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An ultrapower analogue of the Kronecker function ring

by

K. Alan Loper (Newark, OH) and Dario Spirito (Roma and Padova)

Abstract. We introduce an analogue of the Kronecker function ring construction in
the ultrapower setting, and study when it gives a Bézout domain.

1. Introduction. The ultraproduct construction is an extremely pow-
erful technique in logic and model theory: in fact, by Łoś’s theorem, a first-
order formula is satisfied in an ultraproduct if and only if it is satisfied for
almost all the factors (see [11], [5, Chapter 5, Theorem 2.1] or [6, Theorem
4.1.9]), and this allows a rather simple proof of the compactness theorem
for first-order logic (see e.g. [6, Corollary 4.1.11]). In algebra, the use of ul-
traproducts has been pioneered by Ax and Kochen [2–4], and has grown
considerably, for example as a way to transfer results from rings of positive
characteristic to rings of characteristic 0 (see [18]).

In general, the algebraic structure of the ultrapower of a family of rings
is very complicated, and this construction does not preserve all properties
of the factors: for example, the ultraproduct of a family of Noetherian rings
is very rarely Noetherian. In particular, ultraproducts and ultrapowers gain
many new prime ideals: for example, under some mild hypotheses every
non-zero prime ideal of the ultrapower of an integral domain has infinite
height [14, Proposition 6.2], and to describe the set of maximal ideals one
needs to consider ultrafilters on the set of ideals that are induced by maximal
ideals of the factors (see [14, Section 4] and [15, Theorem 4.3]).

In this paper, we study a generalization of the Kronecker function ring
to the ultrapower setting. The Kronecker function ring is a classical con-
struction that associates to every integrally closed integral domain D a new
domain Kr(D), contained between D[X] and K(X) (where K is the quo-
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tient field of D) that, while being an extension of D (in the sense that
Kr(D)∩K = D), gains several strong properties, among them that of being
a Bézout domain, meaning that every finitely generated ideal of Kr(D) is
principal. One of the equivalent definitions of Kr(D) is as the intersection
of a family of valuation rings, each one extending a valuation overring of D;
this idea also leads to the definition of the Kronecker function ring Kr(D,∆)
associated to a subset ∆ of the Zariski space of D.

In the ultraproduct setting, this construction admits a straightforward
generalization: given a set∆ of valuation overrings ofD, and an ultrafilter U
on an index set I, we can consider for every V ∈ ∆ the ultrapower V ? of V
(with respect to U ), and then intersect all the V ? (considering all V ? as
subsets of the ultrapower K? of the quotient field K of V ). We call the ring
obtained in this way the Kronecker-ultrafilter ring KU(D,∆,U ) of D (with
respect to ∆ and U ); when ∆ is the whole Zariski space of D, and U is
understood from the context, we set D] := KU(D,∆,U ).

Comparing these two settings, we see that, for D integrally closed, the
polynomial extension D[X] will have many more maximal ideals than D and
an abundance of valuation overrings which are not trivial extensions of valua-
tion overrings of D. Then, in this larger environment, the collection of trivial
extensions of the valuation overrings of D has a thin character, which leads
to their intersection (the Kronecker function ring) being a Bézout domain.
The notion of thinness of a collection of valuation domains resulting in a
Prüfer domain is made explicit in several different settings in [12]. Similarly,
the ultrapower of an integral domain acquires many new prime ideals and
many new valuation overrings, and hence will have a lot of valuation over-
rings which are not ultrapowers of valuation overrings of D. It would seem
natural then that the thinness of this collection of valuation domains would
lead to the intersection being a Bézout domain: the main purpose of this
paper is to understand how much the Kronecker-ultrafilter ring mirrors the
Kronecker function ring, and in particular if the former construction always
gives a Bézout domain.

The main setting in which we work is when the index set I is countable:
under this hypothesis, we show in Section 3 that D] is larger than the ul-
trapower D? unless D is a semilocal Prüfer domain, while in Section 4 we
give a few sufficient conditions for KU(D,∆,U ) to be a Bézout domain: for
example, we show this when ∆ is countable (Theorem 4.1) or when D is a
unique factorization domain and ∆ is the set of localizations of D at the
height-1 primes (Corollary 4.4).

In Section 5, we consider uncountable index sets, and show that in this
case the properties of the ultrafilter play an important role in the alge-
braic properties of the Kronecker-ultrafilter rings. For example, we show
that if U is κ-complete and the Zariski space of D has cardinality at most κ,
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then D? = D] (and in particular D] may not be a Bézout domain; Propo-
sition 5.1(c)), but that if the ultrafilter is regular then the methods of the
countable case can be generalized (Theorem 5.10).

2. Notation and preliminaries

2.1. Ultrafilters and ultraproducts. Let I be a set and U be a family
of subsets of I. Then U is an ultrafilter on I if the following properties hold:

• ∅ /∈ U ;
• if X,Y ∈ U , then X ∩ Y ∈ U ;
• if X ⊆ Y and X ∈ U , then Y ∈ U ;
• for every X ⊆ I, one of X and I \X is in U .

