

RESEARCH ARTICLE

Star operations on numerical semigroups: the multiplicity 3 case

Dario Spirito

Received: 15 May 2014 / Accepted: 17 September 2014 / Published online: 30 September 2014 © Springer Science+Business Media New York 2014

Abstract We prove an explicit formula for the number of star operations on numerical semigroups of multiplicity 3 in terms of the generators of the semigroup. We also estimate the number of semigroups of multiplicity 3 with exactly n star operations.

Keywords Numerical semigroups · Star operations · Pseudosymmetric semigroups

1 Introduction

The notion of star operation was born in the context of the multiplicative theory of ideals, as a generalization of the divisorial closure (or *v*-operation) [6,11]. The problem of counting the number of star operations on a given domain has been recently solved in some special cases, such as *h*-local Prüfer domains [7], pseudo-valuation domains [13] and some classes of one-dimensional Noetherian domains [8,9]. In the latter case, there is often much interplay between local rings and their value semigroups (see e.g. [2–4,12]); in particular, semigroup rings in the form $K[[X^S]] := K[[\{X^s : s \in S\}]]$ (where *K* is a field and *S* is a numerical semigroup) are a rich source of examples, either for studying star operations [8,9] or the related case of semiprime operations [19].

Star operations were subsequently defined on semigroups as a way to generalize certain ring-theoretic definitions [10]. The study of the case of numerical semigroups was undergone in [18], where it was shown that, if n > 1, there are only a finite number of numerical semigroups with exactly *n* star operations; however, this result

Dipartimento di Matematica, Università degli Studi "Roma Tre", Largo San Leonardo Murialdo,

1, 00146 Rome, Italy

Communicated by Fernando Torres.

D. Spirito (🖂)

e-mail: spirito@mat.uniroma3.it

was obtained not through a precise counting, but through estimates. Like in other cases [5,14,15], the problem of obtaining an exact counting becomes simpler if we fix a low multiplicity: since the cases of multiplicity 1 and 2 are trivial (the former containing only \mathbb{N} and the latter consisting only of symmetric semigroups, which have only one star operation), the goal of this paper is to tackle semigroups of multiplicity 3. We prove (Theorem 7.6) a direct formula for the number of star operations in terms of the generators of the semigroup, which in particular allows, for any integer *n*, to obtain fairly quickly an explicit list of the semigroups of multiplicity 3 with exactly *n* star operations.

The structure of the paper is as follows: Sect. 3 introduces an order on the set of non-divisorial ideals of a numerical semigroup *S*; in Sect. 4 is introduced a graphical representation of the ideals between *S* and \mathbb{N} , which is used in Sect. 6 to find explicitly the set of ideals closed by a principal star operations. Section 7 contains the main theorem of the paper, while Sect. 8 presents some estimates on the number of numerical semigroups with exactly *n* star operations.

2 Background and notation

Like [18], the notation and the terminology of this paper follow [4]; for further informations about numerical semigroups, the reader may consult [16].

A numerical semigroup is a subset $S \subseteq \mathbb{N}$ such that $0 \in S$, $a + b \in S$ for every $a, b \in S$ and such that $\mathbb{N} \setminus S$ is finite. If a_1, \ldots, a_n are natural numbers, $\langle a_1, \ldots, a_n \rangle$ denotes the semigroup generated by a_1, \ldots, a_n , i.e., the set $\{\lambda_1 a_1 + \cdots + \lambda_n a_n : \lambda_i \in \mathbb{N}\}$.

A *fractional ideal* (or simply an *ideal*) of *S* is a nonempty subset $I \subseteq S$ such that $i + s \in S$ for every $i \in I$, $s \in S$, and such that $d + I \subseteq S$ for some $d \in \mathbb{Z}$. We denote by $\mathcal{F}(S)$ the set of fractional ideals of *S*, and by $\mathcal{F}_0(S)$ the set of fractional ideals contained between *S* and \mathbb{N} or, equivalently, the set of fractional ideals whose minimal element is 0. Note that, if *I* is an ideal, *I* is bounded below and $I - \min(I) \in \mathcal{F}_0(S)$. The intersection of a family of ideals, and the union of a finite family of ideals, is an ideal. If *I*, *J* are ideals of *S*, then $(I - J) := \{x \in \mathbb{Z} : x + J \subseteq I\}$ is an ideal; moreover, if $I, J \in \mathcal{F}_0(S)$ then $(I - J) \subseteq \mathbb{N}$.

The *Frobenius number* g(S) of a numerical semigroup *S* is the biggest element of $\mathbb{Z} \setminus S$, while the *degree of singularity* $\delta(S)$ is the cardinality of $\mathbb{N} \setminus S$. The *multiplicity* $\mu(S)$ is the smallest positive integer in *S*.

A star operation on S is a map $* : \mathcal{F}(S) \longrightarrow \mathcal{F}(S), I \mapsto I^*$, such that, for any $I, J \in \mathcal{F}(S), a \in \mathbb{Z}$, the following properties hold:

(a)
$$I \subseteq I^*$$
;
(b) if $I \subseteq J$, then $I^* \subseteq J^*$;
(c) $(I^*)^* = I^*$;
(d) $a + I^* = (a + I)^*$;

(e) $S^* = S$.

An ideal *I* such that $I = I^*$ is said to be *-closed. The set of *-closed ideals is denoted by $\mathcal{F}^*(S)$; * is uniquely determined by $\mathcal{F}^*(S)$, and even by $\mathcal{F}^*(S) \cap \mathcal{F}_0(S)$. The set of star operation on *S* is denoted by Star(*S*). Star(*S*) has a natural ordering, where $*_1 \leq *_2$ if and only if $I^{*_1} \subseteq I^{*_2}$ for every ideal *I* or, equivalently, if and only if $\mathcal{F}^{*_1} \supseteq \mathcal{F}^{*_2}$. With this ordering, its minimum is the identity star operation (usually denoted by *d*), while the maximum is the star operation $I \mapsto (S - (S - I))$, usually denoted by *v*. Ideals that are *v*-closed are commonly said to be *divisorial*. We denote by $\mathcal{G}_0(S)$ the set of nondivisorial ideals *I* such that min I = 0, that is, $\mathcal{G}_0(S) := \mathcal{F}_0(S) \setminus \mathcal{F}^v(S)$.

3 Ordering and antichains

Every set Δ of ideals of *S* defines a star operation $*_{\Delta}$ such that, for every ideal *J* of *S*,

$$J^{*\Delta} := J^{v} \cap \bigcap_{I \in \Delta} (I - (I - J)) = J^{v} \cap \bigcap_{I \in \Delta} \bigcap_{\alpha \in (I - J)} (-\alpha + I).$$
(1)

(For the equivalence of the two representations, see [18, Proposition 3.6].) Equivalently, $*_{\Delta}$ can be defined as the biggest star operation * such that every element of Δ is *-closed. We call $*_{\Delta}$ the star operation generated by Δ . Denoting $*_{II}$ as $*_{I}$, we see that $*_{\Delta} = \inf_{I \in \Delta} *_{I}$. It is rapidly seen that $*_{I} = *_{a+I}$ for every ideal I and every integer a, so that we can always suppose $\Delta \subseteq \mathcal{F}_{0}(S)$, or even $\Delta \subseteq \mathcal{G}_{0}(S)$, since $*_{I} = v$ when I is divisorial.

A major problem is to find conditions under which two different sets of ideals generate different star operations. In general, it is possible that $*_{\Delta} = *_{\Lambda}$ while $\Delta \neq \Lambda$: the simplest example is maybe the case $\Lambda = \Delta \setminus \{J\}$, where *J* is a divisorial ideal. The non-unicity persists even if we discard divisorial ideals: in fact, whenever *J* is $*_{I}$ -closed, both $\{I\}$ and $\{I, J\}$ define the same star operation.

Definition 3.1 Let *S* be a numerical semigroup and let $I, J \in \mathcal{G}_0(S)$. We say that *I* is **-minor* than *J*, and we write $I \leq_* J$, if $*_I \geq *_J$ or, equivalently, if *I* is $*_J$ -closed.

By [18, Theorem 3.8], if $I, J \in \mathcal{G}_0(S)$ and $I \neq J$ then $*_I \neq *_J$. In particular, \leq_* is antisymmetric, and so it is an order on $\mathcal{G}_0(S)$.

By [18, Corollary 4.5], (\mathcal{G}_0, \leq_*) has a maximum, $M_g := \{x \in \mathbb{N} : g - x \notin S\}$, but it has not (in general) a minimum, since the biggest star operation is v, and we are considering only operations generated by non-divisorial ideals. However, since the set \mathcal{G}_0 is finite, there are always minimal elements: more precisely, I is a minimal element if and only if $\mathcal{F}^{*_I} = \mathcal{F}^v \cup \{n + I : n \in \mathbb{Z}\}$. For example, if $S = \{0, \mu, \ldots\}$, then every ideal in the form $I = \{0, a, \ldots\}$ (with $1 < a < \mu$) is a minimal element of (\mathcal{G}_0, \leq_*) .

