Pacific

Journal of Mathematics

RADICALS OF PRINCIPAL IDEALS AND THE CLASS GROUP OF A DEDEKIND DOMAIN

Dario Spirito

RADICALS OF PRINCIPAL IDEALS AND THE CLASS GROUP OF A DEDEKIND DOMAIN

Dario Spirito

Abstract

For a Dedekind domain D, let $\mathcal{P}(D)$ be the set of ideals of D that are the radical of a principal ideal. We show that, if D and D^{\prime} are Dedekind domains and there is an order isomorphism between $\mathcal{P}(D)$ and $\mathcal{P}\left(D^{\prime}\right)$, then the rank of the class groups of D and D^{\prime} is the same.

1. Introduction

The class group $\mathrm{Cl}(D)$ of a Dedekind domain D is defined as the quotient between the group of the nonzero fractional ideals of D and the subgroup of the principal ideals of D. Since $\mathrm{Cl}(D)$ is trivial if and only if D is a principal ideal domain (equivalently, if and only if it is a unique factorization domain), the class group can be seen as a way to measure how much unique factorization fails in D. For this reason, the study of the class group is an important part of the study of Dedekind domains.

It is a nonobvious fact that the class group of D actually depends only on the multiplicative structure of D, or, from another point of view, depends only on the set of nonzero principal ideals of D. Indeed, the class group of $D^{\bullet}:=D \backslash\{0\}$ as a monoid (where the operation is the product) is isomorphic to the class group of D as a Dedekind domain (see Chapter 2, in particular Section 2.10, of [Geroldinger and Halter-Koch 2006]), and thus, if D and D^{\prime} are Dedekind domains whose sets of principal ideals are isomorphic (as monoids), then the class groups of D and D^{\prime} are isomorphic too.

In this paper, we show that the rank of $\mathrm{Cl}(D)$ can be recovered by considering only the set $\mathcal{P}(D)$ of the ideals that are the radical of a principal ideal; that is, we show that if $\mathcal{P}(D)$ and $\mathcal{P}\left(D^{\prime}\right)$ are isomorphic as partially ordered sets, then the ranks of $\mathrm{Cl}(D)$ and $\mathrm{Cl}\left(D^{\prime}\right)$ are equal. The proof of this result can be divided into two steps.

In Section 3, we show that an order isomorphism between $\mathcal{P}(D)$ and $\mathcal{P}\left(D^{\prime}\right)$ can always be extended to an isomorphism between the sets $\operatorname{Rad}(D)$ and $\operatorname{Rad}\left(D^{\prime}\right)$ of all radical ideals of D (Theorem 3.6): this is accomplished by considering these

[^0]sets as (noncancellative) semigroups and characterizing coprimality in D through a version of coprimality in $\mathcal{P}(D)$ (Proposition 3.3).

In Section 4, we link the structure of $\mathcal{P}(D)$ and $\operatorname{Rad}(D)$ with the structure of the tensor product $\mathrm{Cl}(D) \otimes \mathbb{Q}$ as an ordered topological space; in particular, we interpret the set of inverses of a set $\Delta \subseteq \operatorname{Max}(D)$ with respect to $\mathcal{P}(D)$ (see Definition 4.1) as the negative cone generated by the images of Δ in $\mathrm{Cl}(D) \otimes \mathbb{Q}$ (Proposition 4.2) and use this connection to calculate the rank of $\mathrm{Cl}(D)$ as a function of some particular partitions of an "inverse basis" of $\operatorname{Max}(D)$ (Propositions 4.9 and 4.10). As this construction is invariant with respect to isomorphism, we get the main theorem (Theorem 4.11).

In Section 5, we give three examples, showing that some natural extensions of the main result do not hold.

2. Notation and preliminaries

Throughout the paper, D will denote a Dedekind domain, that is, a one-dimensional integrally closed Noetherian integral domain; equivalently, a one-dimensional Noetherian domain such that D_{P} is a discrete valuation ring for all maximal ideals P. For general properties about Dedekind domains, the reader may consult, for example, [Bourbaki 1989, Chapter 7, §2], [Atiyah and Macdonald 1969, Chapter 9] or [Neukirch 1999, Chapter 1].

We use D^{\bullet} to indicate the set $D \backslash\{0\}$. We denote by $\operatorname{Max}(D)$ the set of maximal ideals of D. If I is an ideal of D, we set

$$
V(I):=\{P \in \operatorname{Spec}(D) \mid I \subseteq D\} .
$$

If $I=x D$ is a principal ideal, we write $V(x)$ for $V(x D)$. If $I \neq(0)$, the set $V(I)$ is always a finite subset of $\operatorname{Max}(D)$. We denote by $\operatorname{rad}(I)$ the radical of the ideal I, and we say that I is a radical ideal (or simply that I is radical) if $I=\operatorname{rad}(I)$.

Every nonzero proper ideal I of D can be written uniquely as $P_{1}^{e_{1}} \cdots P_{n}^{e_{n}}=$ $P_{1}^{e_{1}} \cap \cdots \cap P_{n}^{e_{n}}$, where P_{1}, \ldots, P_{n} are distinct maximal ideals and $e_{1}, \ldots, e_{n} \geq 1$. In particular, in this case we have $V(I)=\left\{P_{1}, \ldots, P_{n}\right\}$, and $\operatorname{rad}(I)=P_{1} \cdots P_{n}$. An ideal is radical if and only if $e_{1}=\cdots=e_{n}=1$. If P is a maximal ideal, the P-adic valuation of an element x is the exponent of P in the factorization of $x D$; we denote it by $v_{P}(x)$. (If $x \notin P$, i.e., if P does not appear in the factorization, then $v_{P}(x)=0$.)

If P_{1}, \ldots, P_{k} are distinct maximal ideals and $e_{1}, \ldots, e_{k} \in \mathbb{N}$, then by the approximation theorem for Dedekind domains (see, e.g., [Bourbaki 1989, Chapter VII, §2, Proposition 2]) there is an element $x \in D$ such that $v_{P_{i}}(x)=e_{i}$ for $i=1, \ldots, k$.

A fractional ideal of D is a D-submodule I of the quotient field K of D such that $x I \subseteq D$ (and thus, $x I$ is an ideal of D) for some $x \in D^{\bullet}$. The set $\mathcal{F}(D)$ of nonzero fractional ideals of D is a group under multiplication; the inverse of an
ideal I is $I^{-1}:=(D: I):=\{x \in K \mid x I \subseteq D\}$. A nonzero fractional ideal I can be written uniquely as $P_{1}^{e_{1}} \cdots P_{n}^{e_{n}}$, where P_{1}, \ldots, P_{n} are distinct maximal ideals and $e_{1}, \ldots, e_{n} \in \mathbb{Z} \backslash\{0\}$ (with the empty product being equal to D). Thus, $\mathcal{F}(D)$ is isomorphic to the free abelian group over $\operatorname{Max}(D)$. The quotient between this group and its subgroup formed by the principal fractional ideals is called the class group of D, and is denoted by $\mathrm{Cl}(D)$.

For a set S, we denote by $\mathfrak{P}_{\text {fin }}(S)$ the set of all finite and nonempty subsets of S.

