
Evaluation of temporal datasets via interval
temporal logic model checking∗

Dario Della Monica1,2, David de Frutos-Escrig1, Angelo
Montanari3, Aniello Murano2, and Guido Sciavicco4

1 Dept. Sistemas Informáticos y Computación, Universidad Complutense de
Madrid (Spain)
ddellamo@ucm.es,defrutos@sip.ucm.es

2 Dept. of Electrical Engineering and Information Technology, University
"Federico II" of Naples, (Italy)
dario.dellamonica@unina.it,murano@na.infn.it

3 Dept. of Mathematics, Computer Science, and Physics, University of Udine
(Italy)
angelo.montanari@uniud.it

4 Dept. of Mathematics and Computer Science, University of Ferrara (Italy)
guido.sciavicco@unife.it

Abstract
The problem of temporal dataset evaluation consists in establishing to what extent a set of tem-
poral data (histories) complies with a given temporal condition. It presents a strong resemblance
with the problem of model checking enhanced with the ability of rating the compliance degree of
a model against a formula. In this paper, we solve the temporal dataset evaluation problem by
suitably combining the outcomes of model checking an interval temporal formula against sets of
histories (finite interval models), possibly taking into account domain-dependent measures/cri-
teria, like, for instance, sensitivity, specificity, and accuracy. From a technical point of view,
the main contribution of the paper is a (deterministic) polynomial time algorithm for interval
temporal logic model checking over finite interval models. To the best of our knowledge, this is
the first application of interval temporal logic model checking in the area of temporal databases
and data mining (rather than in the formal verification setting).

1998 ACM Subject Classification F.4.1 Mathematical Logic, I.2.6 Learning, H.2.1 Logical
Design

Keywords and phrases Dataset Evaluation; Temporal Databases; Model Checking; Interval Tem-
poral Logics

Digital Object Identifier 10.4230/LIPIcs.TIME.2017.23

1 Introduction

Temporal databases keep track of the temporal evolution of information by associating one
or more temporal dimensions with stored data [10, 19, 37, 38]. One of the fundamental
temporal dimensions is valid time that associates with each stored fact the time interval
at which it is true in the modeled reality. In this paper, we focus on temporal databases

∗ This work was partially supported by the Italian INdAM-GNCS project Logics and Automata for
Interval Model Checking. In addition, Dario Della Monica acknowledges the financial support from a
Marie Curie INdAM-COFUND-2012 Outgoing Fellowship.

© D. Della Monica, D. de Frutos-Escrig, A. Montanari, A. Murano, G. Sciavicco;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1–23:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TIME.2017.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Evaluation of temporal datasets via interval temporal logic model checking

featuring such a dimension (valid-time temporal databases). A valid-time temporal database
consists of a set of temporal instances, or histories. Borrowing the terminology from the field
of machine learning, a set of histories is often referred to as a temporal dataset [41].

The temporal dataset evaluation problem can be (roughly) defined as the problem of
establishing how many histories comply with a given temporal formula or constraint. The
evaluation of temporal datasets plays a key role in at least three different application domains:
(i) temporal query processing [37], where the set of histories that satisfy a given condition
must be returned, (ii) temporal constraint checking [38], where the set of histories that violate
a given constraint must be identified, and (iii) rule evaluation [41], where one must determine
how many histories, and to which extent, comply with a certain temporal rule. In this paper,
we formulate (and solve) this problem as a model checking problem.

Interval temporal logic model checking. In its standard formulation, model checking
is the problem of verifying whether or not a given formula of some logical language is
satisfied by a certain model [9]. One of its most successful applications is the verification of
a point-based temporal logic specification (expressed, for instance, by a formula of Linear
Temporal Logic [31]) against some reactive system description [32]. It is well known that
query evaluation and constraint checking in relational databases can be naturally expressed
as model checking problems (see, for instance, [40]). The applicability of model checking
techniques for the retrieval and the verification of temporal data has also been explored in
the literature, e.g., [4, 35].

Time intervals are commonly used to represent temporal information in (valid-time)
temporal databases. On the one hand, they allow one to compactly represent the time
periods over which data are valid in the modeled domain [39]; on the other hand, they make
it possible to suitably represent inherently interval-based temporal information such as telic
facts and temporal aggregations [3, 18]. Accordingly, temporal queries, constraints, and
rules can be naturally formulated as formulas of an interval temporal logic to be evaluated
over temporal datasets represented as finite interval models. The problem of evaluating a
temporal dataset can thus be reduced to the model checking problem for interval temporal
logic formulas, making it possible to exploit techniques and tools from logic and formal
methods to address and solve problems in temporal databases and data mining (see, for
instance, the three aforementioned application domains).

