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ABSTRACT
We study localization properties and the prime spectrum of the integer-
valued polynomial ring IntPQ

ðPZÞ, where PZ (respectively PQ) is the alge-
bra of split-quaternion over Z (respectively over Q).
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Introduction

In [14] N. Werner studied the ring of integer-valued polynomials in a noncommutative setting,
by considering quaternion algebras. Precisely, he considered the algebras HZ and HQ (respectively
over Z and over Q) generated by the unit elements 1, i, j, k, linked by the relations i2 ¼ j2 ¼
k2 ¼ �1, i j ¼ k ¼ � j i, j k ¼ i ¼ � k j and k i ¼ j ¼ � i k, and considered the set
IntHQ

ðHZÞ of all polynomials f 2 HQ½x� such that f ðHZÞ � HZ: After proving that IntHQ
ðHZÞ is

indeed a noncommutative ring (which strictly contains HQ½x�), he investigated the ideal structure
of this ring, describing some prime ideals above the zero and the maximal ideals of HZ:

Moving from these ideas, in [3] A. Cigliola, K.A. Loper and N. Werner focused on similar
problems in a different setting: instead of HZ they considered the set of integer split-quaternions
PZ, i.e. the Z-algebra generated by the unit elements 1, i, j, k with the relations � i2 ¼ j2 ¼
k2 ¼ 1 and i j k ¼ 1 (see Definition 1.1).

In this paper, we continue the study of the ring PZ (Section 1) and of the ring IntPQ
ðPZÞ of

integer-valued polynomials over PZ (Section 2). We study some denominator sets of PZ and
IntPQ

ðPZÞ that are not subsets of Z (in particular, they are not central) and their ring of fractions.
Thus, we partially answer to one of the open questions posed in [3, §5] which asks whether it is
possible to find and to localize IntPQ

ðPZÞ with respect to noncentral sets. We then study the ring
IntQðPZÞ of the polynomials in Q½x� that are integer valued over PZ: There is a strict connection
between the prime spectrum of this ring and the prime spectrum of IntPQ

ðPZÞ: This allows to
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calculate the Krull dimension of IntPQ
ðPZðpÞ Þ, for an odd prime integer p, starting from the

dimension of IntQðPZÞ and thus to get a partial but interesting information about the Krull
dimension of IntPQ

ðPZÞ: Finally, in Section 4, we study in more detail the ideal pIntQðPZÞ and
show that it is not prime. In this last Section we will be able to construct explicitly some polyno-
mials of IntQðPZðpÞ Þ:

Throughout the paper, all the rings we consider are unitary but not necessarily commutative.

1. Localizations of PZ

We recall some definitions and basic properties.

Definition 1.1. Let R be a commutative ring. We denote by PR the R-algebra generated by the
four unit elements 1, i, j and k with the relations

� i2 ¼ j2 ¼ k2 ¼ i j k ¼ 1:

Formally PR :¼ fq ¼ aþ b iþ c jþ d k j a, b, c, d 2 Rg:
We call PR the ring of split-quaternions over R.
Let q ¼ aþ b iþ c jþ d k 2 PR, then:

(a) a, b, c, and d are the coefficients of q, and a is the real part of q;
(b) the bar conjugate of q is �q :¼ a� b i� c j� d k;
(c) the norm of q is NðqÞ :¼ q�q ¼ a2 þ b2 � c2 � d2;
(d) the trace of q is TðqÞ ¼ qþ �q ¼ 2a;
(e) the minimal polynomial of q is ([3, Definition 2.4])

mqðxÞ :¼ x� q if q 2 R
x2 � TðqÞxþ NðqÞ if q 2 PR n R:

�

where mqðxÞ is minimal in the way that mqðqÞ ¼ 0 and that mqðxÞ is the monic polynomial of
least degree having q as a root.

In this section, we study some localizations of PZ: We start with the description of its prime
and maximal ideals. Recall that an ideal P of a (not necessarily commutative) ring R is prime if,
given a, b 2 R such that aPb � P, then a 2 P or b 2 P:

Theorem 1.2. [3, Theorem 2.11]. The prime ideals of PZ are:

(i) (0);
(ii) pPZ where p is an odd prime of Z;
(iii) M ¼ ð1þ i; 1þ jÞ:

Moreover, the primes pPZ and M are maximal, and M is the only prime ideal containing 2.

Lemma 1.3. Let q 2 PZ such that 2 jNðqÞ. Then q 2 M . In particular M contains all the zero-
divisors of PZ:

Proof. Let q ¼ aþ b iþ c jþ d k be such that NðqÞ ¼ a2 þ b2 � c2 � d2 ¼ 2m, for some m 2 Z:
By hypothesis, q must have zero, two or four even coefficients. In the case that all coefficients are
even, then trivially q 2 ð2Þ � M : If q has exactly two even coefficients, then q is congruent mod-
ulo 2PZ to the sum of two of 1, i, j and k, and all of them are elements of M : Finally, if
all coefficients of q are odd, then q � 1þ iþ jþ kðmod 2PZÞ, and so q 2 M since
1þ iþ jþ k ¼ ð1þ iÞð1þ jÞ 2 M : w
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Definition 1.4. Let R be a ring and S a multiplicative subset in R. We say that S is a right denom-
inator set if:

(i) for any a 2 R and s 2 S, aS \ sR 6¼ ; (this condition is known as right Ore condition and S
is called a right Ore set);

(ii) for a 2 R, if s0a ¼ 0 for some s0 2 S, then as¼ 0 for some s 2 S (we say that S is
right reversible).

Remark 1.5.
(a) We can define left denominator sets in a completely symmetrical way.
(b) Condition (ii) (reversibility) is automatically satisfied when S does not contain zero-divisors.
(c) It is easily seen that the multiplicative subsets contained in the center of R are always

denominator subsets.