3. The two semilattices $\mathcal{P}(D)$ and $\operatorname{Rad}(D)$

Let (X, \leq) be a meet-semilattice, that is, a partially ordered set where every pair of elements has an infimum. Then, the operation $x \wedge y$ associating to x and y their infimum is associative, commutative and idempotent, and it has a unit if and only if X has a maximum. The order of X can also be recovered from the operation: $x \geq y$ if and only if x divides y in (X, \wedge), that is, if and only if there is a $z \in X$ such that $y=x \wedge z$. A join-semilattice is defined in the same way, but using the supremum instead of the infimum.

Let D be a Dedekind domain. We will be interested in two structures of this kind.
The first one is the semilattice $\operatorname{Rad}(D)$ of all nonzero radical ideals of D. In this case, the order \leq is the usual containment order, while the product is equal to

$$
I \wedge J:=I \cap J=\operatorname{rad}(I J)
$$

The second one is the semilattice $\mathcal{P}(D)$ of the ideals of D that are radical of a nonzero, principal ideal of D. This is a subsemilattice of $\operatorname{Rad}(D)$, since

$$
\operatorname{rad}(a D) \wedge \operatorname{rad}(b D)=\operatorname{rad}(a b D),
$$

i.e., the product of two elements of $\mathcal{P}(D)$ remains inside $\mathcal{P}(D)$.

A nonzero radical ideal I is characterized by the finite set $V(I)$. Hence, the map from $\operatorname{Rad}(D)$ to $\mathfrak{P}_{\text {fin }}(\operatorname{Max}(D))$ sending I to $V(I)$ is an order-reversing isomorphism of partially ordered sets, which becomes an order-reversing isomorphism of semilattices if the operation on the power set is the union. We denote by $\mathcal{V}(D)$ the image of $\mathcal{P}(D)$ under this isomorphism; that is, $\mathcal{V}(D):=\left\{V(x) \mid x \in D^{\bullet}\right\}$. The inverse of this map is the one sending a set Z to the intersection of the prime ideals contained in Z.

Those semilattices have neither an absorbing element (which would be the zero ideal) nor a unit (which should be D itself).

Lemma 3.1. Let $X, Y \in \mathfrak{P}_{\mathrm{fin}}(\operatorname{Max}(D))$ (respectively, $\left.X, Y \in \mathcal{V}(D)\right)$. Then, $X \mid Y$ in $\mathfrak{P}_{\mathrm{fin}}(\operatorname{Max}(D))$ (respectively, $X \mid Y$ in $\left.\mathcal{V}(D)\right)$ if and only if $X \subseteq Y$.
Proof. If $X \mid Y$, then $Y=X \cup Z$ for some $Z \in \mathcal{V}(D)$, and thus $X \subseteq Y$. If $X \subseteq Y$, then $Y=Y \cup X$ and thus $X \mid Y$. (This works both in $\mathfrak{P}_{\mathrm{fin}}(\operatorname{Max}(D))$ and in $\mathcal{V}(D)$.)

Definition 3.2. Let M be a commutative semigroup. We say that $a_{1}, \ldots, a_{n} \in$ M are product-coprime if, whenever there are $b_{1}, \ldots, b_{n} \in M$ such that $a_{1} b_{1}=$ $a_{2} b_{2}=\cdots=a_{n} b_{n}$, then for every j the element a_{j} divides $\prod_{i \neq j} b_{i}$.

Viewing $\mathcal{V}(D)$ as a semigroup, we can characterize when some elements are product-coprime.

Proposition 3.3. Let D be a Dedekind domain, and let $a_{1}, \ldots, a_{n} \in D^{\bullet}$. Then, a_{1}, \ldots, a_{n} are coprime in D if and only if $V\left(a_{1}\right), \ldots, V\left(a_{n}\right)$ are product-coprime in $\mathcal{V}(D)$.

Proof. Suppose that a_{1}, \ldots, a_{n} are coprime, and let $X \in \mathcal{V}(D)$ be such that $X=$ $V\left(a_{1}\right) \cup B_{1}=\cdots=V\left(a_{n}\right) \cup B_{n}$ for some $B_{1}, \ldots, B_{n} \in \mathcal{V}(D)$. By symmetry, it is enough to prove that $V\left(a_{1}\right)$ divides $B_{2} \cup \cdots \cup B_{n}$ in $\mathcal{V}(D)$, i.e., that $V\left(a_{1}\right) \subseteq$ $B_{2} \cup \cdots \cup B_{n}$. Take any prime ideal $P \in V\left(a_{1}\right)$: since a_{1}, \ldots, a_{n} are coprime there is a j such that $P \notin V\left(a_{j}\right)$. However, $P \in V\left(a_{j}\right) \cup B_{j}$, and thus $P \in B_{j}$. Therefore, $V\left(a_{i}\right) \subseteq B_{2} \cup \cdots \cup B_{n}$, as claimed.

Conversely, suppose $V\left(a_{1}\right), \ldots, V\left(a_{n}\right)$ are product-coprime, and suppose that a_{1}, \ldots, a_{n} are not coprime. Then, there is a prime ideal P containing all a_{i}; passing to powers, without loss of generality we can suppose that the P-adic valuation of the a_{i} is the same, say $v_{P}\left(a_{i}\right)=t$ for every i. By prime avoidance, there is a $b_{1} \in D \backslash P$ such that $v_{Q}\left(b_{1}\right) \geq v_{Q}\left(a_{i}\right)$ for all $i>1$ and all $Q \neq P$. Let $x:=a_{1} b_{1}$. By construction, $a_{i} \mid x$ for each i, and thus we can find $b_{2}, \ldots, b_{n} \in D$ such that $x=a_{i} b_{i}$. Therefore, $V(x)=V\left(a_{i}\right) \cup V\left(b_{i}\right)$ for every i; by hypothesis, it follows that $V\left(a_{1}\right)$ divides $V\left(b_{2}\right) \cup \cdots \cup V\left(b_{n}\right)$, i.e., that $V\left(a_{i}\right) \subseteq V\left(b_{2}\right) \cup \cdots \cup V\left(b_{n}\right)$. However, $v_{P}(x)=v_{P}\left(a_{1}\right)+v_{P}\left(b_{1}\right)=t$, and thus $v_{P}\left(b_{i}\right)=0$ for every i; in particular, $P \notin V\left(b_{i}\right)$ for every i. This is a contradiction, and thus a_{1}, \ldots, a_{n} are coprime. \square

Definition 3.4. Let M be a commutative semigroup. We say that $I \subsetneq M$ is productproper if no finite subset of I is product-coprime. We denote the set of maximal product-proper subsets of M by $\mathfrak{M}(M)$.

Proposition 3.5. Let D be a Dedekind domain. The maps

$$
\nu: \operatorname{Max}(D) \rightarrow \mathfrak{M}(\mathcal{V}(D)), \quad P \mapsto\{V(x) \mid x \in P\}
$$

and

$$
\theta: \mathfrak{M}(\mathcal{V}(D)) \rightarrow \operatorname{Max}(D), \quad \mathcal{Y} \mapsto\{x \in D \mid V(x) \in \mathcal{Y}\}
$$

are bijections, inverses of each other.
Proof. We first show that v and θ are well-defined.
If P is a maximal ideal of D, then $P \in X$ for every $X \in v(P)$; thus, if $V(a) \in v(P)$, then $a \in P$ and $v(P)$ is product-proper. If $v(P) \subsetneq \mathcal{Y} \subseteq \mathcal{V}(D)$, take $Y \in \mathcal{Y} \backslash v(P)$: then, $Y=V(b)$ for some $b \notin P$. If $Y=\left\{Q_{1}, \ldots, Q_{k}\right\}$, by prime avoidance we can
find $a \in P \backslash\left(Q_{1} \cup \cdots \cup Q_{k}\right)$; then, a and b are coprime, and thus $V(a)$ and $V(b)$ are product-coprime. Hence, $v(P)$ is a maximal product-proper subset of $\mathcal{V}(D)$.

