

Communications in Algebra

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/lagb20

Multiplicative properties of integer valued polynomials over split-quaternions

Antonio Cigliola, Dario Spirito & Francesca Tartarone

To cite this article: Antonio Cigliola, Dario Spirito & Francesca Tartarone (2021) Multiplicative properties of integer valued polynomials over split-quaternions, Communications in Algebra, 49:3, 1338-1351, DOI: 10.1080/00927872.2020.1834572

To link to this article: https://doi.org/10.1080/00927872.2020.1834572

Published online: 28 Oct 2020.

🕼 Submit your article to this journal 🗗

Article views: 52

View related articles

View Crossmark data 🗹

Check for updates

Multiplicative properties of integer valued polynomials over split-quaternions

Antonio Cigliola^a, Dario Spirito^b, and Francesca Tartarone^c

^aDipartimento di Scienze Statistiche, Sapienza Università di Roma, Istituto Comprensivo "G. Bagnera", Roma, Italy; ^bDipartimento di Matematica "Tullio Levi Civita", Università degli Studi di Padova, Padova, Italy; ^cDipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Roma, Italy

ABSTRACT

We study localization properties and the prime spectrum of the integervalued polynomial ring $Int_{\mathbb{P}_{\mathbb{Q}}}(\mathbb{P}_{\mathbb{Z}})$, where $\mathbb{P}_{\mathbb{Z}}$ (respectively $\mathbb{P}_{\mathbb{Q}}$) is the algebra of split-quaternion over \mathbb{Z} (respectively over \mathbb{Q}).

ARTICLE HISTORY

Received 2 July 2020 Revised 18 September 2020 Communicated by Alfred Geroldinger

KEYWORDS Krull dimension; prime

ideal; quaternion algebra

2010 MATHEMATICS SUBJECT CLASSIFICATION Primary: 11R52; 16H05; 13F20

Introduction

In [14] N. Werner studied the ring of integer-valued polynomials in a noncommutative setting, by considering quaternion algebras. Precisely, he considered the algebras $\mathbb{H}_{\mathbb{Z}}$ and $\mathbb{H}_{\mathbb{Q}}$ (respectively over \mathbb{Z} and over \mathbb{Q}) generated by the unit elements 1, **i**, **j**, **k**, linked by the relations $\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = -1$, $\mathbf{i} \mathbf{j} = \mathbf{k} = -\mathbf{j} \mathbf{i}$, $\mathbf{j} \mathbf{k} = \mathbf{i} = -\mathbf{k} \mathbf{j}$ and $\mathbf{k} \mathbf{i} = \mathbf{j} = -\mathbf{i} \mathbf{k}$, and considered the set $\mathrm{Int}_{\mathbb{H}_{\mathbb{Q}}}(\mathbb{H}_{\mathbb{Z}})$ of all polynomials $f \in \mathbb{H}_{\mathbb{Q}}[x]$ such that $f(\mathbb{H}_{\mathbb{Z}}) \subseteq \mathbb{H}_{\mathbb{Z}}$. After proving that $\mathrm{Int}_{\mathbb{H}_{\mathbb{Q}}}(\mathbb{H}_{\mathbb{Z}})$ is indeed a noncommutative ring (which strictly contains $\mathbb{H}_{\mathbb{Q}}[x]$), he investigated the ideal structure of this ring, describing some prime ideals above the zero and the maximal ideals of $\mathbb{H}_{\mathbb{Z}}$.

Moving from these ideas, in [3] A. Cigliola, K.A. Loper and N. Werner focused on similar problems in a different setting: instead of $\mathbb{H}_{\mathbb{Z}}$ they considered the set of integer split-quaternions $\mathbb{P}_{\mathbb{Z}}$, i.e. the \mathbb{Z} -algebra generated by the unit elements 1, i, j, k with the relations $-i^2 = j^2 = k^2 = 1$ and i j k = 1 (see Definition 1.1).

In this paper, we continue the study of the ring $\mathbb{P}_{\mathbb{Z}}$ (Section 1) and of the ring $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}(\mathbb{P}_{\mathbb{Z}})$ of integer-valued polynomials over $\mathbb{P}_{\mathbb{Z}}$ (Section 2). We study some denominator sets of $\mathbb{P}_{\mathbb{Z}}$ and $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}(\mathbb{P}_{\mathbb{Z}})$ that are not subsets of \mathbb{Z} (in particular, they are not central) and their ring of fractions. Thus, we partially answer to one of the open questions posed in [3, §5] which asks whether it is possible to find and to localize $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}(\mathbb{P}_{\mathbb{Z}})$ with respect to noncentral sets. We then study the ring $\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}})$ of the polynomials in $\mathbb{Q}[x]$ that are integer valued over $\mathbb{P}_{\mathbb{Z}}$. There is a strict connection between the prime spectrum of this ring and the prime spectrum of $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}(\mathbb{P}_{\mathbb{Z}})$. This allows to

CONTACT Francesca Tartarone 🖾 tfrance@mat.uniroma3.it 🗈 Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Roma, Italy.

 $[\]ensuremath{\mathbb{C}}$ 2020 Taylor & Francis Group, LLC

calculate the Krull dimension of $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$, for an odd prime integer p, starting from the dimension of $\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}})$ and thus to get a partial but interesting information about the Krull dimension of $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}(\mathbb{P}_{\mathbb{Z}})$. Finally, in Section 4, we study in more detail the ideal $p\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}})$ and show that it is not prime. In this last Section we will be able to construct explicitly some polynomials of $\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(n)}})$.

Throughout the paper, all the rings we consider are unitary but not necessarily commutative.

1. Localizations of $\mathbb{P}_{\mathbb{Z}}$

We recall some definitions and basic properties.

Definition 1.1. Let *R* be a commutative ring. We denote by \mathbb{P}_R the *R*-algebra generated by the four unit elements 1, **i**, **j** and **k** with the relations

$$-i^2 = j^2 = k^2 = i j k = 1.$$

Formally $\mathbb{P}_R := \{ \mathbf{q} = a + b \ \mathbf{i} + c \ \mathbf{j} + d \ \mathbf{k} \mid a, b, c, d \in R \}.$

We call \mathbb{P}_R the ring of split-quaternions over *R*.

Let $\mathbf{q} = a + b \mathbf{i} + c \mathbf{j} + d \mathbf{k} \in \mathbb{P}_R$, then:

- (a) *a*, *b*, *c*, and *d* are the *coefficients* of q, and *a* is the *real part* of q;
- (b) the bar conjugate of q is $\bar{q} := a b \mathbf{i} c \mathbf{j} d \mathbf{k}$;
- (c) the norm of q is $N(q) := q\bar{q} = a^2 + b^2 c^2 d^2$;
- (d) the trace of q is $T(q) = q + \bar{q} = 2a$;
- (e) the *minimal polynomial* of q is ([3, Definition 2.4])

$$m_{\mathbf{q}}(x) := \begin{cases} x - q & \text{if } \mathbf{q} \in \mathbf{R} \\ x^2 - T(\mathbf{q})x + N(\mathbf{q}) & \text{if } \mathbf{q} \in \mathbb{P}_{\mathbf{R}} \setminus \mathbf{R}. \end{cases}$$

where $m_q(x)$ is minimal in the way that $m_q(q) = 0$ and that $m_q(x)$ is the monic polynomial of least degree having q as a root.

In this section, we study some localizations of $\mathbb{P}_{\mathbb{Z}}$. We start with the description of its prime and maximal ideals. Recall that an ideal *P* of a (not necessarily commutative) ring *R* is *prime* if, given $a, b \in R$ such that $aPb \subseteq P$, then $a \in P$ or $b \in P$.

Theorem 1.2. [3, Theorem 2.11]. *The prime ideals of* $\mathbb{P}_{\mathbb{Z}}$ *are:*

- (i) (0);
 (ii) pP_ℤ where p is an odd prime of ℤ;
- (iii) $\mathcal{M} = (1 + \mathbf{i}; 1 + \mathbf{j}).$

Moreover, the primes $p\mathbb{P}_{\mathbb{Z}}$ and \mathcal{M} are maximal, and \mathcal{M} is the only prime ideal containing 2.

Lemma 1.3. Let $q \in \mathbb{P}_{\mathbb{Z}}$ such that 2 | N(q). Then $q \in \mathcal{M}$. In particular \mathcal{M} contains all the zerodivisors of $\mathbb{P}_{\mathbb{Z}}$.

