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Calculating the density of solutions of equations related to
the Pólya–Ostrowski group through Markov chains

by

Dario Spirito (Roma)

1. Introduction. Let q ≥ 2 be a positive integer. Following [1] and [2],
we define the following three functions on N:

vq(n) :=

{
0 if n = 0,

max{k ∈ N : qk divides n} if n > 0,

wq(n) :=
n∑
i=0

vq(i) =
∑
k≥1

⌊
n

qk

⌋
,

uq(n) :=
n∑
i=0

wq(i).

The functions wq(n) and uq(n) arise naturally during the study of the
Pólya–Ostrowski group Po(D) of a Dedekind domain D, a subgroup of the
class group of D closely related to the ring Int(D) of integer-valued polyno-
mials over D. In particular, Po(D) is linked with the module structure of two
sequences of D-modules, namely the sequence of characteristic ideals Jn(D)
of D and the sequence of the subsets Intn(D) of Int(D) formed by the poly-
nomials f ∈ Int(D) of degree at most n. More precisely, Jn(D) and Intn(D)
are free if and only if, respectively, wq(n) ≡ 0 mod d and uq(n) ≡ 0 mod d
for every q, where d is the order of the ideal Πq (defined as the product of
the maximal ideals m of D such that |D/m| = q) in the class group of D.
See Section 5 for a more detailed explanation.

These ideas led Elliott [2] to study the equations wq(n) ≡ x mod d and
uq(n) ≡ x mod d, where d and x are integers; in particular, he was interested
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in the density of the set of solutions, where the (natural) density of a subset
T ⊆ N is the limit

δ(T ) := lim
N→∞

|{n ∈ T : 0 ≤ n < N}|
N

(provided that it exists). Through a mixture of special cases and experi-
mental evidence, he conjectured [2, Conjecture 2.2] that the density of the
solutions always exists and is rational, and that if x = 0 then it is at least
1/d.

In this paper, we consider the more general equation

(1) θuuq(n) + θwwq(n) + θ2
n(n+ 1)

2
+ θ1n+ θ0 ≡ 0 mod d,

where θu, θw, θ2, θ1, θ0 are integer coefficients; this form appears when trying
to express the function uq(aq + λ) in terms of uq(a).

Our starting point is the possibility of expressing the number of solutions
of (1) in [0, qN) in terms of the number of solutions in [0, N) of equations
of the same form, but with different coefficients (Proposition 2.3). While we
are not able to prove that the density δ(q, d; θu, θw, θ2, θ1, θ0) of the solutions
of (1) exists for every choice of q, d and the coefficients, we can use this
recurrence relation to associate to the equation (1) (for any fixed q and d) a
stochastic matrix P := P (q, d) and a Markov chain, studying which we can
calculate these densities in several cases.

More precisely, fix q and d. Suppose that δ(q, d; θu, θw, θ2, θ1, θ0) exists
for every choice of θu, θw, θ2, θ1, θ0. We prove that:

• (Theorem 2.6) every δ(q, d; θu, θw, θ2, θ1, θ0) is rational;
• (Theorem 3.2)

δ(q, d; 0, ψ, 0, θ, x) =

{
1
d gcd(ψ, θ, d) if gcd(ψ, θ, d) | gcd(x, d),

0 otherwise;

• (Theorem 4.2) if d | q, then (ϕ is the Euler function)

δ(q, d; 1, 0, 0, 0, x) =
1

d2

∑
f |gcd(x,d)

f · ϕ
(
d

f

)
;

• (Theorem 4.4) if d and q are coprime and θu is coprime to d, then

δ(q, d; θu, θw, 0, 0, x) = 1/d.

Section 5 translates the result obtained back to the setting of integer-
valued polynomials.

2. The general transformation. Our first step is expressing wq(aq+λ)
and uq(aq + λ) as functions of a and λ.
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Lemma 2.1. Let q be a positive integer, and let λ ∈ {0, . . . , q− 1}. Then

wq(aq + λ) = wq(a) + a for every a ∈ N.

Proof. Since vq(i) = 0 if i is not a multiple of q, we have

wq(aq + λ) =

aq+λ∑
i=0

vq(i) =

a∑
j=0

vq(jq).

Moreover, vq(jq) = 1 + vq(j), and thus

wq(aq + λ) =
a∑
j=0

(1 + vq(j)) = a+
a∑
j=0

vq(j) = a+ wq(a),

as claimed.

Lemma 2.2. Let q be a positive integer, and let λ ∈ {0, . . . , q− 1}. Then

uq(aq + λ) = quq(a) + (λ+ 1− q)wq(a) +
q

2
a2 +

(
λ+ 1− q

2

)
a

= quq(a) + (λ+ 1− q)wq(a) + q
a(a+ 1)

2
+ (λ+ 1− q)a

for every a ∈ N.

Proof. We start by calculating uq(aq − 1). We have

uq(aq − 1) =

aq−1∑
i=0

wq(i) =

a−1∑
b=0

q−1∑
t=0

wq(bq + t).

