

Multiplicative properties of integer valued polynomials over split-quaternions

Antonio Cigliola, Dario Spirito \& Francesca Tartarone

To cite this article: Antonio Cigliola, Dario Spirito \& Francesca Tartarone (2021) Multiplicative properties of integer valued polynomials over split-quaternions, Communications in Algebra, 49:3, 1338-1351, DOI: 10.1080/00927872.2020.1834572

To link to this article: https://doi.org/10.1080/00927872.2020.1834572

Published online: 28 Oct 2020.

Submit your article to this journal

Article views: 52

View related articles

View Crossmark data ©

Multiplicative properties of integer valued polynomials over split-quaternions

Antonio Cigliola ${ }^{\text {a }}$, Dario Spirito ${ }^{\text {b }}$, and Francesca Tartarone ${ }^{\text {c }}$
${ }^{\text {ad Dipartimento di Scienze Statistiche, Sapienza Università di Roma, Istituto Comprensivo "G. Bagnera", Roma, }}$ Italy; ${ }^{\text {b }}$ Dipartimento di Matematica "Tullio Levi Civita", Università degli Studi di Padova, Padova, Italy; ${ }^{\text {c }}$ Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Roma, Italy

ABSTRACT

We study localization properties and the prime spectrum of the integervalued polynomial ring $\operatorname{lnt}_{\mathbb{P}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Z}}\right)$, where $\mathbb{P}_{\mathbb{Z}}$ (respectively $\mathbb{P}_{\mathbb{Q}}$) is the algebra of split-quaternion over \mathbb{Z} (respectively over \mathbb{Q}).

ARTICLE HISTORY

Received 2 July 2020
Revised 18 September 2020
Communicated by Alfred
Geroldinger

KEYWORDS

Krull dimension; prime ideal; quaternion algebra

2010 MATHEMATICS SUBJECT CLASSIFICATION
Primary: 11R52;
16H05; 13F20

Introduction

In [14] N . Werner studied the ring of integer-valued polynomials in a noncommutative setting, by considering quaternion algebras. Precisely, he considered the algebras $\mathbb{H}_{\mathbb{Z}}$ and $\mathbb{H}_{\mathbb{Q}}$ (respectively over \mathbb{Z} and over \mathbb{Q}) generated by the unit elements $1, \mathbf{i}, \mathbf{j}, \mathbf{k}$, linked by the relations $\mathbf{i}^{2}=\mathbf{j}^{2}=$ $\mathbf{k}^{2}=-1, \mathbf{i} \mathbf{j}=\mathbf{k}=-\mathbf{j} \mathbf{i}, \mathbf{j} \mathbf{k}=\mathbf{i}=-\mathbf{k} \mathbf{j}$ and $\mathbf{k} \mathbf{i}=\mathbf{j}=-\mathbf{i} \mathbf{k}$, and considered the set $\operatorname{Int}_{\mathbb{H}_{\mathbb{Q}}}\left(\mathbb{H}_{\mathbb{Z}}\right)$ of all polynomials $f \in \mathbb{H}_{\mathbb{Q}}[x]$ such that $f\left(\mathbb{H}_{\mathbb{Z}}\right) \subseteq \mathbb{H}_{\mathbb{Z}}$. After proving that $\operatorname{Int}_{\mathbb{H}_{\mathbb{Q}}}\left(\mathbb{H}_{\mathbb{Z}}\right)$ is indeed a noncommutative ring (which strictly contains $\mathbb{H}_{\mathbb{Q}}[x]$), he investigated the ideal structure of this ring, describing some prime ideals above the zero and the maximal ideals of $\mathbb{H}_{\mathbb{Z}}$.

Moving from these ideas, in [3] A. Cigliola, K.A. Loper and N. Werner focused on similar problems in a different setting: instead of $\mathbb{H}_{\mathbb{Z}}$ they considered the set of integer split-quaternions $\mathbb{P}_{\mathbb{Z}}$, i.e. the \mathbb{Z}-algebra generated by the unit elements $1, \mathbf{i}, \mathbf{j}, \mathbf{k}$ with the relations $-\mathbf{i}^{2}=\mathbf{j}^{2}=$ $\mathbf{k}^{2}=1$ and $\mathbf{i} \mathbf{j} \mathbf{k}=1$ (see Definition 1.1).

In this paper, we continue the study of the ring $\mathbb{P}_{\mathbb{Z}}($ Section 1$)$ and of the $\operatorname{ring}^{\operatorname{Int}} \mathbb{P}_{\mathbb{P}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Z}}\right)$ of integer-valued polynomials over $\mathbb{P}_{\mathbb{Z}}$ (Section 2). We study some denominator sets of $\mathbb{P}_{\mathbb{Z}}$ and $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Z}}\right)$ that are not subsets of \mathbb{Z} (in particular, they are not central) and their ring of fractions. Thus, we partially answer to one of the open questions posed in $[3, \$ 5]$ which asks whether it is possible to find and to localize $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Z}}\right)$ with respect to noncentral sets. We then study the ring $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right)$ of the polynomials in $\mathbb{Q}[x]$ that are integer valued over $\mathbb{P}_{\mathbb{Z}}$. There is a strict connection between the prime spectrum of this ring and the prime spectrum of $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Z}}\right)$. This allows to
calculate the Krull dimension of $\operatorname{Int}_{\mathbb{P}_{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$, for an odd prime integer p, starting from the dimension of $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right)$ and thus to get a partial but interesting information about the Krull dimension of $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Z}}\right)$. Finally, in Section 4 , we study in more detail the ideal p Int $\mathbb{Q}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right)$ and show that it is not prime. In this last Section we will be able to construct explicitly some polynomials of $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$.

Throughout the paper, all the rings we consider are unitary but not necessarily commutative.

1. Localizations of $\mathbb{P}_{\mathbb{Z}}$

We recall some definitions and basic properties.
Definition 1.1. Let R be a commutative ring. We denote by \mathbb{P}_{R} the R-algebra generated by the four unit elements $1, \mathbf{i}, \mathbf{j}$ and \mathbf{k} with the relations

$$
-\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=\mathbf{i} \mathbf{j} \mathbf{k}=1
$$

Formally $\mathbb{P}_{R}:=\{\mathrm{q}=a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k} \mid a, b, c, d \in R\}$.
We call \mathbb{P}_{R} the ring of split-quaternions over R.
Let $\mathrm{q}=a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k} \in \mathbb{P}_{R}$, then:
(a) a, b, c, and d are the coefficients of q , and a is the real part of q ;
(b) the bar conjugate of q is $\overline{\mathrm{q}}:=a-b \mathbf{i}-c \mathbf{j}-d \mathbf{k}$;
(c) the norm of q is $N(\mathrm{q}):=\mathrm{q} \overline{\mathrm{q}}=a^{2}+b^{2}-c^{2}-d^{2}$;
(d) the trace of q is $T(\mathrm{q})=\mathrm{q}+\overline{\mathrm{q}}=2 a$;
(e) the minimal polynomial of q is ([3, Definition 2.4])

$$
m_{\mathrm{q}}(x):= \begin{cases}x-q & \text { if } \mathrm{q} \in \mathrm{R} \\ x^{2}-T(\mathrm{q}) x+N(\mathrm{q}) & \text { if } \mathrm{q} \in \mathbb{P}_{\mathrm{R}} \backslash \mathrm{R} .\end{cases}
$$

where $m_{\mathrm{q}}(x)$ is minimal in the way that $m_{\mathrm{q}}(\mathrm{q})=0$ and that $m_{\mathrm{q}}(x)$ is the monic polynomial of least degree having q as a root.

In this section, we study some localizations of $\mathbb{P}_{\mathbb{Z}}$. We start with the description of its prime and maximal ideals. Recall that an ideal P of a (not necessarily commutative) ring R is prime if, given $a, b \in R$ such that $a P b \subseteq P$, then $a \in P$ or $b \in P$.
Theorem 1.2. [3, Theorem 2.11]. The prime ideals of $\mathbb{P}_{\mathbb{Z}}$ are:
(i) (0);
(ii) $\quad p \mathbb{P}_{\mathbb{Z}}$ where p is an odd prime of \mathbb{Z};
(iii) $\mathscr{M}=(1+\mathbf{i} ; 1+\mathbf{j})$.

Moreover, the primes $p \mathbb{P}_{\mathbb{Z}}$ and \mathscr{M} are maximal, and \mathscr{M} is the only prime ideal containing 2.
Lemma 1.3. Let $\mathrm{q} \in \mathbb{P}_{\mathbb{Z}}$ such that $2 \mid N(\mathrm{q})$. Then $\mathrm{q} \in \mathscr{M}$. In particular \mathscr{M} contains all the zerodivisors of $\mathbb{P}_{\mathbb{Z}}$.