By Lam [9, Theorem 10.6], if R is a ring and S a multiplicative subset of R, then R has a right
ring of fractions with respect to S (namely, the ring RS�1 :¼ fas�1 j a 2 R, s 2 Sg) if and only if
S is a right denominator set. Similarly we can construct the ring S�1R :¼ fs�1a j a 2 R, s 2 Sg if
and only if S is a left denominator set. If S is both a right and left denominator set, then RS�1 ’
S�1R by Lam [9, Corollary 10.14].

Lemma 1.6. Let R be a commutative ring and S a multiplicative subset of PR, closed under norm
(i.e., if s 2 S then NðsÞ 2 S). Then S verifies both the right and the left Ore condition.

Proof. Fix a 2 PR and s 2 S: Since NðsÞ 2 R is a central element, we have that aNðsÞ ¼ NðsÞa: It
follows that aNðsÞ ¼ sð�saÞ, so S is a right Ore set since aS \ sPR 6¼ ;: Analogously, ða�sÞs ¼ NðsÞa
so S is a left Ore set since Sa \ PRs 6¼ ;: w

By the previous lemma, if S ¼ RðRÞ is the set of all (right and left) regular elements of R, then S is
a denominator set and RS�1 is the total ring of fractions of R, which we denote byQðRÞ:

For commutative rings, the most important way of constructing localizations of a ring R is through
the sets R n P, where P is a prime ideal; however, if R is not commutative, the complement of a prime
ideal may not be multiplicatively closed. For example, if p ¼ 2kþ 1 is an odd prime number, then pPZ

is prime, but PZ n pPZ is not multiplicatively closed since ððkþ 1Þ þ k jÞððkþ 1Þ � k jÞ ¼ p 2 pPZ:
Following the notation of Goldie [6], we give the following definition:

Definition 1.7. Let be given a ring R and let Q be a proper prime ideal of R. We set:

C ðQÞ :¼ fx 2 R j xr 62 Q, 8r 62 Qg,
and

C 0ðQÞ :¼ fx 2 R j rx 62 Q,8r 62 Qg:

Proposition 1.8. Let R be a ring and let Q(R be a prime ideal of R. Then C ðQÞ is a multiplicatively
closed subset of R containing 1 but not 0, and C ðQÞ � R n Q. The same properties hold for C 0ðQÞ:

Proof. For each r 62 Q, we have that 1 � r ¼ r 62 Q and that 0 � r 2 Q: Then, by definition, 1 2
C ðQÞ and 0 62 C ðQÞ: Take now a, b 2 C ðQÞ and r 62 Q: Since b 2 C ðQÞ, then br 62 Q: Again,
since a 2 C ðQÞ, we have aðbrÞ 62 Q: Thus for all r 62 Q we have ðabÞr ¼ aðbrÞ 62 Q:

Finally, if x 2 C ðQÞ then, since 1 62 Q, we have x � 1 ¼ x 62 Q: Hence, C ðQÞ � R n Q: w
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Proposition 1.9. Let R be a ring and let Q(R be a prime ideal of R. Then C ðQÞ is the set of left
regular elements of R modulo Q and C 0ðQÞ is the set of right regular elements of R modulo Q:

Proof. Take x 2 R: Then x is a left zero-divisor modulo Q if and only if there is r 2 R=Q, r 6¼ 0,
such that xr¼ 0. This is equivalent to saying that there is an r 62 Q such that xr 2 Q: In other
words, x 62 C ðQÞ: Similarly for C 0ðQÞ: w

In particular, we have that C ð0Þ ¼ RlðRÞ is the set of the left regular elements of R, while
C 0ð0Þ ¼ RrðRÞ is the set of the right regular elements of R.

We now focus on some properties of the sets C ðQÞ associated to the prime ideals of PZ:

Proposition 1.10. Let Q be a prime ideal of PZ. Then:

(i) C ðQÞ is closed under bar conjugation;
(ii) C ðQÞ is closed under norm;
(iii) C ðQÞ ¼ fx 2 PZ jNðxÞ 62 Qg;
(iv) C ðQÞ does not contain any zero-divisor.

Proof. By Goodearl and Warfield [7, Proposition 1.6] PZ is a Noetherian ring. Thus, from [6,
Section 3], C ðQÞ ¼ C 0ðQÞ:

Consider first Q ¼ ð0Þ: Then C ð0Þ equals RðPZÞ, the set of all (two-sided) regular elements,
and so

C ðQÞ ¼ RðPZÞ ¼ fx 2 PZ jNðxÞ 6¼ 0g:
This proves the claim in the case Q ¼ ð0Þ:

Let now be Q ¼ pPZ, for an odd prime integer p. We notice that:

� C ðQÞðmod QÞ ¼ C ð�0Þ in PZ=Q ¼ PZp (apply Proposition 1.9);
� NðxÞðmod pÞ ¼ Nð�xÞ, for x 2 PZ and �x ¼ xðmod pPZÞ:

Using these equalities, points (i)-(ii)-(iii) reduce to the case Q ¼ ð0Þ, which has been already
proved. For p¼ 2, the same reasoning applies reducing modulo M :

For the point (iv), if p¼ 2 the claim follows from Lemma 1.3.
If p is an odd prime, then suppose that xr0 ¼ 0, for some x 2 C ðQÞ and 0 6¼ r0 2 PZ: If we write

r0 ¼ pmr, for some r 62 Q, we get xr ¼ 0 2 Q (since p is not a zero divisor from Lemma 1.3) which is
absurd. w

In particular, we observe that C ðpPZÞ ¼ fx 2 PZ j p-NðxÞg and C ðM Þ ¼ fx 2 PZ j 2-NðxÞg:
We will work with the following multiplicative subsets of PZ :

� the multiplicative subsets of Z;
� the sets C ð0Þ, C ðM Þ and C ðpPZÞ, for any odd prime integer p.