Since wq(bq + t) = wq(bq) for every t ∈ {0, . . . , q − 1}, this implies that

uq(aq − 1) =
a−1∑
b=0

qwq(bq) = q
a−1∑
b=0

(wq(b) + b) = quq(a− 1) + q
(a− 1)a

2
.

Hence, using again wq(bq + t) = wq(bq), we have

uq(aq + λ) = uq(aq − 1) + (λ+ 1)wq(aq)

= quq(a− 1) + q
(a− 1)a

2
+ (λ+ 1)(wq(a) + a)

= q(uq(a)− wq(a)) +
(a− 1)aq

2
+ (λ+ 1)wq(a) + (λ+ 1)a,

rearranging which we obtain our claim.

The previous lemmas suggest considering the more general equation

(2) θuuq(n) + θwwq(n) + θ2
n(n+ 1)

2
+ θ1n+ θ0 ≡ 0 mod d,
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where θu, θw, θ2, θ1, θ0 vary in Z. Clearly, if θ′u ≡ θu mod d, and analogously
for θ′w, θ

′
2, θ
′
1 and θ′0, then n is a solution of (2) if and only if it is a solution of

θ′uuq(n) + θ′wwq(n) + θ′2
n(n+ 1)

2
+ θ′1n+ θ′0 ≡ 0 mod d;

for this reason, we will sometimes consider equation (2) as having the coef-
ficients θu, θw, θ2, θ1, θ0 in Z/dZ; this should not cause confusion.

Note that if we were using n2 instead of n(n + 1)/2, we may need to
consider also half-integer values of θ2 and θ1, and the situation may become
troublesome when d is even.

Let now s := (θu, θw, θ2, θ1, θ0) ∈ Z5. For any A ∈ N, we denote by
γ(A, q, d; θu, θw, θ2, θ1, θ0), or by γ(A, q, d; s), the number of natural numbers
n < A that satisfy (2).

Proposition 2.3. Let q, d ≥ 2 be integers. For every A ∈ N and every
s ∈ Z5, we have

(3) γ(qA, q, d; s) =

q−1∑
λ=0

γ(A, q, d; sMλ)

where

Mλ :=


q λ− q + 1 q λ− q + 1 0

0 1 0 1 0

0 0 q2 λq − q(q − 1)/2 λ(λ+ 1)/2

0 0 0 q λ

0 0 0 0 1


for every λ.

Proof. Let s := (θu, θw, θ2, θ1, θ0). Moreover, for any λ ∈ {0, . . . , q − 1},
let γ(λ)(A, q, d; s) be the number of solutions to (2) that are smaller than A
and congruent to λ modulo q.

Each row of Mλ is the expansion of uq(n), wq(n), n(n+ 1)/2, n, 1 in terms
of uq(a), wq(a), a(a+ 1)/2, a, 1 when n = aq + λ: indeed, for uq and wq this
follows from Lemmas 2.1 and 2.2, and it is obvious for n and 1. Moreover,

(aq + λ)(aq + λ+ 1)

2
=
q2

2
a2 +

q2

2
a− q2

2
a+

(
qλ+

q

2

)
a+

λ(λ+ 1)

2
,

which gives the third row of Mλ after rearrangement.

Now aq + λ < Aq if and only if a < A; this means exactly that

γ(λ)(qA, q, d; s) = γ(A, q, d; sMλ).

Summing over λ we get the claim.
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As remarked before the statement of the proposition, we can consider
s to be an element of (Z/dZ)5 instead of Z5; in particular, we can define
γ(A, q, d; s) even with s ∈ (Z/dZ)5, and Proposition 2.3 carries over without
problems, with the only difference that each Mλ must be considered as a
matrix over Z/dZ.

This convention is useful because it makes the space of possible s finite,
and in particular it allows us to rearrange equation (3) in matrix form.
Indeed, for every s, t∈(Z/dZ)5, let µ(s, t) be the number of λ∈{0, . . . , q−1}
such that t = sMλ. Then, for every s ∈ (Z/dZ)5, we have the finite sum

γ(qA, q, d; s) =
∑

t∈(Z/dZ)5
µ(s, t)γ(A, q, d; t).

Let now

γ̃(A, q, d; s) :=
γ(A, q, d; s)

A
,

and let γ̃(A, q, d) be the column vector composed of the γ̃(A, q, d; s) as s
ranges in (Z/dZ)5. Then the previous equality can be written as

(4) γ̃(qA, q, d) = P (q, d)γ̃(A, q, d)

where P (q, d) := (µ(s, t)/q)s,t is a (rational) matrix of order d5. It is a
stochastic matrix, i.e., each entry is nonnegative and the sum of each row
is 1: indeed, the sum of µ(s, t), as s is fixed and t varies, must be q, since
for each λ there is a t such that t = sMλ.

We introduce the following definition.

Definition 2.4. Let q, d ≥ 2 be integers. The density of solutions for
s ∈ Z5 (or s ∈ (Z/dZ)5) with respect to q and d is

δ(q, d; s) := lim
N→∞

γ̃(N, q, d; s) = lim
N→∞

γ(N, q, d; s)

N
,

provided that the limit exists; if q and d are clear from the context, we also
write δ(s) for δ(q, d; s). The column vector (δ(s))s is called the vector of
densities of the solutions of (2) and is denoted by δ(q, d) (or simply δ).

