
g(a) , and thus fp

n

divides(
1− g(X)

g(a)

)pn

= 1 − g(X)p
n

g(a)pn
, that is, 1 + (f)p

n

meets pow(g). Therefore, 1 + (f)k

meets pow(g) for every k ∈ N+, i.e., 1 is in the closure of pow(g) in the (f)-topology.
This contradicts the choice of g, and thus the characteristic of K must be 0, as
claimed. 2

Corollary 4.2. Let K1,K2 be fields. If charK1 = 0 and charK2 > 0, then the
Golomb spaces G(K1[X]) and G(K2[X]) are not homeomorphic.

Proof. If g is an irreducible polynomial of K[X], then pow(g) = G{(g)}(K[X]).
By the previous proposition, charK = 0 if and only if there is a prime ideal P such
that G{P}(K[X]) is closed in the Q-topology for every prime ideal Q ̸= P . Since
any homeomorphism of Golomb spaces sends prime ideals into prime ideals, this
property is preserved by homeomorphisms. In particular, if G(K1[X]) ≃ G(K2[X])
then charK1 = 0 if and only if charK2 = 0. 2

Note that the proof of Proposition 4.1 is qualitative, and thus cannot be readily
applied to distinguish different positive characteristics. We shall do this in the
algebraically closed case in Theorem 5.11.

We now study the algebraically closed and the real closed case.

Proposition 4.3. Let K be an algebraically closed field of characteristic 0. For
every n ≥ 0, Gn(K[X]) is discrete and closed in G(K[X]).

Proof. Let p(X) ∈ K[X], and let b ∈ K be such that p(b) ̸= 0 (which exists
since K is infinite). We claim that, for large N , the only possible element of
(p(X) + (X − b)NK[X]) ∩Gn(K[X]) is p(X).
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Indeed, suppose that q(X) ∈ (p(X) + (X − b)NK[X]) ∩ Gn(K[X]) is different
from p(X): then, we have{

q(X) = p(X) + (X − b)Na(X)

q(X) = u(X − a1)e1 · · · (X − an)en ,

where a(X) ̸= 0, a1, . . . , an are distinct, e1, . . . , en ≥ 1 and u ∈ K. Let d := deg p,
and apply d+1 times the derivative process. In the first equation, p(d+1) becomes
0, and thus (since a(X) ̸= 0) q(d+1) has a zero of multiplicity N −d−1 in b. In the
second equation, at each step the multiplicity of each ai is lowered by 1, and thus
each ai is a zero of multiplicity at least ei − d − 1 (this holds even if ei < d + 1).
Since p(X) and X− b are coprime, it follows that b ̸= ai for each i; hence, the total
multiplicities of the zeros of q(d+1) is at least

N−d−1+
∑
i

(ei−d−1) = N+
∑
i

ei− (n+1)(d+1) = N+deg q− (n+1)(d+1).

Both n and d are fixed; hence, choosing N > n(d+1), we have (using the fact that
K has characteristic 0)

deg q(d+1) > n(d+ 1) + deg q − (n+ 1)(d+ 1) = deg q − (d+ 1) = deg q(d+1),

a contradiction. Hence, (p(X)+(X−b)NK[X])∩Gn(K[X]) contains at most p(X).

Therefore, if p(X) /∈ Gn(K[X]) then p(X) + (X − b)NK[X] is disjoint from
Gn(K[X]), and thus p(X) is not in the closure of Gn(K[X]); on the other hand,
if p(X) ∈ Gn(K[X]) then (p(X) + (X − b)NK[X]) ∩ Gn(K[X]) = {p(X)} is an
open set of Gn(K[X]). Hence, Gn(K[X]) is discrete and closed in G(K[X]), as
claimed. 2

Corollary 4.4. Let K be a real closed field. For every n ≥ 0, Gn(K[X]) is
discrete and closed in G(K[X]).

Proof. Let K ′ be the algebraic closure of K, and let G′ := Gn(K
′[X]) ∪ · · · ∪

G2n(K
′[X]); then, Gn(K[X]) ⊆ G′. Take p(X) ∈ G(K[X]). By Proposition

4.3, there is a polynomial r(X) ∈ K ′[X], coprime with p(X), such that (p(X) +
r(X)K ′[X]) ∩G′ ⊆ {p(X)}.

Take the conjugate polynomial r(X) of r(X) over K[X]. Then, s(X) :=
r(X)r(X) belongs toK[X] and is coprime with p(X) (its roots are the roots of r(X)
and their conjugates). Therefore, p(X)+ s(X)K[X] is an open subset of G(K[X]),
and its intersection with Gn(K[X]) is contained in (p(X) + r(X)K ′[X]) ∩ G′ ⊆
{p(X)}. Hence, Gn(K[X]) is discrete and closed in G(K[X]). 2

These results can be used, for example, to distinguish G(Q[X]) from G(Q[X]),
see Section 6.
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5. Separably closed fields in characteristic p. In this section, we analyze
what happens to fields of positive characteristic that are separably or algebraically
closed. The first step is distinguishing them from the other fields; the following
proof is similar to the proof of Proposition 4.1.

Proposition 5.1. Let K be a field of characteristic p > 0, and suppose that K
is transcendental over Fp. Then, K is separably closed if and only if, for every
coprime irreducible polynomials f, g of K[X], G0(R) is contained in the closure of
pow(g) in the (f)-topology.

