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RADICALS OF PRINCIPAL IDEALS AND
THE CLASS GROUP OF A DEDEKIND DOMAIN

DARIO SPIRITO

For a Dedekind domain D, let P(D) be the set of ideals of D that are the
radical of a principal ideal. We show that, if D and D′ are Dedekind do-
mains and there is an order isomorphism between P(D) and P(D′), then
the rank of the class groups of D and D′ is the same.

1. Introduction

The class group Cl(D) of a Dedekind domain D is defined as the quotient between
the group of the nonzero fractional ideals of D and the subgroup of the principal
ideals of D. Since Cl(D) is trivial if and only if D is a principal ideal domain
(equivalently, if and only if it is a unique factorization domain), the class group can
be seen as a way to measure how much unique factorization fails in D. For this
reason, the study of the class group is an important part of the study of Dedekind
domains.

It is a nonobvious fact that the class group of D actually depends only on the
multiplicative structure of D, or, from another point of view, depends only on the
set of nonzero principal ideals of D. Indeed, the class group of D• := D \ {0} as a
monoid (where the operation is the product) is isomorphic to the class group of D
as a Dedekind domain (see Chapter 2, in particular Section 2.10, of [Geroldinger
and Halter-Koch 2006]), and thus, if D and D′ are Dedekind domains whose sets
of principal ideals are isomorphic (as monoids), then the class groups of D and D′

are isomorphic too.
In this paper, we show that the rank of Cl(D) can be recovered by considering

only the set P(D) of the ideals that are the radical of a principal ideal; that is, we
show that if P(D) and P(D′) are isomorphic as partially ordered sets, then the
ranks of Cl(D) and Cl(D′) are equal. The proof of this result can be divided into
two steps.

In Section 3, we show that an order isomorphism between P(D) and P(D′) can
always be extended to an isomorphism between the sets Rad(D) and Rad(D′) of
all radical ideals of D (Theorem 3.6): this is accomplished by considering these
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sets as (noncancellative) semigroups and characterizing coprimality in D through a
version of coprimality in P(D) (Proposition 3.3).

In Section 4, we link the structure of P(D) and Rad(D) with the structure of the
tensor product Cl(D)⊗Q as an ordered topological space; in particular, we interpret
the set of inverses of a set1⊆Max(D) with respect to P(D) (see Definition 4.1) as
the negative cone generated by the images of 1 in Cl(D)⊗Q (Proposition 4.2) and
use this connection to calculate the rank of Cl(D) as a function of some particular
partitions of an “inverse basis” of Max(D) (Propositions 4.9 and 4.10). As this
construction is invariant with respect to isomorphism, we get the main theorem
(Theorem 4.11).

In Section 5, we give three examples, showing that some natural extensions of
the main result do not hold.

2. Notation and preliminaries

Throughout the paper, D will denote a Dedekind domain, that is, a one-dimensional
integrally closed Noetherian integral domain; equivalently, a one-dimensional
Noetherian domain such that DP is a discrete valuation ring for all maximal ideals P .
For general properties about Dedekind domains, the reader may consult, for example,
[Bourbaki 1989, Chapter 7, §2], [Atiyah and Macdonald 1969, Chapter 9] or
[Neukirch 1999, Chapter 1].

We use D• to indicate the set D \ {0}. We denote by Max(D) the set of maximal
ideals of D. If I is an ideal of D, we set

V (I ) := {P ∈ Spec(D) | I ⊆ D}.

If I = x D is a principal ideal, we write V (x) for V (x D). If I 6= (0), the set V (I )
is always a finite subset of Max(D). We denote by rad(I ) the radical of the ideal I ,
and we say that I is a radical ideal (or simply that I is radical) if I = rad(I ).

Every nonzero proper ideal I of D can be written uniquely as Pe1
1 · · · P

en
n =

Pe1
1 ∩ · · · ∩ Pen

n , where P1, . . . , Pn are distinct maximal ideals and e1, . . . , en ≥ 1.
In particular, in this case we have V (I ) = {P1, . . . , Pn}, and rad(I ) = P1 · · · Pn .
An ideal is radical if and only if e1 = · · · = en = 1. If P is a maximal ideal, the
P-adic valuation of an element x is the exponent of P in the factorization of x D;
we denote it by vP(x). (If x /∈ P , i.e., if P does not appear in the factorization, then
vP(x)= 0.)