Conversely, let $\mathcal{Y} \in \mathfrak{M}(\mathcal{V}(D))$. If $\theta(\mathcal{Y})$ is contained in some prime ideal P, then $\mathcal{Y} \subseteq v(P)$, and thus we must have $\mathcal{Y}=v(P)$; in particular, $\theta(\mathcal{Y})=P \in \operatorname{Max}(D)$. If $\theta(\mathcal{Y})$ is not contained in any prime ideal, let $V(a)=\left\{Q_{1}, \ldots, Q_{k}\right\} \in \mathcal{Y}$. Since $\theta(\mathcal{Y}) \nsubseteq Q_{i}$, for every i we can find $b_{i} \notin Q_{i}$ such that $V\left(a_{i}\right) \in \mathcal{Y}$; then, a, b_{1}, \ldots, b_{n} are coprime, and thus $V(a), V\left(b_{1}\right), \ldots, V\left(b_{n}\right)$ are a product-coprime subset of \mathcal{Y}, a contradiction. Hence, $\mathcal{Y}=v(P)$.

The fact that they are inverses of each other follows similarly.
Theorem 3.6. Let D, D^{\prime} be Dedekind domains. If there is an order isomorphism $\psi: \mathcal{P}(D) \rightarrow \mathcal{P}(D)$, then there is an order isomorphism $\Psi: \operatorname{Rad}(D) \rightarrow \operatorname{Rad}\left(D^{\prime}\right)$ extending ψ.

Proof. The statement is equivalent to saying that any isomorphism $\phi: \mathcal{V}(D) \rightarrow \mathcal{V}\left(D^{\prime}\right)$ can be extended to an isomorphism $\Phi: \mathfrak{P}_{\mathrm{fin}}(\operatorname{Max}(D)) \rightarrow \mathfrak{P}_{\mathrm{fin}}\left(\operatorname{Max}\left(D^{\prime}\right)\right)$. For simplicity, set $\mathfrak{P}:=\mathfrak{P}_{\text {fin }}(\operatorname{Max}(D))$ and $\mathfrak{P}^{\prime}:=\mathfrak{P}_{\mathrm{fin}}\left(\operatorname{Max}\left(D^{\prime}\right)\right)$.

If ϕ is an isomorphism, then it sends product-proper sets into product-proper sets, and thus ϕ induces a bijective map $\eta_{1}: \mathfrak{M}(\mathcal{V}(D)) \rightarrow \mathfrak{M}\left(\mathcal{V}\left(D^{\prime}\right)\right)$. Using the map θ of Proposition $3.5, \eta_{1}$ induces a bijection $\eta: \operatorname{Max}(D) \rightarrow \operatorname{Max}\left(D^{\prime}\right)$ such that the diagram

commutes (explicitly, $\eta=\theta^{\prime} \circ \eta_{1} \circ \theta^{-1}$). In particular, η induces an order isomorphism Φ between \mathfrak{P} and \mathfrak{P}^{\prime}, sending $X \subseteq \operatorname{Max}(D)$ to $\eta(X) \subseteq \operatorname{Max}\left(D^{\prime}\right)$. To conclude the proof, we need to show that Φ extends ϕ.

Let $X=\left\{P_{1}, \ldots, P_{k}\right\} \in \mathcal{V}(D)$. Then, by definition,

$$
\Phi(X)=\eta(X)=\left\{\eta\left(P_{1}\right), \ldots, \eta\left(P_{k}\right)\right\} .
$$

The maximal product-proper subsets of $\mathcal{V}(D)$ containing X are $\mathcal{Y}_{i}:=v\left(P_{i}\right)$, for $i=1, \ldots, k$; since ϕ is an isomorphism, the maximal product-proper subsets of $\mathcal{V}\left(D^{\prime}\right)$ containing $\phi(X)$ are the sets $\phi\left(\mathcal{Y}_{i}\right)$. By construction, $\phi\left(\mathcal{Y}_{i}\right)=\eta_{1}\left(\mathcal{Y}_{i}\right)$; however, $\theta^{\prime}\left(\eta_{1}\left(\mathcal{Y}_{i}\right)\right)=\eta\left(P_{i}\right)$, and thus $\eta(X)=\left\{\phi\left(\mathcal{Y}_{1}\right), \ldots, \phi\left(\mathcal{Y}_{k}\right)\right\}=\phi(X)$. Thus, Φ extends ϕ, as claimed.

The following corollary was obtained, with a more $a d$ hoc reasoning, in the proof of [Spirito 2020, Theorem 2.6].

Corollary 3.7. Let D, D^{\prime} be Dedekind domains such that $\mathcal{P}(D)$ and $\mathcal{P}\left(D^{\prime}\right)$ are order-isomorphic. Then, $\mathrm{Cl}(D)$ is torsion if and only if $\mathrm{Cl}\left(D^{\prime}\right)$ is torsion.

Proof. The class group of D is torsion if and only if every prime ideal has a principal power [Gilmer and Ohm 1964, Theorem 3.1], and thus if and only if $\mathcal{P}(D)=\operatorname{Rad}(D)$.

If $\mathcal{P}(D)$ and $\mathcal{P}\left(D^{\prime}\right)$ are isomorphic, then by Theorem 3.6 there is an isomorphism $\Phi: \operatorname{Rad}(D) \rightarrow \operatorname{Rad}\left(D^{\prime}\right)$ sending $\mathcal{P}(D)$ to $\mathcal{P}\left(D^{\prime}\right)$; hence, $\operatorname{Rad}(D)=\mathcal{P}(D)$ if and only if $\operatorname{Rad}\left(D^{\prime}\right)=\mathcal{P}\left(D^{\prime}\right)$. Therefore, $\mathrm{Cl}(D)$ is torsion if and only if $\mathrm{Cl}\left(D^{\prime}\right)$ is torsion.

Remark 3.8. Let $\operatorname{Princ}(D)$ be the set of principal ideals of D and $\mathcal{I}(D)$ be the set of all ideals of D.

The method used in this section can also be applied to prove the analogous result for ideals that are not necessarily radical, i.e., to prove that an isomorphism $\phi: \operatorname{Princ}(D) \rightarrow \operatorname{Princ}\left(D^{\prime}\right)$ can be extended to an isomorphism $\Phi: \mathcal{I}(D) \rightarrow \mathcal{I}\left(D^{\prime}\right)$.

The most obvious analogue of Proposition 3.3 does not hold, since the ideals $\left(a_{1}\right), \ldots,\left(a_{n}\right)$ may be product-coprime in $\operatorname{Princ}(D)$ without a_{1}, \ldots, a_{n} being coprime (for example, take $a_{1}=y, a_{2}=y^{2}$ and $a_{3}=y^{3}$, where y is a prime element of D). However, this can be repaired: $a_{1}, \ldots, a_{n} \in D^{\bullet}$ are coprime if and only if the ideals $\left(a_{1}\right)^{k_{1}}, \ldots,\left(a_{n}\right)^{k_{n}}$ are product-coprime in $\operatorname{Princ}(D)$ for every $k_{1}, \ldots, k_{n} \in \mathbb{N}$. The proof is essentially analogous to the one given for Proposition 3.3.