Proof. Suppose first that K is separably closed; since pow(g) is invariant under
multiplication by units, it is enough to show that 1 is in the closure of pow(g).
Write f(X) = Xpn − a, and let α be a root of f in the algebraic closure K of K.
Then, h := 1 − 1

g(α)g is a polynomial over K having α as a zero, and thus X − α
divides h; hence, f(X) = (X − α)pn

divides

hp
n

=

(
1− 1

g(α)
g

)pn

= 1− 1

g(α)pn g
pn

inK[X]. However, g(α)p
n ∈ K[X], and thus f divides hp

n

also inK[X]. Therefore,
for every power q of p, fq divides (hp

n

)q = 1 − 1
g(α)qpn

gqp
n

, and in particular

1 + fqK[X] contains an element of pow(q). Thus, 1 is in the closure of pow(q)
under the (f)-topology, as claimed.

Conversely, suppose that K is not separably closed, let f be a separable irre-
ducible polynomial, and let α, β be two distinct roots of f in the algebraic closure
of K; since K is transcendental over Fp, we can suppose that α, β are transcen-
dental too. We claim that there is a t ∈ K ∩ Fp such that 1 is not in the clo-
sure of pow(X − t) in the (f)-topology. Indeed, suppose 1 is in the closure for
some t. Then, pow(X − t) meets 1 + fK[X], and in particular there are a unit
u and an integer m such that f divides 1 − u(X − t)m. Hence, we must have
1−u(α− t)m = 0 = 1−u(β− t)m, and thus (α− t)/(β− t) must be a root of unity
(of degree at most m), and in particular it must be algebraic over Fp.

Let r(t) := (α− t)/(β − t) and r := r(0) = α/β. Then,

r(t) =
α− t
β − t

=
rβ − t
β − t

=⇒ β =
t(r(t)− 1)

r(t)− r

whenever t ̸= 0 (which implies r(t) ̸= r). However, both t and r(t) are algebraic
over Fp, and thus β should be algebraic too; this is a contradiction, and thus 1 is
not in the closure of any pow(X − t) with t ̸= 0. 2

The following proposition shows the difference between the behavior of
Gn(K[X]) in positive characteristic with respect to the characteristic 0 case (Propo-
sition 4.3). Part (a) does not hold without the assumption that K is separably
closed; indeed, its failure is critical in the proof of Proposition 7.4.

Proposition 5.2. Let K be a field of characteristic p > 0. Then, the following
hold.
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(a) If K is separably closed, then G1(K[X]) is not dense in G(K[X]).

(b) If K is algebraic over Fp, then Gn(K[X]) has no isolated points for all n ≥ 1.

(c) If K is algebraic over Fp, then Gm(K[X]) is contained in the closure of
Gn(K[X]) for all n ≥ m ≥ 0.

Note that all three of these hypothesis are fulfilled when K is the algebraic
closure of Fp.

Proof. (a) Suppose first p ≥ 3, and consider the open set 1 + X2 + X3K[X]:
if it intersects G1(K[X]) then there are an irreducible polynomial g(X), u ∈ K,
k ∈ N and b(X) ∈ K[X] such that ug(X)k = 1 + X2 + X3b(X). Since K is
separably closed, we can write g(X) = Xpr − a for some r ≥ 0 and some a ∈ K. If
r > 0, then ug(X)k has no monomial of degree 2, a contradiction; hence, it must
be g(X) = X − a. Considering the coefficients of degree 1 and 2, we have{

0 = u
(
k
1

)
ak−1 = uk(−1)k−1ak−1

1 = u
(
k
2

)
ak−2 = uk(k−1)

2 (−1)k−2ak−2.

The second equality implies that k, k − 1 and a are all different from 0 in K;
however, this implies ukak−1 ̸= 0, a contradiction. Hence, 1 +X2 does not belong
to the closure of G1(K[X]).

Suppose now p = 2, and consider the open set 1+X+X3+X4K[X]. Considering
the monomial of degree 1, we see that the irreducible polynomial g(X) must be in
the form X−a. Suppose thus 1+X+X3+X4b(X) = u(X−a)k: then, confronting
the coefficients of degree 1 we have that k is odd, while confronting the coefficients
of degree 2 we get that (k − 1)/2 is even. The coefficient of degree 3 of u(X − a)k
is thus uk(k − 2)k−1

2 (−1)k−3ak−3 = 0, contradicting the presence of X3. Hence,
1 +X +X3 does not belong to the closure of G1(K[X]).

(b) Let a(X) ∈ Gn(K[X]), and let b(X) be a polynomial coprime with a(X).
Let q be a prime power such that Fq contains all the coefficients of a(X) and
of b(X). Then, a(X) and b(X) are coprime in Fq[X]; since Fq[X]/b(X)Fq[X] is
finite, we can find k > 0 such that a(X)k ≡ 1 mod b(X)Fq[X], and thus a(X)k+1 ∈
Gn(K[X])∩(a(X)+b(X)K[X]) is different from a(X). Hence, a(X) is not isolated
in Gn(K[X]).

(c) If K is not algebraically closed then G1(K[X]) is dense in G(K[X]) (see
Proposition 6.3 below) and thus by Proposition 3.6(a) all the Gn(R) are actually
dense.