A family that satisfies the first three properties is said to be a filter ; an
ultrafilter is exactly a maximal filter.

It is easy to see that, if i ∈ I, the family of subsets containing i is an
ultrafilter; such ultrafilters are said to be principal, while those that are not
of this form are said to be free.

Let {Ri}i∈I be a collection of commutative rings and U be an ultrafilter
on I. The ultraproduct of the Ri with respect to U is the ring of all equiv-
alence classes of the direct product

∏
i∈I Ri by the equivalence relation ∼

defined by
(ai)i∈I ∼ (bi)i∈I ⇐⇒ {i ∈ I | ai = bi} ∈ U .

We denote by [ai] the class of the sequence (ai)i∈I , and by
∏

U Ri the ultra-
product of the Ri. When all the Ri are equal (say Ri = R), we also write R?
for the ultraproduct, and we call it the ultrapower of R with respect to U .

If U is the principal ultrafilter induced by a j ∈ I, then
∏

U Ri ' Rj .
For this reason, throughout the paper, we shall assume that all ultrafilters are
free.

For general properties of ultraproducts and ultrapowers, the reader may
consult [5] or [6].

2.2. Valuations and the Zariski space. All results on valuation,
Prüfer and Bézout domains we will use are standard and can be found,
for example, in [8]. For Kronecker function rings, the Zariski topology and
their relationship, see for example [7].

A valuation domain is an integral domain V whose ideals (equivalently,
whose principal ideals) are linearly ordered. Every valuation domain is local,
and we denote the maximal ideal of V as mV . A Bézout domain is a domain
such that every finitely generated ideal is principal.

A Prüfer domain is an integral domain D such that every finitely gen-
erated ideal is invertible, i.e., such that for every finitely generated ideal I
there is a fractional ideal J such that IJ = D. Every valuation domain is
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a Bézout domain and every Bézout domain is a Prüfer domain; conversely,
every local Prüfer domain is a valuation domain, and every semilocal Prüfer
domain is Bézout. Furthermore, D is a Prüfer domain if and only if all its
localizations are valuation domains. If D is a Prüfer (respectively, Bézout)
domain and T is a ring between D and its quotient field, then T is Prüfer
(resp., Bézout).

If {Ri} is a family of valuation (resp., Bézout, Prüfer) domains, then the
ultraproduct

∏
U Ri is a valuation (resp., Bézout, Prüfer) domain.

Given an integral domain D, the Zariski space Zar(D) of D is the set
of all rings contained between D and its quotient field K that are valuation
domains. The Zariski space is always non-empty; more precisely, for every
prime ideal p of D there is a V ∈ Zar(D) such that mV ∩D = p. The Zariski
space can also be endowed with a natural topology (the Zariski topology)
which is generated by the sets of the form B(x1, . . . , xn) := {V ∈ Zar(D) |
x1, . . . , xn ∈ V }, as x1, . . . , xn range in K. Under this topology, Zar(D) is
a compact space; furthermore, it is a spectral space, i.e., there is a ring R
such that Zar(D) ' Spec(R). An example of such a ring is the Kronecker
function ring of D:

Kr(D) :=

{
f

g
∈ K(X)

∣∣∣∣ f, g ∈ K[X], c(f)V ⊆ c(g)V for all V ∈ Zar(D)

}
,

where c(f) is the content of f , i.e., the ideal ofD generated by the coefficients
of f . The Kronecker function ring can also be defined as

Kr(D) :=
⋂

V ∈Zar(D)

V b,

where V b is the Gaussian extension of V , i.e., it is the valuation domain of
K(X) associated to the valuation

vG

(∑
i

fiX
i
)
:= min

i
v(fi),

where v is the valuation associated to V .
The constructible topology on Zar(D) is the topology generated by the

Zariski topology and the complements of the open and compact subsets of
the Zariski topology. The constructible topology is still spectral, but it also
becomes Hausdorff.

3. When D] is big. The main object of study of this paper is the
following.

Definition 3.1. Let D be an integral domain, let ∆ ⊆ Zar(D), and let
U be an ultrafilter over an index set I. The Kronecker-ultrafilter ring of D
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with respect to ∆ and U is

KU(D,∆,U ) :=
⋂
V ∈∆

∏
U
V.

When U is understood from the context, we set

D] := KU(D,Zar(D),U ).

The terminology “Kronecker-ultrafilter ring” is chosen to highlight the
similarity between the definition of D] (or, more generally, of KU(D,∆,U ))
and the definition of the Kronecker function ring of D (and the more gen-
eral construction Kr(D,∆)): we replace the Gaussian extension V b with the
ultrapower V ?.

In this and in the following section, we shall assume that the index set I
is countable; the uncountable case will be studied in Section 5.

The main purpose of this section is to show that, in almost all cases,
D] is larger than the ultrapower D?. It is not immediately obvious that this
is ever true; however, a simple example shows how they can be different.