Proof. Let $q = a + b \mathbf{i} + c \mathbf{j} + d \mathbf{k}$ be such that $N(q) = a^2 + b^2 - c^2 - d^2 = 2m$, for some $m \in \mathbb{Z}$. By hypothesis, q must have zero, two or four even coefficients. In the case that all coefficients are even, then trivially $q \in (2) \subseteq \mathcal{M}$. If q has exactly two even coefficients, then q is congruent modulo $2\mathbb{P}_{\mathbb{Z}}$ to the sum of two of 1, **i**, **j** and **k**, and all of them are elements of \mathcal{M} . Finally, if all coefficients of q are odd, then $q \equiv 1 + \mathbf{i} + \mathbf{j} + \mathbf{k} \pmod{2\mathbb{P}_{\mathbb{Z}}}$, and so $q \in \mathcal{M}$ since $1 + \mathbf{i} + \mathbf{j} + \mathbf{k} = (1 + \mathbf{i})(1 + \mathbf{j}) \in \mathcal{M}$. **Definition 1.4.** Let R be a ring and S a multiplicative subset in R. We say that S is a *right denominator set* if:

- (i) for any $a \in R$ and $s \in S$, $aS \cap sR \neq \emptyset$ (this condition is known as *right Ore condition* and S is called a *right Ore set*);
- (ii) for $a \in R$, if s'a = 0 for some $s' \in S$, then as = 0 for some $s \in S$ (we say that S is right reversible).

Remark 1.5.

- (a) We can define left denominator sets in a completely symmetrical way.
- (b) Condition (ii) (reversibility) is automatically satisfied when S does not contain zero-divisors.
- (c) It is easily seen that the multiplicative subsets contained in the center of R are always denominator subsets.

By Lam [9, Theorem 10.6], if *R* is a ring and *S* a multiplicative subset of *R*, then *R* has a right ring of fractions with respect to *S* (namely, the ring $RS^{-1} := \{as^{-1} | a \in R, s \in S\}$) if and only if *S* is a right denominator set. Similarly we can construct the ring $S^{-1}R := \{s^{-1}a | a \in R, s \in S\}$ if and only if *S* is a left denominator set. If *S* is both a right and left denominator set, then $RS^{-1} \simeq$ $S^{-1}R$ by Lam [9, Corollary 10.14].

Lemma 1.6. Let R be a commutative ring and S a multiplicative subset of \mathbb{P}_R , closed under norm (i.e., if $s \in S$ then $N(s) \in S$). Then S verifies both the right and the left Ore condition.

Proof. Fix $a \in \mathbb{P}_R$ and $s \in S$. Since $N(s) \in R$ is a central element, we have that aN(s) = N(s)a. It follows that $aN(s) = s(\bar{s}a)$, so S is a right Ore set since $aS \cap s\mathbb{P}_R \neq \emptyset$. Analogously, $(a\bar{s})s = N(s)a$ so S is a left Ore set since $Sa \cap \mathbb{P}_R \neq \emptyset$.

By the previous lemma, if $S = \mathcal{R}(R)$ is the set of all (right and left) regular elements of R, then S is a denominator set and RS^{-1} is the *total ring of fractions of* R, which we denote by $\mathcal{Q}(R)$.

For commutative rings, the most important way of constructing localizations of a ring *R* is through the sets $R \setminus P$, where *P* is a prime ideal; however, if *R* is not commutative, the complement of a prime ideal may not be multiplicatively closed. For example, if p = 2k + 1 is an odd prime number, then $p\mathbb{P}_{\mathbb{Z}}$ is not multiplicatively closed since $((k + 1) + k \mathbf{j})((k + 1) - k \mathbf{j}) = p \in p\mathbb{P}_{\mathbb{Z}}$.

Following the notation of Goldie [6], we give the following definition:

Definition 1.7. Let be given a ring R and let Q be a proper prime ideal of R. We set:

$$\mathscr{C}(Q) := \{ x \in R \mid xr \notin Q, \forall r \notin Q \},\$$

and

$$\mathscr{C}'(Q) := \{ x \in R \mid rx \notin Q, \forall r \notin Q \}.$$

Proposition 1.8. Let R be a ring and let $Q \subsetneq R$ be a prime ideal of R. Then $\mathscr{C}(Q)$ is a multiplicatively closed subset of R containing 1 but not 0, and $\mathscr{C}(Q) \subseteq R \setminus Q$. The same properties hold for $\mathscr{C}'(Q)$.

Proof. For each $r \notin Q$, we have that $1 \cdot r = r \notin Q$ and that $0 \cdot r \in Q$. Then, by definition, $1 \in \mathscr{C}(Q)$ and $0 \notin \mathscr{C}(Q)$. Take now $a, b \in \mathscr{C}(Q)$ and $r \notin Q$. Since $b \in \mathscr{C}(Q)$, then $br \notin Q$. Again, since $a \in \mathscr{C}(Q)$, we have $a(br) \notin Q$. Thus for all $r \notin Q$ we have $(ab)r = a(br) \notin Q$.

Finally, if $x \in \mathscr{C}(Q)$ then, since $1 \notin Q$, we have $x \cdot 1 = x \notin Q$. Hence, $\mathscr{C}(Q) \subseteq R \setminus Q$.

Proposition 1.9. Let R be a ring and let $Q \subsetneq R$ be a prime ideal of R. Then $\mathscr{C}(Q)$ is the set of left regular elements of R modulo Q and $\mathscr{C}'(Q)$ is the set of right regular elements of R modulo Q.

Proof. Take $x \in R$. Then x is a left zero-divisor modulo Q if and only if there is $r \in R/Q, r \neq 0$, such that xr = 0. This is equivalent to saying that there is an $r \notin Q$ such that $xr \in Q$. In other words, $x \notin \mathscr{C}(Q)$.

In particular, we have that $\mathscr{C}(0) = \mathcal{R}_l(R)$ is the set of the left regular elements of R, while $\mathscr{C}'(0) = \mathcal{R}_r(R)$ is the set of the right regular elements of R.

We now focus on some properties of the sets $\mathscr{C}(Q)$ associated to the prime ideals of $\mathbb{P}_{\mathbb{Z}}$.

Proposition 1.10. Let Q be a prime ideal of $\mathbb{P}_{\mathbb{Z}}$. Then:

- (i) $\mathscr{C}(Q)$ is closed under bar conjugation;
- (ii) $\mathscr{C}(Q)$ is closed under norm;
- (iii) $\mathscr{C}(Q) = \{ x \in \mathbb{P}_{\mathbb{Z}} \mid N(x) \notin Q \};$
- (iv) $\mathscr{C}(Q)$ does not contain any zero-divisor.

Proof. By Goodearl and Warfield [7, Proposition 1.6] $\mathbb{P}_{\mathbb{Z}}$ is a Noetherian ring. Thus, from [6, Section 3], $\mathscr{C}(Q) = \mathscr{C}'(Q)$.

Consider first Q = (0). Then $\mathscr{C}(0)$ equals $\mathcal{R}(\mathbb{P}_{\mathbb{Z}})$, the set of all (two-sided) regular elements, and so

$$\mathscr{C}(Q) = \mathcal{R}(\mathbb{P}_{\mathbb{Z}}) = \{ x \in \mathbb{P}_{\mathbb{Z}} \, | \, N(x) \neq 0 \}.$$

This proves the claim in the case Q = (0).

Let now be $Q = p\mathbb{P}_{\mathbb{Z}}$, for an odd prime integer *p*. We notice that:

- $\mathscr{C}(Q) \pmod{Q} = \mathscr{C}(\overline{0})$ in $\mathbb{P}_{\mathbb{Z}}/Q = \mathbb{P}_{\mathbb{Z}_p}$ (apply Proposition 1.9);
- $N(x) \pmod{p} = N(\overline{x})$, for $x \in \mathbb{P}_{\mathbb{Z}}$ and $\overline{x} = x \pmod{p\mathbb{P}_{\mathbb{Z}}}$.

Using these equalities, points (i)-(ii)-(iii) reduce to the case Q = (0), which has been already proved. For p = 2, the same reasoning applies reducing modulo \mathcal{M} .

For the point (iv), if p = 2 the claim follows from Lemma 1.3.

If *p* is an odd prime, then suppose that xr' = 0, for some $x \in \mathscr{C}(Q)$ and $0 \neq r' \in \mathbb{P}_{\mathbb{Z}}$. If we write $r' = p^m r$, for some $r \notin Q$, we get $xr = 0 \in Q$ (since *p* is not a zero divisor from Lemma 1.3) which is absurd.

In particular, we observe that $\mathscr{C}(p\mathbb{P}_{\mathbb{Z}}) = \{x \in \mathbb{P}_{\mathbb{Z}} \mid p \not\models N(x)\}$ and $\mathscr{C}(\mathscr{M}) = \{x \in \mathbb{P}_{\mathbb{Z}} \mid 2 \not\models N(x)\}$. We will work with the following multiplicative subsets of $\mathbb{P}_{\mathbb{Z}}$:

- the multiplicative subsets of \mathbb{Z} ;
- the sets $\mathscr{C}(0)$, $\mathscr{C}(\mathscr{M})$ and $\mathscr{C}(p\mathbb{P}_{\mathbb{Z}})$, for any odd prime integer *p*.

For a general noncommutative ring, given a prime ideal Q, $\mathscr{C}(Q)$ may not be a denominator set: such an example is given, for instance, in [1, Example 2.3]. However we show that $\mathscr{C}(Q)$ is a denominator sets in $\mathbb{P}_{\mathbb{Z}}$ and also in $Int(\mathbb{P}_{\mathbb{Z}})$ (Proposition 2.4), for each prime ideal Q of $\mathbb{P}_{\mathbb{Z}}$.