Fix now θu, θw, θ2, θ1. If the density δ(q, d; θu, θw, θ2, θ1, x) exists for every
x ∈ Z, we say that the function

f : n 7→ θuuq(n) + θwwq(n) + θ2
n(n+ 1)

2
+ θ1n

has a limit distribution modulo d (and we call the assignment

x 7→ δ(q, d; θu, θw, θ2, θ1, x)

the limit distribution). If the densities are all equal (and so are equal to
1/d), we say that f is uniformly distributed modulo d (see e.g. [9]).
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Lemma 2.5. Let M be a square matrix of order n over C; suppose that
each eigenvalue λ of M satisfies |λ| = 1, λ 6= 1. If v is a vector such that
Mkv has a limit when k →∞, then v = 0.

Proof. By conjugation, we can suppose that M = (mij)i,j is an upper
triangular matrix.

Suppose v = (v1, . . . , vn) 6= 0, and let t be the largest i such that vi 6= 0.
Then the tth component of Mkv is equal to mk

ttvt; in particular, mk
ttvt has a

limit as k →∞. However, mtt is an eigenvalue of M , and thus it is a complex
number of norm 1 different from 1; hence, mk

tt does not have a limit. This
would imply vt = 0, contrary to our choice of t. The claim is proved.

Theorem 2.6. Let q, d ≥ 2 be integers. If the vector of densities δ(q, d)
exists, then it is a right eigenvector of P (q, d) with eigenvalue 1, and all its
entries are rational.

Proof. For every k ∈ N, let γ̃k be the column vector whose entries are
γ̃(qk, q, d; s) as s ranges in (Z/dZ)5. Then (4) becomes

γ̃k = P γ̃k−1 = P kγ̃0.

Clearly, if γ̃k has a limit k →∞ then it must be δ := δ(q, d); in particular,
the first equality of the previous equation becomes

δ = Pδ,

and thus δ is an eigenvector of P with eigenvalue 1.

Moreover, the existence of δ implies that P kγ̃0 has a limit as k → ∞.
Since P := P (q, d) is a stochastic matrix with rational entries, the alge-
braic and geometric multiplicities of its eigenvalue 1 coincide (see e.g. [4,
Section 9.4, Fact 1(b)] or [8, p. 696]), and we can find a rational matrix A
such that A−1PA is a block matrix

N := A−1PA =

I 0 0

0 R 0

0 0 Q

 ,

where I is the identity matrix, the eigenvalues of R have norm 1 but are
different from 1, and the norm of each eigenvalue of Q is smaller than 1. The
limit P kγ̃0 → δ can we rewritten as Nk(A−1γ̃0)→ A−1δ. Let v := A−1γ̃0;
then

Nkv =

I 0 0

0 Rk 0

0 0 Qk


v1

v2

v3

 =

 v1

Rkv2

Qkv3

 ,

where v1, v2 and v3 are subvectors of v of appropriate length. The existence
of the limit implies that both Rkv2 and Qkv3 have limit as k →∞. Since R
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satisfies the hypothesis of Lemma 2.5, we have v2 = 0; on the other hand,
by construction, Qk → 0 [8, p. 617], and thus Qkv3 → 0.

Both A and γ̃0 have rational entries (since γ(1, q, d; s) is either 1 or 0).
Hence, v has rational entries, and by the previous reasoning so does the
limit of Nkv, i.e., A−1δ; therefore, δ has rational entries, as claimed.

The fact that the entries are rational supports part of [2, Conjecture 2.2(1)].
As observed before Definition 2.4, P := P (q, d) is a stochastic matrix;

hence, we can interpret it in a probabilistic way. A (discrete) Markov chain
M is a family of random variables {Xn}n∈N, whose range is a finite set
S := {s1, . . . , sk} (called the state space of M), such that

P (Xn+1 = tn+1 |Xn = tn, Xn−1 = tn−1, . . . , X0 = t0)

= P (Xn+1 = tn+1 |Xn = tn)

for all n and all t1, . . . , tn+1 ∈ S.
If, furthermore, the probability P (Xn+1 = tn+1 |Xn = tn) of going from

tn to tn+1 does not depend on n, then M is said to be time-homogeneous,
and the matrix M := (mij)i,j , where mij := P (Xn+1 = sj |Xn = si), is a
stochastic matrix, called the transition matrix of M.

Conversely, to every stochastic matrix M = (mij)i,j of order k is as-
sociated a discrete, time-homogeneous Markov chain M on a state space
S = {s1, . . . , sk} of cardinality k, such that P (Xn+1 = sj |Xn = si) = mij

for all n, that is, M is the transition matrix of M. When M and M are
linked in this way, we call M the Markov chain represented by M . See e.g.
[8, Section 8.4] for further details.