As a matter of fact, there is a little mismatch between the expected outcomes of the two
problems: while model checking is a decision problem, which returns “yes” when the model
meets the specification and “no” otherwise, the problem of temporal dataset evaluation
directly or indirectly returns a set of histories (in rule evaluation, it determines to what
extent each single history (resp., the whole set of histories) complies with a certain temporal
rule). An actual solution to the problem of temporal dataset evaluation can be obtained by
representing a temporal dataset as a set of finite interval models and by suitably combining
the outcomes of model checking each single model against the formula. In the case of rule
evaluation, some domain-dependent measures for rating the compliance degree of the interval
model with respect to the formula, like, for instance, sensitivity, specificity, and accuracy [41],
are also needed.

Our contribution. The contribution of the present paper is twofold. From a methodological
perspective, it proposes interval temporal logic model checking as a viable logical tool
for temporal dataset evaluation (in particular, for rule evaluation in valid-time temporal
databases), thus establishing a formal connection between the two problems. From a technical
point of view, it provides an efficient solution to the finite model checking problem for the
well-known Halpern and Shoham’s interval temporal logic (HS for short) [15], which features

D. Della Monica, D. de Frutos-Escrig, A. Montanari, A. Murano, G. Sciavicco 23:3

one modality for each Allen relation [2], by devising a deterministic model checking algorithm
that runs in polynomial time, thus proving that the problem is in PTIME.
Related work. In the last years, the model checking problem for interval temporal logic has
received an increasing attention as an alternative to the traditional (point-based) temporal
logic model checking, which can be recovered as a special case. Model checking for full HS,
interpreted over finite Kripke structures according to the state-based semantics (we refer
here to the terminology introduced in [6]), has been studied in [26, 30]. The authors showed
that, under the homegeneity assumption, which constrains a proposition letter to hold over
an interval if and only if it holds over each component state, the problem is non-elementarily
decidable (EXPSPACE-hardness has been later shown in [5]). Since then, the attention was
brought to HS fragments, which are often computationally much better [5, 7, 27, 28, 29].
The model checking problem for some HS fragments extended with epistemic operators has
been investigated in [22, 23]. The semantic assumptions for these epistemic HS fragments
differ from those of [26, 30] in two important respects, making it difficult to compare the
two families of logics: formulas are interpreted over the unwinding of the Kripke structure
(computation-tree-based semantics, borrowing the terminology from [6]) and interval labeling
takes into account only the endpoints of intervals. The latter assumption has been later
relaxed by making it possible to use regular expressions to define the labeling of proposition
letters over intervals in terms of the component states [24].

A common feature of the application of (interval) model checking to the verification
of temporal properties of a reactive system is the encoding of all its possible executions
by a finite-state transition system, that is, by a finite Kripke structure, which provides
an abstract representation of possibly infinitely many interval models. On the contrary,
(valid-time) temporal databases commonly assume a given structure of time. Hence, when
used for the evaluation of temporal datasets, interval model checking is applied to finite,
concrete interval models and makes no restrictive assumptions on interval labeling such as,
for instance, the homogeneity assumption. In fact, representing temporal datasets as suitable
Kripke structures over which to evaluate formulas is in principle possible. However, it would
be both artificial and computationally inconvenient. As we will show, (finite) interval model
checking for temporal dataset evaluation behaves computationally much better than interval
model checking for system verification: we devise a polynomial model checking algorithm for
full HS, while the complexity of model checking HS fragments against Kripke structures goes
from coNP-complete to non-elementary, depending on the particular fragment of HS under
consideration [5, 7, 22, 23, 24, 26, 27, 28, 29, 30].
Organization of the paper. The rest of the paper is organized as follows. In the next
section, we introduce the logic HS and define the finite interval model checking problem. Then,
in Section 3, we illustrate a range of possible applications of temporal dataset evaluation.
Finally, in Section 4, we prove that the finite interval model checking problem is in PTIME.
Conclusions provide an assessment of the work done and outline future research directions.

2 Preliminaries

Let D = 〈D,<〉 be a linear order. A strict (resp., non-strict) interval over D is an ordered
pair [x, y], where x, y ∈ D and x < y (resp., x ≤ y). As it is usually the case with the recent
literature, we adopt the strict semantics, which admits strict intervals only. Such a choice
conforms to the definition of interval given by Allen in [2], but it differs from the one by
Halpern and Shoham [15]. We denote by I(D) the set of (strict) intervals over a linear order
D. If we exclude the identity relation, there are 12 different relations between two intervals

TIME 2017

23:4 Evaluation of temporal datasets via interval temporal logic model checking

HS

〈A〉

〈L〉

〈B〉

〈E〉

〈D〉

〈O〉

Allen’s relations

[x, y]RA[x′, y′] ⇔ y = x′

[x, y]RL[x′, y′] ⇔ y < x′

[x, y]RB [x′, y′] ⇔ x = x′, y′ < y

[x, y]RE [x′, y′] ⇔ y = y′, x < x′

[x, y]RD[x′, y′] ⇔ x < x′, y′ < y

[x, y]RO[x′, y′] ⇔ x < x′ < y < y′

Graphical representation
x y

x′ y′

x′ y′

x′ y′

x′ y′

x′ y′

x′ y′

Figure 1 Allen’s interval relations and HS modalities.