For a general noncommutative ring, given a prime ideal Q, C ðQÞ may not be a denominator
set: such an example is given, for instance, in [1, Example 2.3]. However we show that C ðQÞ is a
denominator sets in PZ and also in IntðPZÞ (Proposition 2.4), for each prime ideal Q of PZ:

Proposition 1.11. The sets Z n ð0Þ,Z n pZ, for p prime, and C ðQÞ, for Q prime ideal of PZ, are
(right and left) denominator sets of PZ:

Proof. Let S ¼ Z n ð0Þ or S ¼ Z n pZ, for a prime p. Then the statement easily follows from the
fact that S is contained in the center of PZ:
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If S ¼ C ðQÞ, then S does not contain zero-divisors (Proposition 1.10), so C ðQÞ is right and
left reversible. Finally, C ðQÞ is a right (left) Ore set by Lemma 1.6, since it is closed under bar
conjugation (Proposition 1.10). Thus C ðQÞ is a right and left denominator set of PZ: w

Proposition 1.12. Let S ¼ C ð0Þ or S ¼ Z n ð0Þ. Then
PZS

�1 ¼ S�1PZ ¼ PQ ¼ QðPZÞ,
which is the total ring of fractions of PZ:

Proof. By Proposition 1.11, S is a denominator set. So the ring PZS�1 exists and its elements are the
fractions rs�1, where r, s 2 PZ and NðsÞ 6¼ 0: Then rs�1 ¼ 1

NðsÞ r�s 2 PQ: Thus PZS�1 � PQ:
Conversely, given q 2 PQ, write q in the form p � a�1, where p 2 PZ and a is a common denominator
for the coefficients of q. Obviously, a 2 S and so pa�1 2 PZS�1, i.e., PZS�1 � PQ: Thus PZS�1 ¼ PQ:
Similarly, S�1PZ ¼ PQ: Finally PQ is the total ring of fractions of PZ because we localize with respect
to the set of regular elements of PZ: w

Similarly, if we localize PZ at S ¼ Z n pZ or S ¼ C ðQÞ, where Q ¼ pPZ, for a prime number p,
we get the algebra of split-quaternions with coefficients in ZðpÞ, the localization of Z at the ideal pZ
(as we see in the following Proposition). In the following, Zp will denote the field with p elements.

Proposition 1.13. Let p be a prime number and let S ¼ Z n pZ or S ¼ C ðQÞ, where Q is a prime
ideal of PZ such that Q \ Z ¼ pZ:

Then

PZS
�1 ¼ S�1PZ ¼ PZðpÞ :

Proof. We know that S is a denominator set of PZ by Proposition 1.11. So the ring PZS�1 exists.
Let S ¼ Z n pZ: It is easy to see that PZS�1 � PZðpÞ : For the reverse inclusion, notice that the

minimum common denominator of any element of ZðpÞ is an element of Z n pZ: So PZS�1 ¼
PZðpÞ : Similarly it can be proved that S�1PZ ¼ PZðpÞ :

Let S ¼ C ðQÞ: Since the norm of the elements of S is not divisible by p (Proposition 1.10), a
right fraction ps�1 2 PZS�1, for some p 2 PZ and s 2 S, can be seen as a rational split-quatern-
ion q ¼ 1

NðsÞ p�s ¼ aþ b iþ c jþ d k, where a, b, c, d 2 Q and their denominators are not divis-
ible by p. Thus PZS�1 � PZðpÞ : For the reverse inclusion let q 2 PZðpÞ : Taking a common
denominator, write q ¼ 1

n p, for some p 2 PZ and n 2 Z: Since the minimum common denomin-
ator of some elements of ZðpÞ is an element of Z n pZ, then n is not divisible by p. Thus neither
n2 ¼ NðnÞ is divisible by p. So n 2 S and PZS�1 ¼ PZðpÞ : In the same manner we can prove that
S�1PZ ¼ PZðpÞ : w

Imitating Proposition 1.12 we can give this general result.

Proposition 1.14. Let R be a commutative ring and let QðRÞ be its total ring of fractions. Then

QðPRÞ ¼ PQðRÞ:

Proof. Let S be the set of regular elements of R. Then, S is contained in the center of PR, and
thus it is a denominator set of PR; it is also easy to see that S�1PR ¼ PS�1R ¼ PQðRÞ (see the proof
of Propositions 1.12).

We claim that the elements of PQðRÞ are either invertible or zero-divisors. Take q 2 PQðRÞ: If
NðqÞ is regular, then it is invertible in QðRÞ, and thus 1

NðqÞ �q 2 PQðRÞ is the inverse of q.
Conversely, if NðqÞ is not regular, then there is z 2 R, z 6¼ 0, such that zNðqÞ ¼ 0: If zq 6¼ 0,
then also z�q ¼ zq 6¼ 0: So we have that:
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0 ¼ zNðqÞ ¼ z�qq ¼ ðz�qÞq;
hence, q is a zero-divisor.

Thus, PQðRÞ is a total ring of fractions, and so it is the total ring of fractions of PR: w

2. Integer-valued polynomials

The ring of integer-valued polynomials over PZ is

IntPQ
ðPZÞ ¼ ff ðxÞ 2 PQ x½ � j f ðPZÞ � PZg:

This set is actually a ring ([15, Theorem 1.2]), and in [3] the authors describe explicitly some
proper ideals of IntPQ

ðPZÞ: A similar construction can be done if, instead of PZ, we use PZðpÞ or
PQ; in the former case, Werner [15, Theorem 1.2] guarantees that IntPQ

ðPZðpÞ Þ is a ring, while in
the latter IntPQ

ðPQÞ ¼ PQ½x� is the whole ring of polynomials (and, in particular, is a ring).
For simplicity of notation, in this Section we will write IntðPZÞ instead of IntPQ

ðPZÞ:
A class of ideals of IntðPZÞ can be constructed in the following way: if q ¼ aþ biþ cjþ dk 2

PZ and I is a principal ideal of PZ generated by an element of Z, then

PI, q :¼ ff ðxÞ 2 IntðPZÞ j f ðzÞ 2 I 8z 2 CðqÞg,
is an ideal of IntðPZÞ, where CðqÞ ¼ fa6bi6cj6dkg ([3, Proposition 4.2]).