Suppose that K is algebraically closed. Let a(X) ∈ Gm(K[X]), with m < n,
and let b(X) be coprime with a(X); let r := n −m. Choose r distinct elements,
t1, . . . , tr, such that b(ti) ̸= 0 and a(ti) ̸= 0 for all i. Let F be the subfield of K
generated by the ti and by the coefficients of b; since K is algebraic over Fp, F is
finite. Then, F [X]/b(X)F [X] is finite, and thus we can find k1, . . . , kr such that
(X − ti)ki ∈ 1 + b(X)F [X] for all i; in particular, (X − ti)ki ∈ 1 + b(X)K[X].
Let A(X) := a(X)(X − t1)k1 · · · (X − tr)kr : by construction, A(X) ∈ Gn(K[X])
and A(X) ≡ a(X) mod b(X)K[X], that is, A(X) ∈ a(X) + b(X)K[X]. Hence,
all neighborhoods of a(X) intersect Gn(K[X]), and thus a(X) is in the closure of
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Gn(K[X]), as claimed. 2

We now deal with the problem of distinguishing separably closed fields of dif-
ferent characteristics, that is, we want to prove that if G(K[X]) ≃ G(K ′[X]) then
K and K ′ have the same characteristic, extending Proposition 4.1. Until the end
of the section the section, K will be a field of characteristic p > 0 and K a (fixed)
algebraic closure of K. We denote by vp the p-adic valuation on the positive inte-
gers.

Definition 5.3. Let r(X) ∈ K[X] be an irreducible polynomial. An r(X)-se-
quence is a sequence E ⊂ pow(r(X)). If r(X) /∈ (X − 1), we say that E is basic if
E converges to 1 in the (X − 1)-topology.

Since E ⊆ pow(q(X)), we can always write the elements of an r(X)-sequence
E := {sn(X)}n∈N as sn(X) := unr(X)en , for some un ∈ K• and some positive
integers en.

Lemma 5.4. Let p be a prime number and e, z be natural numbers such that
pz < e. If p divides the binomial coefficient

(
e
pt

)
for all 1 ≤ t ≤ z, then vp(e) ≥ z+1.

Proof. Fixed p and e, we proceed by induction on z. If z = 0, then we know that
p divides

(
e
p0

)
=
(
e
1

)
= e, and the claim holds.

Suppose we have proved the claim up to z − 1. Then, pz|e and p divides(
e

pz

)
=
e(e− 1) · · · (e− pz + 1)

pz(pz − 1) · · · 2 · 1
.

For all 0 < k < pz, we have vp(k) < vp(e) and thus vp(e−k) = min{vp(e), vp(k)} =
vp(k); hence, the p-valuation of the product (e− 1) · · · (e− pz + 1) is equal to the
p-valuation of (pz − 1)!. Thus,

0 < vp

((
e

pz

))
= vp

(
e

pz

)
= vp(e)− vp(pz) = vp(e)− z.

It follows that vp(e) > z, i.e., vp(e) ≥ z+1. By induction, the claim is proved. 2

Proposition 5.5. Let r(X), q(X) be coprime irreducible polynomials, and let
E = {sn(X) := unr(X)en}n∈N be an r(X)-sequence. Let s ∈ K•. Then, E
converges to s in the (q(X))-topology if and only if vp(en)→∞ and, for every root
λ of q(X) in K, we have sn(λ) = s for all sufficiently large n.

Proof. Suppose first that K = K is algebraically closed. Then, we can write
r(X) := X − t, q(X) := X − λ for some t, λ ∈ K. Let Q := (X − λ).

Suppose the two conditions hold, and let k be any integer. Then, there is an N
such that vp(en) ≥ k and sn(λ) = s for every n ≥ N . Thus,

sn(λ) = un(X − t)en = un(X − λ+ λ− t)p
ke′n =

= un((X − λ)p
k

+ (λ− t)p
k

)e
′
n .
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Untying the binomial, we obtain un((λ− t)p
k

)e
′
n = un(λ− t)en = sn(λ) = s, while

the other monomials are all divisible by (X − λ)pk

. Therefore, sn(λ) ∈ s+Qpk

for

all n ≥ N . Since {s+Qpk} is a local basis of neighborhoods of s in the Q-topology,
E tends to s.

Conversely, if E converges to s in the Q-topology then sn(X) ∈ s + Q for all
sufficiently large n, i.e., sn(X) − s ∈ Q, or equivalently q(X) divides sn(X) − s.
Hence, sn(λ)− s = 0 and sn(λ) = s for all sufficiently large n. We now have

sn(X) = un(X − λ+ λ− t)en = un
∑
i

(
en
i

)
(λ− t)n−i(X − λ)i.

Since E converges to s, the polynomial sn(X)− s must belong (for large n) to Qk

for every k > 0, that is, the coefficients of degree < k in X − λ must be equal to 0.
Choose k = pz + 1. Then, for large n, we have that

(
en
r

)
= 0 for all 1 ≤ r ≤ pz; by

Lemma 5.4, we have vp(en) ≥ z+1. Since z was arbitrary, vp(en) tends to infinity.
If now K is not algebraically closed, it is enough to note that the convergence

of E in the (q(X))-topology is equivalent to the convergence in K[X] of E in the
(X − λ)-topology for every root λ of q(X), and then apply the previous reasoning.