in a linear order, often called Allen’s relations [2]: the six relations RA (adjacent to), RL

(later than), RB (begins), RE (ends), RD (during), and RO (overlaps), depicted in Figure 1,
and their inverses, that is, RX = (RX)−1, for each X ∈ A, where A = {A,L,B,E,D,O}.
We associate a universal modality [X] and an existential one 〈X〉 with each Allen relation
RX . For each X ∈ A, the transposes of the modalities [X] and 〈X〉 are respectively the
modalities [X] and 〈X〉, corresponding to the inverse relation RX of RX , and vice versa.
The logic HS. ([15]) Halpern and Shoham’s HS can be viewed as a multi-modal logic whose
formulas are built from a finite, non-empty set AP of atomic propositions (also referred to as
proposition letters), the classical Boolean connectives, and a modality for each Allen relation:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X〉ϕ | 〈X〉ϕ,

where p ∈ AP and X ∈ A. The other Boolean connectives and the logical constants, e.g., →
and >, as well as the universal modalities [X], can be defined in the standard way. As shown
in [15], the modalities 〈A〉, 〈B〉, and 〈E〉, along with their transposes, are sufficient to express
all the other modalities through a formula of polynomial size. Thus, w.l.o.g., hereafter we
restrict ourselves to HS formulas over the set of modalities {〈A〉, 〈A〉, 〈B〉, 〈B〉, 〈E〉, 〈E〉}.

The semantics of HS formulas is given in terms of interval models M = 〈D, V 〉, where D
is a linear order and V : AP → 2I(D) is a valuation function which assigns to each atomic
proposition p ∈ AP the set of intervals V (p) on which p holds. (We indistinctly treat
valuation functions as functions from atomic propositions to sets of intervals or, vice versa,
from intervals to sets of atomic propositions.) In this work, we are interested in finite
structures and thus we restrict our attention to linear orders over finite domains. Any finite
linear order D of size n can be compactly represented by [n] = {x ∈ N | x ≤ n}. In the
following, we will make use of such a representation.

The truth of a formula ϕ on a given interval [x, y] in an interval model M is defined by
structural induction on formulas as follows:

M, [x, y] p iff [x, y] ∈ V (p), for p ∈ AP;
M, [x, y] ¬ψ iff M, [x, y] 6 ψ;
M, [x, y] ψ ∨ ξ iff M, [x, y] ψ or M, [x, y] ξ;
M, [x, y] 〈X〉ψ iff there exists [w, z] such that [x, y]RX [w, z] and M, [w, z] ψ.
We denote the modal depth of an HS formula ϕ by md(ϕ). In [1], it has been shown

that, over finite temporal domains, an HS formula ϕ can be translated into an equivalent
one, say it ϕ′, that involves neither 〈A〉 nor 〈A〉. On the one hand, since the size of ϕ′ may

D. Della Monica, D. de Frutos-Escrig, A. Montanari, A. Murano, G. Sciavicco 23:5

M1 c1

M2 c1

M3 c2

M4 c2

M

High Head

High Head

Low Head

Low Head

Figure 2 A classification model with four patients partitioned into two classes (c1 and c2).

be exponential in the size of ϕ, we cannot give up modalities 〈A〉 and 〈A〉 when addressing
complexity issues. On the other hand, since md(ϕ′) is only linearly larger than md(ϕ), such
a translation will come in handy when proving Lemma 1 (bisimulation lemma) in Section 4,
allowing us to ignore modalities 〈A〉 and 〈A〉 in that context.

In the following, we will make use of the global modality [U], that allows one to assert a
property ϕ on the entire model. HS is powerful enough to express such a modality as follows:

[U]ϕ
def
≡ ϕ ∧

∧
X∈A

([X]ϕ ∧ [X]ϕ).

The finite HS model checking problem. Given a pair I = (M,ϕ), where M is a finite
interval model and ϕ is an HS formula, the finite HS model checking problem (MC for short)
consists in deciding whether M, [0, 1] ϕ. The pair I = (M,ϕ) is called an instance of MC.
With a little abuse of the notation, for a given instance (M,ϕ) of MC, we write (M,ϕ) ∈ MC
to indicate that M, [0, 1] ϕ. In such a case, we say that MC applied to (M,ϕ), denoted
by MC(M,ϕ), returns true. We say that two instances I, I ′ of MC are equivalent, denoted
by I ≡MC I ′ whenever MC(I) returns true if and only if MC(I ′) does. Finally, we say that
two HS formulas ϕ1 and ϕ2 are equivalent, denoted by ϕ1 ≡ ϕ2, if (M,ϕ1) ≡MC (M,ϕ2) for
every interval model M .