Proposition 1.11. The sets $\mathbb{Z} \setminus (0), \mathbb{Z} \setminus p\mathbb{Z}$, for p prime, and $\mathscr{C}(Q)$, for Q prime ideal of $\mathbb{P}_{\mathbb{Z}}$, are (right and left) denominator sets of $\mathbb{P}_{\mathbb{Z}}$.

Proof. Let $S = \mathbb{Z} \setminus (0)$ or $S = \mathbb{Z} \setminus p\mathbb{Z}$, for a prime *p*. Then the statement easily follows from the fact that *S* is contained in the center of $\mathbb{P}_{\mathbb{Z}}$.

If $S = \mathscr{C}(Q)$, then S does not contain zero-divisors (Proposition 1.10), so $\mathscr{C}(Q)$ is right and left reversible. Finally, $\mathscr{C}(Q)$ is a right (left) Ore set by Lemma 1.6, since it is closed under bar conjugation (Proposition 1.10). Thus $\mathscr{C}(Q)$ is a right and left denominator set of $\mathbb{P}_{\mathbb{Z}}$.

Proposition 1.12. Let $S = \mathscr{C}(0)$ or $S = \mathbb{Z} \setminus (0)$. Then

$$\mathbb{P}_{\mathbb{Z}}S^{-1} = S^{-1}\mathbb{P}_{\mathbb{Z}} = \mathbb{P}_{\mathbb{Q}} = \mathcal{Q}(\mathbb{P}_{\mathbb{Z}}),$$

which is the total ring of fractions of $\mathbb{P}_{\mathbb{Z}}$.

Proof. By Proposition 1.11, *S* is a denominator set. So the ring $\mathbb{P}_{\mathbb{Z}}S^{-1}$ exists and its elements are the fractions rs^{-1} , where $r, s \in \mathbb{P}_{\mathbb{Z}}$ and $N(s) \neq 0$. Then $rs^{-1} = \frac{1}{N(s)}r\overline{s} \in \mathbb{P}_Q$. Thus $\mathbb{P}_{\mathbb{Z}}S^{-1} \subseteq \mathbb{P}_Q$. Conversely, given $q \in \mathbb{P}_Q$, write q in the form $p \cdot a^{-1}$, where $p \in \mathbb{P}_{\mathbb{Z}}$ and *a* is a common denominator for the coefficients of q. Obviously, $a \in S$ and so $pa^{-1} \in \mathbb{P}_{\mathbb{Z}}S^{-1}$, i.e., $\mathbb{P}_{\mathbb{Z}}S^{-1} \supseteq \mathbb{P}_Q$. Thus $\mathbb{P}_{\mathbb{Z}}S^{-1} = \mathbb{P}_Q$. Similarly, $S^{-1}\mathbb{P}_{\mathbb{Z}} = \mathbb{P}_Q$. Finally \mathbb{P}_Q is the total ring of fractions of $\mathbb{P}_{\mathbb{Z}}$ because we localize with respect to the set of regular elements of $\mathbb{P}_{\mathbb{Z}}$.

Similarly, if we localize $\mathbb{P}_{\mathbb{Z}}$ at $S = \mathbb{Z} \setminus p\mathbb{Z}$ or $S = \mathscr{C}(Q)$, where $Q = p\mathbb{P}_{\mathbb{Z}}$, for a prime number p, we get the algebra of split-quaternions with coefficients in $\mathbb{Z}_{(p)}$, the localization of \mathbb{Z} at the ideal $p\mathbb{Z}$ (as we see in the following Proposition). In the following, \mathbb{Z}_p will denote the field with p elements.

Proposition 1.13. Let p be a prime number and let $S = \mathbb{Z} \setminus p\mathbb{Z}$ or $S = \mathscr{C}(Q)$, where Q is a prime ideal of $\mathbb{P}_{\mathbb{Z}}$ such that $Q \cap \mathbb{Z} = p\mathbb{Z}$.

Then

$$\mathbb{P}_{\mathbb{Z}}S^{-1} = S^{-1}\mathbb{P}_{\mathbb{Z}} = \mathbb{P}_{\mathbb{Z}_{(p)}}.$$

Proof. We know that S is a denominator set of $\mathbb{P}_{\mathbb{Z}}$ by Proposition 1.11. So the ring $\mathbb{P}_{\mathbb{Z}}S^{-1}$ exists.

Let $S = \mathbb{Z} \setminus p\mathbb{Z}$. It is easy to see that $\mathbb{P}_{\mathbb{Z}}S^{-1} \subseteq \mathbb{P}_{\mathbb{Z}_{(p)}}$. For the reverse inclusion, notice that the minimum common denominator of any element of $\mathbb{Z}_{(p)}$ is an element of $\mathbb{Z} \setminus p\mathbb{Z}$. So $\mathbb{P}_{\mathbb{Z}}S^{-1} = \mathbb{P}_{\mathbb{Z}_{(p)}}$. Similarly it can be proved that $S^{-1}\mathbb{P}_{\mathbb{Z}} = \mathbb{P}_{\mathbb{Z}_{(p)}}$.

Let $S = \mathscr{C}(Q)$. Since the norm of the elements of S is not divisible by p (Proposition 1.10), a right fraction $ps^{-1} \in \mathbb{P}_{\mathbb{Z}}S^{-1}$, for some $p \in \mathbb{P}_{\mathbb{Z}}$ and $s \in S$, can be seen as a rational split-quaternion $q = \frac{1}{N(s)}p\bar{s} = a + b$ $\mathbf{i} + c$ $\mathbf{j} + d$ \mathbf{k} , where $a, b, c, d \in \mathbb{Q}$ and their denominators are not divisible by p. Thus $\mathbb{P}_{\mathbb{Z}}S^{-1} \subseteq \mathbb{P}_{\mathbb{Z}(p)}$. For the reverse inclusion let $q \in \mathbb{P}_{\mathbb{Z}(p)}$. Taking a common denominator, write $q = \frac{1}{n}p$, for some $p \in \mathbb{P}_{\mathbb{Z}}$ and $n \in \mathbb{Z}$. Since the minimum common denominator of some elements of $\mathbb{Z}(p)$ is an element of $\mathbb{Z} \setminus p\mathbb{Z}$, then n is not divisible by p. Thus neither $n^2 = N(n)$ is divisible by p. So $n \in S$ and $\mathbb{P}_{\mathbb{Z}}S^{-1} = \mathbb{P}_{\mathbb{Z}(p)}$. In the same manner we can prove that $S^{-1}\mathbb{P}_{\mathbb{Z}} = \mathbb{P}_{\mathbb{Z}(p)}$.

Imitating Proposition 1.12 we can give this general result.

Proposition 1.14. Let R be a commutative ring and let Q(R) be its total ring of fractions. Then

$$\mathcal{Q}(\mathbb{P}_R) = \mathbb{P}_{\mathcal{Q}(R)}.$$

Proof. Let S be the set of regular elements of R. Then, S is contained in the center of \mathbb{P}_R , and thus it is a denominator set of \mathbb{P}_R ; it is also easy to see that $S^{-1}\mathbb{P}_R = \mathbb{P}_{S^{-1}R} = \mathbb{P}_{Q(R)}$ (see the proof of Propositions 1.12).

We claim that the elements of $\mathbb{P}_{Q(R)}$ are either invertible or zero-divisors. Take $q \in \mathbb{P}_{Q(R)}$. If N(q) is regular, then it is invertible in Q(R), and thus $\frac{1}{N(q)}\bar{q} \in \mathbb{P}_{Q(R)}$ is the inverse of q. Conversely, if N(q) is not regular, then there is $z \in R, z \neq 0$, such that zN(q) = 0. If $zq \neq 0$, then also $z\bar{q} = \overline{zq} \neq 0$. So we have that:

$$0 = zN(q) = z\bar{q}q = (z\bar{q})q;$$

hence, q is a zero-divisor.

Thus, $\mathbb{P}_{\mathcal{Q}(R)}$ is a total ring of fractions, and so it is the total ring of fractions of \mathbb{P}_R .

2. Integer-valued polynomials

The ring of *integer-valued polynomials* over $\mathbb{P}_{\mathbb{Z}}$ is

$$\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}(\mathbb{P}_{\mathbb{Z}}) = \{ f(x) \in \mathbb{P}_{\mathbb{Q}}[x] \, | \, f(\mathbb{P}_{\mathbb{Z}}) \subseteq \mathbb{P}_{\mathbb{Z}} \}.$$

This set is actually a ring ([15, Theorem 1.2]), and in [3] the authors describe explicitly some proper ideals of $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}(\mathbb{P}_{\mathbb{Z}})$. A similar construction can be done if, instead of $\mathbb{P}_{\mathbb{Z}}$, we use $\mathbb{P}_{\mathbb{Z}_{(p)}}$ or $\mathbb{P}_{\mathbb{Q}}$; in the former case, Werner [15, Theorem 1.2] guarantees that $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$ is a ring, while in the latter $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}(\mathbb{P}_{\mathbb{Q}}) = \mathbb{P}_{\mathbb{Q}}[x]$ is the whole ring of polynomials (and, in particular, is a ring).