Proof. Let $\mathrm{q}=a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k}$ be such that $N(\mathrm{q})=a^{2}+b^{2}-c^{2}-d^{2}=2 m$, for some $m \in \mathbb{Z}$. By hypothesis, q must have zero, two or four even coefficients. In the case that all coefficients are even, then trivially $\mathrm{q} \in(2) \subseteq \mathscr{M}$. If q has exactly two even coefficients, then q is congruent modulo $2 \mathbb{P}_{\mathbb{Z}}$ to the sum of two of $1, \mathbf{i}, \mathbf{j}$ and \mathbf{k}, and all of them are elements of \mathscr{M}. Finally, if all coefficients of q are odd, then $\mathrm{q} \equiv 1+\mathbf{i}+\mathbf{j}+\mathbf{k}\left(\bmod 2 \mathbb{P}_{\mathbb{Z}}\right)$, and so $\mathrm{q} \in \mathscr{M}$ since $1+\mathbf{i}+\mathbf{j}+\mathbf{k}=(1+\mathbf{i})(1+\mathbf{j}) \in \mathscr{M}$.

Definition 1.4. Let R be a ring and S a multiplicative subset in R. We say that S is a right denominator set if:
(i) for any $a \in R$ and $s \in S, a S \cap s R \neq \emptyset$ (this condition is known as right Ore condition and S is called a right Ore set);
(ii) for $a \in R$, if $s^{\prime} a=0$ for some $s^{\prime} \in S$, then $a s=0$ for some $s \in S$ (we say that S is right reversible).

Remark 1.5.
(a) We can define left denominator sets in a completely symmetrical way.
(b) Condition (ii) (reversibility) is automatically satisfied when S does not contain zero-divisors.
(c) It is easily seen that the multiplicative subsets contained in the center of R are always denominator subsets.
By Lam [9, Theorem 10.6], if R is a ring and S a multiplicative subset of R, then R has a right ring of fractions with respect to S (namely, the ring $R S^{-1}:=\left\{a s^{-1} \mid a \in R, s \in S\right\}$) if and only if S is a right denominator set. Similarly we can construct the ring $S^{-1} R:=\left\{s^{-1} a \mid a \in R, \quad s \in S\right\}$ if and only if S is a left denominator set. If S is both a right and left denominator set, then $R S^{-1} \simeq$ $S^{-1} R$ by Lam [9, Corollary 10.14].

Lemma 1.6. Let R be a commutative ring and S a multiplicative subset of \mathbb{P}_{R}, closed under norm (i.e., if $s \in S$ then $N(s) \in S$). Then S verifies both the right and the left Ore condition.

Proof. Fix $a \in \mathbb{P}_{R}$ and $s \in S$. Since $N(s) \in R$ is a central element, we have that $a N(s)=N(s) a$. It follows that $a N(s)=s(\bar{s} a)$, so S is a right Ore set since $a S \cap s \mathbb{P}_{R} \neq \emptyset$. Analogously, $(a \bar{s}) s=N(s) a$ so S is a left Ore set since $S a \cap \mathbb{P}_{R} s \neq \emptyset$.

By the previous lemma, if $S=\mathcal{R}(R)$ is the set of all (right and left) regular elements of R, then S is a denominator set and $R S^{-1}$ is the total ring of fractions of R, which we denote by $\mathcal{Q}(R)$.

For commutative rings, the most important way of constructing localizations of a ring R is through the sets $R \backslash P$, where P is a prime ideal; however, if R is not commutative, the complement of a prime ideal may not be multiplicatively closed. For example, if $p=2 k+1$ is an odd prime number, then $p \mathbb{P}_{\mathbb{Z}}$ is prime, but $\mathbb{P}_{\mathbb{Z}} \backslash p \mathbb{P}_{\mathbb{Z}}$ is not multiplicatively closed since $((k+1)+k \mathbf{j})((k+1)-k \mathbf{j})=p \in p \mathbb{P}_{\mathbb{Z}}$.

Following the notation of Goldie [6], we give the following definition:
Definition 1.7. Let be given a ring R and let Q be a proper prime ideal of R. We set:

$$
\mathscr{C}(Q):=\{x \in R \mid x r \notin Q, \forall r \notin Q\},
$$

and

$$
\mathscr{C}^{\prime}(Q):=\{x \in R \mid r x \notin Q, \forall r \notin Q\} .
$$

Proposition 1.8. Let R be a ring and let $Q \subsetneq R$ be a prime ideal of R. Then $\mathscr{C}(Q)$ is a multiplicatively closed subset of R containing 1 but not 0 , and $\mathscr{C}(Q) \subseteq R \backslash Q$. The same properties hold for $\mathscr{C}^{\prime}(Q)$.

Proof. For each $r \notin Q$, we have that $1 \cdot r=r \notin Q$ and that $0 \cdot r \in Q$. Then, by definition, $1 \in$ $\mathscr{C}(Q)$ and $0 \notin \mathscr{C}(Q)$. Take now $a, b \in \mathscr{C}(Q)$ and $r \notin Q$. Since $b \in \mathscr{C}(Q)$, then $b r \notin Q$. Again, since $a \in \mathscr{C}(Q)$, we have $a(b r) \notin Q$. Thus for all $r \notin Q$ we have $(a b) r=a(b r) \notin Q$.

Finally, if $x \in \mathscr{C}(Q)$ then, since $1 \notin Q$, we have $x \cdot 1=x \notin Q$. Hence, $\mathscr{C}(Q) \subseteq R \backslash Q$.

Proposition 1.9. Let R be a ring and let $Q \subsetneq R$ be a prime ideal of R. Then $\mathscr{C}(Q)$ is the set of left regular elements of R modulo Q and $\mathscr{C}^{\prime}(Q)$ is the set of right regular elements of R modulo Q.

Proof. Take $x \in R$. Then x is a left zero-divisor modulo Q if and only if there is $r \in R / Q, r \neq 0$, such that $x r=0$. This is equivalent to saying that there is an $r \notin Q$ such that $x r \in Q$. In other words, $x \notin \mathscr{C}(Q)$. Similarly for $\mathscr{C}^{\prime}(Q)$.

In particular, we have that $\mathscr{C}(0)=\mathcal{R}_{l}(R)$ is the set of the left regular elements of R, while $\mathscr{C}^{\prime}(0)=\mathcal{R}_{r}(R)$ is the set of the right regular elements of R.

We now focus on some properties of the sets $\mathscr{C}(Q)$ associated to the prime ideals of $\mathbb{P}_{\mathbb{Z}}$.
Proposition 1.10. Let Q be a prime ideal of $\mathbb{P}_{\mathbb{Z}}$. Then:
(i) $\mathscr{C}(Q)$ is closed under bar conjugation;
(ii) $\mathscr{C}(Q)$ is closed under norm;
(iii) $\mathscr{C}(Q)=\left\{x \in \mathbb{P}_{\mathbb{Z}} \mid N(x) \notin Q\right\}$;
(iv) $\mathscr{C}(Q)$ does not contain any zero-divisor.

Proof. By Goodearl and Warfield [7, Proposition 1.6] $\mathbb{P}_{\mathbb{Z}}$ is a Noetherian ring. Thus, from [6, Section 3], $\mathscr{C}(Q)=\mathscr{C}^{\prime}(Q)$.

Consider first $Q=(0)$. Then $\mathscr{C}(0)$ equals $\mathcal{R}\left(\mathbb{P}_{\mathbb{Z}}\right)$, the set of all (two-sided) regular elements, and so

$$
\mathscr{C}(Q)=\mathcal{R}\left(\mathbb{P}_{\mathbb{Z}}\right)=\left\{x \in \mathbb{P}_{\mathbb{Z}} \mid N(x) \neq 0\right\} .
$$

This proves the claim in the case $Q=(0)$.
Let now be $Q=p \mathbb{P}_{\mathbb{Z}}$, for an odd prime integer p. We notice that:

- $\mathscr{C}(Q)(\bmod Q)=\mathscr{C}(\overline{0})$ in $\mathbb{P}_{\mathbb{Z}} / Q=\mathbb{P}_{\mathbb{Z}_{p}}$ (apply Proposition 1.9);
- $N(x)(\bmod p)=N(\bar{x})$, for $x \in \mathbb{P}_{\mathbb{Z}}$ and $\bar{x}=x\left(\bmod p \mathbb{P}_{\mathbb{Z}}\right)$.

Using these equalities, points (i)-(ii)-(iii) reduce to the case $Q=(0)$, which has been already proved. For $p=2$, the same reasoning applies reducing modulo \mathscr{M}.

For the point (iv), if $p=2$ the claim follows from Lemma 1.3.
If p is an odd prime, then suppose that $x r^{\prime}=0$, for some $x \in \mathscr{C}(Q)$ and $0 \neq r^{\prime} \in \mathbb{P}_{\mathbb{Z}}$. If we write $r^{\prime}=p^{m} r$, for some $r \notin Q$, we get $x r=0 \in Q$ (since p is not a zero divisor from Lemma 1.3) which is absurd.

In particular, we observe that $\mathscr{C}\left(p \mathbb{P}_{\mathbb{Z}}\right)=\left\{x \in \mathbb{P}_{\mathbb{Z}} \mid p \nmid \mathrm{~N}(x)\right\}$ and $\mathscr{C}(\mathscr{M})=\left\{x \in \mathbb{P}_{\mathbb{Z}} \mid 2 \nmid \mathrm{~N}(x)\right\}$.
We will work with the following multiplicative subsets of $\mathbb{P}_{\mathbb{Z}}$:

- the multiplicative subsets of \mathbb{Z};
- the sets $\mathscr{C}(0), \mathscr{C}(\mathscr{M})$ and $\mathscr{C}\left(p \mathbb{P}_{\mathbb{Z}}\right)$, for any odd prime integer p.