If a star operation * closes an ideal I, then each ideal *-minor than I is *-closed. It follows that the set $\mathcal{A}(*) := \max_*(\mathcal{F}^* \cap \mathcal{G}_0)$ is uniquely determined by * (where \max_* denotes the maximum with respect to the \leq_* -ordering). The set $\mathcal{A}(*)$ is an example of antichain:

Definition 3.2 Let (\mathcal{P}, \leq) be a partially ordered set. An *antichain* of \mathcal{P} is a set $\Delta \subseteq \mathcal{P}$ such that no two members of Δ are comparable.

Let $\Omega(\mathcal{P})$ be the set of antichains of \mathcal{P} . By the previous observations, we have an injective map \mathcal{A} : Star(S) $\longrightarrow \Omega(\mathcal{G}_0(S))$, given by $* \mapsto \mathcal{A}(*)$; conversely, (1) defines a map $*: \Omega(\mathcal{G}_0(S)) \longrightarrow$ Star(S) which sends Δ into $*_{\Delta}$. It is clear that $*_{\mathcal{A}(*_{\Delta})} = *_{\Delta}$

for every $\Delta \subseteq \mathcal{G}_0(S)$; therefore, $* \circ \mathcal{A}$ is the identity on Star(S), and * is a surjective map. We shall show in Corollary 6.5 that, when $\mu = 3$, \mathcal{A} and * are bijective.

4 The graphical representation

The remainder of this article will deal excusively with semigroups of multiplicity 3. The following trivial observation is the basis of all our method.

Proposition 4.1 Let *S* be a numerical semigroup of multiplicity 3, and *I* a fractional ideal of *S*. Then, there are uniquely determined $a, b, c \in \mathbb{Z}$ such that $I = (3a + 1 + 3\mathbb{N}) \cup (3b + 2 + 3\mathbb{N}) \cup (3c + 3\mathbb{N})$. If $I \in \mathcal{F}_0(S)$, then c = 0.

Proof Since *I* is a fractional ideal of *S*, *I* is bounded below. Let a', b', c' be the minimal elements of *I* congruent (respectively) to 1, 2 and 0 modulo 3: defining *a*, *b*, *c* as the integers such that a' = 3a + 1, b' = 3b + 2 and c' = 3c we obtain what we need, since $3 \in S$ implies that if $x \in I$ then also $x + 3 \in I$. If moreover $I \in \mathcal{F}_0(S)$, then $0 \in I$, so that $c \leq 0$, but $I \subseteq \mathbb{N}$, and thus $c \geq 0$.

In particular, the above proposition applies when I = S: in this case, we use α and β instead of a and b, that is, we shall put $S = (3\alpha + 1 + 3\mathbb{N}) \cup (3\beta + 2 + 3\mathbb{N}) \cup 3\mathbb{N}$. In particular, we have $S = \langle 3, 3\alpha + 1, 3\beta + 2 \rangle$.

Let $I \in \mathcal{F}_0(S)$. If $I = (3a+1+3\mathbb{N}) \cup (3b+2+3\mathbb{N}) \cup 3\mathbb{N}$, then we set [a, b] := I. We note that $\mathbb{N} = [0, 0]$ and $S = [\alpha, \beta]$.

Proposition 4.2 Let $S = \langle 3, 3\alpha + 1, 3\beta + 2 \rangle$ be a numerical semigroup of multiplicity 3, and suppose that $\alpha \leq \beta$.

- (a) If $I = [a, b] \in \mathcal{F}_0(S)$, then $0 \le a \le \alpha$, $0 \le b \le \beta$ and $-\alpha \le b a \le \alpha$.
- (b) Conversely, if a, b are integers, $0 \le a \le \alpha$, $0 \le b \le \beta$ and $b a \le \alpha$, then I = [a, b] for some $I \in \mathcal{F}_0(S)$.
- *Proof* (a) Suppose I = [a, b]. Since $I \subseteq \mathbb{N}$, $a, b \ge 0$ and, since $S \subseteq I$, we have $3\alpha + 1, 3\beta + 2 \in I$, and thus $a \le \alpha, b \le \beta$. In particular, $b a \ge 0 \alpha = -\alpha$. If $b a > \alpha$, then

$$3a + 1 + 3\alpha + 1 = 3(a + \alpha) + 2 < 3(a + b - a) + 2 < 3b + 2$$

and thus $3a+1+3\alpha+1 \notin I$, while we should have $3a+1+3\alpha+1 \in 3a+1+S \subseteq I + S \subseteq I$. Hence $b-a \leq \alpha$.

(b) Let $I := (3a + 1 + 3\mathbb{N}) \cup (3b + 2 + 3\mathbb{N}) \cup \mathbb{N}$; we have to prove that I is indeed an ideal, and to do this it is enough to show that I + 3, $I + 3\alpha + 1$ and $I + 3\beta + 2$ belong to I. Clearly $I + 3 \subseteq I$; for $3\alpha + 1$, note that

$$3b + 2 + 3\mathbb{N} + 3\alpha + 1 = 3(b + \alpha + 1) + 3\mathbb{N} \subseteq S$$

since $b + \alpha + 1 \ge \alpha + 1 \ge 0$, while $3\alpha + 1 + 3\mathbb{N} \subseteq I$ since $a \ge \alpha$. Moreover,

$$3a + 1 + 3\mathbb{N} + 3\alpha + 1 = 3(a + \alpha) + 2 + 3\mathbb{N} \subseteq I$$

since $a + \alpha \ge a + b - a = b$. Analogously, $3a + 1 + 3\mathbb{N} + 3\beta + 2 \subseteq I$ and $3\mathbb{N} + 3\beta + 2 \subseteq I$, while

479

$$3b + 2 + 3\mathbb{N} + 3\beta + 2 = 3(b + \beta + 1) + 1 + 3\mathbb{N} \subset I$$

since $b + \beta + 1 \ge \beta \ge \alpha \ge a$.

Simmetrically, we have:

Proposition 4.3 Let $S = \langle 3, 3\alpha + 1, 3\beta + 2 \rangle$ be a numerical semigroup of multiplicity 3, and suppose that $\alpha \ge \beta$.

- (1) If $I = [a, b] \in \mathcal{F}_0(S)$, then $0 \le a \le \alpha$, $0 \le b \le \beta$ and $-\beta \le a b \le \beta + 1$.
- (2) Conversely, if a, b are integers, $0 \le a \le \alpha$, $0 \le b \le \beta$ and $a b \le \beta + 1$, then I = [a, b] for some $I \in \mathcal{F}_0(S)$.

Proof It is enough to repeat the proof of Proposition 4.2.

Suppose *S* is a numerical semigroup of multiplicity 3. If $I = [a, b] \in \mathcal{F}_0(S)$, then we can represent *I* by the point (a, b) in the lattice $\mathbb{Z} \times \mathbb{Z}$ of the integral points of the plane, and Propositions 4.2 and 4.3 determines the image of $\mathcal{F}_0(S)$: firstly, the bounds $0 \le a \le \alpha$ and $0 \le b \le \beta$ shows that it will be contained in the rectangle whose vertices are $[0, 0], [0, \beta], [\alpha, 0]$ and $[\alpha, \beta]$. Moreover, since each "ascending" diagonal (i.e., each diagonal going from the lower left to the upper right of the rectangle) is characterized by the quantity b - a, we see that if $\alpha \le \beta$ then the image of $\mathcal{F}_0(S)$ will lack the upper left corner of the rectangle (the points with $b - a > \alpha$) while if $\alpha \ge \beta$ then we have to "cut" the lower right corner. In the case $\alpha = \beta$, $\mathcal{F}_0(S)$ will be represented by the whole rectangle (that will, indeed, be a square). Thus, $\mathcal{F}_0(S)$ will be represented by a polygon vaguely similar to a trapezoid, like the one showed in Fig. 1; we shall often identificate an ideal with the point corresponding to it in this graphical representation.

Proposition 4.4 Let S be a numerical semigroup of multiplicity 3 and let [a, b], [a', b'] be ideals in $\mathcal{F}_0(S)$. Then:

(a) $[a, b] \subseteq [a', b']$ if and only if $a \ge a'$ and $b \ge b'$; (b) $[a, b] \cap [a', b'] = [\max\{a, a'\}, \max\{b, b'\}];$ (c) $[a, b] \cup [a', b'] = [\min\{a, a'\}, \min\{b, b'\}].$

Proof Straightforward.