When M = P (q, d), we denote the Markov chain arising in this way by
C(q, d); more explicitly, C(q, d) is the Markov chain such that the probability
of going from state s to state t is µ(s, t)/q.

Let M be a Markov chain with state space X, and let i, j ∈ X. We say
that j is reachable from i (or that i leads to j) if there is a k ∈ N such
that P (Xn+k = j |Xn = i) > 0, that is, if the probability of going from i
to j in k steps is positive. We say that i and j are communicating (and we
write i↔ j) if i is reachable from j and j is reachable from i. The relation
“↔” is an equivalence relation; if C is an equivalence class, we say that
C is ergodic if, when i ∈ C and j is reachable from i, then also j ∈ C,
that is, if once the chain arrives in C then it cannot leave C; equivalently,
P (Xn+k = l |Xn = i) = 0 for all l /∈ C and all k ∈ N. A state is ergodic if
the equivalence class it belongs to is an ergodic class.

Proposition 2.7. Let P be a stochastic matrix, and let v :=(v1, . . . , vn)ᵀ

be such that v = Pv. If i and j belong to the same ergodic class, then vi = vj.

Proof. This is essentially a consequence of the Perron–Frobenius theorem
(see e.g. [4, Section 9.2, Fact 5] or [8, Chapter 8]). Let C1, . . . , Ct be the
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ergodic classes of the Markov chain associated to P . By [4, Section 9.4,
Fact 1(g)], the space V of right eigenvectors of P with eigenvalue 1 has
dimension t, and there is a basis u := {uC1 , . . . ,uCt} of V such that if a is
an ergodic state and Ck is its equivalence class, then the ath component of
uCl is 1 if l = k and 0 otherwise. In particular, if both i, j ∈ Ck and v ∈ V ,
then vi and vj are equal to the coefficients of uCk along the basis u of V . In
particular, vi = vj .

3. The case θu = θ2 = 0. A function f : N→ R is said to be q-additive
if f(0) = 0 and

f(n) =
∑
j≥0

f(aq,j(n)qj) for n =
∑
j≥0

aq,j(n)qj ,

where aq,j(n) ∈ {0, . . . , q − 1} are the digits of n in base q. The prototype
of q-additive functions is the sum of digits of n in base q, which we denote
by sq(n).

By [1, Exercise II.8 and Lemma II.4], we can write

wq(n) :=
n− sq(n)

q − 1
;

thus, for every ψ, θ ∈ Z, the function

ψwq(n) + θn =
θ(q − 1) + ψ

q − 1
· n− ψ

q − 1
· sq(n)

is q-additive. On the other hand, uq(n) is not q-additive, since (for example)
uq(q + 1) = 2 6= 1 = uq(q) + uq(1). This point of view yields the following,
the second part of which is another partial answer to [2, Corollary 2.2(1)].

Theorem 3.1. Let d, q ≥ 2 be positive integers. Then:

(a) for every θw, θ1, θ0 ∈ Z, the density δ(q, d; 0, θw, 0, θ1, θ0) exists;
(b) if d | qn for some n, then the vector of densities δ(q, d) exists.

Proof. (a) By [11, Theorem 1.1], every q-additive function with integer
values has a limit distribution modulo d, for every d; in particular, so does
θwwq(n) + θ1n, and the density δ(q, d; 0, θw, 0, θ1, θ0) exists.

(b) Let λ1, . . . , λn ∈ {0, . . . , q−1}, and let s ∈ (Z/dZ)5. Applying Propo-
sition 2.3 repeatedly, we obtain

γ(qnN, q, d; s)

qnN
=

q−1∑
λ1,...,λn=0

1

qn
γ(N, q, d; sMλ1 · · ·Mλn)

N
.

The first and third columns of Mλ1 · · ·Mλn (as integer matrices) are divisible
by qn; hence, they are 0 when reduced modulo d. It follows that the first
and third components of sMλ1 · · ·Mλn are always 0.
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Therefore, by the previous point, for each summand of the right hand
side the limit (as N →∞) exists; it follows that so does the limit of the left
hand side, i.e., the density δ(q, d; s) exists.

The first part of the previous theorem is especially useful since, if we are
interested in the distribution of the function wq, we do not need to consider
θu or θ2; that is, we can study the Markov chain limited to the subset of
(Z/dZ)5 where θu = θ2 = 0. The next result calculates these densities.

Theorem 3.2. Let q, d ≥ 2 be integers, and let ψ ∈ Z, ψ 6= 0. Then

δ(q, d; 0, ψ, 0, θ, x) =

{
1
d gcd(ψ, θ, d) if gcd(ψ, θ, d) | gcd(x, d),

0 otherwise,

for every x ∈ Z.

Proof. By Theorem 3.1(a) the density exists.
We first note that if gcd(ψ, θ, d) does not divide gcd(x, d), then the equa-

tion ψwq(n) + θn+ x ≡ 0 mod d cannot have solutions, so the density is 0.
Suppose that g := gcd(ψ, θ, d) divides gcd(x, d). In this case, ψwq(n) +

θn+ x ≡ 0 mod d is equivalent to ψ
gwq(n) + θ

gn+ x
g ≡ 0 mod d

g ; therefore,

γ(A, q, d; 0, ψ, 0, θ, x) = γ(A, q, d/g; 0, ψ/g, 0, θ/g, x/g).