For a general noncommutative ring, given a prime ideal $Q, \mathscr{C}(Q)$ may not be a denominator set: such an example is given, for instance, in [1, Example 2.3]. However we show that $\mathscr{C}(Q)$ is a denominator sets in $\mathbb{P}_{\mathbb{Z}}$ and also in $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right)$ (Proposition 2.4), for each prime ideal Q of $\mathbb{P}_{\mathbb{Z}}$.
Proposition 1.11. The sets $\mathbb{Z} \backslash(0), \mathbb{Z} \backslash p \mathbb{Z}$, for p prime, and $\mathscr{C}(Q)$, for Q prime ideal of $\mathbb{P}_{\mathbb{Z}}$, are (right and left) denominator sets of $\mathbb{P}_{\mathbb{Z}}$.

Proof. Let $S=\mathbb{Z} \backslash(0)$ or $S=\mathbb{Z} \backslash p \mathbb{Z}$, for a prime p. Then the statement easily follows from the fact that S is contained in the center of $\mathbb{P}_{\mathbb{Z}}$.

If $S=\mathscr{C}(Q)$, then S does not contain zero-divisors (Proposition 1.10), so $\mathscr{C}(Q)$ is right and left reversible. Finally, $\mathscr{C}(Q)$ is a right (left) Ore set by Lemma 1.6, since it is closed under bar conjugation (Proposition 1.10). Thus $\mathscr{C}(Q)$ is a right and left denominator set of $\mathbb{P}_{\mathbb{Z}}$.

Proposition 1.12. Let $S=\mathscr{C}(0)$ or $S=\mathbb{Z} \backslash(0)$. Then

$$
\mathbb{P}_{\mathbb{Z}} S^{-1}=S^{-1} \mathbb{P}_{\mathbb{Z}}=\mathbb{P}_{\mathbb{Q}}=\mathcal{Q}\left(\mathbb{P}_{\mathbb{Z}}\right)
$$

which is the total ring of fractions of $\mathbb{P}_{\mathbb{Z}}$.
Proof. By Proposition 1.11, S is a denominator set. So the ring $\mathbb{P}_{\mathbb{Z}} S^{-1}$ exists and its elements are the fractions $r s^{-1}$, where $r, s \in \mathbb{P}_{\mathbb{Z}}$ and $N(s) \neq 0$. Then $r s^{-1}=\frac{1}{N(s)} r \bar{s} \in \mathbb{P}_{Q}$. Thus $\mathbb{P}_{\mathbb{Z}} S^{-1} \subseteq \mathbb{P}_{\mathbb{Q}}$. Conversely, given $\mathrm{q} \in \mathbb{P}_{\mathbb{Q}}$, write q in the form $\mathrm{p} \cdot a^{-1}$, where $\mathrm{p} \in \mathbb{P}_{\mathbb{Z}}$ and a is a common denominator for the coefficients of q. Obviously, $a \in S$ and so pa$a^{-1} \in \mathbb{P}_{\mathbb{Z}} S^{-1}$, i.e., $\mathbb{P}_{\mathbb{Z}} S^{-1} \supseteq \mathbb{P}_{\mathbb{Q}}$. Thus $\mathbb{P}_{\mathbb{Z}} S^{-1}=\mathbb{P}_{\mathbb{Q}}$. Similarly, $S^{-1} \mathbb{P}_{\mathbb{Z}}=\mathbb{P}_{\mathbb{Q}}$. Finally $\mathbb{P}_{\mathbb{Q}}$ is the total ring of fractions of $\mathbb{P}_{\mathbb{Z}}$ because we localize with respect to the set of regular elements of $\mathbb{P}_{\mathbb{Z}}$.

Similarly, if we localize $\mathbb{P}_{\mathbb{Z}}$ at $S=\mathbb{Z} \backslash p \mathbb{Z}$ or $S=\mathscr{C}(Q)$, where $Q=p \mathbb{P}_{\mathbb{Z}}$, for a prime number p, we get the algebra of split-quaternions with coefficients in $\mathbb{Z}_{(p)}$, the localization of \mathbb{Z} at the ideal $p \mathbb{Z}$ (as we see in the following Proposition). In the following, \mathbb{Z}_{p} will denote the field with p elements.
Proposition 1.13. Let p be a prime number and let $S=\mathbb{Z} \backslash p \mathbb{Z}$ or $S=\mathscr{C}(Q)$, where Q is a prime ideal of $\mathbb{P}_{\mathbb{Z}}$ such that $Q \cap \mathbb{Z}=p \mathbb{Z}$.

Then

$$
\mathbb{P}_{\mathbb{Z}} S^{-1}=S^{-1} \mathbb{P}_{\mathbb{Z}}=\mathbb{P}_{\mathbb{Z}_{()}}
$$

Proof. We know that S is a denominator set of $\mathbb{P}_{\mathbb{Z}}$ by Proposition 1.11. So the ring $\mathbb{P}_{\mathbb{Z}} S^{-1}$ exists.
Let $S=\mathbb{Z} \backslash p \mathbb{Z}$. It is easy to see that $\mathbb{P}_{\mathbb{Z}} S^{-1} \subseteq \mathbb{P}_{\mathbb{Z}_{(p)}}$. For the reverse inclusion, notice that the minimum common denominator of any element of $\mathbb{Z}_{(p)}$ is an element of $\mathbb{Z} \backslash p \mathbb{Z}$. So $\mathbb{P}_{\mathbb{Z}} S^{-1}=$ $\mathbb{P}_{\mathbb{Z}_{(\rho)}}$. Similarly it can be proved that $S^{-1} \mathbb{P}_{\mathbb{Z}}=\mathbb{P}_{\mathbb{Z}_{(p)}}$.

Let $S=\mathscr{C}(Q)$. Since the norm of the elements of S is not divisible by p (Proposition 1.10), a right fraction $\mathrm{ps}^{-1} \in \mathbb{P}_{\mathbb{Z}} S^{-1}$, for some $\mathrm{p} \in \mathbb{P}_{\mathbb{Z}}$ and $s \in S$, can be seen as a rational split-quaternion $\mathrm{q}=\frac{1}{N(s)} \mathrm{p} \bar{s}=a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k}$, where $a, b, c, d \in \mathbb{Q}$ and their denominators are not divisible by p. Thus $\mathbb{P}_{\mathbb{Z}} S^{-1} \subseteq \mathbb{P}_{\mathbb{Z}_{(\rho)}}$. For the reverse inclusion let $\mathrm{q} \in \mathbb{P}_{\mathbb{Z}_{(\rho)}}$. Taking a common denominator, write $\mathrm{q}=\frac{1}{n} \mathrm{p}$, for some $\mathrm{p} \in \mathbb{P}_{\mathbb{Z}}$ and $n \in \mathbb{Z}$. Since the minimum common denominator of some elements of $\mathbb{Z}_{(p)}$ is an element of $\mathbb{Z} \backslash p \mathbb{Z}$, then n is not divisible by p. Thus neither $n^{2}=N(n)$ is divisible by p. So $n \in S$ and $\mathbb{P}_{\mathbb{Z}} S^{-1}=\mathbb{P}_{\mathbb{Z}_{())}}$. In the same manner we can prove that $S^{-1} \mathbb{P}_{\mathbb{Z}}=\mathbb{P}_{\mathbb{Z}_{(\rho)}}$.

Imitating Proposition 1.12 we can give this general result.
Proposition 1.14. Let R be a commutative ring and let $\mathcal{Q}(R)$ be its total ring of fractions. Then

$$
\mathcal{Q}\left(\mathbb{P}_{R}\right)=\mathbb{P}_{\mathcal{Q}(R)} .
$$

Proof. Let S be the set of regular elements of R. Then, S is contained in the center of \mathbb{P}_{R}, and thus it is a denominator set of \mathbb{P}_{R}; it is also easy to see that $S^{-1} \mathbb{P}_{R}=\mathbb{P}_{S^{-1} R}=\mathbb{P}_{\mathcal{Q}(R)}$ (see the proof of Propositions 1.12).

We claim that the elements of $\mathbb{P}_{\mathcal{Q}(R)}$ are either invertible or zero-divisors. Take $\mathrm{q} \in \mathbb{P}_{\mathcal{Q}(R)}$. If $N(\mathrm{q})$ is regular, then it is invertible in $\mathcal{Q}(R)$, and thus $\frac{1}{N(\mathcal{q}} \overline{\mathrm{q}} \in \mathbb{P}_{\mathcal{Q}(R)}$ is the inverse of q . Conversely, if $N(\mathrm{q})$ is not regular, then there is $z \in R, z \neq 0$, such that $z N(\mathrm{q})=0$. If $z \mathrm{q} \neq 0$, then also $z \overline{\mathrm{q}}=\overline{z q} \neq 0$. So we have that:

$$
0=z N(\mathrm{q})=z \overline{\mathrm{q}} \mathrm{q}=(z \overline{\mathrm{q}}) \mathbf{q} ;
$$

hence, q is a zero-divisor.
Thus, $\mathbb{P}_{\mathcal{Q}(R)}$ is a total ring of fractions, and so it is the total ring of fractions of \mathbb{P}_{R}.