For simplicity of notation, in this Section we will write $Int(\mathbb{P}_{\mathbb{Z}})$ instead of $Int_{\mathbb{P}_{\Omega}}(\mathbb{P}_{\mathbb{Z}})$.

A class of ideals of $Int(\mathbb{P}_{\mathbb{Z}})$ can be constructed in the following way: if $q = a + bi + cj + dk \in \mathbb{P}_{\mathbb{Z}}$ and *I* is a principal ideal of $\mathbb{P}_{\mathbb{Z}}$ generated by an element of \mathbb{Z} , then

$$\mathfrak{P}_{I,\mathfrak{q}} := \{ f(x) \in \operatorname{Int}(\mathbb{P}_{\mathbb{Z}}) | f(z) \in I \ \forall z \in C(\mathfrak{q}) \},\$$

is an ideal of $Int(\mathbb{P}_{\mathbb{Z}})$, where $C(q) = \{a \pm bi \pm cj \pm dk\}$ ([3, Proposition 4.2]).

If *P* is a prime ideal of $Int(\mathbb{P}_{\mathbb{Z}})$, then $P \cap \mathbb{P}_{\mathbb{Z}}$ is a prime ideal of $\mathbb{P}_{\mathbb{Z}}$; since we have a classification of the prime ideals of $\mathbb{P}_{\mathbb{Z}}$ (Theorem 1.2), we can study the spectrum of $Int(\mathbb{P}_{\mathbb{Z}})$ according to the restriction to $\mathbb{P}_{\mathbb{Z}}$.

Proposition 2.1. The following hold.

(1) [3, Corollary 4.10] The prime ideals P of $Int(\mathbb{P}_{\mathbb{Z}})$ with $P \cap \mathbb{P}_{\mathbb{Z}} = (0)$ are exactly those of the form

$$P = M(x) \cdot \mathbb{P}_{\mathbb{Q}}[x] \cap \operatorname{Int}(\mathbb{P}_{\mathbb{Z}}) \rightleftharpoons P_{M(x)},$$

where $M(x) \in \mathbb{Z}[x]$ is an irreducible polynomial. In particular, if $m_q(x)$ is the minimal polynomial of an element $q \in \mathbb{P}_{\mathbb{Z}}$ then $P_{m_q(x)} = \mathfrak{P}_{0,q}$ is a prime ideal.

- (2) [3, Theorem 4.16] Let $q := a + b \mathbf{i} + c \mathbf{j} + d \mathbf{k} \in \mathbb{P}_{\mathbb{Z}} \setminus \mathbb{Z}$ and let p be an odd prime. If gcd(b, c, d, p) = 1, then $\mathfrak{P}_{p\mathbb{P}_{\mathbb{Z}}, q}$ is prime if and only if $m_q(x)$ is irreducible mod p, in which case $\mathfrak{P}_{p\mathbb{P}_{\mathbb{Z}}, q}$ is maximal.
- (3) [3, Corollary 4.22] Let q = a + b $\mathbf{i} + c$ $\mathbf{j} + d$ $\mathbf{k} \in \mathbb{P}_{\mathbb{Z}}$, and assume that either $b \equiv c \pmod{2}$ or $b \equiv d \pmod{2}$. Then,

$$\mathfrak{M}_{q} := \{ f \in \operatorname{Int}(\mathbb{P}_{\mathbb{Z}}) | f(q) \in \mathscr{M} \}$$

is a maximal ideal of $Int(\mathbb{P}_{\mathbb{Z}})$ *.*

Remark 2.2.

- (1) While the first case of the proposition completely classifies the prime ideals above (0), the other two merely give some examples of the prime ideals above $p\mathbb{P}_{\mathbb{Z}}$ and \mathcal{M} , but not a complete list.
- (2) We refer to [3] for some results about equalities among these ideals.

Lemma 2.3. The following hold.

(1) If p is an odd prime number and $q \in \mathbb{P}_{\mathbb{Z}}$, then $\mathfrak{P}_{m_q(x)} \subset \mathfrak{P}_{p\mathbb{P}_{\mathbb{Z}},q}$.

If $q \in \mathbb{P}_{\mathbb{Z}}$ is as in Propositon 2.1(3), then $\mathfrak{P}_{m_0(x)} \subset \mathfrak{M}_q$. (2)

Proof. Let $f(x) \in \mathfrak{P}_{m_q(x)}$: then, $f(x) = m_q(x)g(x)$ for some $g(x) \in \mathbb{P}_{\mathbb{Q}}[x]$. Since $m_q(x)$ has coefficients in the center of $\mathbb{P}_{\mathbb{Q}}$, we have $f(q) = m_q(q)g(q) = 0$. Hence, $f(x) \in \mathfrak{M}_q$; furthermore, $m_q(q') = 0$ for all $q' \in C(q)$ (since the elements of C(q) have the same minimal polynomial of q [3, paragraph after Definition 4.1]) and thus $f(x) \in \mathfrak{P}_{p\mathbb{P}_{\mathbb{Z}},q}$. Therefore $\mathfrak{P}_{m_q(x)}$ is contained in both $\mathfrak{P}_{p\mathbb{P}_{\mathbb{Z}},q}$ and \mathfrak{M}_q . By intersecting the ideals with \mathbb{Z} , it is easily seen that the inclusions are proper.

When D is a Noetherian commutative domain, the integer-valued polynomials over D behave well with respect to the localization, that is, if S is a multiplicative subset of D then S^{-1} Int(D) = $Int(S^{-1}D)$ ([2, Theorem I.2.3]). In [3, Theorem 3.4] an analogous result has been showed for Int($\mathbb{P}_{\mathbb{Z}}$) when S is a multiplicatively closed subset $S \subseteq \mathbb{Z}$ (it is central). In the following we prove that $Int(\mathbb{P}_{\mathbb{Z}})$ behaves well with respect to localization also for denominator sets whose elements are not necessarily central, as $S = \mathscr{C}(Q)$, where Q is a prime ideal of $\mathbb{P}_{\mathbb{Z}}$.

Theorem 2.4. Let \mathcal{Q} be a prime ideal of $\mathbb{P}_{\mathbb{Z}}$ and let $S = \mathscr{C}(\mathcal{Q})$. Then S is also a denominator set of Int($\mathbb{P}_{\mathbb{Z}}$) and Int($\mathbb{P}_{\mathbb{Z}}$) $S^{-1} =$ Int($\mathbb{P}_{\mathbb{Z}}S^{-1}$).

Proof. To prove that S is a denominator set of $Int(\mathbb{P}_{\mathbb{Z}})$ it is sufficient to use the same argument of Lemma 1.6 and Proposition 1.11, observing that N(s) is in the center of $Int(\mathbb{P}_{\mathbb{Z}})$ for each $s \in S$.

Let *Q* be a prime ideal of $\mathbb{P}_{\mathbb{Z}}$, and let $Q \cap \mathbb{Z} = p\mathbb{Z}$ (where *p* is either a prime number or 0). Set T := $\mathbb{Z} \setminus p\mathbb{Z}$. By Propositions 1.12 and 1.13, we have $Int(\mathbb{P}_{\mathbb{Z}}T^{-1}) = Int(\mathbb{P}_{\mathbb{Z}}\mathscr{C}(Q)^{-1}) = Int(\mathbb{P}_{\mathbb{Z}(p)})$.

To prove the statement it is enough to show that

(1)
$$\operatorname{Int}(\mathbb{P}_{\mathbb{Z}})T^{-1} \subseteq \operatorname{Int}(\mathbb{P}_{\mathbb{Z}})\mathscr{C}(Q)^{-1} \subseteq \operatorname{Int}(\mathbb{P}_{\mathbb{Z}_{(p)}}) \subseteq \operatorname{Int}(\mathbb{P}_{\mathbb{Z}})T^{-1}.$$

The first inclusion follows from the fact that $T \subseteq \mathscr{C}(Q)$, while the last one from [3, Theorem 3.4] (it is actually an equality). Thus, we only need to prove that $\operatorname{Int}(\mathbb{P}_{\mathbb{Z}})\mathscr{C}(Q)^{-1} \subseteq \operatorname{Int}(\mathbb{P}_{\mathbb{Z}_{(p)}})$. Again by [3, Theorem 3.4], we have $\operatorname{Int}(\mathbb{P}_{\mathbb{Z}}) \subseteq \operatorname{Int}(\mathbb{P}_{\mathbb{Z}_{(p)}})$; furthermore, each element of $\mathscr{C}(Q)$ becomes invertible in $\mathbb{P}_{\mathbb{Z}_{(p)}}$ and thus in $\operatorname{Int}(\mathbb{P}_{\mathbb{Z}_{(p)}})$. Hence, $\operatorname{Int}(\mathbb{P}_{\mathbb{Z}})\mathscr{C}(Q)^{-1} \subseteq \operatorname{Int}(\mathbb{P}_{\mathbb{Z}_{(p)}})$ and all the containments must be equalities.