Moreover, gcd(ψ/g, θ/g, d/g) = 1; hence, it is enough to prove the claim
when gcd(ψ, θ, d) = 1.

The set X := {(0, ψ, 0, θ, x) | ψ, θ, x ∈ Z/dZ} is invariant under right
multiplication by Mλ; hence, the Markov chain C(q, d) restricts to a chain
C′(q, d) on X, which can also be defined as the Markov chain with transi-
tion matrix Q := (µ′(s, t)/q), where µ′(s, t) is the number of λ’s such that
sNλ = t and

Nλ :=

1 1 0

0 q λ

0 0 1


is just the submatrix of Mλ relative to θw, θ1 and θ0.

Let k ≥ 1. Consider the stochastic matrix Qk; its s, t entry is µk(s, t)/q
k,

where µk(s, t) is the number of k-tuples (λ1, . . . , λk) such that sMλ1 · · ·Mλk

= t. Consider the Markov chain C′k(q, d) represented by Qk; the probability
of going from s to t is µk(s, t)/q

k, which is equal to the probability of going
from s to t in k steps in C′(q, d).

We claim that, for k ≥ 1,

(ψ θ x)Nλ1 · · ·Nλk =

 ψ

qkθ + qk−1ψ + qk−2ψ + · · ·+ qψ + ψ

x+ Pk(λ1, . . . , λk, ψ, θ, q)


ᵀ

,
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where

Pk(λ1, . . . , λk, ψ, θ, q)

:= λ1θ + λ2(qθ + ψ) + · · ·+ λk(q
k−1θ + qk−2ψ + · · ·+ ψ).

Indeed, this is clear for k = 1 and follows easily by induction for arbitrary k.
Set ak(θ) := qkθ + qk−1ψ + qk−2ψ + · · · + qψ + ψ, and suppose there

is a k > 1 such that ak(θ) ≡ θ mod d. Then, for any ψ and θ, the subset
X(ψ, θ) := {(ψ, θ, x) : x ∈ Z/dZ} of X is invariant by C′k(q, d), and thus
we can restrict the Markov chain to X(ψ, θ); we claim that this chain is
irreducible, i.e., that any state can be reached from any other one.

The probability of going from (ψ, θ, x) to (ψ, θ, y) is nonzero if and only
if there are λ1, . . . , λk such that y − x = Pk(λ1, . . . , λk, q, ψ, θ, q); hence, x
and y are communicating if and only if they belong to the same coset of the
subgroup G of Z/dZ generated by Pk(λ1, . . . , λk, ψ, θ, q), as λ1, . . . , λk vary
in {0, . . . , q − 1}.

The group G contains both θ and ψ, since Pk(1, 0, . . . , 0) = θ and
Pk(0, 1, 0, . . . , 0) = qθ + ψ. Since gcd(ψ, θ, d) = 1, this implies that G =
Z/dZ, and thus any state can be reached from any x. By Proposition 2.7,
δ(0, ψ, 0, θ, x) = δ(0, ψ, 0, θ, y) for all x, y. However,

d−1∑
x=0

δ(0, ψ, 0, θ, x) = 1;

hence, δ(0, ψ, 0, θ, x) = 1/d for all x, as claimed.
Suppose now that ak(θ) 6≡ θ mod d for every k. Even in this case, there

must be m < m′ such that am(θ) ≡ am′(θ) mod d; since ai+j(θ) = ai(aj(θ))
for every i, j, θ, this means that ak(am(θ))≡am(θ) mod d, where k :=m′−m.
By the previous part of the proof, δ(0, ψ, 0, am(θ), x) = 1/d for every x ∈ Z.
Since the set of the densities δ(0, ψ, 0, θ, x) is an eigenvector of Qm, we have

δ(s) =
∑
t∈X

µm(s, t)

qm
δ(t).

Now µm((0, ψ, 0, θ, x), (0, ψ′, 0, θ′, x)) = 0 unless ψ′ = ψ and θ′ = am(θ);
hence, if s := (0, ψ, 0, θ, x) we have

δ(s) =

d−1∑
y=0

µm(s, (0, ψ, 0, am(θ), y))

qm
δ(0, ψ, 0, am(θ), y).

By the previous part of the proof, each δ(0, ψ, 0, am(θ), y) is equal to 1/d;
since the sum of all µm(s, t) is qm, this means that δ(0, ψ, 0, θ, x) = 1/d, as
claimed.

Corollary 3.3. Let q, d ≥ 2 be integers. For every θ, the map n 7→
wq(n) + θn is uniformly distributed.
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Proof. Let ψ = 1 in the previous theorem.

In some cases we can also prove the existence of the limit without using
the theory of q-additive functions.

Proposition 3.4. Let q ≥ 2 be an integer and x, θ ∈ Z. If θ is coprime to
q, or if q | θ, then the map n 7→ wq(n)+θn is uniformly distributed modulo q.