2. Integer-valued polynomials

The ring of integer-valued polynomials over $\mathbb{P}_{\mathbb{Z}}$ is

$$
\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Z}}\right)=\left\{f(x) \in \mathbb{P}_{\mathbb{Q}}[x] \mid f\left(\mathbb{P}_{\mathbb{Z}}\right) \subseteq \mathbb{P}_{\mathbb{Z}}\right\}
$$

This set is actually a ring ([15, Theorem 1.2]), and in [3] the authors describe explicitly some proper ideals of $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Z}}\right)$. A similar construction can be done if, instead of $\mathbb{P}_{\mathbb{Z}}$, we use $\mathbb{P}_{\mathbb{Z}_{(p)}}$ or $\mathbb{P}_{\mathbb{Q}}$; in the former case, Werner [15, Theorem 1.2] guarantees that $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$ is a ring, while in the latter $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Q}}\right)=\mathbb{P}_{\mathbb{Q}}[x]$ is the whole ring of polynomials (and, in particular, is a ring).

For simplicity of notation, in this Section we will write $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right)$ instead of $\operatorname{Int} \mathbb{P}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right)$.
A class of ideals of $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right)$ can be constructed in the following way: if $q=a+b i+c j+d k \in$ $\mathbb{P}_{\mathbb{Z}}$ and I is a principal ideal of $\mathbb{P}_{\mathbb{Z}}$ generated by an element of \mathbb{Z}, then

$$
\mathfrak{P}_{I, \mathrm{q}}:=\left\{f(x) \in \operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right) \mid f(z) \in I \forall z \in C(\mathfrak{q})\right\},
$$

is an ideal of $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right)$, where $C(q)=\{a \pm b i \pm c j \pm d k\}$ ([3, Proposition 4.2]).
If P is a prime ideal of $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right)$, then $P \cap \mathbb{P}_{\mathbb{Z}}$ is a prime ideal of $\mathbb{P}_{\mathbb{Z}}$; since we have a classification of the prime ideals of $\mathbb{P}_{\mathbb{Z}}$ (Theorem 1.2), we can study the spectrum of $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right)$ according to the restriction to $\mathbb{P}_{\mathbb{Z}}$.
Proposition 2.1. The following hold.
(1) [3, Corollary 4.10] The prime ideals P of $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right)$ with $P \cap \mathbb{P}_{\mathbb{Z}}=(0)$ are exactly those of the form

$$
P=M(x) \cdot \mathbb{P}_{\mathbb{Q}}[x] \cap \operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right)=P_{M(x)},
$$

where $M(x) \in \mathbb{Z}[x]$ is an irreducible polynomial.
In particular, if $m_{\mathrm{q}}(x)$ is the minimal polynomial of an element $\mathrm{q} \in \mathbb{P}_{\mathbb{Z}}$ then $P_{m_{\mathrm{q}}(x)}=\mathfrak{P}_{0, \mathrm{q}}$ is a prime ideal.
(2) [3, Theorem 4.16] Let $\mathrm{q}:=a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k} \in \mathbb{P}_{\mathbb{Z}} \backslash \mathbb{Z}$ and let p be an odd prime. If $\operatorname{gcd}(b, c, d, p)=1$, then $\mathfrak{P}_{p \mathbb{P}_{\mathbb{Z}}, \mathfrak{q}}$ is prime if and only if $m_{\mathrm{q}}(x)$ is irreducible $\bmod p$, in which case $\mathfrak{P}_{p \mathbb{P}_{Z}, \mathrm{q}}$ is maximal.
(3) [3, Corollary 4.22] Let $\mathrm{q}=a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k} \in \mathbb{P}_{\mathbb{Z}}$, and assume that either $b \equiv c(\bmod 2)$ or $b \equiv d(\bmod 2)$. Then,

$$
\mathfrak{M}_{\mathrm{q}}:=\left\{f \in \operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right) \mid f(q) \in \mathscr{M}\right\}
$$

is a maximal ideal of $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right)$.

Remark 2.2.

(1) While the first case of the proposition completely classifies the prime ideals above (0), the other two merely give some examples of the prime ideals above $p \mathbb{P}_{\mathbb{Z}}$ and \mathscr{M}, but not a complete list.
(2) We refer to [3] for some results about equalities among these ideals.

Lemma 2.3. The following hold.
(1) If p is an odd prime number and $\mathrm{q} \in \mathbb{P}_{\mathbb{Z}}$, then $\mathfrak{P}_{m_{\mathrm{q}}(x)} \subset \mathfrak{P}_{p \mathbb{P}_{\mathbb{Z}}, \mathrm{q}}$.
(2) If $q \in \mathbb{P}_{\mathbb{Z}}$ is as in Propositon 2.1(3), then $\mathfrak{B}_{m_{\mathrm{q}}(x)} \subset \mathfrak{M}_{\mathrm{q}}$.

Proof. Let $f(x) \in \mathfrak{P}_{m_{\mathrm{q}}(x)}$: then, $f(x)=m_{\mathrm{q}}(x) g(x)$ for some $g(x) \in \mathbb{P}_{\mathbb{Q}}[x]$. Since $m_{\mathrm{q}}(x)$ has coefficients in the center of $\mathbb{P}_{\mathbb{Q}}$, we have $f(\mathrm{q})=m_{\mathrm{q}}(\mathrm{q}) g(\mathrm{q})=0$. Hence, $f(x) \in \mathfrak{M}_{\mathrm{q}}$; furthermore, $m_{\mathrm{q}}\left(\mathrm{q}^{\prime}\right)=0$ for all $\mathrm{q}^{\prime} \in C(\mathrm{q})$ (since the elements of $C(\mathrm{q})$ have the same minimal polynomial of q [3, paragraph after Definition 4.1]) and thus $f(x) \in \mathfrak{P}_{p \mathbb{P}_{\mathbb{Z}}, q}$. Therefore $\mathfrak{P}_{m_{q}(x)}$ is contained in both $\mathfrak{P}_{p \mathbb{P}_{\mathbb{Z}}, q}$ and \mathfrak{M}_{q}.

By intersecting the ideals with \mathbb{Z}, it is easily seen that the inclusions are proper.
When D is a Noetherian commutative domain, the integer-valued polynomials over D behave well with respect to the localization, that is, if S is a multiplicative subset of D then $S^{-1} \operatorname{Int}(D)=$ $\operatorname{Int}\left(S^{-1} D\right)$ ([2, Theorem I.2.3]). In [3, Theorem 3.4] an analogous result has been showed for $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right)$ when S is a multiplicatively closed subset $S \subseteq \mathbb{Z}$ (it is central). In the following we prove that $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right)$ behaves well with respect to localization also for denominator sets whose elements are not necessarily central, as $S=\mathscr{C}(Q)$, where Q is a prime ideal of $\mathbb{P}_{\mathbb{Z}}$.

Theorem 2.4. Let \mathcal{Q} be a prime ideal of $\mathbb{P}_{\mathbb{Z}}$ and let $S=\mathscr{C}(\mathcal{Q})$. Then S is also a denominator set of $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right)$ and $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right) S^{-1}=\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}} S^{-1}\right)$.

Proof. To prove that S is a denominator set of $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right)$ it is sufficient to use the same argument of Lemma 1.6 and Proposition 1.11, observing that $N(s)$ is in the center of $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right)$ for each $s \in S$.

Let Q be a prime ideal of $\mathbb{P}_{\mathbb{Z}}$, and let $Q \cap \mathbb{Z}=p \mathbb{Z}$ (where p is either a prime number or 0). Set $T:=$ $\mathbb{Z} \backslash p \mathbb{Z}$. By Propositions 1.12 and 1.13, we have $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}} T^{-1}\right)=\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}} \mathscr{C}(Q)^{-1}\right)=\operatorname{Int}\left(\mathbb{P}_{\left.\mathbb{Z}_{()}\right)}\right)$.

To prove the statement it is enough to show that

$$
\text { (1) } \quad \operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right) T^{-1} \subseteq \operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right) \mathscr{C}(Q)^{-1} \subseteq \operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}_{(P)}}\right) \subseteq \operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right) T^{-1}
$$

The first inclusion follows from the fact that $T \subseteq \mathscr{C}(Q)$, while the last one from [3, Theorem 3.4] (it is actually an equality). Thus, we only need to prove that $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right) \mathscr{C}(Q)^{-1} \subseteq \operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$. Again by [3, Theorem 3.4], we have $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right) \subseteq \operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}_{(\rho)}}\right)$; furthermore, each element of $\mathscr{C}(Q)$ becomes invertible in $\mathbb{P}_{\mathbb{Z}_{(p)}}$ and thus in $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$. Hence, $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right) \mathscr{C}(Q)^{-1} \subseteq \operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$ and all the containments must be equalities.

Note that the exact same argument can be used if we localize on the left: if S is $S=\mathscr{C}^{\prime}(Q)$ then $S^{-1} \operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right)=\operatorname{Int}\left(S^{-1} \mathbb{P}_{\mathbb{Z}}\right)$.

Corollary 2.5. The following hold.
(1) If $S=\mathcal{R}\left(\mathbb{P}_{\mathbb{Z}}\right)$ or $S=\mathbb{Z} \backslash(0)$ then $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right) S^{-1}=\operatorname{Int}\left(\mathbb{P}_{\mathbb{Q}}\right)=\mathbb{P}_{\mathbb{Q}}[x]$.
(2) If p is a prime number and $S=\mathbb{Z} \backslash p \mathbb{Z}$ or $S=\mathscr{C}(Q)$, with Q a prime ideal of $\mathbb{P}_{\mathbb{Z}}$ such that $Q \cap \mathbb{Z}=p \mathbb{Z}$, then $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right) S^{-1}=\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$.