Proposition 3.5 carries over without significant changes: the maximal productproper subsets of $\operatorname{Princ}(D)$ are in bijective correspondence with the maximal ideals of D. Theorem 3.6 carries over as well: the only difference is that, instead of the restricted power set $\mathfrak{P}_{\text {fin }}(\operatorname{Max}(D))$, it is necessary to use the free abelian group generated by $\operatorname{Max}(D)$.

In particular, this result directly implies that if $\operatorname{Princ}(D)$ and $\operatorname{Princ}\left(D^{\prime}\right)$ are isomorphic as partially ordered sets, then the class groups $\mathrm{Cl}(D)$ and $\mathrm{Cl}\left(D^{\prime}\right)$ are isomorphic as groups, since the class group depends exactly on which ideals are principal. This result is also a consequence of the theory of monoid factorization (see [Geroldinger and Halter-Koch 2006]), of which this reasoning can be seen as a more direct (but less general) version.

4. Calculating the rank

The rank rk G of an abelian group G is the dimension of the tensor product $G \otimes \mathbb{Q}$ as a vector space over \mathbb{Q}. In particular, the rank of G is 0 if and only if G is a torsion group; therefore, Corollary 3.7 can be rephrased by saying that, if $\mathcal{P}(D)$ and $\mathcal{P}\left(D^{\prime}\right)$ are order-isomorphic, then the rank of $\mathrm{Cl}(D)$ is 0 if and only if the rank of $\mathrm{Cl}\left(D^{\prime}\right)$ is 0 . In this section, we want to generalize this result by showing that rk $\mathrm{Cl}(D)$ is actually determined by $\mathcal{P}(D)$ in every case.

Let D be a Dedekind domain. If $\mathcal{I}(D)$ is the set of proper ideals of D, then the quotient from $\mathcal{F}(D)$ to $\mathrm{Cl}(D)$ restricts to a map $\pi: \mathcal{I}(D) \rightarrow \mathrm{Cl}(D)$, which is
a monoid homomorphism (i.e., $\pi(I J)=\pi(I) \cdot \pi(J))$. Moreover, π is surjective since the class of I coincide with the class of $d I$ for every $d \in D^{\bullet}$.

There is also a natural map $\psi_{0}: \mathrm{Cl}(D) \rightarrow \mathrm{Cl}(D) \otimes \mathbb{Q}, g \mapsto g \otimes 1$, from the class group to the \mathbb{Q}-vector space $\mathrm{Cl}(D) \otimes \mathbb{Q}$; the map ψ_{0} is a group homomorphism, and its kernel is the torsion subgroup T of $\mathrm{Cl}(D)$. By construction, the image \mathcal{C} of ψ_{0} spans $\mathrm{Cl}(D) \otimes \mathbb{Q}$ as a \mathbb{Q}-vector space.

Thus, we have a chain of maps

$$
\mathcal{I}(D) \xrightarrow{\pi} \mathrm{Cl}(D) \xrightarrow{\psi_{0}} \mathrm{Cl}(D) \otimes \mathbb{Q} ;
$$

we denote by ψ the composition $\psi_{0} \circ \pi$.
Definition 4.1. Let $\Delta \subseteq \operatorname{Max}(D)$. A maximal ideal Q is an almost inverse of Δ if there is a set $\left\{P_{1}, \ldots, P_{k}\right\} \subseteq \Delta$ (not necessarily nonempty) such that $Q \wedge P_{1} \wedge \cdots \wedge P_{n}$ belongs to $\mathcal{P}(D)$. We denote the set of almost inverses of Δ as $\operatorname{Inv}(\Delta)$.

Our aim is to characterize $\operatorname{Inv}(\Delta)$ in terms of the map ψ; to do so, we use the terminology of ordered topological spaces (we refer the reader to [Davis 1954]). Given a \mathbb{Q}-vector space V and a set $S \subseteq V$, the positive cone spanned by S is

$$
\operatorname{pos}(S):=\left\{\sum_{i=1}^{k} \lambda_{i} \boldsymbol{v}_{i} \mid \lambda_{i} \in \mathbb{Q}^{\geq 0}, \boldsymbol{v}_{i} \in S\right\} ;
$$

if $C=\operatorname{pos}(S)$, we say that C is positively spanned by S. Symmetrically, the negative cone is $\operatorname{neg}(S):=-\operatorname{pos}(S)$.
Proposition 4.2. Let $\Delta \subseteq \operatorname{Max}(D)$. Then, $\operatorname{Inv}(\Delta)=\psi^{-1}(\operatorname{neg}(\psi(\Delta)))$.
Proof. Let $Q \in \operatorname{Inv}(\Delta)$, and let $P_{1}, \ldots, P_{n} \in \Delta$ be such that $L:=Q \wedge P_{1} \wedge \cdots \wedge P_{n} \in$ $\mathcal{P}(D)$. Then, there is a principal ideal $I=a D$ with radical L; thus, there are positive integers $e, f_{1}, \ldots, f_{n}>0$ such that $I=Q^{e} P_{1}^{f_{1}} \cdots P_{n}^{f_{n}}$ (this holds also if $Q=P_{i}$ for some i). Since I is principal, $\psi(I)=\mathbf{0}$; hence,

$$
\mathbf{0}=\psi(I)=\psi\left(Q^{e} P_{1}^{f_{1}} \cdots P_{n}^{f_{n}}\right)=e \psi(Q)+\sum_{i=1}^{n} f_{i} \psi\left(P_{i}\right) .
$$

Solving in $\psi(Q)$, we see that $\psi(Q)=\sum_{i}-\frac{f_{i}}{e} \psi\left(P_{i}\right) \in \operatorname{neg}(\psi(\Delta))$, as claimed.
Conversely, suppose that $\psi(Q) \in \operatorname{neg}(\psi(\Delta))$. Then, either $\psi(Q)=\mathbf{0}$ (in which case $Q \in \operatorname{Inv}(\Delta)$ by taking no $P \in \Delta$ in the definition) or we can find $P_{1}, \ldots, P_{n} \in \Delta$ and negative rational numbers q_{1}, \ldots, q_{n} such that $\psi(Q)=\sum_{i} q_{i} \psi\left(P_{i}\right)$. By multiplying for the minimum common multiple of the denominators of the q_{i}, we obtain a relation $e \psi(Q)+\sum_{i} f_{i} \psi\left(P_{i}\right)=\mathbf{0}$, with $e, f_{i} \in \mathbb{N}^{+}$. If $I:=Q^{e} P_{1}^{f_{1}} \cdots P_{n}^{f_{n}}$, it follows that $\pi(I)$ is torsion in the class group, i.e., there is an $n>0$ such that I^{n} is principal; thus $\operatorname{rad}\left(I^{n}\right)=\operatorname{rad}(I)=Q \wedge P_{1} \wedge \cdots \wedge P_{n} \in \mathcal{P}(D)$, as claimed.
Corollary 4.3. Let $\Delta \subseteq \operatorname{Max}(D)$. Then, $\operatorname{Inv}(\Delta)=\operatorname{Max}(D)$ if and only if $\psi(\Delta)$ positively spans $\mathrm{Cl}(D) \otimes \mathbb{Q}$.