Proof. Suppose first that θ is coprime to q. In each block {qa, . . . ,
qa + q − 1}, wq(n) is constant; hence, the equation wq(n) + θn ≡ x mod q
has a unique solution, namely n = qa+ r with r ≡ θ−1(x− wq(qa)) mod q.
Hence, the number of solutions of wq(n) + θn ≡ x mod q in [0, . . . , N) is
N/d + O(1); i.e., γ(N, q, q; 0, 1, 0, θ, x) = N/d + O(1). If we divide by N ,
the limit on the right hand side exists and is equal to 1/d; hence, the same
applies to the left hand side.

For q | θ (and it is enough to consider θ = 0), we note that

γ(N, q, q; 0, 1, 0, 0, x)

N
= q

γ(N/q, q, q; 0, 1, 0, 1, x)

N
+O(1),

and the right hand side goes to 1/d by the previous reasoning. The claim is
proved.

4. The case s = (1, 0, 0, 0, x). The methods used in the proof of Theo-
rem 3.2 can also be applied to study the full equation (2); in particular, we
shall be interested in the equation with (θu, θw, θ2, θ1, θ0)=(1, 0, 0, 0, x)=:sx.
We are not able to obtain a full picture of the situation, so we will concen-
trate on two special cases. Before analyzing them, we note that we can
obtain a lower limit for the density of the solutions.

Proposition 4.1. Let d, q be positive integers and let x ∈ Z. Then

lim inf
N→∞

γ(N, q, d; sx)

N
≥ ϕ(d)

dq

⌊
q

d

⌋
,

where ϕ is the Euler function.

Proof. Consider the blocks {aq, aq + 1, . . . , aq + q − 1} of q consecutive
natural numbers, starting from a multiple of q. In any block, the map n 7→
wq(n) is constant, and thus the map n 7→ uq(n) is of constant difference; in
particular,

uq(aq + r) = uq(aq) + rwq(aq).

If wq(aq) is coprime to d, then uq(aq)+rwq(aq) passes through every residue
class modulo d, as r goes from 0 to d−1; hence, the equation uq(n) ≡ x mod d
has at least bq/dc solutions in each block {aq, aq + 1, . . . , aq + q − 1}.

Let now N be an integer, and divide {1, . . . , N} into blocks of length q.
By Corollary 3.3, in approximately ϕ(d)/d of these blocks wq(n) is coprime
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to d; hence,

γ(N, q, d; 1, 0, 0, 0, x) ≥ N

q

ϕ(d)

d

⌊
q

d

⌋
+O(1).

Dividing by N and taking the limit inferior we get our claim.

This result is far from being completely satisfactory (for example, it says
nothing when q < d). However, it sometimes hits what is actually the real
density, as the following theorem shows.

Theorem 4.2. Let d, q ≥ 2 be integers, and suppose that d | q. Then, for
every x ∈ Z,

δ(q, d; 1, 0, 0, 0, x) =
1

d2

∑
f |gcd(x,d)

f · ϕ
(
d

f

)
.

This result can be seen as a generalization of [2, Proposition 3.4].

Proof. Let sx := (1, 0, 0, 0, x) with x ∈ Z/dZ; by Theorem 3.1(b), the
density δ(q, d; sx) exists. We have sxMλ = (0, λ + 1, 0, λ + 1, x); hence, ap-
plying Theorem 3.2, we obtain

δ(q, d; sx) =
1

q

∑
λ=1,...,q
λ|gcd(d,x)

gcd(λ, d)

d
.

However, since d | q, the summand for λ is equal to the summand for λ+ d.
Hence, the previous formula reads

1

q

q

d

∑
f |gcd(x,d)

f

d
|{t ∈ {1, . . . , d} : gcd(t, d) = f}| = 1

d2

∑
f |gcd(x,d)

f · ϕ
(
d

f

)
,

as claimed.

Remark 4.3. If gcd(d, x)=1, then the theorem gives δ(q, d; s)=ϕ(d)/d2,
exactly the limit inferior obtained in Proposition 4.1.

The second case we consider is when d and q are coprime; it can be seen
as a generalization of [2, Proposition 3.6], albeit with a stronger hypothesis
(since we need all the densities to exist). We denote by U(Z/dZ) the set of
units of Z/dZ.

Theorem 4.4. Let q, d ≥ 2 be coprime integers. Suppose that, for every
s ∈ Z5, the density δ(q, d; s) = δ(s) exists. Then, for every θw, x ∈ Z/dZ
and each θu ∈ U(Z/dZ), we have

δ(q, d; θu, θw, 0, 0, x) = 1/d.

In particular, the map n 7→ uq(n) is uniformly distributed modulo d.

Proof. The proof is similar to the proof of Theorem 3.2. Note first that we
can suppose θu=1, since γ(N, q, d; s)=γ(N, q, d;us) for every u∈U(Z/dZ).
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Since all the limits exist, by Theorem 2.6 the density vector δ is a right
eigenvector of the transition matrix of the Markov chain C(q, d).