Note that the exact same argument can be used if we localize on the left: if S is $S = \mathscr{C}'(Q)$ then S^{-1} Int $(\mathbb{P}_{\mathbb{Z}}) =$ Int $(S^{-1}\mathbb{P}_{\mathbb{Z}})$.

Corollary 2.5. The following hold.

- If $S = \mathcal{R}(\mathbb{P}_{\mathbb{Z}})$ or $S = \mathbb{Z} \setminus (0)$ then $\operatorname{Int}(\mathbb{P}_{\mathbb{Z}})S^{-1} = \operatorname{Int}(\mathbb{P}_{\mathbb{Q}}) = \mathbb{P}_{\mathbb{Q}}[x]$. (1)
- If p is a prime number and $S = \mathbb{Z} \setminus p\mathbb{Z}$ or $S = \mathscr{C}(Q)$, with Q a prime ideal of $\mathbb{P}_{\mathbb{Z}}$ such that (2) $Q \cap \mathbb{Z} = p\mathbb{Z}$, then $\operatorname{Int}(\mathbb{P}_{\mathbb{Z}})S^{-1} = \operatorname{Int}(\mathbb{P}_{\mathbb{Z}_{(p)}})$.

Proof. For the first point, the equality $Int(\mathbb{P}_{\mathbb{Z}})S^{-1} = Int(\mathbb{P}_{\mathbb{Q}})$ follows from Theorem 2.4 and Proposition 1.12. The equality $Int(\mathbb{P}_{\mathbb{O}}) = \mathbb{P}_{\mathbb{O}}[x]$ follows directly from the definitions.

Similarly, the second point follows from Theorem 2.4 and from Proposition 1.13.

These results allow us to represent $\mathbb{P}_{\mathbb{Z}}$ and $Int(\mathbb{P}_{\mathbb{Z}})$ as intersection of localizations.

Proposition 2.6. Let \mathcal{P} be the set of prime numbers. Then, the following hold.

$$\mathbb{P}_{\mathbb{Z}} = \bigcap_{p \in \mathcal{P}} \mathbb{P}_{\mathbb{Z}_{(p)}}.$$
(1)

$$\operatorname{Int}(\mathbb{P}_{\mathbb{Z}}) = \bigcap_{p \in \mathcal{P}} \operatorname{Int}(\mathbb{P}_{\mathbb{Z}_{(p)}}).$$
(2)

Proof. (1) The inclusion (\subseteq) is obvious since for every prime $p, \mathbb{P}_{\mathbb{Z}} \subseteq \mathbb{P}_{\mathbb{Z}_{(p)}}$. For the reverse inclusion, take an element q = a + b i + c j + d k of the intersection. Then $a, b, c, d \in \bigcap_p \mathbb{Z}_{(p)} = \mathbb{Z}$ and $q \in \mathbb{P}_{\mathbb{Z}}$.

(2) For all primes p, let Q_p be the maximal ideal of $\mathbb{P}_{\mathbb{Z}}$ above p. We have that $\operatorname{Int}(\mathbb{P}_{\mathbb{Z}}) \subseteq$ $(\operatorname{Int}(\mathbb{P}_{\mathbb{Z}}))\mathscr{C}(Q_p)^{-1} = \operatorname{Int}(\mathbb{P}_{\mathbb{Z}_{(p)}}),$ and thus $\operatorname{Int}(\mathbb{P}_{\mathbb{Z}})$ is inside the intersection. Conversely, if f(x)belongs to the intersection and $q \in \mathbb{P}_{\mathbb{Z}}$, then $f(q) \in \mathbb{P}_{\mathbb{Z}_{(p)}}$ for every prime number p, and thus $f(\mathbf{q}) \in \bigcap_{p} \mathbb{P}_{\mathbb{Z}_{(p)}} = \mathbb{P}_{\mathbb{Z}}$ (by the previous point) and $f(x) \in \text{Int}(\mathbb{P}_{\mathbb{Z}})$.

3. Matrix representations

To study the spectrum of $Int(\mathbb{P}_{\mathbb{Z}})$, we introduce the related commutative ring

$$\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}}) := \{ f(x) \in \mathbb{Q}[x] \mid \forall q \in \mathbb{P}_{\mathbb{Z}} \colon f(q) \in \mathbb{P}_{\mathbb{Z}} \},\$$

and we define similarly $Int_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$. These sets are easily seen to be rings by using polynomial evaluation. To avoid confusion in the notation, from now in we will go back to write $Int_{\mathbb{P}_{\mathbb{D}}}(\mathbb{P}_{\mathbb{Z}})$ and $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$ for $\operatorname{Int}(\mathbb{P}_{\mathbb{Z}})$ and $\operatorname{Int}(\mathbb{P}_{\mathbb{Z}_{(p)}})$, respectively. Note that, if we consider $\mathbb{Q}[x]$ as subring of $\mathbb{P}_{\mathbb{Q}}[x]$ in the obvious way, then $\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}}) = \operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}(\mathbb{P}_{\mathbb{Z}}) \cap \mathbb{Q}[x]$.

The relation between $Int_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}})$ and $Int_{\mathbb{P}_{\mathbb{Q}}}(\mathbb{P}_{\mathbb{Z}})$ passes through a matrix representation of the rings $\mathbb{P}_{\mathbb{Z}}$ and $\mathbb{P}_{\mathbb{Z}_{(p)}}$. We denote by $\mathcal{M}_n(R)$ the ring of matrices of order *n* over *R*.

Proposition 3.1. [3, Proposition 2.2] *The following hold.*

- Let R be a commutative ring with identity such that 2 is a unit of R. Then, $\mathbb{P}_R \cong \mathcal{M}_2(R)$ as (1)R-algebras.
- Let $\mathcal{A} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a \equiv d, b \equiv c \mod 2 \right\} \subseteq \mathcal{M}_2(\mathbb{Z})$. Then, $\mathbb{P}_{\mathbb{Z}} \cong \mathcal{A}$ as \mathbb{Z} -algebras. (2)

Let D be a domain with quotient field K. We define

$$\operatorname{Int}_{K}(\mathcal{M}_{n}(D)) := \{f(x) \in K[x] \mid \forall A \in \mathcal{M}_{n}(D) \colon f(A) \in \mathcal{M}_{n}(D)\}$$

and

$$Int_{\mathcal{M}_n(K)}(\mathcal{M}_n(D)) := \\ = \{f(x) \in \mathcal{M}_n(K)[x] \mid \forall A \in \mathcal{M}_n(D) \colon f(A) \in \mathcal{M}_n(D) \}.$$

These rings roughly correspond, respectively, to $Int_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}})$ and $Int_{\mathbb{P}_{\mathbb{Q}}}(\mathbb{P}_{\mathbb{Z}})$.

Proposition 3.2. Let D be a domain with quotient field K. Then

$$\operatorname{Int}_{\mathcal{M}_n(K)}(\mathcal{M}_n(D)) \simeq \mathcal{M}_n(\operatorname{Int}_K(\mathcal{M}_n(D))).$$

Moreover, the following hold.

- The ideals of $Int_{\mathcal{M}_n(K)}(\mathcal{M}_n(D))$ are in 1-1 correspondence with the sets of the form (i) $\mathcal{M}_n(\mathscr{I})$, where \mathscr{I} is an ideal of $\mathrm{Int}_K(\mathcal{M}_n(D))$.
- (ii) The prime ideals of $Int_{\mathcal{M}_n(K)}(\mathcal{M}_n(D))$ are in 1-1 correspondence with the sets of the form $\mathcal{M}_n(\mathscr{P})$, where \mathscr{P} is a prime ideal of $\operatorname{Int}_K(\mathcal{M}_n(D))$.
- (iii) The maximal ideals of $Int_{\mathcal{M}_n(K)}(\mathcal{M}_n(D))$ are in 1-1 correspondence with the sets of the form $\mathcal{M}_n(\mathcal{M})$, where \mathcal{M} is a maximal ideal of $\operatorname{Int}_K(\mathcal{M}_n(D))$.

Proof. See Frisch [4, Theorem 7.2] and Frisch [4, Theorem 7.3]. The remaining part follows from Lam [8, Theorem 3.1].

Putting together these two results, we have the following theorem.

Theorem 3.3. Let p be an odd prime integer. Then, the prime ideals of $Int_{\mathbb{P}_Q}(\mathbb{P}_{\mathbb{Z}_{(p)}})$ are in 1–1 correspondence with the prime ideals of $Int_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$.