If P1, . . . , Pk are distinct maximal ideals and e1, . . . , ek ∈N, then by the approx-
imation theorem for Dedekind domains (see, e.g., [Bourbaki 1989, Chapter VII, §2,
Proposition 2]) there is an element x ∈ D such that vPi (x)= ei for i = 1, . . . , k.

A fractional ideal of D is a D-submodule I of the quotient field K of D such
that x I ⊆ D (and thus, x I is an ideal of D) for some x ∈ D•. The set F(D) of
nonzero fractional ideals of D is a group under multiplication; the inverse of an
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ideal I is I−1
:= (D : I ) := {x ∈ K | x I ⊆ D}. A nonzero fractional ideal I can

be written uniquely as Pe1
1 · · · P

en
n , where P1, . . . , Pn are distinct maximal ideals

and e1, . . . , en ∈ Z \ {0} (with the empty product being equal to D). Thus, F(D)
is isomorphic to the free abelian group over Max(D). The quotient between this
group and its subgroup formed by the principal fractional ideals is called the class
group of D, and is denoted by Cl(D).

For a set S, we denote by Pfin(S) the set of all finite and nonempty subsets of S.

3. The two semilattices P(D) and Rad(D)

Let (X,≤) be a meet-semilattice, that is, a partially ordered set where every pair of
elements has an infimum. Then, the operation x ∧ y associating to x and y their
infimum is associative, commutative and idempotent, and it has a unit if and only
if X has a maximum. The order of X can also be recovered from the operation:
x ≥ y if and only if x divides y in (X,∧), that is, if and only if there is a z ∈ X
such that y = x ∧ z. A join-semilattice is defined in the same way, but using the
supremum instead of the infimum.

Let D be a Dedekind domain. We will be interested in two structures of this kind.
The first one is the semilattice Rad(D) of all nonzero radical ideals of D. In this

case, the order ≤ is the usual containment order, while the product is equal to

I ∧ J := I ∩ J = rad(IJ ).

The second one is the semilattice P(D) of the ideals of D that are radical of a
nonzero, principal ideal of D. This is a subsemilattice of Rad(D), since

rad(aD)∧ rad(bD)= rad(abD),

i.e., the product of two elements of P(D) remains inside P(D).
A nonzero radical ideal I is characterized by the finite set V (I ). Hence, the

map from Rad(D) to Pfin(Max(D)) sending I to V (I ) is an order-reversing iso-
morphism of partially ordered sets, which becomes an order-reversing isomorphism
of semilattices if the operation on the power set is the union. We denote by V(D)
the image of P(D) under this isomorphism; that is, V(D) := {V (x) | x ∈ D•}. The
inverse of this map is the one sending a set Z to the intersection of the prime ideals
contained in Z .

Those semilattices have neither an absorbing element (which would be the zero
ideal) nor a unit (which should be D itself).

Lemma 3.1. Let X, Y ∈Pfin(Max(D)) (respectively, X, Y ∈ V(D)). Then, X | Y
in Pfin(Max(D)) (respectively, X | Y in V(D)) if and only if X ⊆ Y .

Proof. If X |Y , then Y = X∪Z for some Z ∈V(D), and thus X ⊆Y . If X ⊆Y , then
Y = Y ∪ X and thus X | Y . (This works both in Pfin(Max(D)) and in V(D).) �
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Definition 3.2. Let M be a commutative semigroup. We say that a1, . . . , an ∈

M are product-coprime if, whenever there are b1, . . . , bn ∈ M such that a1b1 =

a2b2 = · · · = anbn , then for every j the element a j divides
∏

i 6= j bi .

Viewing V(D) as a semigroup, we can characterize when some elements are
product-coprime.

Proposition 3.3. Let D be a Dedekind domain, and let a1, . . . , an ∈ D•. Then,
a1, . . . , an are coprime in D if and only if V (a1), . . . , V (an) are product-coprime
in V(D).

Proof. Suppose that a1, . . . , an are coprime, and let X ∈ V(D) be such that X =
V (a1) ∪ B1 = · · · = V (an) ∪ Bn for some B1, . . . , Bn ∈ V(D). By symmetry, it
is enough to prove that V (a1) divides B2 ∪ · · · ∪ Bn in V(D), i.e., that V (a1) ⊆

B2∪ · · ·∪ Bn . Take any prime ideal P ∈ V (a1): since a1, . . . , an are coprime there
is a j such that P /∈ V (a j ). However, P ∈ V (a j )∪ B j , and thus P ∈ B j . Therefore,
V (ai )⊆ B2 ∪ · · · ∪ Bn , as claimed.