Definition 4.5 Let $S = \langle 3, 3\alpha + 1, 3\beta + 2 \rangle$.

- Σ^0 is the ascending diagonal that contains $S = [\alpha, \beta]$, i.e., the diagonal such that $b a = \beta \alpha$.
- $\Sigma^+ := \{ [a, b] \in \mathcal{F}_0(S) : b a > \beta \alpha \}.$
- $\Sigma^{-} := \{[a, b] \in \mathcal{F}_{0}(S) : b a < \beta \alpha\}.$

The notation Σ^+ and Σ^- is chosen to highlight the position of the two sets in the graphical representation.

Lemma 4.6 Let S be a numerical semigroup of multiplicity 3. The sets Σ^+ , Σ^- , Σ^0 , $\Sigma^+ \cup \Sigma^0$ and $\Sigma^- \cup \Sigma^0$ are closed by intersections.

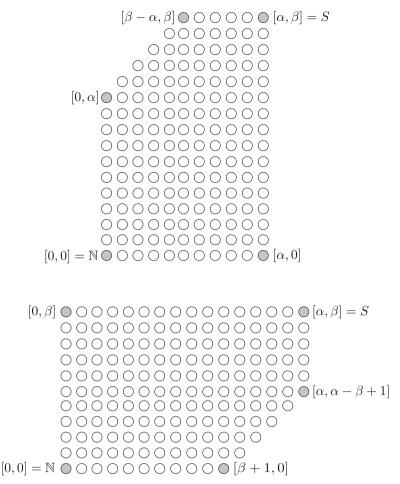


Fig. 1 Graphical representation of the ideals of a semigroup of multiplicity 3: above, the case $\alpha \leq \beta$; below, the case $\alpha \geq \beta$

Proof Σ^0 is linearly ordered, so this case is trivial.

Let $[a, b], [a', b'] \in \Sigma^+$, and suppose without loss of generality $a \le a', b \ge b'$ (if $b \le b'$, then $[a, b] \supseteq [a', b']$). Then $[a, b] \cap [a', b'] = [a, b']$, and $b' - a \ge b' - a' > \beta - \alpha$, and thus $[a, b'] \in \Sigma^+$.

For Σ^- , in the same way, if $[a, b] \cap [a', b'] = [a, b']$, then $b' - a \le b - a < \beta - \alpha$ and $[a, b'] \in \Sigma^-$.

If $[a, b] \in \Sigma^+$ and $[a', b'] \in \Sigma^0$, then $b' = a' + \beta - \alpha$ and $b > a + \beta - \alpha$; hence $\min\{b, b'\} \ge \min\{a, a'\} + \beta - \alpha$ and $[a, b] \cap [a', b'] \in \Sigma^+ \cap \Sigma^0$.

Analogously, if $[a, b] \in \Sigma^-$ and $[a', b'] \in \Sigma^0$, then $\min\{b, b'\} \le \min\{a, a'\} + \beta - \alpha$ and $[a, b] \cap [a', b'] \in \Sigma^- \cap \Sigma^0$.

5 Shifting ideals

Definition 5.1 If $I \in \mathcal{F}_0(S)$ and $k \in I$, the *k*-shift of *I*, denoted by $\rho_k(I)$, is the ideal $(I - k) \cap \mathbb{N}$.

It is clear that, if $\rho_k(I)$ is defined, then it is contained in $\mathcal{F}_0(S)$, since 0 belongs to $\rho_k(I)$. Since $3k \in S \subseteq I$ for every $k \in \mathbb{N}$, the 3*k*-shift (and in particular the 3-shift) is always defined.

It is straightforward to see that, if $a, a + b \in I$, then $\rho_b(\rho_a(I)) = \rho_{a+b}(I)$. Therefore, applying repeatedly the 3-shift, we can always write $\rho_k(I)$ as $\rho_r \circ \rho_3^q(I)$, where $r \in \{0, 1, 2\}$ is congruent to *k* modulo 3. Hence, the study of the shifts reduces to the study of ρ_1, ρ_2 and ρ_3 .

Lemma 5.2 Let *S* be a numerical semigroup of multiplicity 3 and let I = [a, b] be an ideal in $\mathcal{F}_0(S)$.

- (a) $\rho_3(I) = [\max\{0, a 1\}, \max\{0, b 1\}];$ in particular, if a, b > 0, then $\rho_3(I) = [a 1, b 1].$
- (b) $\rho_1(I)$ is defined if and only if a = 0, and in this case $\rho_1(I) = [b, 0]$.
- (c) $\rho_2(I)$ is defined if and only if b = 0, and in this case $\rho_2(I) = [0, a 1]$.

In terms of the graphical representation, this means that ρ_1 and ρ_2 swap the *x*-axis $\{[a, 0] : 0 \le a \le \min\{\alpha, \beta + 1\}\}$ and the *y*-axis $\{[0, b] : 0 \le b \le \min\{\alpha, \beta\}\}$. On the other hand, ρ_3 moves the ideals one step closer to the origin (Fig. 2).

Proof Write $I = 3\mathbb{N} \cup (3a+1+3\mathbb{N}) \cup (3b+2+3\mathbb{N})$. Then,

- $I 3 = (-3 + 3\mathbb{N}) \cup (3(a 1) + 1 + 3\mathbb{N}) \cup (3(b 1) + 2 + 3\mathbb{N}),$
- $I 1 = 3a\mathbb{N} \cup (3b + 1 + 3\mathbb{N}) \cup (2 + 3\mathbb{N}),$
- $I 2 = 3b\mathbb{N} \cup (1 + 3\mathbb{N}) \cup (3(a 1) + 2 + 3\mathbb{N}).$

If $\rho_1(I)$ (respectively, $\rho_2(I)$) is defined, then we must have $0 \in 3a\mathbb{N}$, and thus a = 0 (resp., $0 \in 3b\mathbb{N}$, and thus b = 0). The lemma now follows from the definition of [x, y].

Fig. 2 Action of the shifts

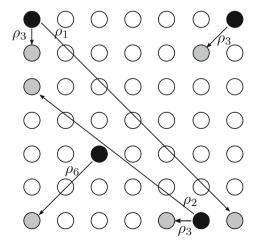
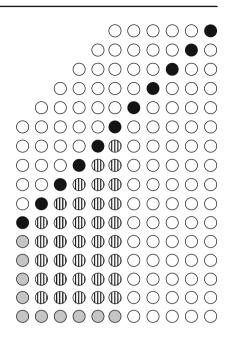


Fig. 3 Divisorial and nondivisorial ideals. *Black circles* represent ideals of Σ^0 , *gray circles* other ideals in the form $\rho_x(S)$, *striped circles* are intersections of *black* and *gray* ideals. *White circles* represent non-divisorial ideals



6 Principal star operations

Lemma 6.1 Let *S* be a numerical semigroup of multiplicity 3 and $\Delta \subseteq \mathcal{F}_0(S)$. Then $\Delta + \mathbb{Z} := \{d + I : d \in \mathbb{Z}, I \in \Delta\}$ is the set of closed ideals of a star operations if and only if $S \in \Delta$, Δ is closed by intersections and $\rho_k(I) \in \Delta$ whenever $I \in \Delta$ and $\rho_k(I)$ is defined.

Proof It is merely a restatement of [18, Lemma 3.3].

We state separetely a corollary to underline a property which we will use many times:

Corollary 6.2 Let S be a numerical semigroup of multiplicity 3, $I \in \mathcal{F}_0(S)$, $k \in I$ and $* \in \text{Star}(S)$. If I is *-closed, so is $\rho_k(I)$.

Proposition 6.3 Let $S = \langle 3, 3\alpha + 1, 3\beta + 2 \rangle$ be a numerical semigroup of multiplicity *3. Then:*

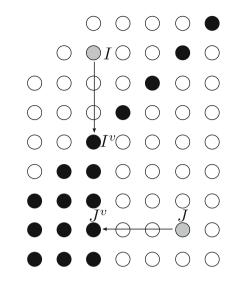
(a) if $\alpha \leq \beta$, then $\mathcal{F}^{v}(S) \cap \mathcal{F}_{0}(S) = \Sigma^{0} \cup \{[a, b] \in \Sigma^{-} : a \leq \beta - \alpha\};$ (b) if $\alpha \geq \beta$, then $\mathcal{F}^{v}(S) \cap \mathcal{F}_{0}(S) = \Sigma^{0} \cup \{[a, b] \in \Sigma^{+} : b \leq \alpha - \beta - 1\}.$

Proof We will prove only the case $\alpha \leq \beta$ (pictured in Fig. 3); the proof for $\alpha \geq \beta$ is entirely analogous.