3 Temporal Dataset Evaluation

The problem of temporal dataset evaluation can be defined as the problem of evaluating how
many histories comply with a given temporal formula. A history can be seen as the entire
(finite) flow of information relative to a given entity over a bounded time span. As an example,
in the medical context, a history is the medical history of a patient, that is, the collection
of all relevant pieces of information about tests, results, symptoms, and hospitalizations of
the patient that occurred during the entire observation period. In Figure 2, we graphically
depict (a simplified version of) the history of four patients.

As far as qualitative reasoning is concerned, it turns out to be convenient to assume that
all the meaningful events have been suitably discretized. As a concrete example, having a
fever can be represented by the propositional letter Low—meaning lower than 40 degrees—or
High—meaning higher than or equal to 40 degrees. Similarly, the proposition letter Head
can be used to indicate the presence of a headache.

The case of fever is an illuminating example of the fact that information about histories
is naturally interval-based and quite often non-homogeneous. Suppose, indeed, that a certain
patient is experiencing low fever in an interval [x, y], say, a day, and that during just one
hour of that day, that is, over the interval [w, z] strictly contained in [x, y], he/she has an

TIME 2017

23:6 Evaluation of temporal datasets via interval temporal logic model checking

episode of high fever. A natural choice is to represent such a situation by labeling the interval
[x, y] with Low and its sub-interval [w, z] with High. Notice that such a representation is
compatible with a general consistency requirement such as [U](Low → ¬High). On the
other hand, representing the same pieces of information as three intervals [x,w], [w, z], [z, y]
respectively labeled with Low, High, and Low, which would be the case with a point-based
representation (or with an interval-based representation under the homogeneity assumption),
would be unnatural, and it would entail hiding a potentially important information like: “the
patient presented low fever during the entire day, except for a brief episode of high fever”.

Let us denote a temporal dataset by D = {M1, . . . ,Mr}, where each history Mi, with
1 ≤ i ≤ r, is, in fact, an interval model as defined in Section 2. Temporal dataset evaluation
can be naturally formulated as a model checking problem for an interval temporal logic
like HS. In the following, we briefly elaborate on its concrete application to temporal query
processing, temporal constraint checking, and machine learning (rule evaluation).

Evaluating a query over a temporal database corresponds to extracting the set of histories
that satisfy the conditions of the query. Temporal queries are typically expressed in a
temporal query language like, for instance, TSQL (Temporal SQL) [37], which features
operators for Allen’s relations that make it possible to check all possible temporal (interval)
relationships between pairs of events. The interval temporal logic HS is powerful enough to
capture all TSQL operators, which can actually be expressed as suitable disjunctions of HS
modalities. To answer a temporal query, an evaluation of the whole dataset of histories is, in
general, needed, that returns precisely those histories on which the model checking problem
is positively solved. Therefore, it can be naturally viewed as a dataset evaluation problem.
As an example, determining the patients that have experienced a headache immediately after
an episode of high fever amounts to looking for those histories Mi such that:

Mi, [0, 1] 〈L〉(High ∧ 〈A〉Head).

In the example of Figure 2, only M3 makes the formula true.
As far as temporal constraint checking is concerned, in a (temporal) database one may

impose various different types of (temporal) constraint at design time [21]. They range from
very simple domain constraints , like, for instance, “each value of a given attribute must
belong to a specific domain”, to key constraints, that is, existence and uniqueness of the
values of the key attributes, and functional dependencies, which require some attributes
to functionally depend on other ones (in the context of temporal databases, interval-based
temporal functional dependencies have been studied in [11]). More advanced temporal
constraints, that involve more complex relationships among the values of each history, can
be expressed as logical formulas, and checking such constraints corresponds to solving the
temporal dataset evaluation problem and identifying precisely those histories for which the
model checking problem returns false. Let us consider again the simple example reported in
Figure 2. In order to check that data about the values of the fever parameter over time, for
any given patient, are consistent, that is, to exclude that there exists a patient such that
both High and Low hold in the same time interval, it suffices to check that the number of
histories Mi such that:

Mi, [0, 1] [U](High ∧ Low)

is equal to 0 (this is actually the case with the temporal dataset in Figure 2).
Finally, one of the most interesting and extensively studied problems in machine learning

is supervised classification. In such a problem, each history is assigned to a class c from a
finite set C with the aim of devising a module, usually called classifier, that, given a new

D. Della Monica, D. de Frutos-Escrig, A. Montanari, A. Murano, G. Sciavicco 23:7

(unclassified) history, sets its class with an acceptable degree of correctness. In our running
example (see Figure 2), each patient is either class c1 or class c2, which can be possibly
interpreted as “the patient is cured (at the end of the treatment) or not”.

There are several well-known (not always comparable) classifier learning methods. They
can be broadly categorized into learners based on trees, on functions, and on rule sets. Decision
tree learners, such as C4.5 [34], fall into the first category, while a logistic regressor [20] is
an example of function-based classifier learner. Methods based on rule sets, that is, rule
extraction, are further partitioned into indirect and direct methods. When an indirect method
is adopted, rules are synthesized from an already existing classifier [8, 16, 25], while when a
direct method is followed, rules are directly learned [17, 41].