Conversely, suppose V (a1), . . . , V (an) are product-coprime, and suppose that
a1, . . . , an are not coprime. Then, there is a prime ideal P containing all ai ; passing
to powers, without loss of generality we can suppose that the P-adic valuation
of the ai is the same, say vP(ai ) = t for every i . By prime avoidance, there is a
b1 ∈ D \ P such that vQ(b1)≥ vQ(ai ) for all i > 1 and all Q 6= P . Let x := a1b1.
By construction, ai | x for each i , and thus we can find b2, . . . , bn ∈ D such that
x =ai bi . Therefore, V (x)=V (ai )∪V (bi ) for every i ; by hypothesis, it follows that
V (a1) divides V (b2)∪· · ·∪V (bn), i.e., that V (ai )⊆ V (b2)∪· · ·∪V (bn). However,
vP(x) = vP(a1) + vP(b1) = t , and thus vP(bi ) = 0 for every i ; in particular,
P /∈ V (bi ) for every i . This is a contradiction, and thus a1, . . . , an are coprime. �

Definition 3.4. Let M be a commutative semigroup. We say that I ( M is product-
proper if no finite subset of I is product-coprime. We denote the set of maximal
product-proper subsets of M by M(M).

Proposition 3.5. Let D be a Dedekind domain. The maps

ν : Max(D)→M(V(D)), P 7→ {V (x) | x ∈ P}

and
θ : M(V(D))→Max(D), Y 7→ {x ∈ D | V (x) ∈ Y}

are bijections, inverses of each other.

Proof. We first show that ν and θ are well-defined.
If P is a maximal ideal of D, then P ∈ X for every X ∈ν(P); thus, if V (a)∈ν(P),

then a ∈ P and ν(P) is product-proper. If ν(P)( Y ⊆ V(D), take Y ∈ Y \ ν(P):
then, Y = V (b) for some b /∈ P . If Y = {Q1, . . . , Qk}, by prime avoidance we can
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find a ∈ P \ (Q1 ∪ · · · ∪ Qk); then, a and b are coprime, and thus V (a) and V (b)
are product-coprime. Hence, ν(P) is a maximal product-proper subset of V(D).

Conversely, let Y ∈M(V(D)). If θ(Y) is contained in some prime ideal P , then
Y ⊆ ν(P), and thus we must have Y = ν(P); in particular, θ(Y)= P ∈Max(D).
If θ(Y) is not contained in any prime ideal, let V (a)= {Q1, . . . , Qk} ∈ Y . Since
θ(Y)* Qi , for every i we can find bi /∈ Qi such that V (ai )∈Y; then, a, b1, . . . , bn

are coprime, and thus V (a), V (b1), . . . , V (bn) are a product-coprime subset of Y ,
a contradiction. Hence, Y = ν(P).

The fact that they are inverses of each other follows similarly. �

Theorem 3.6. Let D, D′ be Dedekind domains. If there is an order isomorphism
ψ : P(D)→ P(D), then there is an order isomorphism 9 : Rad(D)→ Rad(D′)
extending ψ .

Proof. The statement is equivalent to saying that any isomorphism φ :V(D)→V(D′)
can be extended to an isomorphism 8 : Pfin(Max(D))→ Pfin(Max(D′)). For
simplicity, set P :=Pfin(Max(D)) and P′ :=Pfin(Max(D′)).

If φ is an isomorphism, then it sends product-proper sets into product-proper
sets, and thus φ induces a bijective map η1 :M(V(D))→M(V(D′)). Using the
map θ of Proposition 3.5, η1 induces a bijection η :Max(D)→Max(D′) such that
the diagram

M(V(D)) Max(D)

M(V(D′)) Max(D)

η1

θ

η

θ ′

commutes (explicitly, η=θ ′◦η1◦θ
−1). In particular, η induces an order isomorphism

8 between P and P′, sending X ⊆Max(D) to η(X)⊆Max(D′). To conclude the
proof, we need to show that 8 extends φ.

Let X = {P1, . . . , Pk} ∈ V(D). Then, by definition,

8(X)= η(X)= {η(P1), . . . , η(Pk)}.