If P is a prime ideal of IntðPZÞ, then P \ PZ is a prime ideal of PZ; since we have a classifica-
tion of the prime ideals of PZ (Theorem 1.2), we can study the spectrum of IntðPZÞ according to
the restriction to PZ:

Proposition 2.1. The following hold.

(1) [3, Corollary 4.10] The prime ideals P of IntðPZÞ with P \ PZ ¼ ð0Þ are exactly those of the
form

P ¼ MðxÞ � PQ x½ � \ IntðPZÞ ¼: PMðxÞ,

where MðxÞ 2 Z½x� is an irreducible polynomial.
In particular, if mqðxÞ is the minimal polynomial of an element q 2 PZ then PmqðxÞ ¼ P0, q is
a prime ideal.

(2) [3, Theorem 4.16] Let q :¼ aþ b iþ c jþ d k 2 PZ n Z and let p be an odd prime. If
gcdðb, c, d, pÞ ¼ 1, then PpPZ , q is prime if and only if mqðxÞ is irreducible mod p, in which
case PpPZ , q is maximal.

(3) [3, Corollary 4.22] Let q ¼ aþ b iþ c jþ d k 2 PZ, and assume that either b � cðmod 2Þ
or b � dðmod 2Þ. Then,

Mq :¼ ff 2 IntðPZÞ j f ðqÞ 2 Mg
is a maximal ideal of IntðPZÞ:

Remark 2.2.
(1) While the first case of the proposition completely classifies the prime ideals above (0), the

other two merely give some examples of the prime ideals above pPZ and M , but not a
complete list.

(2) We refer to [3] for some results about equalities among these ideals.

Lemma 2.3. The following hold.

(1) If p is an odd prime number and q 2 PZ, then PmqðxÞ 	 PpPZ , q:
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(2) If q 2 PZ is as in Propositon 2.1(3), then PmqðxÞ 	 Mq:

Proof. Let f ðxÞ 2 PmqðxÞ : then, f ðxÞ ¼ mqðxÞgðxÞ for some gðxÞ 2 PQ½x�: SincemqðxÞ has coefficients
in the center of PQ, we have f ðqÞ ¼ mqðqÞgðqÞ ¼ 0: Hence, f ðxÞ 2 Mq; furthermore, mqðq0Þ ¼ 0 for
all q0 2 CðqÞ (since the elements of CðqÞ have the same minimal polynomial of q [3, paragraph after
Definition 4.1]) and thus f ðxÞ 2 PpPZ , q: ThereforePmqðxÞ is contained in bothPpPZ , q andMq:

By intersecting the ideals with Z, it is easily seen that the inclusions are proper. w

When D is a Noetherian commutative domain, the integer-valued polynomials over D behave
well with respect to the localization, that is, if S is a multiplicative subset of D then S�1IntðDÞ ¼
IntðS�1DÞ ([2, Theorem I.2.3]). In [3, Theorem 3.4] an analogous result has been showed for
IntðPZÞ when S is a multiplicatively closed subset S � Z (it is central). In the following we prove
that IntðPZÞ behaves well with respect to localization also for denominator sets whose elements
are not necessarily central, as S ¼ C ðQÞ, where Q is a prime ideal of PZ:

Theorem 2.4. Let Q be a prime ideal of PZ and let S ¼ C ðQÞ. Then S is also a denominator set of
IntðPZÞ and IntðPZÞS�1 ¼ IntðPZS�1Þ:

Proof. To prove that S is a denominator set of IntðPZÞ it is sufficient to use the same argument
of Lemma 1.6 and Proposition 1.11, observing that N(s) is in the center of IntðPZÞ for each s 2 S:

Let Q be a prime ideal of PZ, and let Q \ Z ¼ pZ (where p is either a prime number or 0). Set T :¼
Z n pZ: By Propositions 1.12 and 1.13, we have IntðPZT�1Þ ¼ IntðPZC ðQÞ�1Þ ¼ IntðPZðpÞ Þ:

To prove the statement it is enough to show that

ð1Þ IntðPZÞT�1 � IntðPZÞC ðQÞ�1 � IntðPZðpÞ Þ � IntðPZÞT�1:

The first inclusion follows from the fact that T � C ðQÞ, while the last one from [3, Theorem
3.4] (it is actually an equality). Thus, we only need to prove that IntðPZÞC ðQÞ�1 � IntðPZðpÞ Þ:
Again by [3, Theorem 3.4], we have IntðPZÞ � IntðPZðpÞ Þ; furthermore, each element of C ðQÞ
becomes invertible in PZðpÞ and thus in IntðPZðpÞ Þ: Hence, IntðPZÞC ðQÞ�1 � IntðPZðpÞ Þ and all the
containments must be equalities. w

Note that the exact same argument can be used if we localize on the left: if S is S ¼ C 0ðQÞ
then S�1IntðPZÞ ¼ IntðS�1PZÞ:
Corollary 2.5. The following hold.