Proof. For the first point, the equality $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right) S^{-1}=\operatorname{Int}\left(\mathbb{P}_{\mathbb{Q}}\right)$ follows from Theorem 2.4 and Proposition 1.12. The equality $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Q}}\right)=\mathbb{P}_{\mathbb{Q}}[x]$ follows directly from the definitions.

Similarly, the second point follows from Theorem 2.4 and from Proposition 1.13.
These results allow us to represent $\mathbb{P}_{\mathbb{Z}}$ and $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right)$ as intersection of localizations.
Proposition 2.6. Let \mathcal{P} be the set of prime numbers. Then, the following hold.

$$
\begin{gather*}
\mathbb{P}_{\mathbb{Z}}=\bigcap_{p \in \mathcal{P}} \mathbb{P}_{\mathbb{Z}_{(p)}} . \tag{1}\\
\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right)=\bigcap_{p \in \mathcal{P}} \operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right) . \tag{2}
\end{gather*}
$$

Proof. (1) The inclusion (\subseteq) is obvious since for every prime $p, \mathbb{P}_{\mathbb{Z}} \subseteq \mathbb{P}_{\mathbb{Z}_{(p)}}$. For the reverse inclusion, take an element $\mathrm{q}=a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k}$ of the intersection. Then $a, b, c, d \in \cap_{p} \mathbb{Z}_{(p)}=\mathbb{Z}$ and $\mathrm{q} \in \mathbb{P}_{\mathbb{Z}}$.
(2) For all primes p, let Q_{p} be the maximal ideal of $\mathbb{P}_{\mathbb{Z}}$ above p. We have that $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right) \subseteq$ $\left(\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right)\right) \mathscr{C}\left(Q_{p}\right)^{-1}=\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$, and thus $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right)$ is inside the intersection. Conversely, if $f(x)$ belongs to the intersection and $\mathrm{q} \in \mathbb{P}_{\mathbb{Z}}$, then $f(\mathrm{q}) \in \mathbb{P}_{\mathbb{Z}_{(\rho)}}$ for every prime number p, and thus $f(\mathrm{q}) \in \bigcap_{p} \mathbb{P}_{\mathbb{Z}_{(p)}}=\mathbb{P}_{\mathbb{Z}}$ (by the previous point) and $f(x) \in \operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right)$.

3. Matrix representations

To study the spectrum of $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right)$, we introduce the related commutative ring

$$
\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right):=\left\{f(x) \in \mathbb{Q}[x] \mid \forall \mathrm{q} \in \mathbb{P}_{\mathbb{Z}}: f(\mathrm{q}) \in \mathbb{P}_{\mathbb{Z}}\right\}
$$

and we define similarly $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$. These sets are easily seen to be rings by using polynomial evaluation. To avoid confusion in the notation, from now in we will go back to write $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Z}}\right)$ and $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$ for $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}}\right)$ and $\operatorname{Int}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$, respectively. Note that, if we consider $\mathbb{Q}[x]$ as subring of $\mathbb{P}_{\mathbb{Q}}[x]$ in the obvious way, then $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right)=\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Z}}\right) \cap \mathbb{Q}[x]$.

The relation between $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right)$ and $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Z}}\right)$ passes through a matrix representation of the rings $\mathbb{P}_{\mathbb{Z}}$ and $\mathbb{P}_{\mathbb{Z}_{(p)}}$. We denote by $\mathcal{M}_{n}(R)$ the ring of matrices of order n over R.
Proposition 3.1. [3, Proposition 2.2] The following hold.
(1) Let R be a commutative ring with identity such that 2 is a unit of R. Then, $\mathbb{P}_{R} \cong \mathcal{M}_{2}(R)$ as R-algebras.
(2) Let $\mathcal{A}=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a \equiv d, b \equiv c \quad \bmod 2\right\} \subseteq \mathcal{M}_{2}(\mathbb{Z})$. Then, $\mathbb{P}_{\mathbb{Z}} \cong \mathcal{A}$ as \mathbb{Z}-algebras.

Let D be a domain with quotient field K. We define

$$
\operatorname{Int}_{K}\left(\mathcal{M}_{n}(D)\right):=\left\{f(x) \in K[x] \mid \forall A \in \mathcal{M}_{n}(D): f(A) \in \mathcal{M}_{n}(D)\right\}
$$

and

$$
\begin{gathered}
\operatorname{Int}_{\mathcal{M}_{n}(K)}\left(\mathcal{M}_{n}(D)\right):= \\
=\left\{f(x) \in \mathcal{M}_{n}(K)[x] \mid \forall A \in \mathcal{M}_{n}(D): f(A) \in \mathcal{M}_{n}(D)\right\} .
\end{gathered}
$$

These rings roughly correspond, respectively, to $\operatorname{Int} \mathbb{Q}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right)$ and $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Z}}\right)$.
Proposition 3.2. Let D be a domain with quotient field K. Then

$$
\operatorname{Int}_{\mathcal{M}_{n}(K)}\left(\mathcal{M}_{n}(D)\right) \simeq \mathcal{M}_{n}\left(\operatorname{Int}_{K}\left(\mathcal{M}_{n}(D)\right)\right)
$$

Moreover, the following hold.
(i) The ideals of $\operatorname{Int}_{\mathcal{M}_{n}(K)}\left(\mathcal{M}_{n}(D)\right)$ are in $1-1$ correspondence with the sets of the form $\mathcal{M}_{n}(\mathscr{I})$, where \mathscr{I} is an ideal of $\operatorname{Int}_{K}\left(\mathcal{M}_{n}(D)\right)$.
(ii) The prime ideals of $\operatorname{Int}_{\mathcal{M}_{n}(K)}\left(\mathcal{M}_{n}(D)\right)$ are in 1-1 correspondence with the sets of the form $\mathcal{M}_{n}(\mathscr{P})$, where \mathscr{P} is a prime ideal of $\operatorname{Int}_{K}\left(\mathcal{M}_{n}(D)\right)$.
(iii) The maximal ideals of $\operatorname{Int}_{\mathcal{M}_{n}(K)}\left(\mathcal{M}_{n}(D)\right)$ are in 1-1 correspondence with the sets of the form $\mathcal{M}_{n}(\mathscr{M})$, where \mathscr{M} is a maximal ideal of $\operatorname{Int}_{K}\left(\mathcal{M}_{n}(D)\right)$.

Proof. See Frisch [4, Theorem 7.2] and Frisch [4, Theorem 7.3]. The remaining part follows from Lam [8, Theorem 3.1].

Putting together these two results, we have the following theorem.

Theorem 3.3. Let p be an odd prime integer. Then, the prime ideals of $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Z}_{(\rho)}}\right)$ are in 1-1 correspondence with the prime ideals of $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$.

Proof. By Proposition 3.1, $\mathbb{P}_{\mathbb{Q}} \simeq \mathcal{M}_{2}(\mathbb{Q})$, and the isomorphism brings $\mathbb{P}_{\mathbb{Z}_{(p)}}$ into $\mathcal{M}_{2}\left(\mathbb{Z}_{(p)}\right)$. By Proposition 3.2,

$$
\begin{aligned}
\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right) & \simeq \operatorname{Int}_{\mathcal{M}_{2}(\mathbb{Q})}\left(\mathcal{M}_{2}\left(\mathbb{Z}_{(p)}\right)\right) \simeq \\
& \simeq \mathcal{M}_{2}\left(\operatorname{Int}_{\mathbb{Q}}\left(\mathcal{M}_{2}\left(\mathbb{Z}_{(p)}\right)\right)\right) \simeq \mathcal{M}_{2}\left(\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)\right) ;
\end{aligned}
$$

thus the prime ideals of $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Z}_{(\rho)}}\right)$ are in bijective correspondence with the prime ideals of $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(P)}}\right)$, as claimed.

The main advantage of this theorem is that $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(\rho)}}\right)$ is a commutative ring properly contained in between the two well-studied rings $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$.

Proposition 3.4. The nonzero prime ideals P of $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right)$ such that $P \cap \mathbb{Z}=(0)$ are pairwise uncomparable.

Proof. It is enough to notice that $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right) S^{-1}=\mathbb{Q}[x]$, if $S=\mathbb{Z} \backslash(0)$. Then the prime ideals of Int $\mathbb{Q}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right)$ contracting to (0) in \mathbb{Z} are in 1-1 correspondence with the prime ideals of $\mathbb{Q}[x]$, which are not comparable (except (0)). This correspondence preserves the order, thus the statement follows.

Theorem 3.5. The rings $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right)$ and $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$, for any prime p, have dimension 2.
Proof. The ring $\mathbb{Z}[x]$ is a Noetherian ring of dimension 2, and thus by Gilmer [5, Theorem 30.9 and Corollary 30.10] every overring of $\mathbb{Z}[x]$ has dimension at most 2 . Since $\mathbb{Z}[x] \subseteq \operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right) \subseteq$ $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(\rho)}}\right)$, it follows that the dimensions of $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right)$ and $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(\rho)}}\right)$ are at most 2.