Proof. Suppose $\operatorname{Inv}(\Delta)=\operatorname{Max}(D)$, and let $\boldsymbol{q} \in \operatorname{Cl}(D) \otimes \mathbb{Q}$. Since the image \mathcal{C} of ψ generates $\mathrm{Cl}(D) \otimes \mathbb{Q}$ as a \mathbb{Q}-vector space and is a subgroup, there is a $d \in \mathbb{N}^{+}$such that $d \boldsymbol{q} \in \mathcal{C}$. Hence, $d \boldsymbol{q}=\psi(I)$ for some $I \in \mathcal{I}(D)$; factorize I as $P_{1}^{e_{1}} \cdots P_{n}^{e_{n}}$, with $P_{i} \in \operatorname{Max}(D)$ and $e_{i}>0$. By Proposition 4.2, we have

$$
\psi(I)=\sum_{i} e_{i} \psi\left(P_{i}\right) \in \sum_{i} e_{i} \operatorname{neg}(\psi(\Delta))=\operatorname{neg}(\psi(\Delta))
$$

and thus also $\boldsymbol{q}=\frac{1}{d} \psi(I) \in \operatorname{neg}(\psi(\Delta))$. Hence, $\psi(\Delta)$ negatively spans $\mathrm{Cl}(D) \otimes \mathbb{Q}$, and thus it also positively spans $\mathrm{Cl}(D) \otimes \mathbb{Q}$.

Conversely, suppose $\psi(\Delta)$ positively spans $\mathrm{Cl}(D) \otimes \mathbb{Q}$; thus, it also negatively spans $\operatorname{Cl}(D) \otimes \mathbb{Q}$. Let $Q \in \operatorname{Max}(D)$: then, $\psi(Q) \in \operatorname{neg}(\psi(\Delta))$, so that $Q \in \operatorname{Inv}(\Delta)$ by Proposition 4.2. $\operatorname{Hence}, \operatorname{Inv}(\Delta)=\operatorname{Max}(D)$.

We can now characterize when the rank of $\mathrm{Cl}(D)$ is finite.
Proposition 4.4. Let D be a Dedekind domain. Then, $\operatorname{rk~} \mathrm{Cl}(D)<\infty$ if and only if there is a finite set $\Delta \subseteq \operatorname{Max}(D)$ such that $\operatorname{Inv}(\Delta)=\operatorname{Max}(D)$.

Proof. Suppose first that $\operatorname{rk} \operatorname{Cl}(D)=n<\infty$. Then, $\operatorname{Inv}(\operatorname{Max}(D))=\operatorname{Max}(D)$, and thus $\psi(\operatorname{Max}(D))$ positively spans $\mathrm{Cl}(D) \otimes \mathbb{Q}$, by Corollary 4.3. Let $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right\}$ be a basis of $\mathrm{Cl}(D) \otimes \mathbb{Q}$: then each \boldsymbol{e}_{i} belongs to the positive cone spanned by a finite subset Λ_{i} of $\psi(\operatorname{Max}(D))$. Thus, the union Λ of the Λ_{i} is a finite set positively spanning $\mathrm{Cl}(D) \otimes \mathbb{Q}$, so the corresponding subset Δ of $\operatorname{Max}(D)$ is finite and $\operatorname{Inv}(\Delta)=\operatorname{Max}(D)$ by Corollary 4.3.

Conversely, suppose there is a finite set $\Delta=\left\{P_{1}, \ldots, P_{k}\right\} \subseteq \operatorname{Max}(D)$ such that $\operatorname{Inv}(\Delta)=\operatorname{Max}(D)$. For every $Q \in \operatorname{Max}(D)$, there are i_{1}, \ldots, i_{r} such that $Q \wedge P_{i_{1}} \wedge \cdots \wedge P_{i_{r}} \in \mathcal{P}(D)$; as in the proof of Proposition 4.2, it follows that there are $e, f_{1}, \ldots, f_{r}>0$ such that $Q^{e} P_{i_{1}}^{f_{1}} \cdots P_{i_{r}}^{f_{r}}$ is principal. Thus, $\pi(Q) \otimes 1$ belongs to the \mathbb{Q}-vector subspace of $\mathrm{Cl}(D) \otimes \mathbb{Q}$ generated by $\pi\left(P_{i_{1}}\right) \otimes 1, \ldots, \pi\left(P_{i_{r}}\right) \otimes 1$ (where $\pi: \mathcal{I}(D) \rightarrow \mathrm{Cl}(D)$ is the quotient map, as above). Since Q was arbitrary, the set $\left\{\pi\left(P_{1}\right) \otimes 1, \ldots, \pi\left(P_{k}\right) \otimes 1\right\}$ is a basis of $\mathrm{Cl}(D) \otimes \mathbb{Q}$. In particular, we have $\operatorname{rk} \mathrm{Cl}(D)=\operatorname{dim}_{\mathbb{Q}} \mathrm{Cl}(D) \otimes \mathbb{Q} \leq k<\infty$.

We will also need a criterion to understand when $\operatorname{Inv}(\Delta)$ corresponds to a linear subspace.

Proposition 4.5. Let $\Delta \subseteq \operatorname{Max}(D)$. Then, $\operatorname{neg}(\psi(\Delta))$ is a linear subspace of $\mathrm{Cl}(D) \otimes \mathbb{Q}$ if and only if $\Delta \subseteq \operatorname{Inv}(\Delta)$.
Proof. Suppose $\operatorname{neg}(\psi(\Delta))$ is a linear subspace, and let $Q \in \Delta$. Then, there are $P_{i} \in \Delta, \lambda_{i} \in \mathbb{Q}^{-}$such that $\psi(Q)=\sum_{i} \lambda_{i} \psi\left(P_{i}\right)$; multiplying by the minimum common multiple of the denominators we get an equality $e \psi(Q)+\sum_{i} f_{i} \psi\left(P_{i}\right)=\mathbf{0}$, where $e, f_{i} \in \mathbb{N}^{+}$. Let $I:=Q^{e} P_{1}^{f_{1}} \cdots P_{n}^{f_{n}}$: then, $\psi(I)=\mathbf{0}$, so that $\pi(I)$ is torsion in $\mathrm{Cl}(D)$, i.e., I^{n} is principal for some n. Thus, $Q \wedge P_{1} \wedge \cdots \wedge P_{n} \in \mathcal{P}(D)$, and $Q \in \operatorname{Inv}(\Delta)$.

Conversely, suppose $\Delta \subseteq \operatorname{Inv}(\Delta)$, and let \boldsymbol{q} be an element of the linear subspace generated by $\psi(\Delta)$. Then, there are $P_{i}, Q_{j} \in \Delta, \theta_{i} \in \mathbb{Q}^{+}$and $\mu_{j} \in \mathbb{Q}^{-}$such that

$$
\boldsymbol{q}=\sum_{i} \theta_{i} \psi\left(P_{i}\right)+\sum_{i} \mu_{j} \psi\left(Q_{j}\right) .
$$

By construction, each $\theta_{i} \psi\left(P_{i}\right)$ belongs to $\operatorname{pos}(\psi(\Delta))$. Furthermore, each $\psi\left(Q_{j}\right)$ is in neg $(\psi(\Delta))$ by $\operatorname{Proposition~4.2,~and~thus~} \mu_{j} \psi\left(Q_{j}\right) \in \operatorname{pos}(\psi(\Delta))$ for every j. Therefore, $\boldsymbol{q} \in \operatorname{pos}(\psi(\Delta))$, so the positive cone of $\psi(\Delta)$ is a linear subspace and $\operatorname{neg}(\psi(\Delta))=\operatorname{pos}(\psi(\Delta))$ is a subspace too.