The maximal product-proper subsets of V(D) containing X are Yi := ν(Pi ), for
i = 1, . . . , k; since φ is an isomorphism, the maximal product-proper subsets
of V(D′) containing φ(X) are the sets φ(Yi ). By construction, φ(Yi ) = η1(Yi );
however, θ ′(η1(Yi ))= η(Pi ), and thus η(X)= {φ(Y1), . . . , φ(Yk)} = φ(X). Thus,
8 extends φ, as claimed. �

The following corollary was obtained, with a more ad hoc reasoning, in the proof
of [Spirito 2020, Theorem 2.6].

Corollary 3.7. Let D, D′ be Dedekind domains such that P(D) and P(D′) are
order-isomorphic. Then, Cl(D) is torsion if and only if Cl(D′) is torsion.
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Proof. The class group of D is torsion if and only if every prime ideal has a
principal power [Gilmer and Ohm 1964, Theorem 3.1], and thus if and only if
P(D)= Rad(D).

If P(D) and P(D′) are isomorphic, then by Theorem 3.6 there is an isomorphism
8 : Rad(D)→ Rad(D′) sending P(D) to P(D′); hence, Rad(D) = P(D) if and
only if Rad(D′) = P(D′). Therefore, Cl(D) is torsion if and only if Cl(D′) is
torsion. �

Remark 3.8. Let Princ(D) be the set of principal ideals of D and I(D) be the set
of all ideals of D.

The method used in this section can also be applied to prove the analogous
result for ideals that are not necessarily radical, i.e., to prove that an isomorphism
φ : Princ(D)→ Princ(D′) can be extended to an isomorphism 8 : I(D)→ I(D′).

The most obvious analogue of Proposition 3.3 does not hold, since the ideals
(a1), . . . , (an) may be product-coprime in Princ(D) without a1, . . . , an being co-
prime (for example, take a1 = y, a2 = y2 and a3 = y3, where y is a prime element
of D). However, this can be repaired: a1, . . . , an ∈ D• are coprime if and only if the
ideals (a1)

k1, . . . , (an)
kn are product-coprime in Princ(D) for every k1, . . . , kn ∈N.

The proof is essentially analogous to the one given for Proposition 3.3.
Proposition 3.5 carries over without significant changes: the maximal product-

proper subsets of Princ(D) are in bijective correspondence with the maximal ideals
of D. Theorem 3.6 carries over as well: the only difference is that, instead of the
restricted power set Pfin(Max(D)), it is necessary to use the free abelian group
generated by Max(D).

In particular, this result directly implies that if Princ(D) and Princ(D′) are
isomorphic as partially ordered sets, then the class groups Cl(D) and Cl(D′) are
isomorphic as groups, since the class group depends exactly on which ideals are
principal. This result is also a consequence of the theory of monoid factorization
(see [Geroldinger and Halter-Koch 2006]), of which this reasoning can be seen as a
more direct (but less general) version.

4. Calculating the rank

The rank rk G of an abelian group G is the dimension of the tensor product G⊗Q

as a vector space over Q. In particular, the rank of G is 0 if and only if G is a
torsion group; therefore, Corollary 3.7 can be rephrased by saying that, if P(D)
and P(D′) are order-isomorphic, then the rank of Cl(D) is 0 if and only if the rank
of Cl(D′) is 0. In this section, we want to generalize this result by showing that
rk Cl(D) is actually determined by P(D) in every case.

Let D be a Dedekind domain. If I(D) is the set of proper ideals of D, then
the quotient from F(D) to Cl(D) restricts to a map π : I(D)→ Cl(D), which is
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a monoid homomorphism (i.e., π(IJ ) = π(I ) · π(J )). Moreover, π is surjective
since the class of I coincide with the class of d I for every d ∈ D•.

There is also a natural map ψ0 :Cl(D)→Cl(D)⊗Q, g 7→ g⊗1, from the class
group to the Q-vector space Cl(D)⊗Q; the map ψ0 is a group homomorphism,
and its kernel is the torsion subgroup T of Cl(D). By construction, the image C
of ψ0 spans Cl(D)⊗Q as a Q-vector space.

Thus, we have a chain of maps

I(D) π
−→Cl(D)

ψ0
−−→Cl(D)⊗Q;

we denote by ψ the composition ψ0 ◦π .