Let Δ be the set on the right hand side. We will show that Δ verifies the hypotheses of Lemma 6.1 (so that $\Delta = \mathcal{F}^*(S) \cap \mathcal{F}_0(S)$ for some star operation *), and that each $I \in \Delta$ is divisorial: since $v \ge *$ for every $* \in \text{Star}(S)$, the claim will follow.

If $[a, b] \in \Sigma^0$, then $[a, b] = [\alpha - k, \beta - k] = \rho_{3k}(S)$ for some $k \in \mathbb{N}$, so that [a, b] is divisorial. In particular, $[0, \beta - \alpha] \in \mathcal{F}^v(S)$. Therefore, $[0, \beta - \alpha - x] = \rho_{3x}([0, \beta - \alpha])$

Fig. 4 Divisorial closure of ideals



is divisorial for every $x \ge 0$, and so is $[\beta - \alpha - x, 0] = \rho_1([0, \beta - \alpha - x])$. Let $[a, b] \in \Sigma^-$ such that $a \le \beta - \alpha$. If $b \le \beta - \alpha$, then $[a, b] = [a, 0] \cap [0, b]$ is the intersection of two divisorial ideals; if $b > \beta - \alpha$, then $[a, b] = [a, 0] \cap [b - (\beta - \alpha), b]$, and the latter is divisorial since it belongs to Σ^0 . Hence $\mathcal{F}^v \subseteq \Delta$.

Let now $[a, b], [a', b'] \in \Delta$; if they are both in Σ^0 they are comparable, and thus the intersection is in Δ . If $[a, b] \in \Sigma^-$, then by Lemma 4.6 its intersection with [a', b']is in $\Sigma^- \cup \Sigma^0$; moreover, min $\{a, a'\} \le a \le \beta - \alpha$, and thus $[a, b] \cap [a', b'] \in \Delta$.

It is clear that $\rho_3(I) \in \Delta$ whenever $I \in \Delta$, since $\rho_3([a, b]) \in \Sigma^0$ if $[a, b] \in \Sigma^0$ and a > 0, while $\rho_3([0, \beta - \alpha]) = [0, \beta - \alpha - 1] \in \Delta$; if $[a, b] \in \Delta \setminus \Sigma^0$, then $\rho_3([a, b]) = [\max\{a - 1, 0\}, \max\{b - 1, 0\}]$, and $\max\{a - 1, 0\} \leq a$, so that $\rho_3([a, b]) \in \Delta$.

By the discussion in Sect. 5, we only need to show that $\rho_1([0, c]), \rho_2([c, 0]) \in \Delta$ if [0, c] or [c, 0] are in Δ . However, excluding the case c = 0 (which is trivial), we have $\rho_1([0, c]) = [c, 0]$ and $\rho_2([c, 0]) = [0, c - 1]$, and since $c \leq \beta - \alpha$ we have $[c, 0], [0, c - 1] \in \Delta$.

Lemma 6.4 Let S be a semigroup of multiplicity 3, and let $I \in \mathcal{F}(S)$. Then, the set of ideals between I and I^{v} is linearly ordered.

Proof If $[a, b] \in \Sigma^0$, then it is divisorial.

Suppose $[a, b] \in \Sigma^+$. Then, $\rho_{3(\alpha-a)}([\alpha, \beta]) = [a, \min\{\beta - \alpha + a, 0\}]$. However, $\beta - \alpha + a \le b - a + a = b$, and thus $[a, b] \subseteq [a, b'] = \rho_{3(\alpha-a)}(S)$. However, the ideals between [a, b] and [a, b'] are linearly ordered, and $\rho_{3x}(S)$ is always divisorial (by Corollary 6.2); hence $[a, b]^v \subseteq [a, b']$ and the ideals between [a, b] and $[a, b]^v$ are linearly ordered (Fig. 4).

If $[a, b] \in \Sigma^-$, then in the same way $[a, b]^v \subseteq \rho_{3(\beta-b)}([\alpha, \beta]) = [a', b]$ for some $a' \leq a$, and the claim follows.

Corollary 6.5 Let S be a semigroup of multiplicity 3. Then, the maps A and * (defined at the end of Sect. 3) are bijections, and |Star(S)| is equal to the number of antichains of $(\mathcal{G}_0(S), \leq_*)$.

Proof We need to show that, given two antichains $\Delta \neq \Lambda$ of $\mathcal{G}_0(S)$, we have $*_{\Delta} \neq *_{\Lambda}$. Suppose not, and suppose (without loss of generality) that there exists an $I \in \Delta \setminus \Lambda$. Then, $I = I^{*_{\Delta}} = I^{*_{\Lambda}} = \bigcap_{L \in \Lambda} I^{*_{L}}$. Since $I \subseteq I^* \subseteq I^v$ for every $* \in \text{Star}(S)$, and the set of ideals between I and I^v is linearly ordered, there is an $J \in \Lambda$ such that $I^{*_J} = I$; it follows that $I \leq_* J$. Analogously, since $J = J^{*_{\Lambda}} = J^{*_{\Lambda}}$, there is a $I' \in \Delta$ such that $J \leq_* I'$. Since Δ is an antichain in the *-order, it follows that I = I' = J, and thus $I \in \Lambda$, against the hypothesis. Therefore, $*_{\Delta} \neq *_{\Lambda}$.

Corollary 6.6 Let S be a semigroup of multiplicity 3 and let $I, J \in \mathcal{F}_0(S) \cap \mathcal{F}^*(S)$ for some $* \in \text{Star}(S)$. Then, $I \cup J$ is *-closed.

Proof Let I = [a, b] and J = [a', b']. Without loss of generality, we can suppose a < a' and b > b' (if $b \le b'$, then $I \supseteq J$ and $I \cup J = I$). Then, $I \cup J = [a, b']$.

Suppose $I \cup J \in \Sigma^+$. Then, since a - b < a - b', it follows that $I \in \Sigma^+$. Hence, $[a, b'] = \rho_{3(b-b')}(I) \cap I^v$, and thus $[a, b'] \in \Sigma^+$. Analogously, if $I \cup J \in \Sigma^-$, then $J \in \Sigma^-$ and $[a, b'] = \rho_{3(a'-a)}(J) \cap J^v$. In both cases, $I \cup J$ is $*_I$ - or $*_J$ -closed, and in particular, since $* \le *_I \land *_J$, it is *-closed.

Note that the hypothesis $I, J \in \mathcal{F}_0(S)$ is necessary: for example, if $S = \langle 3, 5, 7 \rangle$, $I = S, J = 4 + \mathbb{N}$, then both I and J are divisorial, but $I \cup J = S \cup \{4\}$ while $(I \cup J)^v = (S - M) = S \cup \{2, 4\}.$

Lemma 6.7 Let *S* be a numerical semigroup of multiplicity 3, and let $I, J \in \mathcal{F}(S)$ such that *J* is $*_I$ -closed. There are $\gamma_0, \gamma_1, \gamma_2 \in \mathbb{N}, \gamma_i \equiv i \mod 3$, such that $J^{*_I} = J^v \cap (-\gamma_0 + I) \cap (-\gamma_1 + I) \cap (-\gamma_2 + I)$. In particular, if $I, J \in \mathcal{F}_0(S)$, then there are γ_i such that $J^{*_I} = J^v \cap \rho_{\gamma_0}(I) \cap \rho_{\gamma_1}(I) \cap \rho_{\gamma_2}(I)$.

Proof Since J is $*_I$ -closed, using (1) we have $J = J^v \cap \bigcap_{\gamma \in (I-J)} -\gamma + I$; separing the γ according to their residue class modulo 3 we have

$$J = J^{\nu} \cap \bigcap_{\gamma \in \Gamma_0} (-\gamma + I) \cap \bigcap_{\gamma \in \Gamma_1} (-\gamma + I) \cap \bigcap_{\gamma \in \Gamma_2} (-\gamma + I),$$

where $\Gamma_i := (I - J) \cap (i + 3\mathbb{Z})$; since $(I - J) \subseteq \mathbb{N}$, each Γ_i has a minimum. However, if $\gamma, \delta \in \Gamma_i$, then either $-\gamma + I \subseteq -\delta + I$ or $-\delta + I \subseteq -\gamma + I$; therefore it is enough to take $\gamma_i := \min \Gamma_i$.

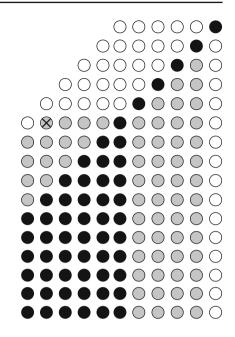
For the "in particular" statement, note that both *J* and J^v are contained in \mathbb{N} , so that the intersection does not change substituing $-\gamma_i + I$ with $-\gamma_i + I \cap \mathbb{N} = \rho_{\gamma_i}(I)$.