Fix now a prime p. By Proposition 2.1, we can find an integer split-quaternion $\mathrm{q}=a+b \mathbf{i}+$ $c \mathbf{j}+d \mathbf{k} \in \mathbb{P}_{\mathbb{Z}}$ such that its minimal polynomial $m_{\mathrm{q}}(x)$ is irreducible modulo p and such that $\mathfrak{P}_{p \mathbb{Z}, \mathrm{q}}$ (if $p \neq 2$) or $\mathfrak{M}_{\mathrm{q}}$ (if $p=2$) is a maximal ideal of $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Z}}\right)$ over p. Then, its restriction $P_{2}:=$ $\mathfrak{P}_{p \mathbb{Z}, \mathrm{q}} \cap \operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right)$ or $P_{2}:=\mathfrak{M}_{\mathrm{q}} \cap \operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right)$ is a prime ideal of $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right)$.

By construction, $m_{q}(x)$ is irreducible in $\mathbb{Q}[x]$, and thus $\mathfrak{P}_{m_{q}(x)}$ is a prime ideal of $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Z}}\right)$, which by Lemma 2.3 is contained inside $\mathfrak{P}_{p \mathbb{Z}, \mathfrak{q}}$ and \mathfrak{M}_{q}; hence, $P_{1}:=\mathfrak{P}_{m_{q}(x)} \cap \operatorname{Int}\left(\mathbb{P} \mathbb{P}_{\mathbb{Z}}\right)$ is a prime ideal of $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right)$ inside P_{2}. Therefore, $(0) \subseteq P_{1} \subseteq P_{2}$ is a chain of prime ideals of $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right)$; furthermore, the inclusions are strict since $m_{\mathrm{q}}(x) \in P_{1} \backslash(0)$, while $p \in P_{2} \backslash P_{1}$. Hence, $(0) \subsetneq P_{1} \subsetneq P_{2}$ is a chain of length 2 , and thus $\operatorname{dim}_{\operatorname{Int}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Z}}\right) \geq 2$; therefore, the dimension must be exactly 2 .

For $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$, it is enough to note that the chain $(0) \subsetneq P_{1} \subsetneq P_{2}$ lifts to a chain in $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(\rho)}}\right)$ (since this ring is a localization of $\operatorname{Int} \mathbb{Q}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right)$) and thus also $\operatorname{dim}\left(\operatorname{Int} \mathbb{Q}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)\right) \geq 2$ and $\operatorname{dim}\left(\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(\rho)}}\right)\right)=2$.

Note that this replicates the same pattern of $\operatorname{Spec}(\operatorname{Int}(\mathbb{Z}))$ shown in [2, Proposition V.2.7]. The correspondence with matrix rings allow also to say something about Int $\mathbb{P}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$.

Corollary 3.6. If p is an odd prime, then $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$ has dimension 2. Furthermore, $\operatorname{dim}\left(\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Z}}\right)\right) \geq 2$.

Proof. By Theorem 3.3, the dimension of $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Z}_{(\rho)}}\right)$ is the same of $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$, which is 2 by Theorem 3.5. The last claim follows since $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Z}_{(P)}}\right)$ is a localization of $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Z}}\right)$.

Theorem 3.3 does not work for $p=2$, and thus the previous results do not allow to calculate the dimension of $\quad \operatorname{Int} \mathbb{P}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right)$. However, we conjecture that $\operatorname{dim}\left(\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Z}}\right)\right)=$ $\operatorname{dim}\left(\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Z}_{(2)}}\right)\right)=2$.

An important difference between $\operatorname{Int}(\mathbb{Z})$ and $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right)$ is that the latter is not integrally closed (and thus it is not a Prüfer domain); see Corollary 3.8 below. However, we can describe its integral closure by using algebraic integers.

Given a finite degree extension $\mathbb{Q}(\theta)$ of \mathbb{Q}, we indicate by \mathcal{A}_{θ} the ring of algebraic integers of $\mathbb{Q}(\theta)$. If $n \in \mathbb{N}$ is positive, the set of all algebraic integers of degree at most n over \mathbb{Q} is

$$
\mathcal{A}_{n}:=\bigcup_{[\mathbb{Q}(\theta): \mathbb{Q}] \leq n} \mathcal{A}_{\theta} ;
$$

similarly, if p is a prime number, we denote by $\mathcal{A}_{n, p}$ is the set of algebraic numbers that are root of a monic irreducible polynomial of degree n over $\mathbb{Z}_{(p)}$.

In [10] the authors define the set of integer-valued polynomials over \mathcal{A}_{n} with rational coefficients to be the set

$$
\operatorname{Int}\left(\mathcal{A}_{n}\right):=\bigcap_{\theta \in \mathcal{A}_{n}} \operatorname{Int}_{\mathbb{Q}}\left(\mathcal{A}_{\theta}\right)
$$

The $\operatorname{ring} \operatorname{Int}\left(\mathcal{A}_{n}\right)$ can be seen as the set of all polynomials with rational coefficients that map \mathcal{A}_{n} into \mathcal{A}_{n}. They also show that $\operatorname{Int}_{\mathbb{Q}}\left(\mathcal{A}_{n}\right)$ is a Prüfer domain for every n ($[10$, Theorem 3.9]).
Theorem 3.7. Let p be an odd prime integer. Then $\operatorname{Int}_{\mathbb{Q}}\left(\mathcal{A}_{2}\right)_{(p)}=\operatorname{Int}_{\mathbb{Q}}\left(\mathcal{A}_{2, p}\right)$ is the integral closure of $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(\rho)}}\right)$ in $\mathbb{Q}[x]$.

Proof. By Loper and Werner [10, Theorem 4.6], $\operatorname{Int} \mathbb{Q}_{\mathbb{Q}}\left(\mathcal{A}_{2}\right)$ is the integral closure of $\operatorname{Int} \mathbb{Q}_{\mathbb{Q}}\left(\mathcal{M}_{2}(\mathbb{Z})\right)$. Using Proposition 3.1, and recalling that the localization at prime integers preserves the integral closure, we have that:

$$
\begin{aligned}
\operatorname{Int}_{\mathbb{Q}}\left(\mathcal{A}_{2}\right)_{(p)} & =\overline{\operatorname{Int}_{\mathbb{Q}}\left(\mathcal{M}_{2}(\mathbb{Z})\right)_{(p)}}=\overline{\operatorname{Int}_{\mathbb{Q}}\left(\mathcal{M}_{2}(\mathbb{Z})\right)_{(p)}}= \\
& =\overline{\operatorname{Int}_{\mathbb{Q}}\left(\mathcal{M}_{2}(\mathbb{Z})_{(p)}\right)}=\overline{\operatorname{Int}_{\mathbb{Q}}\left(\mathcal{M}_{2}\left(\mathbb{Z}_{(p)}\right)\right)}=\overline{\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\left.\mathbb{Z}_{(p)}\right)}\right)} .
\end{aligned}
$$

Finally, using [11, Theorem 13] with $A=\mathbb{P}_{\mathbb{Z}_{(p)}}$, we have that $\overline{\operatorname{Int}} \mathbb{Q}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(\rho)}}\right)$ is also the integral closure of $\operatorname{Int}_{\mathbb{Q}}\left(\mathcal{A}_{2, p}\right)$.

Corollary 3.8. The ring $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right)$ is not integrally closed.
Proof. If $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right)$ is integrally closed, then its localization at an odd prime p, $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$, is integrally closed too. Thus, from Theorem 3.7, $\overline{\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)}=\operatorname{Int}_{\mathbb{Q}}\left(\mathcal{A}_{2}\right)_{(p)}$ and this is Prüfer. Since $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right) \cong \operatorname{Int}_{\mathbb{Q}}\left(M_{2}\left(\mathbb{Z}_{(p)}\right)\right)$, it follows that the ring

$$
\operatorname{Int}_{\mathbb{Q}}\left(B, M_{2}\left(\mathbb{Z}_{(p)}\right)\right):=\left\{f \in \mathbb{Q}[x] \mid f(B) \in M_{2}\left(\mathbb{Z}_{(p)}\right)\right\}
$$

is an overring of $\operatorname{Int}_{\mathbb{Q}}\left(M_{2}\left(\mathbb{Z}_{(p)}\right)\right)$, for every matrix $B \in M_{2}\left(\mathbb{Z}_{(p)}\right)$. Taking $B=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and arguing as in $[10, \S 4]$, it can be shown that $\operatorname{Int}_{\mathbb{Q}}\left(B, M_{2}\left(\mathbb{Z}_{(p)}\right)\right)$ is not integrally closed. The claim follows.

4. The ideal \boldsymbol{p} Int $_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right)$

In this section we study in more detail the ideal $p \operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right)$ generated by a prime number p (not necessarily odd). Our first result can be seen as a refinement of the proof of Theorem 3.5.
Proposition 4.1. Let p be a prime number. Then, every prime ideal of $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right)$ containing p is maximal.

Proof. We follow the proof of Cahen and Chabert [2, Lemma V.1.9].