Example 3.2. Let D :=Z be the ring of integers, and let {p1, . . . , pn, . . .}
be the set of prime numbers of Z. Let x be the element

x :=

[
1

p1
, . . . ,

1

pn
, . . .

]
.

Then x /∈ Z?, since xi = 1/pi /∈ Z for every i. On the other hand, if M = pZ
is a maximal ideal of Z, then 1/pi ∈ ZM for all i such that pi 6= p; hence, if
U is not principal, then x ∈ (ZM )?. Therefore, x belongs to the intersection
of all the (ZM )?, which are the ultrapowers of the minimal valuations of Z;
thus, x ∈ Z] \ Z?.

This example can be easily generalized.

Proposition 3.3. Let D be an integral domain, and let x1, . . . , xn, . . .
be a sequence of non-units of D such that (xi, xj)D = D for all i 6= j. Then

y :=

[
1

x1
, . . . ,

1

xn
, . . .

]
∈ D] \D?,

and so D? ( D].

Proof. Since each xi is a non-unit, 1/xi /∈ D and thus y /∈ D?. On
the other hand, for each maximal ideal M there is at most one i such that
xi ∈ M ; hence, y ∈ (DM )?. If now V is a minimal valuation overring of D,
then V ? contains (DM )? (where M := mV ∩ D), and thus y ∈ D]. In
particular, D] 6= D?.

Proposition 3.4. Let D be an integral domain, and suppose there is a
non-maximal prime ideal P of D such that Jac(D) ⊆ P . Then D? 6= D].
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Proof. Let M be a maximal ideal containing P , and let x1 ∈ M \ P .
Suppose we have constructed a sequence x1, . . . , xn−1 of non-units such that
(xi, xj)D = D for i < j < n and such that xi /∈ P for all i < n; then x̃ :=
x1 · · ·xn−1 /∈ P , and thus x̃ /∈ Jac(D). Hence, there is a y such that xn :=
yx̃− 1 is not a unit of D. Clearly, (xi, xn)D = D for all i < n; in particular,
xn /∈ P , since otherwise (x1, xn)D ⊆M . The sequence x1, . . . , xn, . . . satisfies
the hypothesis of Proposition 3.3, and thus D? 6= D].

The hypothesis of the previous proposition can be restated as requiring
that D/Jac(D) has dimension greater than 0; in particular, an important
case that is left out is when D is a local ring. To analyze this situation, we
use a similar method, but based on polynomials.

Proposition 3.5. Let D be an integrally closed domain, and let λ :=
{λn}n≥1 be a sequence of monic polynomials on D such that (λi, λj)D[X]
= D[X] for all i 6= j.

(a) For every non-zero t ∈ K, the element

λ−1(t) :=

[
1

λi(t)

]
i∈N

belongs to D].
(b) If V is a valuation overring of D, then λ−1(t) ∈ mV ? if and only if

t /∈ V .
(c) If V,W are non-comparable valuation overrings of D, then mV ? ∩ D]

6= mW ? ∩D].

Proof. Let V be any valuation overring of D, and let v be the valuation
relative to V . Note that if the constant term of λ ∈ D[X] is not a unit in V ,
then λ ∈ (mV , X)V [X]; in particular, no two polynomials with this property
can be coprime in V [X] (and thus also in D[X]). Furthermore, since the λi
are coprime, for any t there is at most one i such that λi(t) = 0, and so
λ−1(t) is well-defined.

We distinguish three cases.

• If t /∈ V , then v(t) < 0; hence, v(λi(t)) is equal to the valuation of its
leading term, which is equal to niv(t) < 0 (where ni is the degree of λi).
Hence, 1/λi(t) ∈ mV , and thus λ−1(t) ∈ mV ? .
• If t ∈ mV , i.e., if v(t) > 0, then (since the constant term of λi is a unit

for all but at most one i), we have v(λi(t)) = 0 (again, for all but at most
one i), and so 1/λi(t) is a unit of V , i.e., λ−1(t) is a unit of V ?.
• If v(t) = 0 and v(λi(t)) > 0, then t is a zero of λi (when t and λi are seen

over V/mV ). Since the λi are coprime in D[X], they are also coprime in
V/mV [X]; hence, t cannot be a zero of more than one polynomial. Thus,
v(λi(t)) = 0 for all but at most one i, and so λ−1(t) is a unit of V ?.
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In particular, λ−1(t) ∈ V ? for every V , and so λ−1(t) ∈ D]; furthermore,
λ−1(t) ∈ mV ? if and only if t /∈ V .

If V and W are non-comparable, we can find t ∈ V \W ; then λ−1(t) ∈
mW ? \mV ? , and since λ−1(t) ∈ D], we have mV ? ∩D] 6= mW ? ∩D].

Lemma 3.6. Let D be an integral domain. If I, J are D-submodules
of K, then (I ∩ J)? = I? ∩ J?.