We explicitly calculate the inverse M−10 as a matrix with rational entries:

M−10 =
1

q2


q q(q − 1) −1 −(q − 1)/2 0

0 q2 0 −q 0

0 0 1 (q − 1)/2 0

0 0 0 q 0

0 0 0 0 q2

 .

Hence,

M1M
−1
0 =


1 1 0 0 0

0 1 0 0 0

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1

 ,

M2
1M

−2
0 =


1 q + 1 0 0 2

0 1 0 0 1

0 0 1 q + 1 (q + 1)(q + 2)/2

0 0 0 1 q + 1

0 0 0 0 1

 ,

M2
2M

−2
0 =


1 2(q + 1) 0 0 q + 6

0 1 0 0 2

0 0 1 2(q + 1) (q + 1)(2q + 3)

0 0 0 1 2(q + 1)

0 0 0 0 1

 .

In particular, M1M
−1
0 , M2

1M
−2
0 and M2

2M
−2
0 all have integer coefficients,

and so they can always be reduced modulo d.
Consider now the matrices Mλ modulo d. Each determinant is equal

to q4; since q and d are coprime, these matrices are all invertible modulo d,
and their inverses are the reduction modulo d of their rational inverses.
Moreover, since GL5(Z/dZ) is a finite group, each Mλ has a finite order hλ;
hence, each state of the Markov chain C(q, d) is ergodic. Indeed, if t is
reachable from s, then t = sMλ1 · · ·Mλk for some λ1, . . . , λk; but then

s = tM
hλk−1
λk

· · ·Mhλ1−1
λ1

,

so s is reachable from t.
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We claim that, for every a and x, the tuples (1, a, 0, 0, x) and (1, b, 0, 0, x)
are communicating.

For every θw and every x, we have the three equalities

(1 θw 0 0 x)M1M
−1
0 = (1 θw + 1 0 0 x),

(1 0 0 0 x)M2
1M

−2
0 = (1 q + 1 0 0 x+ 2)

and
(1 0 0 0 x)M2

2M
−2
0 = (1 2(q + 1) 0 0 x+ q + 6).

Since q ≥ 2, we can always use M0 and M1; hence, the first equality implies
that, for every x, the 5-tuples (1, a, 0, 0, x) and (1, b, 0, 0, x) are communicat-
ing, while the first and second imply that (1, 0, 0, 0, x) and (1, a, 0, 0, x+ 2)
are communicating for all a and x (in particular, a = 0).

If d is odd, this implies that (1, 0, 0, 0, x)↔ (1, 0, 0, 0, y) for every x, y ∈
Z/dZ, and thus (1, a, 0, 0, x) and (1, b, 0, 0, y) are communicating whatever
a and b are.

If d is even, then q ≥ 3 (since gcd(d, q) = 1); hence, we can also use M2,
obtaining (1, 0, 0, 0, x)↔ (1, 2(q + 1), 0, 0, x+ q + 6), and so (1, 0, 0, 0, x)↔
(1, a, 0, 0, x+ q + 6) for every a. Hence, (1, 0, 0, 0, x) is communicating with

(1, a, 0, 0, x+ 2z1 + (q + 6)z2)

for every choice of z1, z2 ∈ N. However, q is odd, and thus gcd(2, q+6, d) = 1:
hence, 2z1+(q+6)z2 can be equal to any s ∈ Z/dZ. Therefore, (1, 0, 0, 0, x)↔
(1, a, 0, 0, y) for all a and y, as claimed.

Consequently, for every d, we have δ(1, a, 0, 0, x) = δ(1, b, 0, 0, y) for any
a, b, x, y. However,

d−1∑
x=0

δ(1, θw, 0, 0, x) = 1;

hence, for all a and x we have δ(1, a, 0, 0, x) = 1/d, as claimed.

5. Algebraic interpretation. Let D be an integral domain with quo-
tient field K. The set of integer-valued polynomials on D is

Int(D) := {f ∈ K[X] : f(D) ⊆ D}.
The set Int(D) is always an integral domain contained between D[X]
and K[X]. There are two sequences of D-modules associated to Int(D):
the first is formed by the characteristic ideals Jn := Jn(D), defined as the
union of (0) with the leading coefficients of the polynomials of Int(D) of
degree n; the second contains the modules of the form

Intn(D) := {f ∈ Int(D) : deg f ≤ n}.
If D is a Dedekind domain, these two sequences are linked by the relation
[1, Corollary II.3.6]
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(5) Intn(D) '
n⊕
k=0

Jk ' Dn ⊕
n∏
k=0

Jk.

For any maximal ideal m of D, let N(m) be the norm of m, that is, the
cardinality of D/m; for any q ∈ N, let Πq be the product of the maximal
ideals of norm q. The subgroup of the class group generated by the Πq is
called the Pólya–Ostrowski group of D, and is denoted by Po(D). Several
papers studied Po(D) when D is an integral extension of Z, with special
focus on D for which the group Po(D) is trivial (in this case, the quotient
field K of D is said to be a Pólya field) [12, 7, 3]: this happens if and only
if Int(D) has a regular basis, i.e., a basis {f0, f1, . . . , } over D such that
deg fi = i for every i. For example, every cyclotomic extension of Q is a
Pólya field [1, Proposition II.4.3].