Let u_{1}, \ldots, u_{k} be a set of residues of $\mathbb{P}_{\mathbb{Z}} / p \mathbb{P}_{\mathbb{Z}}$ (with $k=p^{4}$), and let P be a prime ideal of $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right)$ containing p. Take any $a(x) \in \operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right)$, and let $a_{i}(x):=a(x)-u_{i}$. Let $b(x):=$ $a_{1}(x) \cdots a_{k}(x)$: by construction, for every $\mathrm{q} \in \mathbb{P}_{\mathbb{Z}}$ there is an i such that $a(\mathrm{q}) \equiv u_{i}\left(\bmod p \mathbb{P}_{\mathbb{Z}}\right)$.

Since the a_{i} have coefficients in the commutative ring \mathbb{Q}, we have $b(\mathrm{q})=a_{1}(\mathrm{q}) \cdots a_{k}(\mathrm{q})$: hence, $b(\mathbb{q}) \in p \mathbb{P}_{\mathbb{Z}}$ and so $b(x) \in p \operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right) \subseteq P$; since P is prime, there must be an i such that $a_{i}(x) \in P$. However, $a_{i}(x) \equiv u_{i}\left(\bmod p \mathbb{P}_{\mathbb{Z}}\right)$, and thus $\operatorname{Int} \mathbb{Q}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right) / P$ is isomorphic to $\mathbb{P}_{\mathbb{Z}} / p \mathbb{P}_{\mathbb{Z}} \simeq \mathbb{P}_{\mathbb{Z}_{p}}$. Hence, P is maximal, as claimed.

Corollary 4.2. Let p be an odd prime integer. Then, every prime ideal of $\operatorname{Int}_{\mathbb{P}_{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$ containing p is maximal.

Proof. It is enough to use Proposition 4.1 and the correspondence of Theorem 3.3.

Remark 4.3.

(1) The previous two results allow to give an alternative proof of Theorem 3.5. Indeed, if (0) $\subsetneq Q_{1} \subsetneq Q_{2} \subsetneq Q_{3}$ is a chain of prime ideals of length 3, then either $Q_{1} \cap \mathbb{Z}=Q_{2} \cap \mathbb{Z}=$ (0) or $Q_{2} \cap \mathbb{Z}=Q_{3} \cap \mathbb{Z}=p \mathbb{Z}$, for some prime number p. The latter case is made impossible by Proposition 4.1 (as Q_{2} contains p but is not maximal); on the other hand the former case would imply that two nonzero prime ideals of $\operatorname{Int}_{\mathbb{P}_{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right)$ over (0) are comparable, against Proposition 3.4.
(2) The proof of Proposition 4.1 does not work in the $\operatorname{ring}^{\operatorname{Int}} \mathbb{P}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}}\right)$, since the evaluation of a product of polynomials cannot be done separately for each factor, and thus $b(\mathrm{q}) \neq$ $a_{1}(\mathrm{q}) \cdots a_{k}(\mathrm{q})$ in general. Nevertheless, we conjecture (but we don't have a proof) that the same property holds also in $\operatorname{Int}_{\mathbb{P}_{\mathbb{Q}}}\left(\mathbb{P}_{\mathbb{Z}}\right)$.
A consequence of Proposition 4.1 is that the ideals $\operatorname{pInt}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$ are not prime. We now want to find an explicit description of the polynomials in $\operatorname{Int} \mathbb{Q}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(\rho)}}\right)$ and, as a corollary, to find two polynomials outside $\operatorname{pInt}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{()}}\right)$whose product is inside the ideal.

Proposition 4.4. Let R, S be commutative rings and let $\pi: R \rightarrow S$ be a homomorphism. Then, the natural map

$$
\begin{array}{rl}
\varphi: \mathbb{P}_{R} & \rightarrow \mathbb{P}_{S} \\
a+b \mathbf{i}+c \mathbf{j}+d & \mathbf{k}
\end{array}>\pi(a)+\pi(b) \mathbf{i}+\pi(c) \mathbf{j}+\pi(d) \mathbf{k} .
$$

is a ring homomorphism. Furthermore, if π is surjective then φ is surjective and $\operatorname{ker} \varphi=$ $(\operatorname{ker} \pi) \mathbb{P}_{R}=\mathbb{P}_{\text {ker } \pi}=\{a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k} \mid a, b, c, d \in \operatorname{ker} \pi\} ;$ in particular, $\mathbb{P}_{R} / \operatorname{ker} \varphi \simeq \mathbb{P}_{S}$.

Proof. Straightforward.
An important particular case is when $R=\mathbb{Z}$ or $R=\mathbb{Z}_{(p)}$ and $S=\mathbb{Z}_{p}$: in this case, the kernel of π is generated by p, and thus we obtain the well-known isomorphisms $\frac{\mathbb{P}_{Z}}{p \mathbb{P}_{\mathbb{Z}}} \simeq \frac{\mathbb{P}_{Z_{l}}}{p \mathbb{P}_{Z_{l}}} \simeq \mathbb{P}_{\mathbb{Z}_{p}}$.

In particular, the previous proposition shows that polynomial evaluation behaves well with respect to quotients. Given a surjection $\pi: R \rightarrow S$ and a polynomial $f(x)=\sum_{t=0}^{n} \mathrm{p}_{t} x^{t} \in R[x]$, we denote by $\bar{f}(x)=\sum_{t=0}^{n} \pi\left(\mathrm{p}_{t}\right) x^{t} \in S[x]$ the polynomial obtained by reducing the coefficients modulo $\operatorname{ker} \varphi$. Then, for every $\mathrm{q} \in \mathbb{P}_{\mathbb{Z}}$, we have $\pi(f(\mathrm{q}))=\bar{f}(\pi(\mathrm{q}))$.
Proposition 4.5. Let p be a prime integer. Let $f(x) \in \mathbb{Z}[x]$ and $\bar{f}(x) \in \mathbb{Z}_{p}[x]$ be as above. Given an integer $n>1$ such that $n=p^{\alpha} m$ with $p \nmid m$, then $\frac{1}{n} f(x) \in \operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$ if and only if $f(\mathbb{q}) \in p^{\alpha} \mathbb{P}_{\mathbb{Z}_{(p)}}$, for all $\mathrm{q} \in \mathbb{P}_{\mathbb{Z}_{(p)}}$. In particular if $\alpha=1, \frac{1}{n} f(x) \in \operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$ if and only if $\bar{f}(\mathbb{q})=\overline{0}$ in $\mathbb{P}_{\mathbb{Z}_{p}}$, for all $\mathfrak{q} \in \mathbb{P}_{\mathbb{Z}_{p}}$.

Proof. We have that

$$
\frac{1}{n} f(x) \in \operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right) \Longleftrightarrow \frac{1}{n} f(\mathbf{q}) \in \mathbb{P}_{\mathbb{Z}_{(p)}} \quad \forall q \in \mathbb{P}_{\mathbb{Z}_{(p)}} \Longleftrightarrow f(\mathrm{q}) \in n \mathbb{P}_{\mathbb{Z}_{(\rho)}} \quad \forall q \in \mathbb{P}_{\mathbb{Z}_{(p)}}
$$

Since $p \nmid m$, we have $n \mathbb{P}_{\mathbb{Z}_{(\rho)}}=p^{\alpha} \mathbb{P}_{\mathbb{Z}_{(\rho)}}$.
Lemma 4.6. Let R be a commutative domain. Take $\mathrm{q} \in \mathbb{P}_{R} \backslash R$ and let $m_{\mathrm{q}}(x) \in R[x]$ be its minimal polynomial over R. If a polynomial $f(x) \in R[x]$ is such that $f(\mathrm{q})=0$, then $m_{\mathrm{q}}(x) \mid f(x)$ in $R[x]$.

Proof. Since $m_{\mathrm{q}}(x)$ is monic we can divide $f(x)$ by $m_{\mathrm{q}}(x)$ obtaining

$$
f(x)=g(x) m_{\mathrm{q}}(x)+r(x)
$$

for some $g(x), r(x) \in R[x]$. In particular $r(x)=a x+b$ is linear as $m_{\mathrm{q}}(x)$ is of degree two. Since $R[x]$ is contained in the center of $\mathbb{P}_{R}[x]$, we can evaluate the polynomial relation above in q , obtaining $0=f(\mathrm{q})=g(\mathrm{q}) \cdot 0+a \mathrm{q}+b$. Since R is a domain and $\mathrm{q} \notin R$, necessarily $a=b=0$.

We observe that Lemma 4.6 does not hold if $f(x) \in \mathbb{P}_{R}[x] \backslash R[x]$. For example, consider $\mathbf{i} \in$ $\mathbb{P}_{\mathbb{Z}}$ and $f(x)=x^{3}+\mathbf{i} x+(\mathbf{i}+1) x+\mathbf{i}+1$. Then $f(\mathbf{i})=0$ but $f(x)=\left(x^{2}+1\right)(x+\mathbf{i})+\mathbf{i} x+1$ and the remainder is nonzero.

Corollary 4.7. With the hypothesis and notation of Proposition 4.5, let p be a prime integer and $n=p m$ with $p \nmid m$. Then $\frac{1}{n} f(x) \in \operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$ if and only if $\bar{f}(x)$ is divided by all the minimal polynomials of the elements of $\mathbb{P}_{\mathbb{Z}_{p}}$.