We proceed to determine explicitly the set of ideals closed by a principal star operation (Fig. 5).

Proposition 6.8 Let *S* be a numerical semigroup of multiplicity 3, and let I = [a, b] be an ideal.

• If $[a, b] \in \Sigma^+$, then $\mathcal{F}^{*_I} \cap \Sigma^+ = \{[c, d] : d \le b, d - c \le b - a\}.$

Fig. 5 The set of divisorial ideals (in *black*) and of non-divisorial $*_I$ -closed ideals (in *gray*), where *I* is the marked ideal



• If $[a, b] \in \Sigma^-$, then $\mathcal{F}^{*_I} \cap \Sigma^- = \{[c, d] : c \le a, d - c \ge b - a\}$.

Proof Suppose $[a, b] \in \Sigma^+$, and let $[c, d] \in \Sigma^+$ such that $d \le b$ and $d - c \le b - a$. Then, $\rho_{3(b-d)}([a, b]) = [a - (b - d), b - (b - d)] = [a - b + d, d]$ is $*_{[a,b]}$ -closed; moreover, $a - b + d \ge c - d + d = c$, and thus $[c, d] = [a - b + d, d] \cap [c, c']$, where $c' - c = \beta - \alpha$ (i.e., $c' = c + \beta - \alpha$), so that $[c, c'] \in \Sigma^0$ is divisorial, and [c, d] is $*_{[a,b]}$ -closed.

Conversely, let $\Delta := (\mathcal{F}^{*_I} \cap \Sigma^+) \setminus \{[c, d] : d \leq b, d - c \leq b - a\}$ and suppose $\Delta \neq \emptyset$. Note that, by Proposition 6.3, $\mathcal{F}^v(R) \cap \Delta = \emptyset$. Let *B* be the maximum *b'* such that $[a', b'] \in \Delta$ for some *a'*, and let *A* be the minimum *a'* such that $[a', B] \in \Delta$. Let J := [A, B].

By Lemma 6.7, $J = J^v \cap I_0 \cap I_1 \cap I_2$, where $I_i := \rho_{\gamma_i}(I) = [a_i, b_i]$. Since $J^v = [A, b'']$ for some b'' < B, at least one of the b_i must be equal to B. We have $I_i \in \Sigma^+$: indeed, if $I \in \Sigma^0$ it is divisorial, while if $I_i \in \Sigma^-$ then $L := [B - \beta + \alpha, B] \in \Sigma^0$ is divisorial and is contained between J and I_i : in both cases, $J^v \subseteq I_i$, so that $J^v \subseteq [A, b''] \cap [a_i, B] = [A, B] = J$, and J is divisorial, against $J \in \Delta$. Since $J \subseteq [a_i, B]$, we have $a_i \leq A$. Suppose $a_i < A$: then, by definition of A, $I_i \notin \Delta$. However, I_i is $*_I$ -closed: hence, $B \leq b$ and $B - a_i \leq b - a$. But $B - a_i \geq B - A$, so that $B - A \leq b - a$; this would imply $J \notin \Delta$, against its definition. Therefore $a_i = A$, and $J = I_i$. However:

(1) if *i* = 0, then *b_i* ≤ *b*, and *b_i* − *a_i* = *b* − *a*;
(2) if *i* = 1, then *I_i* ∈ Σ[−];
(3) if *i* = 2, then [*a_i*, *b_i*] = [0, 0] (since *J* ∈ Σ⁺). Therefore, Δ = Ø.

🖄 Springer

If $[a, b] \in \Sigma^-$, we can use the same method reversing the rôle of a and b: we choose first A as the maximum a' such that $[a', b'] \in \Delta$ for some b', and then B as the minimum b' such that $[A, b'] \in \Delta$. It follows as above that $[a_i, b_i] = [A, B]$ for some *i*, and $I_i \in \Sigma^-$; moreover, if i = 0 then $[a_i, b_i] \notin \Delta$, if i = 1 then $[a_i, b_i] = [0, 0]$ and if i = 2 then $[a_i, b_i] \in \Sigma^+$. None of this cases is acceptable, and $\Delta = \emptyset$.

Proposition 6.9 Let S be a numerical semigroup of multiplicity 3, and let I = [a, b]be an ideal.

- If $[a, b] \in \Sigma^+$, then $\mathcal{F}^{*_I} \cap \Sigma^- = \mathcal{F}^{*_{[b-a,0]}} \cap \Sigma^-$.
- If $[a, b] \in \Sigma^-$, then $\mathcal{F}^{*_I} \cap \Sigma^+ = \mathcal{F}^{*_{[0, b-a-1]}} \cap \Sigma^+$

In particular, both depends only on b - a.

Proof Suppose $[a, b] \in \Sigma^+$. Since [a, b] is closed, so is [0, b - a], and thus also $[b-a,0] = \rho_1([0,b-a])$ is closed. Hence $\mathcal{F}^{*[b-a,0]} \cap \Sigma^- \subseteq \mathcal{F}^{*_I} \cap \Sigma^-$.

Let $\Delta := (\mathcal{F}^{*_I} \cap \Sigma^-) \setminus \mathcal{F}^{*_{[b-a,0]}}$ and suppose it is nonempty; as in the proof of the previous proposition, let A be the maximum a' such that $[a', b'] \in \Delta$ for some b' and let B be the minimum b' such that $[A, b'] \in \Delta$. Observe that A > b - a since [a', 0] is *[b-a,0]-closed for every $a' \leq b-a$. Then $J := [A, B] \in \Delta$, and $J = \rho_{\gamma}(I)$ for some γ such that $\rho_{\gamma}(I) \in \Sigma^{-}$, and the unique possibility is $\gamma \equiv 1 \mod 3$; let $\gamma = 3k + 1$. Then $\rho_{3k}([a, b]) = [0, c]$ for some $c \leq b - a$, and thus $\rho_{\gamma}(I) = [c - 1, 0]$, with $c-1 \leq b-a$, which is impossible.

The case $[a, b] \in \Sigma^-$ is treated in the same manner.

7 The number of star operations

Let $S = \langle 3, 3\alpha + 1, 3\beta + 2 \rangle$ be a numerical semigroup, and suppose that $\alpha \leq \beta$; let k be an integer such that $\beta - \alpha < k < \alpha$. We define:

- $\mathcal{L}_{k}^{+} := \{[k, \beta], [k 1, \beta 1], \dots, [0, \beta k]\};$ $\mathcal{L}_{k}^{-} := \{[\beta k, 0], [\beta k, 1], \dots, [\beta k, 2\beta \alpha k 1]\};$
- $\mathcal{L}_k^+ := \mathcal{L}_k^+ \cup \mathcal{L}_k^-.$

Equivalently, \mathcal{L}_{k}^{+} is the set of ideals [a, b] such that $b - a = \beta - k$, while \mathcal{L}_{k}^{-} is the set of ideals $[a, b] \in \Sigma^-$ such that $a = \beta - k$. Note that, since $k < \alpha$, each element of \mathcal{L}_k^+ is in Σ^+ (Fig. 6).

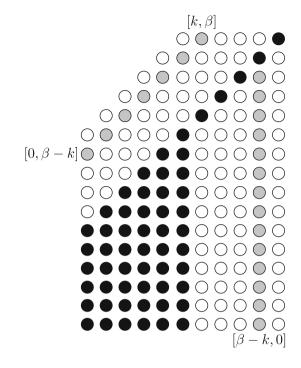
Proposition 7.1 *Preserve the notation above. Then:*

- (a) $\mathcal{L}_k \cap \mathcal{L}_j = \emptyset$ if $k \neq j$;
- (b) $\bigcup_{k=\beta-\alpha}^{\alpha-1} \mathcal{L}_k = \mathcal{G}_0(S);$
- (c) $|\mathcal{L}_k| = 2\beta \alpha + 1;$
- (d) each \mathcal{L}_k is linearly ordered (in the *-order).

Proof (a) Suppose $[a, b] \in \mathcal{L}_k \cap \mathcal{L}_j$. If $[a, b] \in \Sigma^+$, then $\beta - k = b - a = \beta - j$; if $[a, b] \in \Sigma^{-}$, then $\beta - k = a = \beta - j$. In both cases, k = j.

Deringer

Fig. 6 A \mathcal{L}_k (gray circles)



(b) Suppose $[a, b] \in \mathcal{L}_k$ for some k. If $[a, b] \in \Sigma^+$, then it is not divisorial by Proposition 6.3; if $[a, b] \in \Sigma^-$, then $a = \beta - k > \beta - \alpha$ and thus $[a, b] \neq [a, b]^v$, again by Proposition 6.3.