Proof. Clearly (I ∩ J)? ⊆ I? ∩ J?. If x := [xi] ∈ I? ∩ J?, then
{i | xi ∈ I ∩ J} = {i | xi ∈ I} ∩ {i | xi ∈ J} ∈ U ,

being the intersection of two subsets belonging to U . Hence, x ∈ (I ∩ J)?,
as claimed.

Corollary 3.7. Let V be a valuation overring of D. Then mV ? ∩ D?

= (mV ∩D)?.

Proof. It is enough to note that mV ? = (mV )
? and apply Lemma 3.6.

Proposition 3.8. Let D be an integrally closed integral domain that is
not Prüfer. Then D? 6= D].

Proof. Let λ1 be any monic polynomial and, for n > 1, let
λn := λ1 · · ·λn−1 − 1.

Then all λi are monic non-constant polynomials, and (λi, λj)D[X] = D[X]
whenever i 6= j. Let λ := {λn}n≥1; then λ satisfies the hypothesis of Propo-
sition 3.5, and thus mV ? ∩D] 6= mW ? ∩D] for all non-comparable valuation
overrings V,W of D.

However, if D is not a Prüfer domain, there is a maximal ideal M of D
such that DM is not a valuation domain; in particular, there are two different
minimal valuation overrings of DM , say V and W , and both V and W have
the same center over D, namely M . By Corollary 3.7, V ? and W ? have the
same center over D?, namely M?, i.e., mV ? ∩ D? = M? = mW ? ∩ D?. By
the previous reasoning, this is impossible if D? = D]. Hence, D? 6= D], as
claimed.

The only case left is when D is a Prüfer domain such that the minimal
primes of the Jacobson radical are all maximal. We shall use a topological
lemma.

Lemma 3.9. Let X be a topological space that is compact and totally
disconnected, and suppose that |X| = ∞. Then there is a descending chain
X = X0 ) X1 ) · · · ) Xn ) · · · such that every Xi is compact and open
in X.

Proof. Since X is totally disconnected, there is a proper subset U of X
that is both open and closed. Since |X| =∞, at least one of U and X \U is
infinite; let it be X1. Then X1 is both open and closed; since X is compact,
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X1 is compact as well. Since X1 is also totally disconnected, we can apply
the same reasoning, finding an X2 which is compact and open in X1; since
X1 is open in X, it follows that X2 is also open in X. Repeating the process
we have the sequence.

Proposition 3.10. Let D be a Prüfer domain such that Max(D) is in-
finite and every minimal prime of Jac(D) is maximal. Then D? 6= D].

Proof. By hypothesis,D/Jac(D) has dimension 0 and Spec(D/Jac(D)) is
homeomorphic toMax(D). Hence,Max(D) is compact, Hausdorff and totally
disconnected; since it is infinite, we can apply Lemma 3.9 and find a sequence
Max(D) = X0 ) X1 ) · · · of open and compact subsets of Max(D); since
Max(D) is Hausdorff, each Xi is also closed. Let Ωi := Xi \ Xi−1 for each
i > 0. Then Ωi = Xi ∩ (Max(D) \Xi−1) is open and closed in Max(D); in
particular, since Max(D) is closed in Spec(D) (being equal to V (Jac(D))),
Ωi is closed in Spec(D). Furthermore, since it is open, there is an ideal Ji
such that V (Ji) ∩Max(D) = Max(D) \Ωi.

Therefore, V (Ji) and Ωi are disjoint closed subsets of Spec(D); by [9,
Lemma 1.1], we can find

xi ∈
⋂
P∈Ωi

P \
⋃

Q∈V (Ji)

Q.

In particular, V (xi) ∩Max(D) = Ωi; since Ωi ∩ Ωj = ∅ if i 6= j, we have
(xi, xj)D = D for all i 6= j. Hence, we can apply Proposition 3.3, and
D] 6= D?.

The following theorem recaps the results of this section.
Theorem 3.11. Let D be an integral domain, and suppose that the index

set is countably infinite. Then D? = D] if and only if D is a semilocal Prüfer
domain.

Proof. If D is a semilocal Prüfer domain, say Max(D) = {M1, . . . ,Mn},
then we see that

D? = (DM1 ∩ · · · ∩DMn)
? =

n⋂
i=1

(DMi)
? =

n⋂
i=1

(DMi)
] = D]

using Lemma 3.6 and the fact that each DMi is a valuation domain.
Suppose that D is a Prüfer domain that is not semilocal. Then either

dim(D/Jac(D)) = 0 or dim(D/Jac(D)) > 0. In the latter case, D? 6= D] by
Proposition 3.4; in the former, D? 6= D] by Proposition 3.10. If D is not a
Prüfer domain, then D? 6= D] by Proposition 3.8.