Let us focus on the latter methods (direct rule extraction). A classification rule has the
form ϕ⇒ c, where ϕ is a logical formula and c ∈ C. Rules are not implicative formulas (we
use the symbol ⇒, instead of →, to stress this fact). Direct methods include methods that
pair inductive reasoning and programming languages, such as inductive logic programming,
and randomized methods, like evolutionary algorithms. Direct rule extraction via evolutionary
algorithms is a simple, and yet very promising, methodology. Intuitively, a set of random
rules is initially produced. Then, at each iteration, the current set is evaluated and, as a
result, a new (better) set of rules is built from the old one that takes into account the result
of the evaluation. Evolutionary algorithms produce a new solution from the current one
by means of evolutionary operators, that may be generic and/or specific to the problem at
hand. Multi-objective evolutionary algorithms take into account more than one evaluation
measure of the current solution. As an example, the current set of rules can be evaluated by
the accuracy of the rules and by their succinctness—see, for instance, [12]. While different
approaches based on this idea may differ in the way in which they represent rules, in the set
of evolutionary operators, and in the selection strategy, the key element, common to all of
them, is the evaluation of a solution, which, in the context of evolutionary algorithms, is
called fitting function. Such a problem of evaluating the current solution can naturally be
viewed as a dataset evaluation problem.

Although there is not a unique, commonly accepted definition, a fairly natural way of
computing the fitting degree of a set of rules R1, . . . , Rp, where Ri is a generic rule of the
form ϕi ⇒ ci, for 1 ≤ i ≤ p, is by suitably combining the quantities Σp

i=1
Rec(i)
C(i) (known as

accuracy) and Σp
i=1

Rec(i)
Φ(i) (recall), where C(i) is the number of histories in the class ci, Φ(i)

is the number of histories that comply with ϕi, and Rec(i) is the number of histories in the
class ci that comply with ϕi [33]. Both accuracy and recall clearly depend on the number of
histories Mj such that Mj , [0, 1] ϕi. In our running example (Figure 2), two rules can be
naturally devised:

〈L〉(Low ∧ 〈L〉Head)⇒ c1;
〈L〉(High ∧ (〈A〉Head ∨ 〈O〉Head))⇒ c2.

To summarize, we have shown that the temporal dataset evaluation is a relevant problem
that comes into play in a variety of application domains including temporal query processing,
temporal constraint checking, and rule evaluation. An efficient solution to the model checking
problem for interval temporal logic over finite structures turns out to be a fundamental step
towards its effective treatment. In the next section we provide such a solution.

4 Model Checking

The input of classic (point-based) model checking consists of a formula and a Kripke structure
generally represented by (a suitable encoding of) the set of its states, along with their labels,

TIME 2017

23:8 Evaluation of temporal datasets via interval temporal logic model checking

n

p : [0, 1], [0, 2], [0, 3], [1, 3], [2, 3], . . .

q : [0, 1], [0, 3], . . .

. . .

Figure 3 A succinct representation of a finite interval model for HS: the first line specifies the
size of the frame (number of points in the model); the next lines encode the valuation function V .

and the set of its transitions—for the model checking of very huge structures, other kinds
of solution are used, e.g., on-the-fly model checking. Classic model checking is infinite in
nature, and infinite paths are finitely encoded in the input structure. In the setting of finite
interval model checking, models can be represented simply by specifying the size of the
frame (number of points in the model) and then listing, for each proposition letter, the set of
intervals over which it is true (see Figure 3).

The fundamental difference between the two frameworks is thus that in the classic model
checking problem frame information, that is, states and transitions, must be explicitly
represented in the input, while in finite interval models frame information, that is, intervals
and their relations, is implicit in the size of the temporal domain (this is because relations
among intervals are induced by the underlying linear order). As a consequence, while the size
of the representation of a Kripke structure is typically polynomial in the number of states
and labels, the size of the representation of a finite interval model may be logarithmic in the
number of intervals. As an example, consider an interval model M = 〈[n], V 〉 over AP = {p},
where V (p) = {[n− 1, n]}. Its representation consists of the number n (which takes space
O(log(n))) and the mapping p 7→ {[n− 1, n]} (which takes space O(log(n)) as well).

We will capture situations like the above one by means of the concept of sparse MC
instance. Intuitively, an instance (M,ϕ) of MC is sparse if it can be represented by logarithmic
space (the notion will be formalized later). Now, the immediate adaptation to the interval
setting of the CTL model checking algorithm by Emerson and Clarke [13] would consist,
given a model checking instance (M,ϕ), in labeling each world, i.e., interval, of M with
the set of sub-formulas of ϕ which are true on it. The application of such an algorithm to
sparse instances immediately shows its exponential complexity. As an example, checking the
formula 〈A〉〈A〉p against the model M = 〈[n], V 〉, where V (p) = {[n− 1, n]}, would require
labeling with 〈A〉p all intervals [x, n− 1], with 1 ≤ x ≤ n− 2, whose number is linear in n,
and thus exponential in the size of the representation of M .