The (classes of the) characteristic ideals of D naturally belong to Po(D),
and by [1, Proposition II.3.9] we have

Jn =
n∏
q=2

Π
−wq(n)
q .

On the other hand, the modules Intn(D) do not belong, by themselves,
to Po(D), for the trivial reason that they are not fractional ideals of D.

However, by (5), we can write Intn(D) as the direct sum Dn ⊕ Întn(D),
where

Întn(D) :=
n∏
k=1

Jn(D)

is a fractional ideal of D; by construction, the isomorphism class of Întn(D)

belongs to Po(D). Moreover, since D is a Dedekind domain, Întn(D) is a

projective module of rank 1, and thus Intn(D) is free if and only if Întn(D)
is free [6, Theorem 4.11]. Applying again (5), we see that

Întn(D) '
n∏
q=2

Π
−uq(n)
q

for every n ∈ N.
Therefore, we have two maps N→ Po(D) given by

n 7→ [Jn(D)] and n 7→ [Întn(D)],

and studying how many times Jn(D) and Întn(D) are isomorphic to a spe-
cific module is essentially equivalent to studying the limit distribution of
these maps in Po(D). Elliott [2] conjectured that the density of the natural
numbers such that Intn(D) is free exists and is rational, and it is always at
least 1/|Po(D)|. He also makes several conjectures for more specific cases,
mostly expressed in terms of multisets.
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Suppose now that there is a unique q such that Πq is not a principal
ideal of D, and let d := |Po(D)|. Then Po(D) ' Z/dZ is a cyclic group and
[Πq] is a generator; moreover,

Jn ' Π
−wq(n)mod d
q and Întn(D) ' Π−uq(n)mod d

q .

Therefore, the distribution of the maps n 7→ [Jn(D)] and n 7→ [Întn(D)]
in Po(D) is determined by the distribution of n 7→ wq(n) and n 7→ uq(n)
modulo d, and we can simply translate the results in Sections 3 and 4 to
this context; the definitions of limit distribution and of being uniformly
distributed in Po(D) is analogous to the ones after Definition 2.4.

Proposition 5.1. Let D be a Dedekind domain, and suppose that Πn

is nonprincipal only for n = q; let d := |Po(D)|.

(a) The map n 7→ [Jn(D)] is uniformly distributed in Po(D).
(b) If, for every s, the density δ(q, d; s) exists, then for every g ∈ Po(D) the

density of n such that [Întn(D)] = g is rational.
(c) If d | q, the density of n such that Intn(D) ' Πx

q ⊕Dn is equal to

1

d2

∑
f |gcd(x,d)

f · ϕ
(
d

f

)
.

(d) If q and d are coprime and, for every s ∈ Z5, the density δ(q, d; s) exists,

then the map n 7→ [Întn(D)] is uniformly distributed in Po(D).

Proof. The four statements are the translation, respectively, of Corol-
lary 3.3, Theorem 2.6, Theorem 4.2 and Theorem 4.4.

Suppose D is the ring of integers of a number field K. Some examples in
which D satisfies the hypotheses of the previous proposition are given in [2,
Examples 7.3 and 7.4]. Other examples can be constructed using [1, proof
of Proposition II.4.2]: if K is Galois over Q, then Πq is principal for every
q = pr such that p is not ramified in K. Since p is ramified if and only if
it divides the discriminant [10, Chapter II, Corollary 2.12], Proposition 5.1
can be applied if the discriminant of K is a prime power. Unfortunately, the
simplest cases in which this happens (the quadratic fields K = Q(

√
p), where

|p| is a prime and p ≡ 1 mod 4, and the cyclotomic extensions K = Q(ζp)
for p prime) are also Pólya fields [1, Proposition II.4.3 and Corollary II.4.5],
and thus Po(D) is actually trivial; other examples where the discriminant is
a prime power (with unknown Pólya–Ostrowski group) are collected in [5].

When there is more than one Πq which is nonprincipal, it is necessary to
study the density of the n that are simultaneous solutions to the equations

θ(i)u uqi(n) + θ(i)w wqi(n) + θ
(i)
2

n(n+ 1)

2
+ θ

(i)
1 n+ θ

(i)
0 ≡ 0 mod di



Density of solutions and Markov chains 335

for i ∈ {1, . . . , k}, where q1, . . . , qk and d1, . . . , dk are arbitrary integers (and
q1, . . . , qk are pairwise different). The problem is essentially in determining
how much these equations are correlated; it is reasonable to think that

(under the obvious hypothesis that at least one of θ
(i)
u and θ

(i)
w is nonzero

modulo di, for each i) such equations are actually independent, so that the
density of the solutions of all the equations is determined by the densities of
the solutions of the single equations. The major obstruction seems to be the
problem of understanding the behaviour of uq1(aq2 + λ) and wq1(aq2 + λ)
when q1 6= q2.
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