Conversely, suppose $[a, b] \neq [a, b]^v$. If $[a, b] \in \Sigma^+$, then $\beta - \alpha \leq b - a < \alpha$, and thus $[a, b] \in \mathcal{L}_{\beta-(b-a)}$; if $[a, b] \in \Sigma^-$, then by Proposition 6.3 we have $a > \beta - \alpha$, so that $\beta - a < \alpha$ and thus $[a, b] \in \mathcal{L}_{\beta - a}$.

- (c) We have $|\mathcal{L}_k^+| = k + 1$ and $|\mathcal{L}_k^-| = 2\beta \alpha k$; since \mathcal{L}_k^+ and \mathcal{L}_k^- are disjoint, $|\mathcal{L}_k| = 2\beta - \alpha + 1.$
- (d) By Lemma 5.2, if $j \ge j'$ then $[k j', \beta j'] = \rho_{3(j-j')}([k j, \beta j])$, so that \mathcal{L}_{i}^{+} is totally ordered, with minimum $[0, \beta - k]$; analogously, if $l \geq l'$, then $[a, l] = [a, l'] \cap [a, l]^v$ (see the proof of Lemma 6.4) and thus $[a, l] \leq_*$ [a, l'], i.e., \mathcal{L}_i^- is linearly ordered, with maximum $[\beta - k, 0]$. Moreover, $[\beta - k, 0]$ $= \rho_1([0, \beta - k])$, and thus \mathcal{L}_k is totally ordered.

When $\alpha \geq \beta$, we can reason in a completely analogous way, but we have to reverse the rôle of Σ^+ and Σ^- : we choose an integer k such that $\alpha - \beta + 1 \le k < \beta$, and define

- $\mathcal{L}_k^- := \{ [\alpha, k], [\alpha 1, k 1], \dots, [0, \alpha k] \};$ $\mathcal{L}_k^+ := \{ [0, \alpha k 1], [1, \alpha k 1], \dots, [2\alpha \beta k 2, \alpha k 1] \};$
- $\mathcal{L}_k^+ := \mathcal{L}_k^+ \cup \mathcal{L}_k^-$.

Then, the elements of \mathcal{L}_k^- are in Σ^- and are characterized by b-a, while the elements of \mathcal{L}_k^+ are the ideals in Σ^+ with the same *b*. Proposition 7.1 becomes:

(a) $\mathcal{L}_k \cap \mathcal{L}_j = \emptyset$ if $k \neq j$;

(b) $\bigcup_{k=\alpha-\beta+1}^{\beta-1} \mathcal{L}_k = \mathcal{G}_0(S);$ (c) $|\mathcal{L}_k| = 2\alpha - \beta;$

(d) each \mathcal{L}_k is linearly ordered (in the *-order).

Corollary 7.3 Let $S = \langle 3, 3\alpha + 1, 3\beta + 2 \rangle$ be a numerical semigroup. Then, $|\mathcal{G}_0(S)|$ $= (2\alpha - \beta)(2\beta - \alpha + 1).$

By a *rectangle* $a \times b$, indicated with $\mathcal{R}(a, b)$, we denote the cartesian product $\{1, \ldots, a\} \times \{1, \ldots, b\}$, endowed with the *reverse* product order (that is, (x, y)) $\geq (x', y')$ if and only if $x \leq x'$ and $y \leq y'$).

Theorem 7.4 Let $S = \langle 3, 3\alpha + 1, 3\beta + 2 \rangle$ be a numerical semigroup. Then, $(\mathcal{G}_0(S), \mathcal{G}_0)$ \leq_*) is isomorphic (as an ordered set) to $\mathcal{R}(2\alpha - \beta, 2\beta - \alpha + 1)$.

Proof Suppose $\alpha \leq \beta$, and let $I \in \mathcal{G}_0(S)$. If $I \in \mathcal{L}_k$, define $\psi_1(I) := k - (\beta - \alpha) + 1$. Moreover, if there are exactly j - 1 ideals in \mathcal{L}_k strictly bigger (in the *-order) than I, then define $\psi_2(I) := j$. Explicitly, if $[a, b] \in \Sigma^+$ then $\psi_2([a, b]) = \beta - b + 1$, while if $[a, b] \in \Sigma^{-}$ then $\psi_2([a, b]) = k + 1 + b = \beta + 1 + b - a$ (using $a = \beta - k$). By Proposition 7.1, the map

$$\Psi : \mathcal{G}_0(S) \longrightarrow \mathcal{R}(2\alpha - \beta, 2\beta - \alpha + 1)$$

[a, b] $\mapsto (\psi_1(I), \psi_2(I))$

is a bijection.

For a partially ordered set \mathcal{P} , and a subset $\Delta \subset \mathcal{P}$, denote by $\overline{\Delta}$ the lower set of Δ : i.e., let $\overline{\Delta} := \{x \in \mathcal{P} : \exists y \in \Delta : x \leq y\}$. To show that Ψ is order-preserving, it is enough to show that $\Psi(\overline{\{I\}}) = \overline{\Psi(I)}$ for every ideal $I \in \mathcal{G}_0(S)$. Since $\overline{\{I\}}$ $= \mathcal{G}_0(S) \cap \mathcal{F}^{*_I}$, we need to show that J is $*_I$ -closed if and only if $\Psi(J) \leq \Psi(I)$.

Let I = [a, b] and J = [c, d] be ideals. If $I, J \in \Sigma^+$, then by Proposition 6.8 J is $*_I$ -closed if and only if $d \leq b$ and $d - c \leq b - a$. We have $d \leq b$ if and only if $\psi_2(J) \geq \psi_2(I)$; on the other hand, $x - y = \beta - k$ if $[y, x] \in \mathcal{L}_k$, and thus $\psi_1([y, x]) = \beta - x + y$. Therefore, d - c < b - a if and only if $\psi_1(J) > \psi_1(I)$. Hence (remember that the order on the rectangle is the reverse product order), $J \in \{I\}$ if and only if $\Psi(J) \leq \Psi(I)$. On the other hand, if $I, J \in \Sigma^-$, then $J \in \overline{\{I\}}$ if and only if $c \leq a$ and $d - c \leq b - a$; the first condition if equivalent to the requirement that $\psi_1(J) \geq \psi_1(I)$, while the second is equivalent to $\psi_2(J) \geq \psi_2(I)$. Again, $J \in \{I\}$ if and only if $\Psi(J) \leq \Psi(I)$.

Suppose $I \in \Sigma^+$ and $J \in \Sigma^-$. If J is $*_I$ -closed, then by Proposition 6.9 it is $*_{[b-a,0]}$ -closed, and, by the previous paragraph, this happens if and only if $\Psi(J) \leq$ $\Psi([b-a, 0])$. However, [b-a, 0] and I belong to the same \mathcal{L}_k (since [b-a, 0] = $\rho_1 \rho_{3(b-a)}([a, b]))$, and thus $\Psi([b-a, 0]) \leq \Psi(I)$; hence $\Psi(J) \leq \Psi(I)$. Conversely, if $\Psi(J) \leq \Psi(I)$ then J = [c, d] belongs to \mathcal{L}_i for some $j \geq k$ (where $I = [a, b] \in$ \mathcal{L}_k) and thus $c \leq a$, and J is $*_I$ -closed (applying again Proposition 6.9). If $I \in \Sigma^$ and $J \in \Sigma^+$, the same reasoning applies; therefore, in all cases, $J \in \overline{\{I\}}$ if and only if $\Psi(J) \leq \Psi(I)$, that is, if and only if $\Psi(J) \in \overline{\Psi(I)}$. Hence Ψ is an order isomorphism.

If $\alpha \geq \beta$, then we can apply the same method: we define a map

$$\Psi : \mathcal{G}_0(S) \longrightarrow \mathcal{R}(2\beta - \alpha + 1, 2\alpha - \beta)$$

[a, b] $\mapsto (\psi_1(I), \psi_2(I))$

where, if $I \in \mathcal{L}_k$, then $\psi_1(I) = k - (\alpha - \beta + 1) + 1$, and $\psi_2(I) = j$ if there are exactly j - 1 elements of \mathcal{L}_k *-bigger than *I*. Proposition 7.2 shows that Ψ is a bijection, and (as before) the use of Propositions 6.8 and 6.9 shows that it is an order isomorphism. Since $\mathcal{R}(2\beta - \alpha + 1, 2\alpha - \beta) \simeq \mathcal{R}(2\alpha - \beta, 2\beta - \alpha + 1)$, the theorem is proved. \Box

Lemma 7.5 The number of antichains in $\mathcal{R}(a, b)$ is $\binom{a+b}{a} = \binom{a+b}{b}$.

Proof Let $A := \{1, ..., a\}$ and $B := \{1, ..., b\}$.