Definition 4.1. Let 1⊆Max(D). A maximal ideal Q is an almost inverse of 1 if
there is a set {P1, . . . , Pk}⊆1 (not necessarily nonempty) such that Q∧P1∧· · ·∧Pn

belongs to P(D). We denote the set of almost inverses of 1 as Inv(1).

Our aim is to characterize Inv(1) in terms of the map ψ ; to do so, we use the
terminology of ordered topological spaces (we refer the reader to [Davis 1954]).
Given a Q-vector space V and a set S ⊆ V , the positive cone spanned by S is

pos(S) :=
{ k∑

i=1

λivi | λi ∈Q≥0, vi ∈ S
}
;

if C=pos(S), we say that C is positively spanned by S. Symmetrically, the negative
cone is neg(S) := − pos(S).

Proposition 4.2. Let 1⊆Max(D). Then, Inv(1)= ψ−1(neg(ψ(1))).

Proof. Let Q ∈ Inv(1), and let P1, . . . , Pn ∈1 be such that L := Q∧P1∧· · ·∧Pn ∈

P(D). Then, there is a principal ideal I =aD with radical L; thus, there are positive
integers e, f1, . . . , fn > 0 such that I = Qe P f1

1 · · · P
fn

n (this holds also if Q = Pi

for some i). Since I is principal, ψ(I )= 0; hence,

0= ψ(I )= ψ(Qe P f1
1 · · · P

fn
n )= eψ(Q)+

n∑
i=1

fiψ(Pi ).

Solving in ψ(Q), we see that ψ(Q)=
∑

i −
fi
e ψ(Pi ) ∈ neg(ψ(1)), as claimed.

Conversely, suppose that ψ(Q) ∈ neg(ψ(1)). Then, either ψ(Q)= 0 (in which
case Q ∈ Inv(1) by taking no P ∈1 in the definition) or we can find P1, . . . , Pn ∈1

and negative rational numbers q1, . . . , qn such that ψ(Q) =
∑

i qiψ(Pi ). By
multiplying for the minimum common multiple of the denominators of the qi , we
obtain a relation eψ(Q)+

∑
i fiψ(Pi )= 0, with e, fi ∈N+. If I := Qe P f1

1 · · · P
fn

n ,
it follows that π(I ) is torsion in the class group, i.e., there is an n > 0 such that I n

is principal; thus rad(I n)= rad(I )= Q ∧ P1 ∧ · · · ∧ Pn ∈ P(D), as claimed. �

Corollary 4.3. Let 1 ⊆ Max(D). Then, Inv(1) = Max(D) if and only if ψ(1)
positively spans Cl(D)⊗Q.
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Proof. Suppose Inv(1)=Max(D), and let q ∈Cl(D)⊗Q. Since the image C of ψ
generates Cl(D)⊗Q as a Q-vector space and is a subgroup, there is a d ∈N+ such
that dq ∈ C. Hence, dq =ψ(I ) for some I ∈ I(D); factorize I as Pe1

1 · · · P
en
n , with

Pi ∈Max(D) and ei > 0. By Proposition 4.2, we have

ψ(I )=
∑

i

eiψ(Pi ) ∈
∑

i

ei neg(ψ(1))= neg(ψ(1)),

and thus also q = 1
dψ(I ) ∈ neg(ψ(1)). Hence, ψ(1) negatively spans Cl(D)⊗Q,

and thus it also positively spans Cl(D)⊗Q.
Conversely, suppose ψ(1) positively spans Cl(D)⊗Q; thus, it also negatively

spans Cl(D)⊗Q. Let Q ∈Max(D): then, ψ(Q)∈ neg(ψ(1)), so that Q ∈ Inv(1)
by Proposition 4.2. Hence, Inv(1)=Max(D). �

We can now characterize when the rank of Cl(D) is finite.

Proposition 4.4. Let D be a Dedekind domain. Then, rk Cl(D) <∞ if and only if
there is a finite set 1⊆Max(D) such that Inv(1)=Max(D).

Proof. Suppose first that rk Cl(D)= n <∞. Then, Inv(Max(D))=Max(D), and
thus ψ(Max(D)) positively spans Cl(D)⊗Q, by Corollary 4.3. Let {e1, . . . , en}

be a basis of Cl(D)⊗Q: then each ei belongs to the positive cone spanned by
a finite subset 3i of ψ(Max(D)). Thus, the union 3 of the 3i is a finite set
positively spanning Cl(D)⊗Q, so the corresponding subset 1 of Max(D) is finite
and Inv(1)=Max(D) by Corollary 4.3.