4. Bézout domains. One of the most important properties of the Kro-
necker function ring Kr(D) of D is that it is a Bézout domain; in particular,
the spectrum and the Zariski space of Kr(D) are homeomorphic. There does
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not seem to be a simple way to extend this result to the Kronecker-ultrafilter
ring of D: indeed, when the index set is uncountable, this is in general not
true (see the next section), and thus the Bézoutness of D] depends, at least
in part, on cardinality issues. Nevertheless, we advance the following

Conjecture. If the index set I is countable, then D] is a Bézout do-
main.

A first evidence in favor of this conjecture is Proposition 3.5(c): the ul-
trapowers V ?, in the Zariski space of D], are spread out so much that their
centers on D] (and thus on each KU(D,∆,U )) are distinct. In particular,
every localization of D] at its prime ideals is dominated by at most one V ?.

In this section we use a few different approaches to prove some special
cases of the conjecture. We still assume, throughout the section, that the
index set is countable.

The first idea is to approximate the set ∆ of valuation rings.

Theorem 4.1. Let ∆ ⊆ Zar(D) be a countable set. Then KU(D,∆,U )
is a Bézout domain.

Proof. Let D := KU(D,∆,U ). Write ∆ := {V1, V2, . . .}, and let Tn :=
V1 ∩ · · · ∩ Vn; then Tn is a semilocal Prüfer domain (and thus it is Bézout)
for every n. Take a := [ai],b := [bi] ∈ K?. For every i, the ideal (ai, bi)Ti is
principal, and thus is generated by some ci ∈ K. Let c := [ci]; we claim that
c generates (a,b)D.

Indeed, let Vn ∈ ∆; then, for every i ≥ n, Ti ⊆ Vn and thus (ai, bi)Vn =
ciVn. Hence, the set {i | ci ∈ (ai, bi)Vn} contains [n,∞) and thus belongs
to U , and so c ∈ (a,b)D. In the same way, the sets {i | ai ∈ ciVn} and
{i | bi ∈ ciVn} contain [n,∞) and belong to U , so that both a and b belong
to cD. The claim is proved.

Corollary 4.2. If Zar(D) is countable, then D] is a Bézout domain.

We shall generalize Theorem 4.1 in Theorem 5.10.
A second way of constructing a generator for (a,b)D] is by using fac-

torization properties. For the definitions and properties of GCD domains,
PvMDs, and t-maximal ideals, see for example [1]. A domain has t-finite
character if every non-zero non-unit is contained in only finitely many t-
maximal ideals.

Proposition 4.3. Let D be a GCD domain that has t-finite character,
and let ∆ be the set of localizations of D at the t-maximal ideals. Then
KU(D,∆,U ) is a Bézout domain.

Proof. A GCD domain is a PvMD [1, Theorem 4.1], and thus if P is a
t-maximal ideal, then DP is a valuation domain [1, Theorem 3.1]; hence, it
makes sense to consider KU(D,∆,U ).
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Let x := [xi] and y := [yi] be two elements of K?. Since D is a GCD
domain, for every i there is a gi ∈ D such that (xi, yi)

v = giD; dividing
both x and y by g := [gi], we can suppose that (xi, yi)v = D, i.e., that, for
every i, xi and yi are coprime elements of D.

We claim that we can find two sequences {an}n≥1, {bn}n≥1 of elements
of D such that aixi + biyi and ajxj + bjyj are coprime for every i 6= j.
Indeed, start with a1 = b1 = 1, suppose we have found the sequences up to
n − 1, and let zk := akxk + bkyk for k < n. Let Sk be the set of elements
that are not coprime to zk; then Sk is just the union of all t-maximal primes
containing zk, and thus it is the union of finitely many prime ideals; hence,
also S :=

⋃
k<n Sk is the union of finitely many primes.

Suppose that, for all α, β ∈ D, the element z := αxn+βyn is not coprime
to some zk; then (xn, yn)D is contained in S. However, by prime avoidance,
it would follow that (xn, yn)D is contained in some t-maximal ideal, contra-
dicting the fact that xn and yn are coprime; thus, we can find an, bn ∈ D
such that anxn + bnyn is coprime to every zk.

Now let a := [ai] and b := [bi], and let z := ax + by = [aixi + biyi].
Then, z ∈ (x,y)D? ⊆ D?. Let Λ be the set of t-maximal ideals; then every
P ∈ Λ contains at most one zi, and thus 1 ∈ z(DP )

?. It follows that

1 ∈
⋂
P∈Λ

z(DP )
? = z

⋂
P∈Λ

(DP )
?.

Hence, x and y generate a principal ideal in
⋂
P∈Λ(DP )

? = KU(D,∆,U );
since x and y were arbitrary, KU(D,∆,U ) is a Bézout domain.

Corollary 4.4. Let D be a unique factorization domain, and let ∆ :=
{DP | h(P ) = 1}. Then KU(D,∆,U ) is a Bézout domain.

Proof. If D is a unique factorization domain, then it is a GCD domain
and the t-maximal ideals are exactly the height-1 prime ideals. The claim
follows from Proposition 4.3.