Proof. It is an immediate consequence of Proposition 4.5 and Lemma 4.6.
Using the previous Corollary we can construct a nontrivial element of $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(\rho)}}\right)$.
Example 4.8. The polynomial

$$
\Phi_{p}(x)=\frac{1}{p}\left(x^{p}-x\right)\left(x^{p^{2}}-x\right)
$$

belongs to $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$.
By Proposition 4.5, it is sufficient to show that $f(x)=\left(x^{p}-x\right)\left(x^{p^{2}}-x\right) \in \mathbb{Z}[x]$ vanishes over all elements of $\mathbb{P}_{\mathbb{Z}_{p}}$. Observe that every monic and irreducible polynomial of $\mathbb{Z}_{p}[x]$ of degree one or two is a factor of $f(x)$. In particular, if $g(x)$ is a linear polynomial then $g(x)^{2}$ divides $f(x)$, since $g(x)$ divides both $x^{p}-x$ and $x^{p^{2}}-x$. By Corollary 4.7, this also means that the minimal polynomial of every split-quaternion of $\mathbb{P}_{\mathbb{Z}_{p}}$ is a factor of $f(x)$.

In particular we can show that every monic and quadratic polynomial of $\mathbb{Z}_{p}[x]$ is the minimal polynomial for some element of $\mathbb{P}_{\mathbb{Z}_{p}}$. The proof is mutatis mutandis the same as the proof of [14, Lemma 3.5]. This means that the polynomial $\Phi_{p}(x)$ does not contain any redundant factor.
Proposition 4.9. With the above notation we have the following proper inclusions:

$$
\mathbb{Z}_{(p)}[x] \subsetneq \operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right) \subsetneq \operatorname{Int}\left(\mathbb{Z}_{(p)}\right) .
$$

Proof. The first inclusion follows from the fact that $\mathbb{Z} \subseteq \mathbb{P}_{\mathbb{Z}}$ and thus $\mathbb{Z}_{(p)}[x] \subseteq \mathbb{P}_{\mathbb{Z}_{(p)}}[x] \cap \mathbb{Q}[x] \subseteq$ $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$. It is proper since the polynomial $\Phi_{p}(x)$ given in Example 4.8 belongs to $\operatorname{Int} \mathbb{Q}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$ but not to $\mathbb{Z}_{(p)}[X]$.

The second inclusion is straightforward since $\mathbb{Z}_{(p)}=\mathbb{P}_{\mathbb{Z}_{(p)}} \cap \mathbb{Q}$.
To see that it is proper, consider the "binomial polynomial" $f(x)=\frac{x(x-1)(x-2) \ldots(x-p+1)}{p} \in$ $\operatorname{Int}\left(\mathbb{Z}_{(p)}\right)$. If $p=2$ then $f(\mathbf{i})=\frac{-1-\mathbf{i}}{2} \notin \mathbb{P}_{\mathbb{Z}_{(2}} ;$ if p is odd then $p f(x)$ is not divided by $x^{2}+1$
(the minimal polynomial of \mathbf{i}), and thus $f(\mathbf{i}) \notin \mathbb{P}_{\mathbb{Z}_{(\rho)}}$ by Corollary 4.7. It follows that $f(x) \notin \operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$.

The fact that the two containments of the previous proposition are strict also follows from [12, Theorem 2.12] (the first one) and [13, Theorem 2.11] (the second one).
Proposition 4.10. The ideal pInt $\mathbb{Q}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$ is not a prime ideal of $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$.
Proof. Let us consider the polynomials:

$$
\begin{aligned}
& f(x)=\left(x^{p}-x\right)^{2} \in \mathbb{Z}[x], \\
& g(x)=\frac{1}{p}\left(x^{p^{2}}-x\right)^{2} \in \mathbb{Q}[x], \\
& F(x)=f(x) g(x)=\frac{1}{p}\left(x^{p}-x\right)^{2}\left(x^{p^{2}}-x\right)^{2} \in \mathbb{Q}[x] .
\end{aligned}
$$

These three polynomials are elements of $\operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$. Indeed, for $f(x)$ it follows from the inclusion $\mathbb{Z}[x] \subseteq \operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$. For $F(x)$ and $g(x)$ observe that they are equal to $\Phi_{p}(x)$ (Example 4.8) multiplied by a polynomial with integer coefficients.

We claim that $F(x) \in p \operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$ while $f(x)$ and $g(x)$ do not belong to this ideal.
Indeed, $\frac{1}{p} F(x)=\left(\Phi_{p}(x)\right)^{2} \in \operatorname{Int} \mathbb{Q}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$ and thus $F(x) \in p \operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$.
As regards $f(x)$, we have that $\bar{f}(x)$ is not divisible by any quadratic irreducible polynomial over \mathbb{Z}_{p}, and thus by Corollary $4.7 \frac{1}{p} f(x) \notin \operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(p)}}\right)$.

For $g(x)$, consider $\frac{1}{p} g(x)=\frac{1}{p^{2}}\left(x^{p^{2}}-x\right)^{2}$. If $p=2$ then $\frac{1}{2} g(\mathbf{i})=-\frac{\mathbf{i}}{2} \notin \mathbb{P}_{\mathbb{Z}_{(2)}}$. If p is odd, then we set $\mathrm{q}:=\mathbf{i}+(p-1) \mathbf{k}$. We have that $\mathrm{q}^{2}=p^{2}-2 p$, and if we raise q to an even power greater than 2 , we obtain an integer divisible by p^{2}. Since $\frac{1}{p} g(x)$ is a central polynomial, we can evaluate it in q using its factorization. Thus, we have

$$
\frac{1}{p} g(\mathrm{q})=\frac{\left(\mathrm{q}^{p^{2}}-q\right)^{2}}{p^{2}}=\frac{\mathrm{q}^{2 p^{2}}+\mathrm{q}^{2}-2 \mathrm{q}^{p^{2}+1}}{p^{2}}=m+\frac{p-2}{p} \notin \mathbb{P}_{\mathbb{Z}_{(p)}}
$$

for some $m \in \mathbb{Z}$.
Since $F(x)=f(x) g(x)$, we can conclude that $p \operatorname{Int}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(\rho)}}\right)$ is not a prime ideal of $\operatorname{Int} \mathbb{Q}_{\mathbb{Q}}\left(\mathbb{P}_{\mathbb{Z}_{(\rho)}}\right)$.

Acknowledgements

We would like to thank the referee for his/her useful suggestions.

Funding

The second and third authors were partially supported by GNSAGA of Istituto Nazionale di Alta Matematica.

References

[1] Allen, D. B. (1989). Notes on Localization in Noncommutative Noetherian Rings. Cuadernos de Algebra, 9. Granada: University of Granada.
[2] Cahen, P. J., Chabert, J. L. (1997). Integer-valued polynomials. Providence, RI: Amer. MAth. Soc. Surveys and Monographs.
[3] Cigliola, A., Loper, K.A., Werner, N. (2015). Split quaternions and integer-valued polynomials. Commun. Algebra 43(1):182-196. DOI: 10.1080/00927872.2014.897561.
[4] Frisch, S. (2013). Integer-valued polynomials on algebras. J. Algebra 373:414-425. DOI: 10.1016/j.jalgebra. 2012.10.003.
[5] Gilmer, R. (1992). Multiplicative ideal theory. Queen's Papers in Pure and Applied Mathematics, 90, Corrected Reprint of the 1972 Edition. Kingston, ON: Queen's University.
[6] Goldie, A. W. (1967). Localization in noncommutative Noetherian rings. J. Algebra 5(1):89-105. DOI: 10. 1016/0021-8693(67)90028-2.
[7] Goodearl, K. R., Warfield, R. B. Jr., (2004). An Introduction to Noncommutative Noetherian Rings. Cambridge: Cambridge University Press.
[8] Lam, T. Y. (2001). A First Course in Noncommutative Rings. Mathematics, 131. New York: Springer-Verlag.
[9] Lam, T. Y. (1999). Lectures on Modules and Rings. Graduate Texts in Mathematics, 189. New York: Springer-Verlag.
[10] Loper, K. A., Werner, N. (2012). Generalized rings of integer-valued polynomials. J. Num. Theory 132(11): 2481-2490. DOI: 10.1016/j.jnt.2012.05.009.
[11] Peruginelli, G., Werner, J. N. (2014). Integral closure of rings of integer-valued polynomials on algebras. In: Fontana, M., Frisch, S., Glaz, S., eds. Commutative Algebra: Recent Advances in Commutative Rings, IntegerValued Polynomials, and Polynomial Functions. New York: Springer, p. 293-305.
[12] Peruginelli, G., Werner, N. J. (2017). Non-triviality conditions for integer-valued polynomial rings on algebras. Monatsh. Math. 183(1):177-189. DOI: 10.1007/s00605-016-0951-8.
[13] Peruginelli, G., Werner, N. J. (2018). Decomposition of integer-valued polynomial algebras. J. Pure Appl. Algebra 222(9):2562-2579. DOI: 10.1016/j.jpaa.2017.10.007.
[14] Werner, N. J. (2010). Integer-valued polynomials over quaternion rings. J. Algebra 324(7):1754-1769. DOI: 10.1016/j.jalgebra.2010.06.024.
[15] Werner, N. J. (2012). Integer-valued polynomials over matrix rings. Commun. Algebra 40(12):4717-4726. DOI: 10.1080/00927872.2011.606859.