Proposition 4.4 can be interpreted by saying that $\mathrm{rk} \mathrm{Cl}(D)$ is finite if and only if $\operatorname{Max}(D)$ is "negatively generated" by a finite set. In the case of finite rank, we need a way to link the dimension of $\mathrm{Cl}(\mathrm{D}) \otimes \mathbb{Q}$ with the cardinality of the sets spanning it as a positive cone; that is, we need to consider a notion analogue to the basis of a vector space.

Since we need only to consider the case of finite rank, from now on we suppose that $n:=\operatorname{rk~} \mathrm{Cl}(D)<\infty$ and we identify $\mathrm{Cl}(D) \otimes \mathbb{Q}$ with \mathbb{Q}^{n}.
Definition 4.6. A set $X \subseteq \mathbb{Q}^{n}$ is positive basis of \mathbb{Q}^{n} if $\operatorname{pos}(X)=\mathbb{Q}^{n}$ and if $\operatorname{pos}(X \backslash\{x\}) \neq \mathbb{Q}^{n}$ for every $x \in X$.

Definition 4.7. A subset $\Delta \subseteq \operatorname{Max}(D)$ is an inverse basis of $\operatorname{Max}(D)$ if $\operatorname{Inv}(\Delta)=$ $\operatorname{Max}(D)$ and $\operatorname{Inv}\left(\Delta^{\prime}\right) \neq \operatorname{Max}(D)$ for every $\Delta^{\prime} \subsetneq \Delta$.

These two notions are naturally connected.
Proposition 4.8. Let $\Delta \subseteq \operatorname{Max}(D)$. Then, Δ is an inverse basis of $\operatorname{Max}(D)$ if and only if $\psi(\Delta)$ is a positive basis of \mathbb{Q}^{n}.
Proof. If Δ is an inverse basis, then $\psi(\Delta)$ positively spans \mathbb{Q}^{n} by Corollary 4.3, while $\psi\left(\Delta^{\prime}\right)$ does not for every $\Delta^{\prime} \subsetneq \Delta$ (again by the corollary). Hence, $\psi(\Delta)$ is a positive basis. The converse follows in the same way.

Given a positive basis X of \mathbb{Q}^{n}, we call a partition $\left\{X_{1}, \ldots, X_{s}\right\}$ of X a weak Reay partition if, for every j, the positive cone of $X_{1} \cup \cdots \cup X_{i}$ is a linear subspace of \mathbb{Q}^{n}. The following is a variant of [Reay 1965, Theorem 2]:
Proposition 4.9. Let X be a positive basis of \mathbb{Q}^{n}. Then:
(a) every weak Reay partition of X has cardinality at most $|X|-n$;
(b) there is a weak Reay partition of X of cardinality $|X|-n$.

Proof. Let $\left\{X_{1}, \ldots, X_{s}\right\}$ be a weak Reay partition, and let V_{i} be the linear space spanned by $X_{1}, \ldots, X_{i}\left(\right.$ with $\left.V_{0}:=(0)\right)$. We claim that $\operatorname{dim} V_{i}-\operatorname{dim} V_{i-1} \leq\left|X_{i}\right|-1$. Indeed, let $X_{i}:=\left\{z_{1}, \ldots, z_{t}\right\}$: then, $-z_{t}$ belongs to the positive cone generated by V_{i-1} and X_{i}, and thus we can write $-z_{t}=y+\sum_{j} \lambda_{j} z_{j}$ for some $y \in V_{i-1}$ and $\lambda_{j} \geq 0$. It follows that $-\left(1+\lambda_{t}\right) z_{t}=y+\lambda_{1} z_{1}+\cdots+\lambda_{t-1} z_{t-1}$, and since $\lambda_{t} \neq-1$
we have that z_{t} is linearly dependent from $X_{1} \cup \cdots \cup X_{i-1} \cup\left\{z_{1}, \ldots, z_{t-1}\right\}$. Hence, $\operatorname{dim} V_{i} \leq \operatorname{dim} V_{i-1}+t-1$, as claimed.

Therefore,

$$
\begin{aligned}
n=\operatorname{dim} \mathbb{Q}^{n} & =\left(\operatorname{dim} V_{s}-\operatorname{dim} V_{s-1}\right)+\cdots+\operatorname{dim} V_{1} \\
& \leq\left(\left|X_{s}\right|-1\right)+\cdots+\left(\left|X_{1}\right|-1\right)=|X|-s,
\end{aligned}
$$

and thus $s \leq|X|-n$, and (a) is proved. (b) is a direct consequence of [Reay 1965, Theorem 2].

Similarly, if $\Delta \subseteq \operatorname{Max}(D)$ is an inverse basis of $\operatorname{Max}(D)$, we call a partition $\left\{\Delta_{1}, \ldots, \Delta_{s}\right\}$ a weak Reay partition if $\Delta_{1} \cup \cdots \cup \Delta_{i} \subseteq \operatorname{Inv}\left(\Delta_{1} \cup \cdots \cup \Delta_{i}\right)$ for every i.

Proposition 4.10. Let $\Delta \subseteq \operatorname{Max}(D)$ be an inverse basis of $\operatorname{Max}(D)$, and let $\left\{\Delta_{1}, \ldots, \Delta_{s}\right\}$ be a partition of Δ. Then, $\left\{\Delta_{1}, \ldots, \Delta_{s}\right\}$ is a weak Reay partition of Δ if and only if $\left\{\psi\left(\Delta_{1}\right), \ldots, \psi\left(\Delta_{s}\right)\right\}$ is a weak Reay partition of $\psi(\Delta)$.

Proof. By Proposition 4.5, $\Delta_{1} \cup \cdots \cup \Delta_{i} \subseteq \operatorname{Inv}\left(\Delta_{1} \cup \cdots \cup \Delta_{i}\right)$ if and only if the positive cone of $\psi\left(\Delta_{1} \cup \cdots \cup \Delta_{i}\right)=\psi\left(\Delta_{1}\right) \cup \cdots \cup \psi\left(\Delta_{i}\right)$ is a linear subspace of \mathbb{Q}^{n}. The claim now follows from the definition.

Theorem 4.11. Let D and D^{\prime} be Dedekind domains such that $\mathcal{P}(D)$ and $\mathcal{P}\left(D^{\prime}\right)$ are isomorphic. Then, $\operatorname{rkCl}(D)=\operatorname{rkCl}\left(D^{\prime}\right)$.

Proof. Let $\phi: \mathcal{P}(D) \rightarrow \mathcal{P}\left(D^{\prime}\right)$ be an isomorphism; by Theorem 3.6, we can find an isomorphism $\Phi: \operatorname{Rad}(D) \rightarrow \operatorname{Rad}\left(D^{\prime}\right)$ sending $\mathcal{P}(D)$ to $\mathcal{P}\left(D^{\prime}\right)$. In particular, $\Phi(\operatorname{Max}(D))=\operatorname{Max}\left(D^{\prime}\right)$.