Conversely, suppose there is a finite set 1 = {P1, . . . , Pk} ⊆ Max(D) such
that Inv(1) = Max(D). For every Q ∈ Max(D), there are i1, . . . , ir such that
Q ∧ Pi1 ∧ · · · ∧ Pir ∈ P(D); as in the proof of Proposition 4.2, it follows that there
are e, f1, . . . , fr > 0 such that Qe P f1

i1
· · · P fr

ir
is principal. Thus, π(Q)⊗1 belongs

to the Q-vector subspace of Cl(D)⊗Q generated by π(Pi1)⊗ 1, . . . , π(Pir )⊗ 1
(where π : I(D)→ Cl(D) is the quotient map, as above). Since Q was arbitrary,
the set {π(P1)⊗ 1, . . . , π(Pk)⊗ 1} is a basis of Cl(D)⊗Q. In particular, we have
rk Cl(D)= dimQ Cl(D)⊗Q≤ k <∞. �

We will also need a criterion to understand when Inv(1) corresponds to a linear
subspace.

Proposition 4.5. Let 1 ⊆ Max(D). Then, neg(ψ(1)) is a linear subspace of
Cl(D)⊗Q if and only if 1⊆ Inv(1).

Proof. Suppose neg(ψ(1)) is a linear subspace, and let Q ∈ 1. Then, there are
Pi ∈ 1, λi ∈ Q− such that ψ(Q) =

∑
i λiψ(Pi ); multiplying by the minimum

common multiple of the denominators we get an equality eψ(Q)+
∑

i fiψ(Pi )= 0,
where e, fi ∈ N+. Let I := Qe P f1

1 · · · P
fn

n : then, ψ(I )= 0, so that π(I ) is torsion
in Cl(D), i.e., I n is principal for some n. Thus, Q ∧ P1 ∧ · · · ∧ Pn ∈ P(D), and
Q ∈ Inv(1).
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Conversely, suppose 1⊆ Inv(1), and let q be an element of the linear subspace
generated by ψ(1). Then, there are Pi , Q j ∈1, θi ∈Q+ and µ j ∈Q− such that

q =
∑

i

θiψ(Pi )+
∑

i

µ jψ(Q j ).

By construction, each θiψ(Pi ) belongs to pos(ψ(1)). Furthermore, each ψ(Q j )

is in neg(ψ(1)) by Proposition 4.2, and thus µ jψ(Q j ) ∈ pos(ψ(1)) for every j .
Therefore, q ∈ pos(ψ(1)), so the positive cone of ψ(1) is a linear subspace and
neg(ψ(1))= pos(ψ(1)) is a subspace too. �

Proposition 4.4 can be interpreted by saying that rk Cl(D) is finite if and only if
Max(D) is “negatively generated” by a finite set. In the case of finite rank, we need
a way to link the dimension of Cl(D)⊗Q with the cardinality of the sets spanning
it as a positive cone; that is, we need to consider a notion analogue to the basis of a
vector space.

Since we need only to consider the case of finite rank, from now on we suppose
that n := rk Cl(D) <∞ and we identify Cl(D)⊗Q with Qn .

Definition 4.6. A set X ⊆ Qn is positive basis of Qn if pos(X) = Qn and if
pos(X \ {x}) 6=Qn for every x ∈ X .

Definition 4.7. A subset 1⊆Max(D) is an inverse basis of Max(D) if Inv(1)=
Max(D) and Inv(1′) 6=Max(D) for every 1′ (1.

These two notions are naturally connected.

Proposition 4.8. Let 1⊆Max(D). Then, 1 is an inverse basis of Max(D) if and
only if ψ(1) is a positive basis of Qn .

Proof. If 1 is an inverse basis, then ψ(1) positively spans Qn by Corollary 4.3,
while ψ(1′) does not for every 1′ (1 (again by the corollary). Hence, ψ(1) is a
positive basis. The converse follows in the same way. �

Given a positive basis X of Qn , we call a partition {X1, . . . , Xs} of X a weak
Reay partition if, for every j , the positive cone of X1∪· · ·∪ X i is a linear subspace
of Qn . The following is a variant of [Reay 1965, Theorem 2]:

Proposition 4.9. Let X be a positive basis of Qn . Then:

(a) every weak Reay partition of X has cardinality at most |X | − n;

(b) there is a weak Reay partition of X of cardinality |X | − n.