Proof. By Proposition 3.1, $\mathbb{P}_{\mathbb{Q}} \simeq \mathcal{M}_2(\mathbb{Q})$, and the isomorphism brings $\mathbb{P}_{\mathbb{Z}_{(p)}}$ into $\mathcal{M}_2(\mathbb{Z}_{(p)})$. By Proposition 3.2,

$$\begin{split} \mathrm{Int}_{\mathbb{P}_{\mathbb{Q}}}(\mathbb{P}_{\mathbb{Z}_{(p)}}) &\simeq \mathrm{Int}_{\mathcal{M}_{2}(\mathbb{Q})}(\mathcal{M}_{2}(\mathbb{Z}_{(p)})) \\ &\simeq \mathcal{M}_{2}(\mathrm{Int}_{\mathbb{Q}}(\mathcal{M}_{2}(\mathbb{Z}_{(p)}))) \simeq \mathcal{M}_{2}(\mathrm{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})); \end{split}$$

thus the prime ideals of $Int_{\mathbb{P}_{\mathbb{Q}}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$ are in bijective correspondence with the prime ideals of $Int_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$, as claimed.

The main advantage of this theorem is that $\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$ is a commutative ring properly contained in between the two well-studied rings $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$.

Proposition 3.4. The nonzero prime ideals P of $Int_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}})$ such that $P \cap \mathbb{Z} = (0)$ are pairwise uncomparable.

Proof. It is enough to notice that $Int_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}})S^{-1} = \mathbb{Q}[x]$, if $S = \mathbb{Z} \setminus (0)$. Then the prime ideals of $Int_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}})$ contracting to (0) in \mathbb{Z} are in 1-1 correspondence with the prime ideals of $\mathbb{Q}[x]$, which are not comparable (except (0)). This correspondence preserves the order, thus the statement follows. \Box

Theorem 3.5. The rings $\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}})$ and $\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$, for any prime p, have dimension 2.

Proof. The ring $\mathbb{Z}[x]$ is a Noetherian ring of dimension 2, and thus by Gilmer [5, Theorem 30.9 and Corollary 30.10] every overring of $\mathbb{Z}[x]$ has dimension at most 2. Since $\mathbb{Z}[x] \subseteq \operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}}) \subseteq \operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}(p)})$, it follows that the dimensions of $\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}})$ and $\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}(p)})$ are at most 2.

Fix now a prime *p*. By Proposition 2.1, we can find an integer split-quaternion q = a + b $\mathbf{i} + c$ $\mathbf{j} + d$ $\mathbf{k} \in \mathbb{P}_{\mathbb{Z}}$ such that its minimal polynomial $m_q(x)$ is irreducible modulo *p* and such that $\mathfrak{P}_{p\mathbb{Z},q}$ (if $p \neq 2$) or \mathfrak{M}_q (if p=2) is a maximal ideal of $\operatorname{Int}_{\mathbb{P}_Q}(\mathbb{P}_{\mathbb{Z}})$ over *p*. Then, its restriction $P_2 := \mathfrak{P}_{p\mathbb{Z},q} \cap \operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}})$ or $P_2 := \mathfrak{M}_q \cap \operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}})$ is a prime ideal of $\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}})$.

By construction, $m_q(x)$ is irreducible in $\mathbb{Q}[x]$, and thus $\mathfrak{P}_{m_q(x)}$ is a prime ideal of $\operatorname{Int}_{\mathbb{P}_Q}(\mathbb{P}_Z)$, which by Lemma 2.3 is contained inside $\mathfrak{P}_{p\mathbb{Z},q}$ and \mathfrak{M}_q ; hence, $P_1 := \mathfrak{P}_{m_q(x)} \cap \operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_Z)$ is a prime ideal of $\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_Z)$ inside P_2 . Therefore, $(0) \subseteq P_1 \subseteq P_2$ is a chain of prime ideals of $\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_Z)$; furthermore, the inclusions are strict since $m_q(x) \in P_1 \setminus (0)$, while $p \in P_2 \setminus P_1$. Hence, $(0) \subsetneq P_1 \subsetneq P_2$ is a chain of length 2, and thus dim $\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_Z) \geq 2$; therefore, the dimension must be exactly 2.

For $\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$, it is enough to note that the chain $(0) \subsetneq P_1 \subsetneq P_2$ lifts to a chain in $\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$ (since this ring is a localization of $\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}})$) and thus also $\dim (\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})) \ge 2$ and $\dim (\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})) = 2$.

Note that this replicates the same pattern of $Spec(Int(\mathbb{Z}))$ shown in [2, Proposition V.2.7]. The correspondence with matrix rings allow also to say something about $Int_{\mathbb{P}_0}(\mathbb{P}_{\mathbb{Z}_{(p)}})$.

Corollary 3.6. If p is an odd prime, then $\operatorname{Int}_{\mathbb{P}_Q}(\mathbb{P}_{\mathbb{Z}_{(p)}})$ has dimension 2. Furthermore, dim $(\operatorname{Int}_{\mathbb{P}_Q}(\mathbb{P}_{\mathbb{Z}})) \geq 2$.

Proof. By Theorem 3.3, the dimension of $Int_{\mathbb{P}_{\mathbb{Q}}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$ is the same of $Int_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$, which is 2 by Theorem 3.5. The last claim follows since $Int_{\mathbb{P}_{\mathbb{Q}}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$ is a localization of $Int_{\mathbb{P}_{\mathbb{Q}}}(\mathbb{P}_{\mathbb{Z}})$.

Theorem 3.3 does not work for p = 2, and thus the previous results do not allow to calculate the dimension of $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}(\mathbb{P}_{\mathbb{Z}})$. However, we conjecture that $\dim (\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}(\mathbb{P}_{\mathbb{Z}})) = \dim (\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}(\mathbb{P}_{\mathbb{Z}_{22}})) = 2$.

An important difference between $Int(\mathbb{Z})$ and $Int_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}})$ is that the latter is not integrally closed (and thus it is not a Prüfer domain); see Corollary 3.8 below. However, we can describe its integral closure by using algebraic integers.

Given a finite degree extension $\mathbb{Q}(\theta)$ of \mathbb{Q} , we indicate by \mathcal{A}_{θ} the ring of algebraic integers of $\mathbb{Q}(\theta)$. If $n \in \mathbb{N}$ is positive, the set of all algebraic integers of degree at most n over \mathbb{Q} is

$$\mathcal{A}_n := \bigcup_{[\mathbb{Q}(\theta):\mathbb{Q}] \le n} \mathcal{A}_{ heta};$$

similarly, if p is a prime number, we denote by $\mathcal{A}_{n,p}$ is the set of algebraic numbers that are root of a monic irreducible polynomial of degree n over $\mathbb{Z}_{(p)}$.

In [10] the authors define the set of integer-valued polynomials over A_n with rational coefficients to be the set

$$\operatorname{Int}(\mathcal{A}_n):=\bigcap_{\theta\in\mathcal{A}_n}\operatorname{Int}_{\mathbb{Q}}(\mathcal{A}_\theta).$$

The ring $Int(\mathcal{A}_n)$ can be seen as the set of all polynomials with rational coefficients that map \mathcal{A}_n into \mathcal{A}_n . They also show that $Int_{\mathbb{Q}}(\mathcal{A}_n)$ is a Prüfer domain for every n ([10, Theorem 3.9]).

Theorem 3.7. Let p be an odd prime integer. Then $\operatorname{Int}_{\mathbb{Q}}(\mathcal{A}_2)_{(p)} = \operatorname{Int}_{\mathbb{Q}}(\mathcal{A}_{2,p})$ is the integral closure of $\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$ in $\mathbb{Q}[x]$.

Proof. By Loper and Werner [10, Theorem 4.6], $Int_{\mathbb{Q}}(\mathcal{A}_2)$ is the integral closure of $Int_{\mathbb{Q}}(\mathcal{M}_2(\mathbb{Z}))$. Using Proposition 3.1, and recalling that the localization at prime integers preserves the integral closure, we have that:

$$\begin{aligned} \operatorname{Int}_{\mathbb{Q}}(\mathcal{A}_{2})_{(p)} &= \overline{\operatorname{Int}_{\mathbb{Q}}(\mathcal{M}_{2}(\mathbb{Z}))}_{(p)} = \overline{\operatorname{Int}_{\mathbb{Q}}(\mathcal{M}_{2}(\mathbb{Z}))_{(p)}} = \\ &= \overline{\operatorname{Int}_{\mathbb{Q}}(\mathcal{M}_{2}(\mathbb{Z})_{(p)})} = \overline{\operatorname{Int}_{\mathbb{Q}}(\mathcal{M}_{2}(\mathbb{Z}_{(p)}))} = \overline{\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})} \end{aligned}$$

Finally, using [11, Theorem 13] with $A = \mathbb{P}_{\mathbb{Z}_{(p)}}$, we have that $\overline{\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})}$ is also the integral closure of $\operatorname{Int}_{\mathbb{Q}}(\mathcal{A}_{2,p})$.

Corollary 3.8. The ring $Int_{\mathbb{O}}(\mathbb{P}_{\mathbb{Z}})$ is not integrally closed.