In the following, we describe a model checking algorithm that runs in polynomial time on
every instance, thus avoiding the above problem.
The model checking algorithm. To keep the complexity under control, the algorithm
we are going to describe first executes a preprocessing of a sparse instance, which may be
represented in logarithmic space, and generates a non-sparse one; then, it basically applies
Emerson and Clarke’s solution of the model checking problem.

Hereafter, we fix an HS formula ϕ over the set of modalities {〈A〉, 〈A〉, 〈B〉, 〈B〉, 〈E〉, 〈E〉}
and we let k = 4 ·md(ϕ). In addition, let M = 〈[n], V 〉 be a model and let c ∈ [n] be an
element of the domain. We define a transformation τc(M) = 〈[n′], V ′〉, where n′ = n− 1 and
V ′ : I([n′])→ 2AP is defined as follows:

V ′([w, z]) =

V ([w, z]) if z < c,

V ([w, z + 1]) if w < c ≤ z,
V ([w + 1, z + 1]) if w ≥ c.

D. Della Monica, D. de Frutos-Escrig, A. Montanari, A. Murano, G. Sciavicco 23:9

Given an interval model M = 〈[n], V 〉 and a point a ∈ [n], we say that a is a useless point if
V ([a, y]) = V ([x, a]) = ∅ for all x, y ∈ [n], with x < a < y. Moreover, we say that an interval
[a, b] ∈ I(D), with b − a > 2 · (k + 1)2 + 1, is a gap in M = 〈[n], V 〉 if each x ∈ [n], with
a ≤ x ≤ b, is a useless point in M , while a− 1 and b+ 1 are not. Finally, given a gap [a, b],
we call the point c = a+ (k + 1)2 + 1 the center of the gap.

Given an interval model M , we denote by nM the cardinality of its domain and by uM

the number of useless points in it. We now show that every instance with a gap can be
transformed into an equivalent one, of smaller size, that has no gaps. The proof is based on
the notion of bisimulation and the invariance of modal logics under bisimulations.

For every m ∈ N and each set S of HS modalities, an m-bisimulation for S between two
interval models M1 = 〈[n1], V1〉 and M2 = 〈[n2], V2〉 is a sequence 〈Zm, Zm−1, . . . , Z1, Z0〉
of binary relations between the intervals in I([n1]) and those in I([n2]), that is, Zi ⊆
I([n1])× I([n2]) for i ∈ {0, 1, . . . ,m}, such that:

V1([x, y]) = V2([w, z]), for all i ∈ {0, 1, . . . ,m} and ([x, y], [w, z]) ∈ Zi (local condition);
for all i ∈ {1, . . . ,m}, ([x, y], [w, z]) ∈ Zi, and X ∈ S:

if [x, y]RX [x′, y′], then there is [w′, z′] such that ([x′, y′], [w′, z′]) ∈ Zi−1 and [w, z]RX

[w′, z′] (forward condition), and
if [w, z]RX [w′, z′], then there is [x′, y′] such that ([x′, y′], [w′, z′]) ∈ Zi−1 and [x, y]RX

[x′, y′] (backward condition).
Two intervals [x, y] and [w, z] arem-bisimilar under S if there is anm-bisimulation 〈Zm, Zm−1,

. . . , Z1, Z0〉 for S such that ([x, y], [w, z]) ∈ Zm.
The next lemma is based on the well-known invariance of modal logics under bisimula-

tions [14], which can be stated as follows: if L is a modal logic over a set of modalities S and
there exists an m-bisimulation for S between two models M1 and M2 of L, then, for every
pair of m-bisimilar worlds w1 and w2, it holds that M1, w1 ψ if and only if M2, w2 ψ,
for every formula ψ of L with md(ψ) ≤ m.

I Lemma 1. If (M,ϕ) is an instance of MC featuring a gap [a, b] in M , then (M,ϕ) ≡MC
(τc(M), ϕ), where c is the center of [a, b].

Proof. Let M = 〈[n], V 〉 and M ′ = τc(M) = 〈[n′], V ′〉, and recall that n′ = n − 1. Even
though ϕ is built over the set of modalities {〈A〉, 〈A〉, 〈B〉, 〈B〉, 〈E〉, 〈E〉}, it is known
from [1] that it can be translated into an equivalent formula ϕ′ over the set of modal-
ities {〈B〉, 〈B〉, 〈E〉, 〈E〉}, with md(ϕ′) linear in md(ϕ) (in fact, md(ϕ′) ≤ k = 4 ·md(ϕ)).