Proof. Let {X1, . . . , Xs} be a weak Reay partition, and let Vi be the linear space
spanned by X1, . . . , X i (with V0 := (0)). We claim that dim Vi−dim Vi−1≤|X i |−1.
Indeed, let X i := {z1, . . . , zt }: then, −zt belongs to the positive cone generated by
Vi−1 and X i , and thus we can write −zt = y +

∑
j λ j z j for some y ∈ Vi−1 and

λ j ≥ 0. It follows that −(1+λt)zt = y+λ1z1+· · ·+λt−1zt−1, and since λt 6= −1
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we have that zt is linearly dependent from X1∪ · · ·∪ X i−1∪{z1, . . . , zt−1}. Hence,
dim Vi ≤ dim Vi−1+ t − 1, as claimed.

Therefore,

n = dim Qn
= (dim Vs − dim Vs−1)+ · · ·+ dim V1

≤ (|Xs | − 1)+ · · ·+ (|X1| − 1)= |X | − s,

and thus s ≤ |X | − n, and (a) is proved. (b) is a direct consequence of [Reay 1965,
Theorem 2]. �

Similarly, if 1 ⊆ Max(D) is an inverse basis of Max(D), we call a partition
{11, . . . ,1s} a weak Reay partition if 11∪· · ·∪1i ⊆ Inv(11∪· · ·∪1i ) for every i .

Proposition 4.10. Let 1 ⊆ Max(D) be an inverse basis of Max(D), and let
{11, . . . ,1s} be a partition of 1. Then, {11, . . . ,1s} is a weak Reay partition of
1 if and only if {ψ(11), . . . , ψ(1s)} is a weak Reay partition of ψ(1).

Proof. By Proposition 4.5, 11 ∪ · · · ∪1i ⊆ Inv(11 ∪ · · · ∪1i ) if and only if the
positive cone of ψ(11 ∪ · · · ∪1i ) = ψ(11) ∪ · · · ∪ ψ(1i ) is a linear subspace
of Qn . The claim now follows from the definition. �

Theorem 4.11. Let D and D′ be Dedekind domains such that P(D) and P(D′)
are isomorphic. Then, rk Cl(D)= rk Cl(D′).

Proof. Let φ : P(D)→ P(D′) be an isomorphism; by Theorem 3.6, we can find
an isomorphism 8 : Rad(D)→ Rad(D′) sending P(D) to P(D′). In particular,
8(Max(D))=Max(D′).

Since Inv(1) is defined only through P(D) and Rad(D), 8 respects the in-
verse construction, in the sense that 8(Inv(1)) = Inv(8(1)) for every 1 ⊆
Max(D). In particular, Inv(1) =Max(D) if and only if Inv(8(1)) =Max(D′);
by Proposition 4.4, it follows that rk Cl(D)=∞ if and only if rk Cl(D′)=∞.

Suppose now that the two ranks are finite, say equal to n and n′, respectively. Let
1 ⊆Max(D) be an inverse basis of Max(D). Let {11, . . . ,1s} be a weak Reay
partition of 1 of maximum cardinality; by Propositions 4.9 and 4.10 , s = |1| − n.

Every weak Reay partition of 1 gets mapped by 8 into a weak Reay partition
of 1′ := ψ(1), and conversely; therefore, the maximum cardinality of the weak
Reay partitions of 1′ is again |1|−n. However, applying Propositions 4.9 and 4.10
to 1′, we see that this quantity is |1′| − n′; since |1| = |1′|, we get n = n′, as
claimed. �

Corollary 4.12. Let D, D′ be Dedekind domains, and let T (D) (respectively,
T (D′)) be the torsion subgroup of Cl(D) (respectively, Cl(D′)). If P(D) and P(D′)
are isomorphic and if Cl(D) and Cl(D′) are finitely generated, then Cl(D)/T (D)'
Cl(D′)/T (D′).
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Proof. Since Cl(D) is finitely generated, it has finite rank n and Cl(D)/T (D)'Zn;
analogously, Cl(D′)/T (D′)'Zm , where m := rk Cl(D′). By Theorem 4.11, n=m;
and, in particular, Cl(D)/T (D)' Cl(D′)/T (D′). �

5. Counterexamples

In this section, we collect some examples showing that Theorem 4.11 is, in many
ways, the best possible.