For each antichain Δ , let $\overline{\Delta}$ be the lower set of Δ ; clearly $\Delta = \max \overline{\Delta}$, so that the number of antichains is equal to that of the sets that are downward closed (i.e., sets Λ such that $\Lambda = \overline{\Lambda}$). When restriced to a single row $A \times \{c\}$, $\overline{\Delta}$ becomes a segment $\{a_c, \ldots, a\} \times \{c\}$; moreover, if $d \leq c$, then $a_d \leq a_c$. Thus the number of antichains is equal to the number of sequences $\{1 \leq a_1 \leq \cdots \leq a_b \leq a+1\}$ (where $a_i = a + 1$ if and only if $(A \times \{i\}) \cap \overline{\Delta} = \emptyset$), that in turn is equal to the number of combinations with repetitions of *b* elements of $\{1, \ldots, a+1\}$. This is equal to $\binom{a+1+b-1}{b} = \binom{a+b}{b} = \binom{a+b}{a}$.

Theorem 7.6 Let $S = \langle 3, 3\alpha + 1, 3\beta + 2 \rangle$ be a numerical semigroup of multiplicity 3, $g := g(S), \delta := \delta(S)$. Then,

$$|\operatorname{Star}(S)| = \binom{\alpha+\beta+1}{2\alpha-\beta} = \binom{\alpha+\beta+1}{2\beta-\alpha+1} = \binom{\delta+1}{g-\delta+2}$$

Proof By Corollary 6.5, |Star(S)| is equal to the number of antichains of $\mathcal{G}_0(S)$, which is equal (by Theorem 7.4) to the number of antichains of $\mathcal{R}(2\alpha - \beta, 2\beta - \alpha + 1)$. Lemma 7.5 now completes the reasoning.

To show the last equality, note that an element in $\mathbb{N} \setminus S$ can be written as 3a + 1 or 3b + 2, where $0 \le a < \alpha$ or $0 \le b < \beta$, and thus $\delta = \alpha + \beta$. On the other hand, if $\alpha > \beta$ then $g = 3\alpha - 2$, and thus $2\alpha - \beta = g - \delta + 2$, while if $\alpha \le \beta$ then $g = 3\beta - 1$, and again $2\beta - \alpha + 1 = g - \delta + 2$.

Remark 7.7 We can compare the explicit counting supplied by Theorem 7.6 with the three main estimates obtained in [18].

(1) The most general one (assuming only that *S* is not symmetric) is $|\text{Star}(S)| \ge \left\lceil \frac{g}{2\mu} \right\rceil$. If $\alpha > \beta$, then (using the proof of Theorem 7.6) in the case of multiplicity 3 we can translate it as

$$|\operatorname{Star}(S)| \ge \left\lceil \frac{3\alpha - 2}{6} \right\rceil \ge \frac{1}{2}\alpha - \frac{1}{3}.$$

Deringer

Being linear, this estimate is very far from the actual numer of star operation, which grows as a binomial coefficient. This is especially evident when α is close to β : for example, if $\alpha = \beta$, then $|\text{Star}(S)| = \binom{2\alpha+1}{\alpha}$ is asymptotic to $\frac{2}{\sqrt{\pi}} \cdot \frac{4^{\alpha}}{\sqrt{\alpha}}$. The same phenomenon happens, simmetrically, when $\beta \ge \alpha$ (but we will have a linear estimate in β instead of α).

- (2) A second estimate, valid only in some cases, is $|\text{Star}(S)| \ge 2^{\left\lceil \frac{\mu-1}{2} \right\rceil}$, which however does not distinguish between different semigroups of the same multiplicity.
- (3) A third estimate is $|\text{Star}(S)| \ge \delta + 1$, which is valid when *S* has an hole $a < \mu$ (an integer *a* is said to be an *hole* of *S* if $a, g a \notin S$). When $g \equiv 1 \mod 3$, the only possible hole smaller than μ is 2: in this case, the elements of $\mathbb{N} \setminus S$ are $\{1, 2, 4, 5, \ldots, 3(\beta-1)+1, 3(\beta-1)+2, g = 3\beta+1\}$, and thus $\delta = 2\beta+1$; hence, $|\text{Star}(S)| = \binom{2\beta+2}{\beta+2}$, which is much bigger than $\delta + 1 = 2\beta + 2$. Analogously, when $g \equiv 2 \mod 3$, the only possibile hole $a < \mu$ is a = 1: in this case, we obtain $\delta = 2\alpha, g = 3\alpha 1$ and $|\text{Star}(S)| = \binom{2\alpha+1}{\alpha+1}$, which is much bigger than $\delta + 1 = 2\alpha + 1$.

A numerical semigroup is called *pseudosymmetric* if g is even and $(S - M) = S \cup \{g, g/2\}$.

Proposition 7.8 Let S be a numerical semigroup of multiplicity 3 such that $\mathcal{G}_0(S) \neq \emptyset$. Then, the following are equivalent:

- (i) S is pseudosymmetric;
- (*ii*) $\alpha = 2\beta$ or $\beta = 2\alpha 1$;
- (iii) $(\mathcal{G}_0(S), \leq_*)$ is linearly ordered;
- (iv) Star(S) is linearly ordered.
- (v) every star operation on S is principal.

Proof (i \iff ii) Let $a := 3\alpha + 1 - 3 = 3\alpha - 2$ and $b := 3\beta + 2 - 3 = 3\beta - 1$: then, $a, b \notin S$ but $a + 3, b + 3 \in S$. Hence, S is pseudosymmetric if and only if a = 2b or b = 2a.

If $\alpha \ge \beta$, then $a \ge b$, and thus *S* is pseudosymmetric if and only if $3\alpha - 2 = 2(3\beta - 1)$, that is, if and only if $\alpha = 2\beta$. Analogously, if $\beta \ge \alpha$, *S* is pseudosymmetric if and only if $3\beta - 1 = 2(2\alpha - 2)$, that is, if and only if $\beta = 2\alpha + 1$.

- (ii \iff iii) $\mathcal{G}_0(S)$ is linearly ordered if and only if $\mathcal{R}(2\alpha \beta, 2\beta \alpha + 1)$ is linearly ordered; but this happens if and only if one of the sides of the rectangle has length 1, that is, if and only if $2\alpha \beta = 1$ (i.e., $\beta = 2\alpha 1$) or $2\beta \alpha + 1 = 1$ (i.e., $\alpha = 2\beta$).
- $(iv \Longrightarrow iii)$ is obvious.
- (iii \implies iv,v) Let * be a star operation. Then, $* = *_{I_1} \land \cdots \land *_{I_n}$ for some I_1, \ldots, I_n ; since $\mathcal{G}_0(S)$ is linearly ordered, $* = *_{I_j}$ for some *j*. Hence each star operation is principal, and Star(S) is linearly ordered.
- (v \Longrightarrow ii) Suppose $\alpha \neq 2\beta$ and $\beta \neq 2\alpha 1$. Then, the length of both sides of the rectangle $\mathcal{R}(2\alpha \beta, \beta 2\alpha + 1)$ is 2 or more; consider the set Δ composed by (1, 2) and (2, 1). Then, Δ is an antichain; therefore, so is $\Psi^{-1}(\Delta)$, where Ψ is the isomorphism defined in the proof of

Theorem 7.4. By hypothesis, $*_{\Psi^{-1}(\Delta)}$ is principal, i.e., $*_{\Psi^{-1}(\Delta)} = *_I$ for some $I \in \mathcal{G}_0(S)$; however, by Corollary 6.5, this would imply $\Psi^{-1}(\Delta) = \{I\}$, which is absurd. Hence *S* is pseudosymmetric. \Box

8 Quantitative estimates

Let $\xi_3(n)$ denote the number of numerical semigroups of multiplicity 3 with exactly *n* star operations.

Proposition 8.1 If $n \equiv 0, 1 \mod 3, n > 1$, then there is a unique pseudosymmetric semigroup of multiplicity 3 such that |Star(S)| = n; if $n \equiv 2 \mod 3$, there is no such S.

Proof Let *S* be a pseudosymmetric semigroup of multiplicity 3.

If $\alpha \ge \beta$, then by Proposition 7.8 we have $\beta = 2\alpha - 1$; hence $|\text{Star}(S)| = \binom{\alpha+\beta+1}{2\beta-\alpha+1} = \alpha + \beta + 1 = 3\beta + 1$; for each $n \equiv 1 \mod 3$ there is a unique β and thus a unique pseudosymmetric semigroup.

Analogously, if $\beta \ge \alpha$, then $\alpha = 2\beta$, and $|\text{Star}(S)| = {\alpha + \beta + 1 \choose 2\beta - \alpha + 1} = \alpha + \beta + 1 = 3\alpha$, and every $n \equiv 0 \mod 3$ can be (uniquely) obtained this way.