Since $\operatorname{Inv}(\Delta)$ is defined only through $\mathcal{P}(D)$ and $\operatorname{Rad}(D), \Phi$ respects the inverse construction, in the sense that $\Phi(\operatorname{Inv}(\Delta))=\operatorname{Inv}(\Phi(\Delta))$ for every $\Delta \subseteq$ $\operatorname{Max}(D)$. In particular, $\operatorname{Inv}(\Delta)=\operatorname{Max}(D)$ if and only if $\operatorname{Inv}(\Phi(\Delta))=\operatorname{Max}\left(D^{\prime}\right)$; by Proposition 4.4, it follows that $\mathrm{rk} \mathrm{Cl}(D)=\infty$ if and only if $\mathrm{rk} \mathrm{Cl}\left(D^{\prime}\right)=\infty$.

Suppose now that the two ranks are finite, say equal to n and n^{\prime}, respectively. Let $\Delta \subseteq \operatorname{Max}(D)$ be an inverse basis of $\operatorname{Max}(D)$. Let $\left\{\Delta_{1}, \ldots, \Delta_{s}\right\}$ be a weak Reay partition of Δ of maximum cardinality; by Propositions 4.9 and $4.10, s=|\Delta|-n$.

Every weak Reay partition of Δ gets mapped by Φ into a weak Reay partition of $\Delta^{\prime}:=\psi(\Delta)$, and conversely; therefore, the maximum cardinality of the weak Reay partitions of Δ^{\prime} is again $|\Delta|-n$. However, applying Propositions 4.9 and 4.10 to Δ^{\prime}, we see that this quantity is $\left|\Delta^{\prime}\right|-n^{\prime}$; since $|\Delta|=\left|\Delta^{\prime}\right|$, we get $n=n^{\prime}$, as claimed.

Corollary 4.12. Let D, D^{\prime} be Dedekind domains, and let $T(D)$ (respectively, $T\left(D^{\prime}\right)$) be the torsion subgroup of $\mathrm{Cl}(D)$ (respectively, $\left.\mathrm{Cl}\left(D^{\prime}\right)\right)$. If $\mathcal{P}(D)$ and $\mathcal{P}\left(D^{\prime}\right)$ are isomorphic and if $\mathrm{Cl}(D)$ and $\mathrm{Cl}\left(D^{\prime}\right)$ are finitely generated, then $\mathrm{Cl}(D) / T(D) \simeq$ $\mathrm{Cl}\left(D^{\prime}\right) / T\left(D^{\prime}\right)$.

Proof. Since $\mathrm{Cl}(D)$ is finitely generated, it has finite rank n and $\mathrm{Cl}(D) / T(D) \simeq \mathbb{Z}^{n}$; analogously, $\mathrm{Cl}\left(D^{\prime}\right) / T\left(D^{\prime}\right) \simeq \mathbb{Z}^{m}$, where $m:=\operatorname{rk~} \mathrm{Cl}\left(D^{\prime}\right)$. By Theorem 4.11, $n=m$; and, in particular, $\mathrm{Cl}(D) / T(D) \simeq \mathrm{Cl}\left(D^{\prime}\right) / T\left(D^{\prime}\right)$.

5. Counterexamples

In this section, we collect some examples showing that Theorem 4.11 is, in many ways, the best possible.
Example 5.1. It is not possible to improve the conclusion of Theorem 4.11 from "rk $\mathrm{Cl}(D)=\operatorname{rkCl}\left(D^{\prime}\right)$ " to " $\mathrm{Cl}(D) \simeq \mathrm{Cl}\left(D^{\prime}\right)$ ". Indeed, if $\mathrm{rk} \mathrm{Cl}(D)=0$ (i.e., if $\mathrm{Cl}(D)$ is torsion) then $\mathcal{P}(D)=\operatorname{Rad}(D)$; and thus, whenever $\operatorname{rkCl}(D)=\operatorname{rkCl}\left(D^{\prime}\right)=0$, the posets $\mathcal{P}(D)$ and $\mathcal{P}\left(D^{\prime}\right)$ are isomorphic.

For the next examples, we need to use a construction of Claborn [1968].
Let $G:=\sum_{i} x_{i} \mathbb{Z}$ be the free abelian group on the countable set $\left\{x_{i}\right\}_{i \in \mathbb{N}}$. Let I be a subset of G satisfying the following two properties:

- All coefficients of the elements of I (with respect to the x_{i}) are nonnegative.
- For every finite set $x_{i_{1}}, \ldots, x_{i_{k}}$ and every $n_{1}, \ldots, n_{k} \in \mathbb{N}$, there is an element y of I such that the component of y relative to $x_{i_{t}}$ is n_{t}.

Then, [Claborn 1968, Theorem 2.1] says that there is an integral domain D with countably many maximal ideals $\left\{P_{i}\right\}_{i \in \mathbb{N}}$ such that the map sending the ideal $P_{1}^{n_{1}} \cdots P_{k}^{n_{k}}$ to $n_{1} x_{1}+\cdots+n_{k} x_{k}$ sends principal ideals to elements of the subgroup H generated by I. In particular, $\mathrm{Cl}(D) \simeq G / H$.
Example 5.2. Corollary 4.12 does not hold without the hypothesis that $\mathrm{Cl}(\mathrm{D})$ and $\mathrm{Cl}\left(D^{\prime}\right)$ are finitely generated.

For example, let H_{1} be the subgroup of G generated by $x_{n}+x_{n+1}$, as n ranges in \mathbb{N}, and I_{1} be the subset of the elements of H_{1} having all coefficients nonnegative. Then, I_{1} satisfies the above conditions. The corresponding domain D_{1} has a class group isomorphic to \mathbb{Z}, and its prime ideals are concentrated in two classes: if n is even, P_{n} is equivalent to P_{0}; if n is odd, P_{n} is equivalent to P_{1}; furthermore, $P_{0} P_{1}$ is principal. (This is exactly Example 3-2 of [Claborn 1968].) In particular, $\mathcal{P}\left(D_{1}\right)$ is equal to the members of $\operatorname{Rad}\left(D_{1}\right)$ that are contained both in some P_{n} with n even and in some P_{m} with m odd.

Let now H_{2} be the subgroup of G generated by $x_{n}+2 x_{n+1}$, as n ranges in \mathbb{N}, and let I_{2} be the subset of the elements of H_{2} having all coefficients nonnegative. Then, I_{2} also satisfies the condition above. Let D_{2} be the corresponding Dedekind domain. Then, $\mathrm{Cl}\left(D_{2}\right)$ is isomorphic to the quotient G / H_{2}, which is isomorphic to the subgroup $\mathbb{Z}\left(2^{\infty}\right)$ of \mathbb{Q} generated by $1, \frac{1}{2}, \frac{1}{4}, \ldots, \frac{1}{2^{n}}, \ldots$ (that is, to the Prüfer 2 -group): this can be seen by noting that the map

$$
G \rightarrow \mathbb{Q}, \quad P_{n} \mapsto(-1)^{n} \frac{1}{2^{n}}
$$

is a group homomorphism with kernel H_{2} and range $\mathbb{Z}\left(2^{\infty}\right)$. In this isomorphism, the prime ideals Q_{n}, with n even, are mapped to positive elements of $\mathbb{Z}\left(2^{\infty}\right)$, while the prime ideals Q_{m}, with m odd, are mapped to the negative elements. Hence, $\mathcal{P}\left(D_{2}\right)$ is equal to the member of $\operatorname{Rad}\left(D_{2}\right)$ that are contained in both an "even" and an "odd" prime.