Proof. If $\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}})$ is integrally closed, then its localization at an odd prime p, $\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$, is integrally closed too. Thus, from Theorem 3.7, $\overline{\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})} = \operatorname{Int}_{\mathbb{Q}}(\mathcal{A}_2)_{(p)}$ and this is Prüfer. Since $\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}}) \cong \operatorname{Int}_{\mathbb{Q}}(\mathcal{M}_2(\mathbb{Z}_{(p)}))$, it follows that the ring

$$\operatorname{Int}_{\mathbb{Q}}(B, M_2(\mathbb{Z}_{(p)})) := \{ f \in \mathbb{Q}[x] | f(B) \in M_2(\mathbb{Z}_{(p)}) \}$$

is an overring of $\operatorname{Int}_{\mathbb{Q}}(M_2(\mathbb{Z}_{(p)}))$, for every matrix $B \in M_2(\mathbb{Z}_{(p)})$. Taking $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and arguing as in [10, §4], it can be shown that $\operatorname{Int}_{\mathbb{Q}}(B, M_2(\mathbb{Z}_{(p)}))$ is not integrally closed. The claim follows. \Box

4. The ideal pInt_Q($\mathbb{P}_{\mathbb{Z}}$)

In this section we study in more detail the ideal $pInt_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}})$ generated by a prime number p (not necessarily odd). Our first result can be seen as a refinement of the proof of Theorem 3.5.

Proposition 4.1. Let p be a prime number. Then, every prime ideal of $Int_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}})$ containing p is maximal.

Proof. We follow the proof of Cahen and Chabert [2, Lemma V.1.9].

Let $u_1, ..., u_k$ be a set of residues of $\mathbb{P}_{\mathbb{Z}}/p\mathbb{P}_{\mathbb{Z}}$ (with $k = p^4$), and let P be a prime ideal of $\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}})$ containing p. Take any $a(x) \in \operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}})$, and let $a_i(x) := a(x) - u_i$. Let $b(x) := a_1(x) \cdots a_k(x)$: by construction, for every $q \in \mathbb{P}_{\mathbb{Z}}$ there is an i such that $a(q) \equiv u_i(\operatorname{mod} p\mathbb{P}_{\mathbb{Z}})$.

Since the a_i have coefficients in the commutative ring \mathbb{Q} , we have $b(q) = a_1(q) \cdots a_k(q)$: hence, $b(q) \in p\mathbb{P}_{\mathbb{Z}}$ and so $b(x) \in p \operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}}) \subseteq P$; since P is prime, there must be an i such that $a_i(x) \in P$. However, $a_i(x) \equiv u_i(\operatorname{mod} p\mathbb{P}_{\mathbb{Z}})$, and thus $\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}})/P$ is isomorphic to $\mathbb{P}_{\mathbb{Z}}/p\mathbb{P}_{\mathbb{Z}} \simeq \mathbb{P}_{\mathbb{Z}_p}$. Hence, P is maximal, as claimed.

Corollary 4.2. Let p be an odd prime integer. Then, every prime ideal of $Int_{\mathbb{P}_{\mathbb{Q}}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$ containing p is maximal.

Proof. It is enough to use Proposition 4.1 and the correspondence of Theorem 3.3. \Box

Remark 4.3.

- The previous two results allow to give an alternative proof of Theorem 3.5. Indeed, if

 Q1 ⊆ Q2 ⊆ Q3 is a chain of prime ideals of length 3, then either Q1 ∩ Z = Q2 ∩ Z =
 or Q2 ∩ Z = Q3 ∩ Z = pZ, for some prime number p. The latter case is made impossible by Proposition 4.1 (as Q2 contains p but is not maximal); on the other hand the former case would imply that two nonzero prime ideals of Int_{PQ}(PZ) over (0) are comparable, against Proposition 3.4.
- (2) The proof of Proposition 4.1 does *not* work in the ring $Int_{\mathbb{P}_{\mathbb{Q}}}(\mathbb{P}_{\mathbb{Z}})$, since the evaluation of a product of polynomials cannot be done separately for each factor, and thus $b(q) \neq a_1(q) \cdots a_k(q)$ in general. Nevertheless, we conjecture (but we don't have a proof) that the same property holds also in $Int_{\mathbb{P}_{\mathbb{Q}}}(\mathbb{P}_{\mathbb{Z}})$.

A consequence of Proposition 4.1 is that the ideals $pInt_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$ are not prime. We now want to find an explicit description of the polynomials in $Int_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$ and, as a corollary, to find two polynomials outside $pInt_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$ whose product is inside the ideal.

Proposition 4.4. Let R, S be commutative rings and let $\pi: R \to S$ be a homomorphism. Then, the natural map

$$\varphi \colon \mathbb{P}_R \to \mathbb{P}_S$$

 $a + b \mathbf{i} + c \mathbf{j} + d \mathbf{k} \mapsto \pi(a) + \pi(b) \mathbf{i} + \pi(c) \mathbf{j} + \pi(d) \mathbf{k}$

is a ring homomorphism. Furthermore, if π is surjective then φ is surjective and ker $\varphi = (\text{ker}\pi)\mathbb{P}_R = \mathbb{P}_{\text{ker}\pi} = \{a + b \ \mathbf{i} + c \ \mathbf{j} + d \ \mathbf{k} \mid a, b, c, d \in \text{ker}\pi\}$; in particular, $\mathbb{P}_R/\text{ker}\varphi \simeq \mathbb{P}_S$.

Proof. Straightforward.

An important particular case is when $R = \mathbb{Z}$ or $R = \mathbb{Z}_{(p)}$ and $S = \mathbb{Z}_p$: in this case, the kernel of π is generated by p, and thus we obtain the well-known isomorphisms $\frac{\mathbb{P}_{\mathbb{Z}}}{p\mathbb{P}_{\mathbb{Z}}} \simeq \frac{\mathbb{P}_{\mathbb{Z}_p}}{p\mathbb{P}_{\mathbb{Z}}} \simeq \mathbb{P}_{\mathbb{Z}_p}$.

In particular, the previous proposition shows that polynomial evaluation behaves well with respect to quotients. Given a surjection $\pi: R \to S$ and a polynomial $f(x) = \sum_{t=0}^{n} p_t \ x^t \in R[x]$, we denote by $\overline{f}(x) = \sum_{t=0}^{n} \pi(p_t) \ x^t \in S[x]$ the polynomial obtained by reducing the coefficients modulo ker φ . Then, for every $q \in \mathbb{P}_{\mathbb{Z}}$, we have $\pi(f(q)) = \overline{f}(\pi(q))$.

Proposition 4.5. Let p be a prime integer. Let $f(x) \in \mathbb{Z}[x]$ and $\overline{f}(x) \in \mathbb{Z}_p[x]$ be as above. Given an integer n > 1 such that $n = p^{\alpha}m$ with $p \not\mid m$, then $\frac{1}{n}f(x) \in \operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$ if and only if $f(q) \in p^{\alpha}\mathbb{P}_{\mathbb{Z}_{(p)}}$, for all $q \in \mathbb{P}_{\mathbb{Z}_{(p)}}$. In particular if $\alpha = 1$, $\frac{1}{n}f(x) \in \operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$ if and only if $\overline{f}(q) = \overline{0}$ in $\mathbb{P}_{\mathbb{Z}_p}$, for all $q \in \mathbb{P}_{\mathbb{Z}_p}$.

Proof. We have that

$$\frac{1}{n}f(x)\in \mathrm{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}}) \Longleftrightarrow \frac{1}{n}f(\mathbf{q})\in \mathbb{P}_{\mathbb{Z}_{(p)}} \quad \forall q\in \mathbb{P}_{\mathbb{Z}_{(p)}} \Longleftrightarrow f(\mathbf{q})\in n\mathbb{P}_{\mathbb{Z}_{(p)}} \quad \forall q\in \mathbb{P}_{\mathbb{Z}_{(p)}}.$$

Since $p \not\mid m$, we have $n \mathbb{P}_{\mathbb{Z}_{(p)}} = p^{\alpha} \mathbb{P}_{\mathbb{Z}_{(p)}}$.

Lemma 4.6. Let R be a commutative domain. Take $q \in \mathbb{P}_R \setminus R$ and let $m_q(x) \in R[x]$ be its minimal polynomial over R. If a polynomial $f(x) \in R[x]$ is such that f(q) = 0, then $m_q(x) | f(x)$ in R[x].

Proof. Since $m_q(x)$ is monic we can divide f(x) by $m_q(x)$ obtaining

$$f(x) = g(x)m_{q}(x) + r(x),$$

for some $g(x), r(x) \in R[x]$. In particular r(x) = ax + b is linear as $m_q(x)$ is of degree two. Since R[x] is contained in the center of $\mathbb{P}_R[x]$, we can evaluate the polynomial relation above in q, obtaining $0 = f(q) = g(q) \cdot 0 + aq + b$. Since R is a domain and $q \notin R$, necessarily a = b = 0. \Box

We observe that Lemma 4.6 does not hold if $f(x) \in \mathbb{P}_R[x] \setminus R[x]$. For example, consider $\mathbf{i} \in \mathbb{P}_{\mathbb{Z}}$ and $f(x) = x^3 + \mathbf{i}x + (\mathbf{i}+1)x + \mathbf{i}+1$. Then $f(\mathbf{i}) = 0$ but $f(x) = (x^2+1)(x + \mathbf{i}) + \mathbf{i}x + 1$ and the remainder is nonzero.