Example 5.1. It is not possible to improve the conclusion of Theorem 4.11 from
“rk Cl(D)= rk Cl(D′)” to “Cl(D)'Cl(D′)”. Indeed, if rk Cl(D)= 0 (i.e., if Cl(D)
is torsion) then P(D) = Rad(D); and thus, whenever rk Cl(D) = rk Cl(D′) = 0,
the posets P(D) and P(D′) are isomorphic.

For the next examples, we need to use a construction of Claborn [1968].
Let G :=

∑
i xi Z be the free abelian group on the countable set {xi }i∈N. Let I

be a subset of G satisfying the following two properties:
• All coefficients of the elements of I (with respect to the xi ) are nonnegative.

• For every finite set xi1, . . . , xik and every n1, . . . , nk ∈N, there is an element y
of I such that the component of y relative to xit is nt .

Then, [Claborn 1968, Theorem 2.1] says that there is an integral domain D
with countably many maximal ideals {Pi }i∈N such that the map sending the ideal
Pn1

1 · · · P
nk
k to n1x1+· · ·+nk xk sends principal ideals to elements of the subgroup H

generated by I . In particular, Cl(D)' G/H .

Example 5.2. Corollary 4.12 does not hold without the hypothesis that Cl(D)
and Cl(D′) are finitely generated.

For example, let H1 be the subgroup of G generated by xn + xn+1, as n ranges
in N, and I1 be the subset of the elements of H1 having all coefficients nonnegative.
Then, I1 satisfies the above conditions. The corresponding domain D1 has a class
group isomorphic to Z, and its prime ideals are concentrated in two classes: if n is
even, Pn is equivalent to P0; if n is odd, Pn is equivalent to P1; furthermore, P0 P1

is principal. (This is exactly Example 3-2 of [Claborn 1968].) In particular, P(D1)

is equal to the members of Rad(D1) that are contained both in some Pn with n even
and in some Pm with m odd.

Let now H2 be the subgroup of G generated by xn + 2xn+1, as n ranges in N,
and let I2 be the subset of the elements of H2 having all coefficients nonnegative.
Then, I2 also satisfies the condition above. Let D2 be the corresponding Dedekind
domain. Then, Cl(D2) is isomorphic to the quotient G/H2, which is isomorphic to
the subgroup Z(2∞) of Q generated by 1, 1

2 ,
1
4 , . . . ,

1
2n , . . . (that is, to the Prüfer

2-group): this can be seen by noting that the map

G→Q, Pn 7→ (−1)n 1
2n
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is a group homomorphism with kernel H2 and range Z(2∞). In this isomorphism,
the prime ideals Qn , with n even, are mapped to positive elements of Z(2∞), while
the prime ideals Qm , with m odd, are mapped to the negative elements. Hence,
P(D2) is equal to the member of Rad(D2) that are contained in both an “even” and
an “odd” prime.

Therefore, the map Rad(D1)→Rad(D2) sending Pi1∩· · ·∩Pik to Qi1∩· · ·∩Qik is
an isomorphism sending P(D1) to P(D2). However, the class groups of D1 and D2

are both torsion-free (i.e., T (D1)= T (D2)= 0), but not isomorphic.

Example 5.3. The converse of Theorem 4.11 does not hold; that is, it is possible
that rk Cl(D)= rk Cl(D′) even if P(D) and P(D′) are not isomorphic.

Take H1 and D1 as in the previous example.
Take H3 to be the subgroup of G generated by x0 and by xn + xn+1 for n > 0,

and let I3 be the subset of the elements of H3 having all coefficients nonnegative.
Then, I3 satisfies Claborn’s conditions, and the corresponding domain D3 satisfies
Cl(D3)' Z (in particular, rk Cl(D3)= 1), so Cl(D1) and Cl(D3) are isomorphic.

However, D3 has a principal maximal ideal (the one corresponding to x0),
while D1 does not. Therefore, there is no isomorphism Rad(D1) → Rad(D3)

sending P(D1) to P(D3); by Theorem 3.6, it follows that P(D1) and P(D3) cannot
be isomorphic.
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