Proposition 8.2 $\xi_3(n) = |\{\binom{a}{b} : \binom{a}{b} = n, a + b \equiv 1 \mod 3\}|.$

Proof If $S = \langle 3, 3\alpha + 1, 3\beta + 2 \rangle$, then $|\text{Star}(S)| = {\alpha + \beta + 1 \choose 2\alpha - \beta}$ and $\alpha + \beta + 1 + 2\alpha - \beta = 3\alpha + 1 \equiv 1 \mod 3$; conversely, if $a + b \equiv 1 \mod 3$, then the linear system

$$\begin{cases} \alpha + \beta + 1 = a \\ 2\alpha - \beta = b \end{cases}$$

has solutions $\alpha = \frac{a+b-1}{3}$, $\beta = \frac{2a-b-2}{3}$ which are integers if $a + b \equiv 1 \mod 3$, and verify $\alpha \leq 2\beta + 1$ and $\beta \leq 2\alpha$. Hence to each semigroup we can attach a binomial coefficient and to each coefficient a semigroup, these maps are inverses and the two sets have the same cardinality.

Thus, to find all numerical semigroups of multiplicity 3 with exactly *n* star operations, we only need to determine the binomial coefficients $\binom{a}{b}$ equal to *n*. Since $\binom{a}{b} \ge a$ if $\binom{a}{b} \ne 1$, this means that we only need to inspect the case $a \le n$.

Removing the congruence condition, we get the function $\eta(n) := |\{\binom{a}{b}: \binom{a}{b} = n\}|$, that has been studied in [17] and [1]. It is straightforward to see that $\eta(n)$ is finite for every n > 1, and it is also quick to show (quantifying the previous reasoning) that $\eta(n) \le 2 + 2\log_2 n$ [17]. A deeper analysis, using results about the distribution of the primes, proves that $\eta(n) = O(\log n / \log \log n)$ [1]; these results are however weaker than the expected, since in [17] it is conjectured that η is bounded for n > 1.

Clearly, $\xi_3(n) \le \eta(n)$, and thus we get another proof (independent from [18]) that $\xi_3(n) < \infty$ for every n > 1. Note also that $\xi_3(1) = \infty$, because |Star(S)| = 1 whenever $\alpha = 2\beta + 1$ or $\beta = 2\alpha$.

Proposition 8.3 For every $n \in \mathbb{N}$, $\xi_3(n) \leq \frac{\eta(n)}{2}$.

Proof If n = 1, then both sides of the equality are infinite; suppose n > 1. Then, $\eta(n) = \xi_3(n) + \xi_3^{(0)}(n) + \xi_3^{(2)}(n)$, where $\xi_3^{(i)}$ is the number of binomial coefficients $\binom{a}{b}$ such that $\binom{a}{b} = n$ and $a + b \equiv i \mod 3$. We will show that $\xi_3(n) = \xi_3^{(2)}$, from which the claim follows.

Suppose $\binom{a}{b} = n$ and $a + b \equiv 1 \mod 3$. Then also $\binom{a}{a-b} = n$, and $a + (a-b) = 2a - b \equiv 2a + 2b \mod 3 \equiv 2 \mod 3$. Therefore, $\xi_3(n) = \xi_3^{(2)}(n)$.

Proposition 8.4 Let $Z(x) := \{n : 1 < n \le x, \xi_3(n) > 1\}.$

(a) $|Z(x)| = O(\sqrt{x}).$

(b) There are an infinite number of integers n such that $\xi_3(n) = 0$.

Proof Following the proof of [1, Theorem 1], let $g(x) := \{n : 1 < n \le x, \eta(n) > 2\}$. If $\xi_3(n) > 1$, then $\eta(n) \ge 2\xi_3(n) > 2$. Therefore, $Z(x) \le g(x) = O(\sqrt{x})$, applying again the proof of [1, Theorem 1].

Take an $n \in \mathbb{N}$ such that $\eta(n) = 2$. Then, the only binomial coefficients such that $\binom{a}{b} = n$ are $\binom{n}{1}$ and $\binom{n}{n-1}$. It follows that $\xi_3(n) = 1$ if n+1 or n+(n-1) are congruent to 1 modulo 3, i.e., if $n \equiv 0 \mod 3$ or $n \equiv 1 \mod 3$, while $\xi_3(n) = 0$ otherwise, i.e., if $n \equiv 2 \mod 3$. (Compare Proposition 8.1.)

Suppose that $\xi_3(n) = 0$ only for $n \in \{n_1, \ldots, n_k\}$. For every $m \equiv 2 \mod 3$ such that $m \neq n_i$ for every *i*, there is a binomial coefficient $\binom{a}{b}$ such that $\binom{a}{b} = m$ and $a + b \equiv 1 \mod 3$. The last condition implies that $a - b \neq b$ (otherwise, $a + b \equiv a - b + 2b = 3b \equiv 0 \mod 3$); if b = 1 or b = a - 1, then $\binom{a}{b} = a = m$, and so $a + b \equiv m + 1 \equiv 0 \mod 3$ or $a + b \equiv 2m - 1 \equiv 0 \mod 3$, against the congruence condition. Therefore, $\binom{a}{b} = \binom{a}{a-b} = \binom{m}{1} = \binom{m}{m-1} = m$, and the four coefficients are different from each other, so that $\eta(m) \ge 4$. Thus, $g(x) \ge \frac{1}{3}x - k$, against the fact that $g(x) = O(\sqrt{x})$. Hence, $\xi_3(n) = 0$ infinitely often.

Acknowledgments The author wish to thank Marco Fontana for his reading of the manuscript and the referee for his/her comments.

References

- Abbott, H.L., Erdős, Paul, Hanson, Denis: On the number of times an integer occurs as a binomial coefficient. Am. Math. Mon. 81, 256–261 (1974)
- Barucci, Valentina: On propinquity of numerical semigroups and one-dimensional local Cohen Macaulay rings, Commutative algebra and its applications. Walter de Gruyter, Berlin (2009)
- Barucci, Valentina, D'Anna, Marco, Fröberg, Ralf: Analytically unramified one-dimensional semilocal rings and their value semigroups. J. Pure Appl. Algebra 147(3), 215–254 (2000)
- Barucci, V., Dobbs, D.E., Fontana, M.: Maximality properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains. Mem. Am. Math. Soc. 125(598), x+78 (1997)
- Blanco, Víctor: Irreducible numerical semigroups with multiplicity three and four. Semigroup Forum 87(2), 407–427 (2013). MR 3110602
- Gilmer, R.: Multiplicative Ideal Theory, Marcel Dekker Inc., New York, Pure and Applied Mathematics, No. 12. (1972)
- Houston, Evan, Mimouni, Abdeslam, Park, Mi Hee: Integral domains which admit at most two star operations. Commun. Algebra 39(5), 1907–1921 (2011)
- Houston, Evan, Mimouni, Abdeslam, Park, Mi Hee: Noetherian domains which admit only finitely many star operations. J. Algebra 366, 78–93 (2012)

- Houston, Evan, Park, Mi Hee: A characterization of local noetherian domains which admit only finitely many star operations: the infinite residue field case. J. Algebra 407, 105–134 (2014)
- Kim, Myeong Og, Kwak, Dong Je, Park, Young Soo: Star-operations on semigroups. Semigroup Forum 63(2), 202–222 (2001)
- 11. Krull, Wolfgang: Idealtheorie. Springer, Berlin (1935)
- Kunz, Ernst: The value-semigroup of a one-dimensional Gorenstein ring. Proc. Am. Math. Soc. 25, 748–751 (1970)
- Park, Mi Hee: On the cardinality of star operations on a pseudo-valuation domain. Rocky Mt. J. Math. 42(6), 1939–1951 (2012)
- Rosales, José Carlos: Numerical semigroups with multiplicity three and four. Semigroup Forum 71(2), 323–331 (2005)
- Rosales, José Carlos, Branco, Manuel Batista: The Frobenius problem for numerical semigroups with multiplicity four. Semigroup Forum 83(3), 468–478 (2011)
- Rosales, José Carlos, García-Sánchez, Pedro A.: Numerical Semigroups, Developments in Mathematics, vol. 20. Springer, New York (2009)
- Singmaster, David: Research problems: how often does an integer occur as a binomial coefficient? Am. Math. Mon. 78(4), 385–386 (1971)
- Spirito, Dario.: Star operations on numerical semigroups, Communications in Algebra. doi:10.1080/ 00927872.2014.908201
- Vassilev, Janet C.: Structure on the set of closure operations of a commutative ring. J. Algebra 321(10), 2737–2753 (2009)