2

Let now E be a basic r(X)-sequence. We denote by LK(E) the set of maximal
ideals Q of K[X], different from (r(X)), such that E converges to 1 in the Q-
topology; furthermore, we denote by LK the set of natural numbers n such that
there is an irreducible polynomial r(X) and an (r(X))-sequence E with |LK(E)| =
n. These sets are determined by the Golomb topology, in the following sense.

Proposition 5.6. Preserve the notation above.

(a) Let h : G(K[X]) −→ G(K ′[X]) be a homeomorphism such that h(1) = 1,
and let s(X) be an irreducible polynomial such that s(X) generates h((r(X)).
Then, h(E) is a s(X)-sequence and h(LK(E)) = LK′(h(E)).

(b) If G(K[X]) and G(K ′[X]) are homeomorphic, then LK = LK′ .

Proof. (a) follows from the fact that a homeomorphism of Golomb spaces
is also a homeomorphism between the Q-topology and the Q′-topology (where
Q′ := h(Q•) ∪ {0}). (b) follows directly from (a). 2

To study LK , we introduce another set associated to an r(X)-sequence E: we
denote by ℓ(E) the subset of K formed by the roots of the irreducible polynomials
that generate a prime ideal of L(E), that is, ℓ(E) is the set of all λ such that E
converges to 1 in the (X − λ)-topology of K[X]. Note that ℓ(E) does not depend
on the field K, i.e., it remains the same also when considering E in K ′[X], where
K ′ is an extension of K.

Proposition 5.7. Let E be a basicX-sequence. If 1 ∈ ℓ(E), then ℓ(E) is a torsion

multiplicative subgroup of K
•
.
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Proof. Let E = {sn(X) := unX
en}. If 1 ∈ ℓ(E), then 1 = sn(1) for all sufficiently

large n, that is, 1 = un1
en = un for all large n; without loss of generality we can

suppose that un = 1 for all n. By Proposition 5.5 (and noting that the condition
vp(en)→∞ does not depend on λ) it follows that ℓ(E) is the set of all λ such that
λen = 1 for all sufficiently large n, and it is easy to see that this is a subgroup of
K• whose elements are all torsion. 2

The previous proposition also has a converse.

Proposition 5.8. Let H be a torsion multiplicative subgroup of K
•
. Then, there

is a basic X-sequence E with ℓ(E) = H.

Proof. If H is finite, let fn := |H| for all n. If H is infinite, let h1, h2, . . . be an
enumeration of H (note that, since H is torsion, it is contained in the algebraic
closure of Fp and thus it is countable), and let fn be the order of the subgroup
generated by h1, . . . , hn. We claim that the sequence E = {sn(X) := Xfnp

n}n∈N
satisfies the condition: indeed, vp(en) = n for all n, and thus the p-adic valuation
of the exponents goes to infinity. Furthermore, if h ∈ H then sn(h) = hfnp

n

=
(hfn)p

n

= 1p
n

= 1 for all sufficiently large n. Thus h ∈ ℓ(E) and H ⊆ ℓ(E).
On the other hand, suppose h /∈ H. If its order is infinite, then hfnp

n ̸= 1 for
every n and h /∈ ℓ(E) by Proposition 5.5. If the order of h is finite, we claim that
it does not divide any fn. Indeed, every finite subgroup of K• is cyclic, and thus
if the order of h divides fn then h would belong to ⟨h1, . . . , hn⟩ and thus to H, a
contradiction. Since no element of K• has order p (or a multiple of p), it follows
that the order of H does not divide fnp

n for every n; thus, again hfnp
n ̸= 1 and so

h /∈ ℓ(E). The claim is proved. 2

In general, we only know that |ℓ(E)| ≤ |LK(E)|; however, when K is alge-
braically closed the natural map λ 7→ (X−λ) from K to Max(K[X]) is a bijection,
and thus in particular |ℓ(E)| = |LK(E)|. We now can use the previous propositions
to determine LK .

Lemma 5.9. Let K be an algebraically closed field of characteristic p > 0, and let
n be a positive integer. Then, there is a subgroup of K• of cardinality n if and
only if n is coprime with p.

Proof. If n is coprime with p, then there is a k such that n divides pk−1; therefore,
the multiplicative group of Fpk contains a subgroup of cardinality n. Since K is
algebraically closed, it contains Fpk , and thusK• contains a subgroup of cardinality
n.

If n is not coprime with p, then p divides n. Thus, if K• contains a subgroup
of cardinality n, it contains also a subgroup of cardinality p. However, no element
of K• has order p. 2

Proposition 5.10. Let K be a separably closed field of characteristic p > 0.
Then, LK = N \ pN+.
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Proof. Suppose first that K is algebraically closed. If n > 0 is coprime with
p, then by Lemma 5.9 there is a subgroup of K• of cardinality n, and thus by
Proposition 5.8 there is an X-sequence E with |LK(E)| = n. Furthermore, the
sequence {Xk}k∈N does not converge in any P -topology (as vp(k) does not tend to
infinity) and thus also 0 ∈ LK . Hence, N \ pN+ ⊆ LK .

Conversely, let E be a (X − λ)-sequence with (X − µ) ∈ LK(E). Let ψ be the
map

ψ : G(K[X]) −→ G(K ′[X]),

f(X) 7−→ f((µ− λ)X + λ).