(1) If S ¼ RðPZÞ or S ¼ Z n ð0Þ then IntðPZÞS�1 ¼ IntðPQÞ ¼ PQ½x�:
(2) If p is a prime number and S ¼ Z n pZ or S ¼ C ðQÞ, with Q a prime ideal of PZ such that

Q \ Z ¼ pZ, then IntðPZÞS�1 ¼ IntðPZðpÞ Þ:

Proof. For the first point, the equality IntðPZÞS�1 ¼ IntðPQÞ follows from Theorem 2.4 and
Proposition 1.12. The equality IntðPQÞ ¼ PQ½x� follows directly from the definitions.

Similarly, the second point follows from Theorem 2.4 and from Proposition 1.13. w

These results allow us to represent PZ and IntðPZÞ as intersection of localizations.

Proposition 2.6. Let P be the set of prime numbers. Then, the following hold.

PZ ¼ \
p2P

PZðpÞ : (1)

IntðPZÞ ¼ \
p2P

IntðPZðpÞ Þ: (2)
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Proof. (1) The inclusion ð�Þ is obvious since for every prime p, PZ � PZðpÞ : For the reverse inclu-
sion, take an element q ¼ aþ b iþ c jþ d k of the intersection. Then a, b, c, d 2 \p ZðpÞ ¼ Z

and q 2 PZ:
(2) For all primes p, let Qp be the maximal ideal of PZ above p. We have that IntðPZÞ �

ðIntðPZÞÞC ðQpÞ�1 ¼ IntðPZðpÞ Þ, and thus IntðPZÞ is inside the intersection. Conversely, if f(x)
belongs to the intersection and q 2 PZ, then f ðqÞ 2 PZðpÞ for every prime number p, and thus
f ðqÞ 2 \p PZðpÞ ¼ PZ (by the previous point) and f ðxÞ 2 IntðPZÞ: w

3. Matrix representations

To study the spectrum of IntðPZÞ, we introduce the related commutative ring

IntQðPZÞ :¼ ff ðxÞ 2 Q x½ � j 8q 2 PZ : f ðqÞ 2 PZg,
and we define similarly IntQðPZðpÞ Þ: These sets are easily seen to be rings by using polynomial
evaluation. To avoid confusion in the notation, from now in we will go back to write IntPQ

ðPZÞ
and IntPQ

ðPZðpÞ Þ for IntðPZÞ and IntðPZðpÞ Þ, respectively. Note that, if we consider Q½x� as subring
of PQ½x� in the obvious way, then IntQðPZÞ ¼ IntPQ

ðPZÞ \Q½x�:
The relation between IntQðPZÞ and IntPQ

ðPZÞ passes through a matrix representation of the
rings PZ and PZðpÞ : We denote by MnðRÞ the ring of matrices of order n over R.

Proposition 3.1. [3, Proposition 2.2] The following hold.

(1) Let R be a commutative ring with identity such that 2 is a unit of R. Then, PR ffi M2ðRÞ as
R-algebras.

(2) Let A ¼
��

a b
c d

�
j a � d, b � c mod 2

�
� M2ðZÞ. Then, PZ ffi A as Z-algebras.

Let D be a domain with quotient field K. We define

IntKðMnðDÞÞ :¼ ff ðxÞ 2 K x½ � j 8A 2 MnðDÞ : f ðAÞ 2 MnðDÞg
and

IntMnðKÞðMnðDÞÞ :¼
¼ ff ðxÞ 2 MnðKÞ x½ � j 8A 2 MnðDÞ : f ðAÞ 2 MnðDÞg:

These rings roughly correspond, respectively, to IntQðPZÞ and IntPQ
ðPZÞ:

Proposition 3.2. Let D be a domain with quotient field K. Then

IntMnðKÞðMnðDÞÞ ’ MnðIntKðMnðDÞÞÞ:
Moreover, the following hold.

(i) The ideals of IntMnðKÞðMnðDÞÞ are in 1� 1 correspondence with the sets of the form
MnðIÞ, where I is an ideal of IntKðMnðDÞÞ:

(ii) The prime ideals of IntMnðKÞðMnðDÞÞ are in 1–1 correspondence with the sets of the form
MnðPÞ, where P is a prime ideal of IntKðMnðDÞÞ:

(iii) The maximal ideals of IntMnðKÞðMnðDÞÞ are in 1–1 correspondence with the sets of the
form MnðM Þ, where M is a maximal ideal of IntKðMnðDÞÞ:

Proof. See Frisch [4, Theorem 7.2] and Frisch [4, Theorem 7.3]. The remaining part follows from
Lam [8, Theorem 3.1]. w

Putting together these two results, we have the following theorem.
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Theorem 3.3. Let p be an odd prime integer. Then, the prime ideals of IntPQ
ðPZðpÞ Þ are in 1–1 cor-

respondence with the prime ideals of IntQðPZðpÞ Þ:

Proof. By Proposition 3.1, PQ ’ M2ðQÞ, and the isomorphism brings PZðpÞ into M2ðZðpÞÞ: By
Proposition 3.2,

IntPQ
ðPZðpÞ Þ ’ IntM2ðQÞðM2ðZðpÞÞÞ ’

’ M2ðIntQðM2ðZðpÞÞÞÞ ’ M2ðIntQðPZðpÞ ÞÞ;
thus the prime ideals of IntPQ

ðPZðpÞ Þ are in bijective correspondence with the prime ideals of
IntQðPZðpÞ Þ, as claimed. w

The main advantage of this theorem is that IntQðPZðpÞ Þ is a commutative ring properly con-
tained in between the two well-studied rings Z½x� and Q½x�:
Proposition 3.4. The nonzero prime ideals P of IntQðPZÞ such that P \ Z ¼ ð0Þ are pairwise
uncomparable.

Proof. It is enough to notice that IntQðPZÞS�1 ¼ Q½x�, if S ¼ Z n ð0Þ: Then the prime ideals of
IntQðPZÞ contracting to (0) in Z are in 1-1 correspondence with the prime ideals of Q½x�, which are
not comparable (except (0)). This correspondence preserves the order, thus the statement follows. w

Theorem 3.5. The rings IntQðPZÞ and IntQðPZðpÞ Þ, for any prime p, have dimension 2.