We provide a k-bisimulation for {〈B〉, 〈B〉, 〈E〉, 〈E〉} between M and M ′ such that
([0, 1], [0, 1]) ∈ Zk. The thesis immediately follows from the aforesaid invariance property.

Let f : {0, 1, . . . , k} → N be the mapping defined as follows: f(i) = (1 + k − i) · (k + 1).
For each i ∈ {0, 1, . . . , k} and ([x, y], [w, z]) ∈ I([n])× I([n′]), we state that ([x, y], [w, z]) ∈ Zi

if and only if one of the following conditions hold:
(1) w = x ∧ z = y ∧ y ≤ c+ f(i), or
(2) w = x ∧ z = y − 1 ∧ x ≤ c+ f(i) ∧ y ≥ c− f(i) ∧ z − w > i, or
(3) w = x− 1 ∧ z = y − 1 ∧ x ≥ c− f(i).
We first observe that f is monotonically decreasing as f(i − 1) − f(i) = k + 1 > i for all
i ∈ {1, . . . , k}. Moreover, it holds that f(0) = (k + 1)2 and thus, by the definitions of gap
and center of a gap, we have that:

c− a = (k + 1)2 + 1 > (k + 1)2 = f(0)

TIME 2017

23:10 Evaluation of temporal datasets via interval temporal logic model checking

and

b− c = b− a− (k + 1)2 − 1 > 2 · (k + 1)2 + 1− (k + 1)2 − 1 = (k + 1)2 = f(0).

Therefore, it holds that a ≤ c−f(0)−1 and c+f(0)+1 ≤ b, and thus, for each i ∈ {0, 1, . . . , k}
and each d in between c− f(i)− 1 and c+ f(i) + 1, that is, c− f(i)− 1 ≤ d ≤ c+ f(i) + 1,
d is a useless point.

We now show that 〈Zk, Zk−1, . . . , Z1, Z0〉 satisfies local, forward, and backward conditions.
Local condition. Let ([x, y], [w, z]) ∈ Zi for some i ∈ {1, . . . , k}. We have to show that
V ([x, y]) = V ′([w, z]). We must deal with the three possible cases.

Case (1). If w = x, z = y, and y ≤ c+ f(i), then x < c+ f(i) and:
if c ≤ w < c + f(i), then w (= x) is useless and so is w + 1, and thus V ′([w, z]) =
V ([w + 1, z + 1]) = ∅ = V ([x, y]);
if z < c, then V ′([w, z]) = V ([w, z]) = V ([x, y]);
if w < c and c ≤ z ≤ c + f(i), then z (= y) is useless and so is z + 1, and thus
V ′([w, z]) = V ([w, z + 1]) = ∅ = V ([x, y]).

Case (2). If w = x, z = y − 1, x ≤ c+ f(i), y ≥ c− f(i), and z − w > i, then:
if c ≤ w ≤ c + f(i), then w (= x) is useless and so is w + 1, and thus V ′([w, z]) =
V ([w + 1, z + 1]) = ∅ = V ([x, y]);
if c− f(i)− 1 ≤ z < c, then z is useless and so is y (= z + 1), and thus V ′([w, z]) =
V ([w, z]) = ∅ = V ([x, y]);
if w < c and z ≥ c, then V ′([w, z]) = V ([w, z + 1]) = V ([x, y]).

Case (3). If w = x− 1, z = y − 1, and x ≥ c− f(i), then y > c− f(i) and:
if c − f(i) ≤ z < c, then z is useless and so is y (= z + 1), and thus V ′([w, z]) =
V ([w, z]) = ∅ = V ([x, y]);
if w ≥ c, then V ′([w, z]) = V ([w + 1, z + 1]) = V ([x, y]);
if z ≥ c and c− f(i)− 1 ≤ w < c, then w is useless and so is x (= w + 1), and thus
V ′([w, z]) = V ([w, z + 1]) = ∅ = V ([x, y]).

Forward condition. Let ([x, y], [w, z]) ∈ Zi, for some i ∈ {1, 2, . . . , k}, and [x, y]RX [x′, y′],
for some X. We show that there exists [w′, z′] such that ([x′, y′], [w′, z′]) ∈ Zi−1 and
[w, z]RX [w′, z′]. We proceed case by case, taking into account the value of X and the
relationship that holds between [x, y] and [w, z]:

Case (1). If w = x, z = y, and y ≤ c+ f(i), then x < c+ f(i) and:
if X = B, X = E, or X = E, then we set w′ = x′ and z′ = y′; the new points x′, y′, w′,
and z′ satisfy (1) with respect to i− 1, that is, w′ = x′, z′ = y′, and y′ ≤ c+ f(i− 1),
meaning that [x′, y′]Zi−1[w′, z′];
if X = B, then x′ = x and y′ > y; we set w′ = x′ and, in order to set the value for z′,
we distinguish two cases:
∗ if y′ ≤ c+ f(i− 1), then we set z′ = y′ and thus x′, y′, w′, and z′ satisfy (1) with

respect to i− 1;
∗ if y′ > c + f(i − 1), then we set z′ = y′ − 1 and thus x′, y′, w′, and z′ satisfy

(2) with respect to i − 1; in particular, to see that z′ − w′ > i − 1, observe that
z′−w′ = y′− 1− x > c+ f(i− 1)− c− f(i)− 1 = k > i− 1, and to see that z′ > z,
and thus [w, z]RB[w′, z′], observe that y′ − 1 > c + f(i − 1) − 1 > c − f(i) ≥ y,
which implies z′ = y′ − 1 > y = z.