Then, ψ is a ring automorphism of K[X], and thus it is a self-homeomorphism of
G(K[X]). Furthermore,

ψ(X − λ) = (µ− λ)X + λ− λ = (µ− λ)X

and thus ψ((X − λ)) = (X); on the other hand,

ψ(X − µ) = (µ− λ)X + λ− µ = (µ− λ)(X − 1)

and thus ψ((X−µ)) = (X−1). Hence, ψ(E) is a basic X-sequence, and |LK(E)| =
|LK(ψ(E))|. By Lemma 5.9, |LK(E)| is coprime with p, and thus LK ⊆ N \ pN+.
Thus the two sets are equal.

Suppose now that K is separably closed. Then, every irreducible polynomial is
either linear or in the form Xpn − a for some a ∈ K and some n ≥ 1; hence, every
maximal ideal of K[X] is contained in a a single prime ideal of K[X]. Therefore, a
r(X)-sequence E in K[X] is a s(X)-sequence in K[X], where s(X) generates the
prime ideal containing r(X). In particular, |LK(E)| = |LK(E)| = ℓ(E); therefore,
LK = LK and thus LK = N \ pN+, as claimed. 2

Theorem 5.11. Let K,K ′ be two separably closed fields of characteristic p, p′

(respectively). If G(K[X]) and G(K ′[X]) are homeomorphic, then p = p′.

Proof. By Corollary 4.2 we can suppose p, p′ > 0. By Proposition 5.6(b),
LK = LK′ . By Proposition 5.10 LK = N \ pN+ and LK′ = N \ p′N+. Hence,
p = p′. 2

Corollary 5.12. Let K,K ′ be algebraically closed fields, and suppose that
G(K[X]) ≃ G(K ′[X]). If one of them is uncountable, then K ≃ K ′.

Proof. Since the cardinality of K[X] is the same of K, if G(K[X]) ≃ G(K ′[X])
then K and K ′ have the same cardinality. If one of them has characteristic 0,
then by Proposition 4.1 so does the other; otherwise, they have the same positive
characteristic by Theorem 5.11. Since they have the same uncountable cardinality,
and they are algebraically closed and of the same characteristic, by [12, Chapter
VI, Theorem 1.12] K and K ′ are isomorphic, as claimed. 2
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In the countable case, we need to distinguish fields that have different degree of
transcendence over Q or Fp. If the characteristic is positive, the following Proposi-
tion 7.1 will show that we can distinguish Fp from the other fields, but it is an open
question if, for example, the algebraic closure of Fp(T ) and the algebraic closure of
Fp(T1, T2) give rise to non-homeomorphic Golomb spaces.

6. Almost prime elements. Let R be a Dedekind domain. We say that an
element b ∈ R is almost prime if it is irreducible and it is contained in a unique
prime ideal; this happens if and only if bR = Pn for some prime ideal P , with n
being exactly the order of the class of P in the class group.

Definition 6.1. We say that a Dedekind domain R with torsion class group has
the almost Dirichlet property (or, simply, that R is almost Dirichlet) if any coprime
coset contains (at least) one almost prime element, that is, if the set of almost prime
elements is dense in G(R).

Remark 6.2.

(1) If R has torsion class group, h : G(R) −→ G(S) is a homeomorphism of
Golomb spaces and b ∈ R is contained in a unique prime ideal, the same hap-
pens for h(b) [16, Proposition 2.7]. However, it is an open question whether h
sends irreducible elements into irreducible elements; in particular, we do not
know if the almost Dirichlet property is a topological invariant (with respect
to the Golomb topology).

(2) If R is almost Dirichlet, then G1(R) is dense in G(R), as every almost prime
element belongs to G1(R).

(3) By Dirichlet’s theorem on primes in arithmetic progressions, the ring Z of
integers is almost Dirichlet. The same happens when R = F [X], where F is
a finite field [14, Theorem 4.8] and when R = Q[X] or, more generally, for
R = K[X] when K is a Hilbertian field.

(4) A field F is said to be pseudo-algebraically closed (PAC) if every nonempty ab-
solutely irreducible variety defined over F has an F -rational point [7, Chapter
11]. If F is PAC and contains separable irreducible polynomials of arbitrarily
large degree, then every coprime coset contains irreducible polynomials, and
F [X] has the almost Dirichlet property [2, Theorem A].

Proposition 6.3. Let F be an algebraic extension of a finite field that is not
algebraically closed. Then, F [X] has the almost Dirichlet property.

Proof. If F is finite, the claim follows from [14, Theorem 4.8]. If not, then F is
pseudo-algebraically closed [7, Corollary 11.2.4] and has (simple) separable exten-
sions of arbitrarily large degree, and thus F [X] is almost Dirichlet by [2, Theorem
A]. 2

A simple consequence of the Remark 6.2(3) and of Proposition 4.3 is the fol-
lowing.
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Corollary 6.4. G(Q[X]) ̸≃ G(Q[X]).

We now want to prove that, at least in some cases, a homeomorphism of Golomb
spaces preserves almost prime elements and, to do so, we shall abstract the proof
of [1, Lemmas 5.10 and 5.11].

Definition 6.5. Let R be a Dedekind domain with torsion class group. We say
that R is power separated if, for every maximal ideal P and every b ∈ G{P}(R), we

have pow(b) ∩G{P}(R) = pow(b).