Proof. The ring Z½x� is a Noetherian ring of dimension 2, and thus by Gilmer [5, Theorem 30.9
and Corollary 30.10] every overring of Z½x� has dimension at most 2. Since Z½x� � IntQðPZÞ �
IntQðPZðpÞ Þ, it follows that the dimensions of IntQðPZÞ and IntQðPZðpÞ Þ are at most 2.

Fix now a prime p. By Proposition 2.1, we can find an integer split-quaternion q ¼ aþ b iþ
c jþ d k 2 PZ such that its minimal polynomial mqðxÞ is irreducible modulo p and such that
PpZ, q (if p 6¼ 2) or Mq (if p¼ 2) is a maximal ideal of IntPQ

ðPZÞ over p. Then, its restriction P2 :¼
PpZ, q \ IntQðPZÞ or P2 :¼ Mq \ IntQðPZÞ is a prime ideal of IntQðPZÞ:

By construction, mqðxÞ is irreducible in Q½x�, and thus PmqðxÞ is a prime ideal of IntPQ
ðPZÞ,

which by Lemma 2.3 is contained inside PpZ, q and Mq; hence, P1 :¼ PmqðxÞ \ IntQðPZÞ is a prime
ideal of IntQðPZÞ inside P2. Therefore, ð0Þ � P1 � P2 is a chain of prime ideals of IntQðPZÞ; fur-
thermore, the inclusions are strict since mqðxÞ 2 P1 n ð0Þ, while p 2 P2 n P1: Hence, ð0Þ(P1 ( P2
is a chain of length 2, and thus dim IntQðPZÞ � 2; therefore, the dimension must be exactly 2.

For IntQðPZðpÞ Þ, it is enough to note that the chain ð0Þ(P1 ( P2 lifts to a chain in IntQðPZðpÞ Þ
(since this ring is a localization of IntQðPZÞ) and thus also dim ðIntQðPZðpÞ ÞÞ � 2 and
dim ðIntQðPZðpÞ ÞÞ ¼ 2: w

Note that this replicates the same pattern of SpecðIntðZÞÞ shown in [2, Proposition V.2.7]. The
correspondence with matrix rings allow also to say something about IntPQ

ðPZðpÞ Þ:
Corollary 3.6. If p is an odd prime, then IntPQ

ðPZðpÞ Þ has dimension 2.
Furthermore, dim ðIntPQ

ðPZÞÞ � 2:

Proof. By Theorem 3.3, the dimension of IntPQ
ðPZðpÞ Þ is the same of IntQðPZðpÞ Þ, which is 2 by

Theorem 3.5. The last claim follows since IntPQ
ðPZðpÞ Þ is a localization of IntPQ

ðPZÞ: w

Theorem 3.3 does not work for p¼ 2, and thus the previous results do not allow to calculate
the dimension of IntPQ

ðPZÞ: However, we conjecture that dim ðIntPQ
ðPZÞÞ ¼

dim ðIntPQ
ðPZð2Þ ÞÞ ¼ 2:
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An important difference between IntðZÞ and IntQðPZÞ is that the latter is not integrally closed
(and thus it is not a Pr€ufer domain); see Corollary 3.8 below. However, we can describe its inte-
gral closure by using algebraic integers.

Given a finite degree extension QðhÞ of Q, we indicate by Ah the ring of algebraic integers of
QðhÞ: If n 2 N is positive, the set of all algebraic integers of degree at most n over Q is

An :¼ [
QðhÞ:Q½ ��n

Ah;

similarly, if p is a prime number, we denote by An, p is the set of algebraic numbers that are root
of a monic irreducible polynomial of degree n over ZðpÞ:

In [10] the authors define the set of integer-valued polynomials over An with rational coeffi-
cients to be the set

IntðAnÞ:¼ \
h2An

IntQðAhÞ:

The ring IntðAnÞ can be seen as the set of all polynomials with rational coefficients that map An

into An: They also show that IntQðAnÞ is a Pr€ufer domain for every n ([10, Theorem 3.9]).

Theorem 3.7. Let p be an odd prime integer. Then IntQðA2ÞðpÞ ¼ IntQðA2, pÞ is the integral closure
of IntQðPZðpÞ Þ in Q½x�:

Proof. By Loper and Werner [10, Theorem 4.6], IntQðA2Þ is the integral closure of IntQðM2ðZÞÞ:
Using Proposition 3.1, and recalling that the localization at prime integers preserves the integral
closure, we have that:

IntQðA2ÞðpÞ ¼ IntQðM2ðZÞÞðpÞ ¼ IntQðM2ðZÞÞðpÞ ¼
¼ IntQðM2ðZÞðpÞÞ ¼ IntQ M2ðZðpÞÞ

� � ¼ IntQ PZðpÞ
� �

:

Finally, using [11, Theorem 13] with A ¼ PZðpÞ , we have that IntQðPZðpÞ Þ is also the integral clos-
ure of IntQðA2, pÞ: w

Corollary 3.8. The ring IntQðPZÞ is not integrally closed.

Proof. If IntQðPZÞ is integrally closed, then its localization at an odd prime p, IntQðPZðpÞ Þ, is inte-
grally closed too. Thus, from Theorem 3.7, IntQðPZðpÞ Þ ¼ IntQðA2ÞðpÞ and this is Pr€ufer. Since

IntQðPZðpÞ Þ ffi IntQðM2ðZðpÞÞÞ, it follows that the ring

IntQðB,M2ðZðpÞÞÞ :¼ ff 2 Q x½ � j f ðBÞ 2 M2ðZðpÞÞg

is an overring of IntQðM2ðZðpÞÞÞ, for every matrix B 2 M2ðZðpÞÞ: Taking B ¼ 0 1
0 0

� �
and arguing

as in [10, §4], it can be shown that IntQðB,M2ðZðpÞÞÞ is not integrally closed. The claim follows. w

4. The ideal pIntQðPZÞ
In this section we study in more detail the ideal pIntQðPZÞ generated by a prime number p (not
necessarily odd). Our first result can be seen as a refinement of the proof of Theorem 3.5.