Corollary 4.7. With the hypothesis and notation of Proposition 4.5, let p be a prime integer and n = pm with $p \not\mid m$. Then $\frac{1}{n}f(x) \in \text{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$ if and only if $\overline{f}(x)$ is divided by all the minimal polynomials of the elements of $\mathbb{P}_{\mathbb{Z}_p}$.

Proof. It is an immediate consequence of Proposition 4.5 and Lemma 4.6.

Using the previous Corollary we can construct a nontrivial element of $Int_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$.

Example 4.8. The polynomial

$$\Phi_p(x) = \frac{1}{p}(x^p - x)(x^{p^2} - x)$$

belongs to $\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$.

By Proposition 4.5, it is sufficient to show that $f(x) = (x^p - x)(x^{p^2} - x) \in \mathbb{Z}[x]$ vanishes over all elements of $\mathbb{P}_{\mathbb{Z}_p}$. Observe that every monic and irreducible polynomial of $\mathbb{Z}_p[x]$ of degree one or two is a factor of f(x). In particular, if g(x) is a linear polynomial then $g(x)^2$ divides f(x), since g(x) divides both $x^p - x$ and $x^{p^2} - x$. By Corollary 4.7, this also means that the minimal polynomial of every split-quaternion of $\mathbb{P}_{\mathbb{Z}_p}$ is a factor of f(x).

In particular we can show that every monic and quadratic polynomial of $\mathbb{Z}_p[x]$ is the minimal polynomial for some element of $\mathbb{P}_{\mathbb{Z}_p}$. The proof is *mutatis mutandis* the same as the proof of [14, Lemma 3.5]. This means that the polynomial $\Phi_p(x)$ does not contain any redundant factor.

Proposition 4.9. With the above notation we have the following proper inclusions:

$$\mathbb{Z}_{(p)}[x] \subsetneq \operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}}) \subsetneq \operatorname{Int}(\mathbb{Z}_{(p)}).$$

Proof. The first inclusion follows from the fact that $\mathbb{Z} \subseteq \mathbb{P}_{\mathbb{Z}}$ and thus $\mathbb{Z}_{(p)}[x] \subseteq \mathbb{P}_{\mathbb{Z}_{(p)}}[x] \cap \mathbb{Q}[x] \subseteq \operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$. It is proper since the polynomial $\Phi_p(x)$ given in Example 4.8 belongs to $\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$ but not to $\mathbb{Z}_{(p)}[X]$.

The second inclusion is straightforward since $\mathbb{Z}_{(p)} = \mathbb{P}_{\mathbb{Z}_{(p)}} \cap \mathbb{Q}$.

To see that it is proper, consider the "binomial polynomial" $f(x) = \frac{x(x-1)(x-2)\dots(x-p+1)}{p} \in Int(\mathbb{Z}_{(p)})$. If p=2 then $f(\mathbf{i}) = \frac{-1-\mathbf{i}}{2} \notin \mathbb{P}_{\mathbb{Z}_{(2)}}$; if p is odd then pf(x) is not divided by $x^2 + 1$

(the minimal polynomial of i), and thus $f(\mathbf{i}) \notin \mathbb{P}_{\mathbb{Z}_{(p)}}$ by Corollary 4.7. It follows that $f(x) \notin \operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}}).$

The fact that the two containments of the previous proposition are strict also follows from [12, Theorem 2.12] (the first one) and [13, Theorem 2.11] (the second one).

Proposition 4.10. The ideal $pInt_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$ is not a prime ideal of $Int_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$.

Proof. Let us consider the polynomials:

$$f(x) = (x^{p} - x)^{2} \in \mathbb{Z}[x],$$

$$g(x) = \frac{1}{p}(x^{p^{2}} - x)^{2} \in \mathbb{Q}[x],$$

$$F(x) = f(x)g(x) = \frac{1}{p}(x^{p} - x)^{2}(x^{p^{2}} - x)^{2} \in \mathbb{Q}[x].$$

These three polynomials are elements of $Int_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$. Indeed, for f(x) it follows from the inclusion $\mathbb{Z}[x] \subseteq \operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$. For F(x) and g(x) observe that they are equal to $\Phi_p(x)$ (Example 4.8) multiplied by a polynomial with integer coefficients.

We claim that $F(x) \in pInt_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$ while f(x) and g(x) do not belong to this ideal.

Indeed, $\frac{1}{p}F(x) = (\Phi_p(x))^2 \in \operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$ and thus $F(x) \in p\operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$. As regards f(x), we have that $\overline{f}(x)$ is not divisible by any quadratic irreducible polynomial over \mathbb{Z}_p , and thus by Corollary 4.7 $\frac{1}{p}f(x) \notin \operatorname{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$.

For g(x), consider $\frac{1}{p}g(x) = \frac{1}{p^2}(x^{p^2} - x)^2$. If p = 2 then $\frac{1}{2}g(\mathbf{i}) = -\frac{\mathbf{i}}{2} \notin \mathbb{P}_{\mathbb{Z}_{(2)}}$. If p is odd, then we set $q := \mathbf{i} + (p-1)$ k. We have that $q^2 = p^2 - 2p$, and if we raise q to an even power greater than 2, we obtain an integer divisible by p^2 . Since $\frac{1}{p}g(x)$ is a central polynomial, we can evaluate it in q using its factorization. Thus, we have

$$\frac{1}{p}g(\mathbf{q}) = \frac{(\mathbf{q}^{p^2} - q)^2}{p^2} = \frac{\mathbf{q}^{2p^2} + \mathbf{q}^2 - 2\mathbf{q}^{p^2 + 1}}{p^2} = m + \frac{p-2}{p} \notin \mathbb{P}_{\mathbb{Z}_{(p)}}$$

for some $m \in \mathbb{Z}$.

Since F(x) = f(x)g(x), we can conclude that $pInt_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$ is not a prime ideal of $Int_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}_{(p)}})$.

Acknowledgements

We would like to thank the referee for his/her useful suggestions.

Funding

The second and third authors were partially supported by GNSAGA of Istituto Nazionale di Alta Matematica.

References

- Allen, D. B. (1989). Notes on Localization in Noncommutative Noetherian Rings. Cuadernos de Algebra, 9. [1] Granada: University of Granada.
- [2] Cahen, P. J., Chabert, J. L. (1997). Integer-valued polynomials. Providence, RI: Amer. MAth. Soc. Surveys and Monographs.
- Cigliola, A., Loper, K.A., Werner, N. (2015). Split quaternions and integer-valued polynomials. Commun. [3] Algebra 43(1):182-196. DOI: 10.1080/00927872.2014.897561.

- [4] Frisch, S. (2013). Integer-valued polynomials on algebras. J. Algebra 373:414–425. DOI: 10.1016/j.jalgebra. 2012.10.003.
- [5] Gilmer, R. (1992). Multiplicative ideal theory. Queen's Papers in Pure and Applied Mathematics, 90, Corrected Reprint of the 1972 Edition. Kingston, ON: Queen's University.
- [6] Goldie, A. W. (1967). Localization in noncommutative Noetherian rings. J. Algebra 5(1):89–105. DOI: 10. 1016/0021-8693(67)90028-2.
- [7] Goodearl, K. R., Warfield, R. B. Jr., (2004). An Introduction to Noncommutative Noetherian Rings. Cambridge: Cambridge University Press.
- [8] Lam, T. Y. (2001). A First Course in Noncommutative Rings. Mathematics, 131. New York: Springer-Verlag.
- [9] Lam, T. Y. (1999). Lectures on Modules and Rings. Graduate Texts in Mathematics, 189. New York: Springer-Verlag.
- [10] Loper, K. A., Werner, N. (2012). Generalized rings of integer-valued polynomials. J. Num. Theory 132(11): 2481–2490. DOI: 10.1016/j.jnt.2012.05.009.
- [11] Peruginelli, G., Werner, J. N. (2014). Integral closure of rings of integer-valued polynomials on algebras. In: Fontana, M., Frisch, S., Glaz, S., eds. Commutative Algebra: Recent Advances in Commutative Rings, Integer-Valued Polynomials, and Polynomial Functions. New York: Springer, p. 293–305.
- [12] Peruginelli, G., Werner, N. J. (2017). Non-triviality conditions for integer-valued polynomial rings on algebras. *Monatsh. Math.* 183(1):177–189. DOI: 10.1007/s00605-016-0951-8.
- [13] Peruginelli, G., Werner, N. J. (2018). Decomposition of integer-valued polynomial algebras. J. Pure Appl. Algebra 222(9):2562–2579. DOI: 10.1016/j.jpaa.2017.10.007.
- [14] Werner, N. J. (2010). Integer-valued polynomials over quaternion rings. J. Algebra 324(7):1754–1769. DOI: 10.1016/j.jalgebra.2010.06.024.
- [15] Werner, N. J. (2012). Integer-valued polynomials over matrix rings. Commun. Algebra 40(12):4717–4726. DOI: 10.1080/00927872.2011.606859.