The last result of this section shows that, under some hypothesis on the
units of D, we can find a Kronecker function ring of D inside D].

Lemma 4.5. Let D be an integral domain and let u1, u2, . . . be a sequence
of units of D such that ui−uj is a unit whenever i 6= j. For every f ∈ K[X]
and every valuation overring V of D we have v(f(ui)) = vG(f) for all but
finitely many i, where v is the valuation relative to V , and vG is the Gaussian
valuation of v.

Proof. Let L := V/mV . The hypothesis implies that the images u1, u2, . . .
of the ui are distinct elements of L.

Let f(X) :=
∑

i fiX
i, and let s ∈ K be an element of value vG(f); then

all coefficients of 1
sf :=

∑
i
fi
s X

i are in V and some of them are units of V ,
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so that the image g(X) in L[X] is well-defined and not the zero polynomial.
Hence, g(ui) = 0 for only finitely many i; for all others, 1

sf(ui) is a unit of V ,
and thus v(f(ui)) = v(s) = vG(f).

Proposition 4.6. Let D be an integral domain and let u1, u2, . . . be
a sequence of units of D such that ui − uj is a unit whenever i 6= j; let
u := [ui]. Then the Kronecker function ring of D in K(u) is contained
in D]; in particular, for all a, b ∈ D the ideal (a, b)D] is principal.

Proof. Note first that u is transcendental over K, so it makes sense to
construct the Kronecker function ring T ofD inK(u). Let φ ∈ T ; then we can
write φ as f(u)/g(u), where f, g ∈ K[X] are polynomials with vG(f) ≥ vG(g)
for all v. In the ultraproduct representation, f(u)/g(u) = [f(ui)/g(ui)] (at
least for all i such that g(ui) 6= 0; however, g(ui) = 0 for only finitely many i,
and thus for these indexes we can just set f(ui)/g(ui) = 0). By Lemma 4.5,
for all but finitely many i we have v(f(ui)) = vG(f) and v(g(ui)) = vG(g);
hence, for all but finitely many i we find that

v(f(ui)) = vG(f) ≥ vG(g) = v(g(ui)),

and so f(ui)/g(ui) ∈ V . Therefore, f(u)/g(u) ∈ V ?, i.e., φ ∈ V ?. Since V
was arbitrary, it follows that φ ∈

⋂
V V

? = D] and so T ⊆ D], as claimed.
The last assertion follows since T is a Bézout domain.

Note that the properties of the Kronecker function ring show that a gen-
erator of (a, b)T is a + ub, which thus also generates (a, b)D]. This claim
can also be proved directly. See Proposition 5.12 for an extension to un-
countable index sets.

5. When the index set is uncountable. In this section, we analyze
what happens when the index set I is not countable; this case is more deli-
cate, since it hits on cardinality problems. As a first example, we show that
the equality D? = D] may hold also outside the semilocal Prüfer domain
case.

Let κ be a cardinal number. An ultrafilter U is said to be κ-complete
if the intersection of any family of at most κ elements of U belongs to U ;
equivalently, U is not κ-complete (or is κ-incomplete) if there is a partition
of the index set into (at most) κ subsets none of which belong to U .

An uncountable cardinal κ such that there is an ultrafilter on an index set
of cardinality κ that is α-complete for every α < κ is said to be measurable.
It is consistent with ZFC that measurable cardinals do not exist (see [19]
or [5, Chapter 14, §6]). In our context, complete ultrafilters give rise to
situations where D? = D], showing that Theorem 3.11 cannot be extended
beyond the countable case.
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Proposition 5.1. Suppose U is κ-complete, and let ∆ be a family of
subsets of K with |∆| ≤ κ. Then:

(a) (
⋂
J∈∆ J)

? =
⋂
J∈∆ J

?.
(b) If ∆ ⊆ Zar(D) and

⋂
V ∈∆ V = D, then KU(D,∆,U ) = D?.

(c) If D is integrally closed and |Zar(D)| ≤ κ, then D? = D].

Proof. Part (a) follows in the same way as Lemma 3.6, using the com-
pleteness of U . The other two points are immediate consequences of the first
one.

Remark 5.2. If U is a κ-complete ultrafilter, and U is not principal,
then the cardinality of the index set is strictly greater than κ: otherwise,
{I \ {i} | i ∈ I} would be a family of at most κ subsets in the ultrafilter
with empty intersection, which would imply that the empty set is in U ,
a contradiction.

In particular, if κ is an infinite cardinal and the index set I is count-
able, then every non-principal ultrafilter is countably incomplete (i.e., it
is ℵ0-incomplete). Since we are considering only non-principal ultrafilters,
Proposition 5.1 does not apply (non-trivially) to the case of countable index
set considered in Sections 3 and 4.