Proposition 4.1. Let p be a prime number. Then, every prime ideal of IntQðPZÞ containing p
is maximal.

Proof. We follow the proof of Cahen and Chabert [2, Lemma V.1.9].
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Let u1, :::, uk be a set of residues of PZ=pPZ (with k ¼ p4), and let P be a prime ideal of
IntQðPZÞ containing p. Take any aðxÞ 2 IntQðPZÞ, and let aiðxÞ :¼ aðxÞ � ui: Let bðxÞ :¼
a1ðxÞ � � � akðxÞ : by construction, for every q 2 PZ there is an i such that aðqÞ � uiðmodpPZÞ:

Since the ai have coefficients in the commutative ring Q, we have bðqÞ ¼ a1ðqÞ � � � akðqÞ :
hence, bðqÞ 2 pPZ and so bðxÞ 2 pIntQðPZÞ � P; since P is prime, there must be an i such that
aiðxÞ 2 P: However, aiðxÞ � uiðmodpPZÞ, and thus IntQðPZÞ=P is isomorphic to PZ=pPZ ’ PZp :
Hence, P is maximal, as claimed. w

Corollary 4.2. Let p be an odd prime integer. Then, every prime ideal of IntPQ
ðPZðpÞ Þ containing p

is maximal.

Proof. It is enough to use Proposition 4.1 and the correspondence of Theorem 3.3. w

Remark 4.3.
(1) The previous two results allow to give an alternative proof of Theorem 3.5. Indeed, if

ð0Þ(Q1 (Q2 (Q3 is a chain of prime ideals of length 3, then either Q1 \ Z ¼ Q2 \ Z ¼
ð0Þ or Q2 \ Z ¼ Q3 \ Z ¼ pZ, for some prime number p. The latter case is made impos-
sible by Proposition 4.1 (as Q2 contains p but is not maximal); on the other hand the for-
mer case would imply that two nonzero prime ideals of IntPQðPZÞ over (0) are comparable,
against Proposition 3.4.

(2) The proof of Proposition 4.1 does not work in the ring IntPQ
ðPZÞ, since the evaluation of a

product of polynomials cannot be done separately for each factor, and thus bðqÞ 6¼
a1ðqÞ � � � akðqÞ in general. Nevertheless, we conjecture (but we don’t have a proof) that the
same property holds also in IntPQ

ðPZÞ:
A consequence of Proposition 4.1 is that the ideals pIntQðPZðpÞ Þ are not prime. We now want

to find an explicit description of the polynomials in IntQðPZðpÞ Þ and, as a corollary, to find two
polynomials outside pIntQðPZðpÞ Þ whose product is inside the ideal.

Proposition 4.4. Let R, S be commutative rings and let p : R ! S be a homomorphism. Then, the
natural map

u : PR ! PS

aþ b iþ c jþ d k 7! pðaÞ þ pðbÞ iþ pðcÞ jþ pðdÞ k

is a ring homomorphism. Furthermore, if p is surjective then u is surjective and keru ¼
ðkerpÞPR ¼ Pkerp ¼ faþ b iþ c jþ d k j a, b, c, d 2 kerpg; in particular, PR=keru ’ PS:

Proof. Straightforward. w

An important particular case is when R ¼ Z or R ¼ ZðpÞ and S ¼ Zp : in this case, the kernel
of p is generated by p, and thus we obtain the well-known isomorphisms PZ

pPZ
’ PZl

pPZl
’ PZp :

In particular, the previous proposition shows that polynomial evaluation behaves well with
respect to quotients. Given a surjection p : R ! S and a polynomial f ðxÞ ¼ Pn

t¼0 pt xt 2 R½x�, we
denote by �f ðxÞ ¼ Pn

t¼0 pðptÞ xt 2 S½x� the polynomial obtained by reducing the coefficients mod-
ulo keru: Then, for every q 2 PZ, we have pðf ðqÞÞ ¼ �f ðpðqÞÞ:
Proposition 4.5. Let p be a prime integer. Let f ðxÞ 2 Z½x� and �f ðxÞ 2 Zp½x� be as above. Given an
integer n> 1 such that n ¼ pam with p-m, then 1

n f ðxÞ 2 IntQðPZðpÞ Þ if and only if f ðqÞ 2 paPZðpÞ , for
all q 2 PZðpÞ . In particular if a¼ 1, 1n f ðxÞ 2 IntQðPZðpÞ Þ if and only if �f ðqÞ ¼ �0 in PZp , for all q 2 PZp :
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Proof. We have that

1
n
f ðxÞ 2 IntQðPZðpÞ Þ () 1

n
f ðqÞ 2 PZðpÞ 8q 2 PZðpÞ () f ðqÞ 2 nPZðpÞ 8q 2 PZðpÞ :

Since p-m, we have nPZðpÞ ¼ paPZðpÞ : w

Lemma 4.6. Let R be a commutative domain. Take q 2 PR n R and let mqðxÞ 2 R½x� be its minimal
polynomial over R. If a polynomial f ðxÞ 2 R½x� is such that f ðqÞ ¼ 0, then mqðxÞ j f ðxÞ in R½x�:

Proof. Since mqðxÞ is monic we can divide f(x) by mqðxÞ obtaining
f ðxÞ ¼ gðxÞmqðxÞ þ rðxÞ,

for some gðxÞ, rðxÞ 2 R½x�: In particular rðxÞ ¼ axþ b is linear as mqðxÞ is of degree two. Since
R½x� is contained in the center of PR½x�, we can evaluate the polynomial relation above in q,
obtaining 0 ¼ f ðqÞ ¼ gðqÞ � 0þ aqþ b: Since R is a domain and q 62 R, necessarily a ¼ b ¼ 0: w

We observe that Lemma 4.6 does not hold if f ðxÞ 2 PR½x� n R½x�: For example, consider i 2
PZ and f ðxÞ ¼ x3 þ ixþ ðiþ 1Þxþ iþ 1: Then f ð iÞ ¼ 0 but f ðxÞ ¼ ðx2 þ 1Þðxþ iÞ þ ixþ 1
and the remainder is nonzero.