Therefore, the map $\operatorname{Rad}\left(D_{1}\right) \rightarrow \operatorname{Rad}\left(D_{2}\right)$ sending $P_{i_{1}} \cap \cdots \cap P_{i_{k}}$ to $Q_{i_{1}} \cap \cdots \cap Q_{i_{k}}$ is an isomorphism sending $\mathcal{P}\left(D_{1}\right)$ to $\mathcal{P}\left(D_{2}\right)$. However, the class groups of D_{1} and D_{2} are both torsion-free (i.e., $T\left(D_{1}\right)=T\left(D_{2}\right)=0$), but not isomorphic.

Example 5.3. The converse of Theorem 4.11 does not hold; that is, it is possible that $\mathrm{rk} \mathrm{Cl}(D)=\operatorname{rk~} \mathrm{Cl}\left(D^{\prime}\right)$ even if $\mathcal{P}(D)$ and $\mathcal{P}\left(D^{\prime}\right)$ are not isomorphic.

Take H_{1} and D_{1} as in the previous example.
Take H_{3} to be the subgroup of G generated by x_{0} and by $x_{n}+x_{n+1}$ for $n>0$, and let I_{3} be the subset of the elements of H_{3} having all coefficients nonnegative. Then, I_{3} satisfies Claborn's conditions, and the corresponding domain D_{3} satisfies $\mathrm{Cl}\left(D_{3}\right) \simeq \mathbb{Z}$ (in particular, $\mathrm{rk} \mathrm{Cl}\left(D_{3}\right)=1$), so $\mathrm{Cl}\left(D_{1}\right)$ and $\mathrm{Cl}\left(D_{3}\right)$ are isomorphic.

However, D_{3} has a principal maximal ideal (the one corresponding to x_{0}), while D_{1} does not. Therefore, there is no isomorphism $\operatorname{Rad}\left(D_{1}\right) \rightarrow \operatorname{Rad}\left(D_{3}\right)$ sending $\mathcal{P}\left(D_{1}\right)$ to $\mathcal{P}\left(D_{3}\right)$; by Theorem 3.6, it follows that $\mathcal{P}\left(D_{1}\right)$ and $\mathcal{P}\left(D_{3}\right)$ cannot be isomorphic.

References

[Atiyah and Macdonald 1969] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, MA, 1969. MR Zbl
[Bourbaki 1989] N. Bourbaki, Commutative algebra. Chapters 1-7, Elements of Mathematics (Berlin), Springer, Berlin, 1989. MR Zbl
[Claborn 1968] L. Claborn, "Specified relations in the ideal group", Michigan Math. J. 15 (1968), 249-255. MR Zbl
[Davis 1954] C. Davis, "Theory of positive linear dependence", Amer. J. Math. 76 (1954), 733-746. MR
[Geroldinger and Halter-Koch 2006] A. Geroldinger and F. Halter-Koch, Non-unique factorizations, Pure and Applied Mathematics 278, Chapman \& Hall/CRC, Boca Raton, FL, 2006. MR Zbl
[Gilmer and Ohm 1964] R. Gilmer and J. Ohm, "Integral domains with quotient overrings", Math. Ann. 153 (1964), 97-103. MR Zbl
[Neukirch 1999] J. Neukirch, Algebraic number theory, Grundl. Math. Wissen. 322, Springer, Berlin, 1999. MR Zbl
[Reay 1965] J. R. Reay, "A new proof of the Bonice-Klee theorem", Proc. Amer. Math. Soc. 16 (1965), 585-587. MR Zbl
[Spirito 2020] D. Spirito, "The Golomb topology on a Dedekind domain and the group of units of its quotients", Topology Appl. 273 (2020), art. id. 107101, 20. MR Zbl

Received November 26, 2020. Revised April 30, 2021.

Dario Spirito
Dipartimento di Matematica
Università di Padova
Padova
ITALY
spirito@math.unipd.it
and
Dipartimento di Matematica e Fisica
Università degli Studi "Roma Tre"
RomA
ITALY
spirito@mat.uniroma3.it

PACIFIC JOURNAL OF MATHEMATICS

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)

msp.org/pjm

Matthias Aschenbrenner
Department of Mathematics University of California
Los Angeles, CA 90095-1555
matthias@math.ucla.edu
Daryl Cooper
Department of Mathematics University of California
Santa Barbara, CA 93106-3080
cooper@math.ucsb.edu
Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
liu@math.ucla.edu

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics University of California
Los Angeles, CA 90095-1555
blasius@math.ucla.edu
Paul Balmer
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
balmer@math.ucla.edu
Wee Teck Gan
Mathematics Department
National University of Singapore
Singapore 119076
matgwt@nus.edu.sg
Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong
jhlu@maths.hku.hk
Paul Yang
Department of Mathematics
Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Vyjayanthi Chari
Department of Mathematics University of California
Riverside, CA 92521-0135
chari@math.ucr.edu
Robert Lipshitz
Department of Mathematics
University of Oregon
Eugene, OR 97403
lipshitz@uoregon.edu
Sorin Popa
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
popa@math.ucla.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

[^1]PJM peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

- mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/
© 2021 Mathematical Sciences Publishers

PACIFIC JOURNAL OF MATHEMATICS

Volume 314 No. $1 \quad$ September 2021
Recovering affine curves over finite fields from L-functions 1
Jeremy Booher and José Felipe Voloch
On the global weak solution problem of semilinear generalized 29 Tricomi equations, II
Daoyin He, Ingo Witt and Huicheng Yin
The L_{∞}-algebra of a symplectic manifold 81
Bas Janssens, Leonid Ryvkin and Cornelia Vizman
Vanishing conditions on Weyl tensor for Einstein-type manifolds 99
Benedito Leandro
Uniformization theorems: Between Yamabe and Paneitz 115Cheikh Birahim Ndiaye, Yannick Sire and Liming Sun
Outer automorphism groups of graph products: subgroups and 161
quotientsAndrew Sale and Tim Susse
A quantitative multiparameter mean ergodic theorem 209
ANDREI SIPOS,
Radicals of principal ideals and the class group of a Dedekind domain 219
Dario Spirito
Moduli of Legendrian foliations and quadratic differentials in the 233
Heisenberg groupRobin Timsit
Correction to the article Local estimates on two linear parabolic 253equations with singular coefficientsQi S. Zhang

[^0]: MSC2020: 13C20, 13F05.
 Keywords: Dedekind domain, class group, radical ideals, principal ideals.

[^1]: See inside back cover or msp.org/pjm for submission instructions.
 The subscription price for 2021 is US $\$ 520 / y e a r$ for the electronic version, and $\$ 705 /$ year for print and electronic.
 Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

 The Pacific Journal of Mathematics (ISSN 1945-5844 electronic, 0030-8730 printed) at the University of California, c/o Department of Mathematics, 798 Evans Hall \#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