A more explicit sufficient condition is the following.

Proposition 6.6. Let R be a Dedekind domain with torsion class group, and
suppose there is a function d : R• −→ [1,+∞) such that, for all a, b ∈ R•:

• d(ab) = d(a)d(b);

• d(a+ b) ≤ d(a) + d(b) if a ̸= −b;

• d(a) = 1 if and only if a is a unit.

Then, R is power separated.

Proof. Let P be a prime ideal, b ∈ G{P}(R) and c ∈ G{P}(R) \ pow(b). By
hypothesis, d(b) > 1, and thus we can find an integer t such that d(b)t > d(b)t−1 +
d(c) + 1. Let I := (bt − 1)R: then, c+ I is open (since bt − 1 /∈ P ), and we claim
that (c+ I) ∩ pow(b) = ∅.

Indeed, suppose not, and let z be in the intersection. Then, z = ubr for some
u ∈ U(R), r ∈ N. Since bt ≡ 1 mod I, we see that z ≡ ubs mod I for some
s ∈ {0, . . . , t − 1} (setting b0 := 1), and thus c ≡ ubs mod I, i.e., c − ubs ∈ I.
However, as c ̸= ubs we can calculate

d(c− ubs) ≤ d(c) + d(ubs) = d(c) + d(b)s ≤ d(c) + d(b)t−1 < d(b)t − 1 ≤ d(bt − 1).

For all x ∈ I, we have d(x) ≥ d(bt−1); this is a contradiction, and thus c+(bt−1)R
does not meet pow(b). Therefore, pow(b) is closed in G{P}(R), and thus R is power
separated. 2

Corollary 6.7. The following hold.

(a) If R is the integral closure of Z in an imaginary quadratic extension of Q,
then R is power separated.

(b) If R = K[X] for some field K, then R is power separated.

Proof. In the first case, all units of R are roots of unity, and conversely every
element of R on the unit circle is a root of unity; hence, we can take the complex
modulus as d. For the second case, set d(p) := 2deg(p). 2
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Theorem 6.8. Let R be a Dedekind domain with torsion class group, and suppose
that R is power separated and has the almost Dirichlet property. If S is a Dedekind
domain and h : G(S) −→ G(R) is a homeomorphism, then h sends almost prime
elements into almost prime elements.

Proof. Let a ∈ S be an element contained in a unique prime ideal, and let
b := h(a). We first claim that h(pow(a)) ⊆ pow(b).

Fix a unit u0 ∈ S and an integer n ≥ 1. Let f : G(S) −→ G(S) be the map
sending every x to u0x

n, and let ϕ : G(R) −→ G(R) be the composition h◦f ◦h−1.
Then, f is continuous in the Golomb topology, and thus so is ϕ; furthermore, if P
is a prime ideal of R, then h ◦ f ◦ h−1(P ) ⊆ P since h−1(P ) is a prime ideal of S.
Let

c := ϕ(b) = ϕ(h(a)) = (h ◦ f ◦ h−1 ◦ h)(a) = h(u0a
n).

Suppose that c /∈ pow(b): then, since R is power separated, we can find an open
set Ω := c+ I such that Ω∩pow(b) does not meet G{Q}(R) (where Q is the radical
of bR). Since ϕ is continuous, ϕ−1(Ω) is an open set containing b; hence, there is
a d ∈ R, coprime with b, such that ϕ(b+ dR) ⊆ Ω.

Since R is almost Dirichlet we can find an almost prime element p ∈ b + dI.
Then, pow(p) = G{P}(R), where P is the only prime ideal containing p; hence,

ϕ(p) ∈ pow(p), i.e., there are u ∈ U(R) and l ∈ N+ such that ϕ(p) = upl. On the
other hand,

ϕ(p) ∈ ϕ(b+ dR) ⊆ Ω = c+ I

and, at the same time,

upl ∈ u(b+ dI)l ⊆ u(bl + I) = ubl + I;

it follows that c ≡ ubl mod I, i.e., ubl ∈ c + I = Ω. This contradicts the choice of
I; hence, c must be in pow(b), that is, h(u0a

n) = c = ubl for some l. Since this
happens for every u0 and every n, we have h(pow(a)) ⊆ pow(b).

Suppose now that a is almost prime, and let P and Q be, respectively, the only
prime ideal containing a and the only prime ideal containing b. Then,

G{Q}(R) = h(G{P}(S)) = h(pow(a)) ⊆ pow(b) ⊆ G{Q}(R).

Thus pow(b) = G{Q}(R), i.e., b is almost prime. 2

7. Algebraic extensions of Fp. As observed in [5, Corollary 14], a conse-
quence of the fact that a homeomorphism of Golomb spaces sends units to units
is that if K,K ′ are distinct finite fields then the Golomb spaces G(K[X]) and
G(K ′[X]) are not homeomorphic. The purpose of this section is to generalize this
result, allowing K and K ′ to be arbitrary algebraic extensions of the same Fp.

The first step is to distinguish algebraic extensions from transcendental exten-
sions.

Proposition 7.1. Let K be a field of characteristic p > 0 and let g ∈ K[X] be
an irreducible polynomial. Then, the following are equivalent.
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(i) pow(g) is not discrete in G(K[X]).

(ii) For every s1, s2 ∈ K, either g(s1) = 0, g(s2) = 0 or g(s1)/g(s2) is a root of
unity.