In particular, if U is κ-complete, then D] may not be a Bézout domain,
or even a Prüfer domain. For example, if L is a countable field, X,Y inde-
terminates, and D := L + Y L(X)[[Y ]], then Zar(D) is countable (as it is
composed by L(X)((Y )), L(X)[[Y ]], L[X](1/X) + Y L(X)[[Y ]] and the rings
L[X](f) + Y L(X)[[Y ]], as f ranges among the irreducible polynomials of
L[X]) so D? = D]; however, D is not a Prüfer domain, and thus neither
is D?. Therefore, the fact that D] is a Bézout domain for arbitrary index
sets would imply that κ-complete ultrafilters (and thus measurable cardinals)
cannot exist.

If we step outside the complete case, however, the situation becomes much
better. The following “approximation” method can be seen as a generalization
of the proof of Theorem 4.1.

Proposition 5.3. Let D be an integral domain, and let {Ti}i∈I be a set
of overrings of D. Let

∆ :=
{
V ∈ Zar(D)

∣∣ {i ∈ I | Ti ⊆ V } ∈ U
}
.

Then
∏

U Ti ⊆ KU(D,∆,U ). In particular, if each Ti is a Prüfer (resp.,
Bézout) domain, then KU(D,∆,U ) is a Prüfer (resp., Bézout) domain.

Proof. Let x := [xi] ∈
∏

U Ti, and let V ∈ ∆. Then

{i | xi ∈ V } ⊇ {i | xi ∈ Ti} ∩ {i | Ti ⊆ V }
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and both sets on the right hand side are in U (the first one since x ∈∏
U Ti, the second one by the definition of ∆). Thus, x ∈ KU(D,∆,U ) and∏
U Ti ⊆ KU(D,∆,U ).
The “in particular” statement follows since if each Ti is a Prüfer (resp.,

Bézout) domain, then so is their ultraproduct, and an overring of a Prüfer
(resp., Bézout) domain is still Prüfer (resp., Bézout).

Before showing how to extend Theorem 4.1, we use this criterion together
with a result of Roquette. Recall that a field F is real closed if it is elemen-
tarily equivalent to the field of real numbers, that is, if every first-order
property in the language of fields is true in F if and only if it is true in R.

Lemma 5.4. Let F be a field that is not algebraically closed nor real
closed. Then there are irreducible polynomials over F of arbitrarily large
degree.

Proof. Let F be the algebraic closure of D. If F is not algebraically
closed nor real closed, then [F : F ] = ∞ (see [10, Corollary 9.3]). If F is
perfect, the claim follows. If F is not perfect, and it has characteristic p,
then there is an element a ∈ F \ F p, and for every l the polynomial Xpl − a
is irreducible [10, Corollary 9.2]; again the claim follows.

Proposition 5.5. Let (D,m) be a local domain, and let F := D/m.
Suppose that F is not algebraically closed nor real closed. Let ∆ be the set of
valuation overrings V of D such that the algebraic closure of F in V/mV is
finite over F . Then KU(D,∆,U ) is a Prüfer domain.

Proof. Since F is not algebraically closed nor real closed, by Lemma 5.4
we can find a sequence {λn}n≥1 of irreducible polynomials over F of increas-
ing degree. Let Ti :=

⋂
{V ∈ ∆ | λi has no roots in V/mV }. By [16, Theo-

rem 1], each Ti is a Prüfer domain.
Let V be a valuation overring of D. By hypothesis, the degree of the alge-

braic closure of F in V/mV over F is finite, say equal to n: since the degrees of
the λi are increasing, only finitely many λi can have a root in V/mV . There-
fore, Ti ⊆ V for all but finitely many i; in particular, {i ∈ I | Ti ⊆ V } ∈ U
for all V ∈ ∆. By Proposition 5.3, it follows that KU(D,∆,U ) is a Prüfer
domain, as claimed.

In particular, the set ∆ of Proposition 5.5 contains all valuation overrings
whose residue field is F and those whose residue field is purely transcendental
over F .

Corollary 5.6. Let (D,m) be a local domain, and let ∆ be the set of val-
uation overrings of D with finite residue field. If ∆ 6= ∅, then KU(D,∆,U )
is a Prüfer domain.

We now want to apply Proposition 5.3 more directly.
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Proposition 5.7. Let D be an integral domain and ∆ ⊆ Zar(D), and
suppose there is an injection ψ : ∆→ U . For every i∈I, let Ti :=

⋂
{V ∈ ∆ |

i ∈ ψ(V )}. Then
∏

U Ti ⊆ KU(D,∆,U ).

Proof. For every V ∈ ∆, the set {i ∈ I | Ti ⊆ V } contains ψ(V ), and
thus is in U . The claim follows from Proposition 5.3.

Since we are trying to show that the Kronecker-ultrafilter ring is Bézout,
we want the Ti of the previous proposition to be Bézout; the easiest way
to guarantee this property is to require them to be finite intersections of
valuation rings.

Definition 5.8. An ultrafilter U on I is regular if there is a family
E ⊆ U such that:

• |E| = |I|;
• each i ∈ I belongs to only finitely many X ∈ E.

Remark 5.9.