Corollary 4.7. With the hypothesis and notation of Proposition 4.5, let p be a prime integer and
n¼ pm with p-m. Then 1

n f ðxÞ 2 IntQðPZðpÞ Þ if and only if �f ðxÞ is divided by all the minimal poly-
nomials of the elements of PZp :

Proof. It is an immediate consequence of Proposition 4.5 and Lemma 4.6. w

Using the previous Corollary we can construct a nontrivial element of IntQðPZðpÞ Þ:
Example 4.8. The polynomial

UpðxÞ ¼ 1
p
ðxp � xÞðxp2 � xÞ

belongs to IntQðPZðpÞ Þ:
By Proposition 4.5, it is sufficient to show that f ðxÞ ¼ ðxp � xÞðxp2 � xÞ 2 Z½x� vanishes over

all elements of PZp : Observe that every monic and irreducible polynomial of Zp½x� of degree one
or two is a factor of f(x). In particular, if g(x) is a linear polynomial then gðxÞ2 divides f(x), since
g(x) divides both xp � x and xp

2 � x: By Corollary 4.7, this also means that the minimal polyno-
mial of every split-quaternion of PZp is a factor of f(x).

In particular we can show that every monic and quadratic polynomial of Zp½x� is the minimal
polynomial for some element of PZp : The proof is mutatis mutandis the same as the proof of [14,
Lemma 3.5]. This means that the polynomial UpðxÞ does not contain any redundant factor.

Proposition 4.9. With the above notation we have the following proper inclusions:

ZðpÞ x½ �( IntQðPZðpÞ Þ( IntðZðpÞÞ:

Proof. The first inclusion follows from the fact that Z � PZ and thus ZðpÞ½x� � PZðpÞ ½x� \Q½x� �
IntQðPZðpÞ Þ: It is proper since the polynomial UpðxÞ given in Example 4.8 belongs to IntQðPZðpÞ Þ
but not to ZðpÞ½X�:

The second inclusion is straightforward since ZðpÞ ¼ PZðpÞ \Q:
To see that it is proper, consider the “binomial polynomial” f ðxÞ ¼ xðx�1Þðx�2Þ:::ðx�pþ1Þ

p 2
IntðZðpÞÞ: If p¼ 2 then f ð iÞ ¼ �1� i

2 62 PZð2Þ ; if p is odd then pf(x) is not divided by x2 þ 1
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(the minimal polynomial of i), and thus f ð iÞ 62 PZðpÞ by Corollary 4.7. It follows that
f ðxÞ 62 IntQðPZðpÞ Þ: w

The fact that the two containments of the previous proposition are strict also follows from
[12, Theorem 2.12] (the first one) and [13, Theorem 2.11] (the second one).

Proposition 4.10. The ideal pIntQðPZðpÞ Þ is not a prime ideal of IntQðPZðpÞ Þ:

Proof. Let us consider the polynomials:

f ðxÞ ¼ ðxp � xÞ2 2 Z x½ �,
gðxÞ ¼ 1

p
ðxp2 � xÞ2 2 Q x½ �,

FðxÞ ¼ f ðxÞgðxÞ ¼ 1
p
ðxp � xÞ2ðxp2 � xÞ2 2 Q x½ �:

These three polynomials are elements of IntQðPZðpÞ Þ: Indeed, for f(x) it follows from the inclusion

Z½x� � IntQðPZðpÞ Þ: For F(x) and g(x) observe that they are equal to UpðxÞ (Example 4.8) multi-

plied by a polynomial with integer coefficients.
We claim that FðxÞ 2 pIntQðPZðpÞ Þ while f(x) and g(x) do not belong to this ideal.
Indeed, 1p FðxÞ ¼ ðUpðxÞÞ2 2 IntQðPZðpÞ Þ and thus FðxÞ 2 pIntQðPZðpÞ Þ:
As regards f(x), we have that �f ðxÞ is not divisible by any quadratic irreducible polynomial over

Zp, and thus by Corollary 4.7 1
p f ðxÞ 62 IntQðPZðpÞ Þ:

For g(x), consider 1
p gðxÞ ¼ 1

p2 ðxp
2 � xÞ2: If p¼ 2 then 1

2 gðiÞ ¼ � i
2 62 PZð2Þ : If p is odd, then we

set q :¼ iþ ðp� 1Þ k: We have that q2 ¼ p2 � 2p, and if we raise q to an even power greater
than 2, we obtain an integer divisible by p2. Since 1

p gðxÞ is a central polynomial, we can evaluate

it in q using its factorization. Thus, we have

1
p
gðqÞ ¼ ðqp2 � qÞ2

p2
¼ q2p

2 þ q2 � 2qp
2þ1

p2
¼ mþ p� 2

p
62 PZðpÞ

for some m 2 Z:
Since FðxÞ ¼ f ðxÞgðxÞ, we can conclude that pIntQðPZðpÞ Þ is not a prime ideal of IntQðPZðpÞ Þ: w
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