(iii) K is algebraic over Fp.

Proof. (i) =⇒ (ii) Fix λ := ugn ∈ pow(g). Let s1, s2 ∈ K be such that g(s1) ̸=
0 ̸= g(s2), and let I be the ideal of K[X] generated by (X − s1)(X − s2): then, I
is coprime with g, and thus λ + I is an open subset of G(K[X]). Since pow(g) is
not discrete, there are infinitely many λ′ := u′gm ∈ λ+ I, with λ′ ̸= λ.

Therefore, I contains u′gm − ugn = u′gn(gr − v), where r := m − n and
v := uu′−1 (with g0 := 1); setting h := gr − v, it follows that h(s1) = h(s2) = 0,
and thus that r > 0 (since if r = 0 then v ̸= 1 and h is a nonzero constant) and
g(s1)

r = v = g(s2)
r. Hence, (g(s1)/g(s2))

r = v/v = 1; that is, g(s1)/g(s2) is a
root of unity, as claimed.

(ii) =⇒ (iii) Suppose not: then, K is infinite. Let s1 be any element of K
such that g(s1) ̸= 0. Let F be field generated by s1, the coefficients of g and an
element of K that is transcendental over the prime field: then, F is infinite and
contains only finitely many roots of unity. Hence, there are only finitely many t ∈ F
such that g(t) = 0 or g(t) = ug(s1) for some root of unity u in F . In particular,
there is an s2 which does not satisfy either equality; however, this contradicts the
hypothesis, and thus K is algebraic over Fp.

(iii) =⇒ (i) Let λ ∈ pow(g), and let I be an ideal of K[X] that is coprime with
g (and thus with λ); let f be a generator of I. We need to show that the open set
λ+ I contains other elements of pow(g).

Let F be the subfield of K generated by u, the coefficients of g and by the roots
of f : then, F is a finite field, say of cardinality q. For every α ∈ F , λ(α)q−1 = 1;
hence, the polynomial h := 1 − λq−1 has zeros in every element of F , and in
particular all the zeros of f are zeros of λ′. Let q′ be a power of q greater than
every multiplicity of the roots of f : then, f divides hq

′
= (1−λq−1)q

′
= 1−λq′(q−1).

Therefore,
λ− λq

′(q−1)+1 = λ(1− λq
′(q−1)) ∈ I,

and thus λq
′(q−1)+1 ∈ λ+ I, as claimed. 2

Corollary 7.2. Let K1,K2 be two fields of positive characteristic. If K1 is alge-
braic over its base field while K2 is not then G(K1[X]) ̸≃ G(K2[X]).

Let Homeo(G(R)) be the group of self-homeomorphisms of G(R), and let

Λ(R) := {h ∈ Homeo(G(R)) | h(P •) = P • for every P ∈ Spec(R)}

and
Λ1(R) := {h ∈ Λ(R) | h(1) = 1}.

Note that Λ(R) does not necessarily contain all self-homeomorphisms of G(R): for
example, a ring automorphism ψ of R induces a self-homeomorphism of Λ(R), but
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in general does not fix all prime ideals. (For an example, take R = Z[i] and let ψ
be the complex conjugation.)

These groups are effectively invariants of the Golomb topology.

Proposition 7.3. Let R,S be two Dedekind domains, and suppose G(R) and
G(S) are homeomorphic. Then, Λ(R) ≃ Λ(S) and Λ1(R) ≃ Λ1(S).

Proof. Let h : G(R) −→ G(S) be a homeomorphism. For every ψ ∈ Λ(R), the
map ψ := h ◦ ψ ◦ h−1 is a self-homeomorphism of G(S), and if P is a prime ideal
of R then ψ(P •) = h(ψ(h−1(P •))) = h(h−1(P •)) = P •; thus, ψ ∈ Λ(S). Hence, h
induces a map Λ(R) −→ Λ(S), sending ψ to ψ, which is easily seen to be a group
homomorphism. Likewise, h−1 induces a map Λ(S) −→ Λ(R) which is the inverse
of the previous one. Hence, Λ(R) ≃ Λ(S).

The reasoning for Λ1 is the same, using the homeomorphism h′ : G(R) −→ G(S)
sending x to h(1)−1h(x) (so that h′(1) = 1). 2

For any unit u of R, let ψu be the multiplication by u, and let H := {ψu | u ∈
U(R)}. Then, H is a subgroup of Λ(R) (and thus of Homeo(R)) that is isomorphic
to the group of units of R. For every h ∈ Homeo(G(R)), the map h1 := ψh(1)−1 ◦h
is a self-homeomorphism of G(R) fixing 1; furthermore, if h lies in Λ(R) then so
does h1, and thus h1 ∈ Λ1(R). It follows that Λ(R) is generated by H and Λ1(R),
and in particular if Λ1(R) is trivial then Λ(R) = H ≃ U(R).

For example, if R = Z then by [16, Theorem 6.7] Λ1(Z) is trivial and thus Λ(Z)
is isomorphic to U(Z) ≃ Z/2Z. This phenomenon is linked to the hypothesis we
worked with in Section 6.

Proposition 7.4. Let R be a Dedekind domain with torsion class group that
has the almost Dirichlet property and is power separated. Suppose that there are
infinitely many prime ideals P such that U(R) −→ R/PnP is injective for some
integer nP . Then, Λ1(R) is trivial and Λ(R) ≃ U(R).