(1) If U is regular, then every element of U has the same cardinality as I.
(2) If I is countable, then every free ultrafilter is regular (for I = N, take E

formed by the sets [n,∞)).

Theorem 5.10. Let D be an integral domain. Suppose that |I| ≥ |∆| and
that U is a regular ultrafilter. Then KU(D,∆,U ) is a Bézout domain.

Proof. Take a family E ⊆ U that makes U into a regular ultrafilter;
then there is an injection ψ : ∆ → E ⊆ U . Define Ti as in Proposition 5.7.
Since U is regular, each Ti is a semilocal Bézout domain; hence,

∏
U Ti is a

Bézout domain, and thus also KU(D,∆,U ) (which is an overring of
∏

U Ti)
is Bézout.

Note that, using Remark 5.9(2), this theorem can be seen as a general-
ization of Theorem 4.1.

Furthermore, suppose that ϕ is a first-order property such that:

• ϕ holds for semilocal Prüfer domains;
• if ϕ holds for the Bézout domain T , then it also holds for all overrings

of T .

Then, under the hypothesis of Theorem 5.10, ϕ holds for every Ti, and
thus also for the ultraproduct

∏
U Ti and for the Kronecker-ultrafilter ring

KU(D,∆,U ). Examples of this phenomenon are when ϕ is “being an elemen-
tary divisor domain” or “having stable range 1” (see [17] for the definitions).

For regular ultrafilters, we can actually say more about the set ∆?.

Proposition 5.11. Let D be an integral domain. Suppose that |I| ≥ |∆|
and U is a regular ultrafilter. Then ∆? := {V ? | V ∈ ∆} is discrete in the
constructible topology of Zar(D]).
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Proof. Fix a valuation overring W of D. We shall show that {W ?} is
equal to B(x)∩ (∆? \ B(y)) for some x,y ∈ K?; this will show that {W ?} is
open in the constructible topology.

As in the previous proof, we denote by E a subfamily of U that makes U
into a regular ultrafilter.

We first construct x. Let ∆1 := {V ∈ ∆ | V ⊇ W}; then there is an
injection ψ1 : ∆ \∆1 → E. For every i, define Ri as the intersection of all
V ∈ ∆\∆1 such that i ∈ ψ1(V ); then every Ri is a semilocal Bézout domain
that does not contain W . Hence, we can find an xi ∈ W \ Ri; let x := [xi].
By construction, x ∈W ?. On the other hand, if V ∈ ∆ \∆1, then

{i ∈ I | xi /∈ V } ⊇ ψ1(V ) ∈ U

and thus x /∈ V ; hence, B(x) ∩∆? = ∆?
1.

To construct y, we use essentially the same method: let ∆2 := {V ∈ ∆ |
V ⊆ W}, and take an injection ψ2 : ∆ \∆2 → E. For every i, define Ti as
the intersection of all V ∈ Zar(D) \∆2 such that i ∈ ψ2(V ); then every Ti is
a semilocal Bézout domain that is not contained in W . Hence, we can find
a yi ∈ Ti \W ; let y := [yi]. By construction, y /∈ W ?, while if V ∈ ∆ \∆2,
then

{i ∈ I | yi ∈ V } ⊇ ψ2(V ) ∈ U

and thus y /∈ V ; hence, B(y) ∩∆? = ∆? \∆?
2, i.e., ∆? \ B(y) = ∆?

2.
Therefore

B(x) ∩ (∆? \ B(y)) = ∆?
1 ∩∆?

2 = (∆1 ∩∆2)
? = {W ?},

and so {W ?} is open in the constructible topology. Since this happens for
every W , ∆? is discrete in the constructible topology.

As a last application, we generalize Proposition 4.6.

Proposition 5.12. Suppose U is a regular ultrafilter. Let D be an inte-
gral domain containing an infinite field F . If |F ||I| > |∆|, then KU(D,∆,U )
is a Bézout domain.

Proof. By [5, Chapter 6, Corollary 3.21], the field F ? has cardinality at
least |F ||I|; furthermore, F ? ⊆ D? and so F ? ⊆ V ? for every V ∈ Zar(D).
By [13, Theorem 6.6], the intersection of any set of κ < |F ||I| valuation rings
containing F ? and contained in K? is a Bézout domain; in particular, we can
apply this result to ∆? := {V ? | V ∈ ∆}. Thus, KU(D,∆,U ) is a Bézout
domain.

Remark 5.13.

(1) The proof of [13, Theorem 6.6] does not actually use the fact that F is
a field, but rather that F is a set of units such that u− u′ is a unit for
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every u 6= u′ in F . This property is conserved by passing from F to F ?;
thus, we can weaken the hypothesis of Proposition 5.12 in the same way.

(2) Since |F ||I| > |I|, the hypothesis that |F ||I| > |∆| of Proposition 5.12
is weaker than the hypothesis |I| ≥ |∆| of Theorem 5.10; however, the
latter theorem also covers the cases where we cannot find an infinite
field F .
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