Proof. Let ∆ be the set of all prime ideals for which there is such a nP , and let
X :=

∪
{P • | P ∈ ∆}.

By Theorem 6.8, any self-homeomorphism h of G(R) sends almost prime el-
ements into almost prime elements. Let h ∈ Λ1(R), and let f be almost prime:
then, h(f) is an almost prime element contained in the same prime ideal of f , and
thus there is a uf ∈ U(R) such that h(f) = uff .

Let P ∈ ∆. Then, h is a homeomorphism in the P -topology, and thus in
particular it is continuous, i.e., for every n there is an m = m(n) ≥ n such that
h(1+Pm) ⊆ 1+Pn (using h(1) = 1). Choose n ≥ nP : then, for every f ∈ 1+Pm

that is almost prime both f and uff are in 1+Pn, and thus f−uff = f(1−uf ) ∈
Pn. Since f /∈ P , it follows that 1−uf ∈ Pn. By the injectivity of U(R) −→ R/Pn

we have uf = 1, i.e., f is a fixed point of h. The closure of 1 + Pm is the Golomb
topology is (1 +Pm)∪P •; hence, also all the elements of P • are fixed points of h.
It follows that h|X is the identity.

Let now z ∈ G(R) and let z + I be an open neighborhood of z. Since ∆ is
infinite, there is a Q ∈ ∆ that is coprime with I and z; thus, z + I meets Q. Since
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I was arbitrary, it follows that z is in the closure of X; thus, X is dense in G(R).
Since h|X is the identity, the whole h is the identity. Hence, Λ1(R) is trivial and
Λ(R) ≃ U(R). 2

Theorem 7.5. Let K,K ′ be fields of characteristic p > 0. If K is algebraic over
Fp and G(K[X]) ≃ G(K ′[X]) then K ≃ K ′.

Proof. By Corollary 7.2, K ′ must be algebraic over Fp. If K is algebraically
closed, then G1(K[X]) is not dense in G(K[X]) (Proposition 5.2(a)); if K ′ is not
algebraically closed, then K ′[X] is almost Dirichlet (Proposition 6.3) and thus
G1(K[X]) is dense in G(K[X]). Therefore, if K is algebraically closed then so is
K ′, and thus K ≃ K ′.

Suppose now that K is not algebraically closed. By the previous reasoning,
neither K ′ is algebraically closed. By Proposition 6.3, K[X] and K ′[X] are al-
most Dirichlet, and thus by Proposition 7.4 Λ1(K[X]) ≃ U(K[X]) = K• and
Λ1(K

′[X]) ≃ U(K ′[X]) = K ′•. Furthermore, all maps K• −→ K[X]/P are injec-
tive; by Proposition 7.4, it follows that K• ≃ K ′•.

We can consider K and K ′ contained in the algebraic closure Fp. If K ′ is not
isomorphic to K, then K ̸= K ′, and thus without loss of generality there is a finite
extension Fpn that is contained in K but not in K ′. Hence, K• contains elements
of order pn − 1 (the generator of the multiplicative group of Fpn) while K ′ does
not, because pm − 1 is a multiple of pn − 1 only if m is a multiple of n. Therefore,
K• ≃ K ′• implies K = K ′, as claimed. 2

As a corollary, we are able to answer affirmatively to a question posed in [5,
Section 3.1]. We denote by c the cardinality of the continuum.

Corollary 7.6. The number of distinct Golomb topologies associated to count-
ably infinite domains is c.

Proof. There are c possible pairs of binary operations on a countably infinite set;
hence, there are at most c ring structures and at most c distinct Golomb topologies.

To show that there are exactly c, let p be a prime number and let Cp be the
set of all (isomorphism classes of) algebraic extensions of Fp. By Theorem 7.5, the
Golomb topologies relative to the members of Cp are pairwise non-homeomorphic,
and thus we need to show that Cp has cardinality at least c.

Let {q1, q2, . . .} be the set of prime numbers. To each A ⊆ N, we can associate
the field F (A) defined as the composition of the extensions of Fp of degree qi, for
i ∈ A: then, F (A) ̸= F (A′) if A ̸= A′, and thus the cardinality of Cp is at least the
cardinality of the power set of N, i.e., c. The claim is proved. 2

The method used in the proof of Theorem 7.5 does not quite extend to the
case in which the characteristic of K and K ′ are not supposed beforehand to
be equal; that is, it is not clear how to prove the analogue of Theorem 5.11 for
algebraic extensions of finite fields. We can however say something about the
relation between the two characteristics.
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Proposition 7.7. Let K,K ′ be algebraic extensions of Fp and Fp′ , respectively.
If p divides p′ − 1, then G(K[X]) and G(K ′[X]) are not homeomorphic.

Proof. Using Theorem 5.11 we can suppose that K and K ′ are not algebraically
closed. As in the proof of Theorem 7.5, by Propositions 6.3 and 7.4 if G(K[X]) ≃
G(K ′[X]) then the groups of units K• and K ′• are isomorphic. However, p|p′ − 1
implies that there is an u ∈ K ′• of order p, something which cannot happen in K•.
Hence, G(K[X]) and G(K ′[X]) are not homeomorphic. 2
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