Case (2). If w = x, z = y − 1, x ≤ c+ f(i), y ≥ c− f(i), and z − w > i, then:

D. Della Monica, D. de Frutos-Escrig, A. Montanari, A. Murano, G. Sciavicco 23:11

if X = B or X = E, then we set w′ = x′ and z′ = y′ − 1, and thus x′, y′, w′, and z′
satisfy (2) with respect to i− 1;
if X = B, then x′ = x and y′ < y; we set w′ = x′ and, in order to set the value for z′,
we distinguish the following cases:
∗ if y′ ≥ c− f(i− 1) and y′ − x′ > i, then we set z′ = y′ − 1, and thus x′, y′, w′, and
z′ satisfy (2) with respect to i− 1; in particular, it holds that z′−w′ = y′− 1−x′ ≥
c− f(i− 1)− 1− c− f(i) = k > i− 1;

∗ if y′ < c− f(i− 1), then we set z′ = y′, and thus x′, y′, w′, and z′ satisfy (1) with
respect to i− 1; in particular, to see that z′ < z, and thus [w, z]RB [w′, z′], observe
that z′ = y′ < c− f(i− 1) < c− f(i)− 1 ≤ y − 1 = z;

∗ if y′− x′ ≤ i, then we set z′ = y′, and thus x′, y′, w′, and z′ satisfy (1) with respect
to i− 1; in particular, it holds that y′ ≤ x′ + i ≤ c+ f(i) < c+ f(i− 1).

Case (3). If w = x− 1, z = y − 1, and x ≥ c− f(i), then y > c− f(i) and:
if X = B, X = B, or X = E, then we set w′ = x′ − 1 and z′ = y′ − 1; the new points
x′, y′, w′, and z′ satisfy (3) with respect to i− 1;
if X = E, then x′ < x and y′ = y; we set z′ = z = y′ − 1 and, in order to set the value
for w′, we distinguish two cases:
∗ if x′ ≥ c− f(i− 1), then we set w′ = x′ − 1, and thus x′, y′, w′, and z′ satisfy (3)

with respect to i− 1;
∗ if x′ < c − f(i − 1), then we set w′ = x′, and thus x′, y′, w′, and z′ satisfy

(2) with respect to i − 1; in particular, to see that z′ − w′ > i − 1, observe that
z′−w′ = y−1−x′ > c−f(i)−1−c+f(i−1) = k > i−1, and to see that w′ < w, and
thus [w, z]RE [w′, z′], observe that w′ = x′ < c− f(i− 1) < c− f(i)− 1 ≤ x− 1 = w.

The backward condition can be proved in a very similar way.

Therefore, the sequence 〈Zk, Zk−1, . . . , Z1, Z0〉 is a k-bisimulation for {〈B〉, 〈B〉, 〈E〉, 〈E〉}
between M and M ′. In addition, we have that ([0, 1], [0, 1]) ∈ Zk, and since ϕ is equivalent
to ϕ′ and md(ϕ′) ≤ k, we have that:

M, [0, 1] ϕ⇔M, [0, 1] ϕ′ ⇔M ′, [0, 1] ϕ′ ⇔M ′, [0, 1] ϕ,

and thus the thesis. J

We are now ready to formalize the notion of sparse MC instance. We say that an instance
I = (M,ϕ) of MC is sparse if

uM >
2 · (k + 1)2 + 2
2 · (k + 1)2 + 3 · nM + 1.

By making use of Lemma 1, it is possible to transform a sparse instance of MC into an
equivalent non-sparse one, as formally stated by the following lemma.

I Lemma 2. For every sparse instance of MC, there exists an equivalent non-sparse one
that is computable in deterministic polynomial time.

Proof. As a preliminary step, we show that if I = (M,ϕ) is a sparse instance of MC, then
it features a gap [a, b] in M . Assume, towards a contradiction, that I features no gap and
consider the partition of [nM] into intervals [(i−1) ·

(
2 · (k + 1)2 + 3

)
+1, i ·

(
2 · (k + 1)2 + 3

)
],

with 1 ≤ i ≤ b nM

2·(k+1)2+3c, plus the interval [
(
b nM

2·(k+1)2+3c
)
·
(
2 · (k + 1)2 + 3

)
+ 1, nM].

Since the length of each interval [(i − 1) ·
(
2 · (k + 1)2 + 3

)
+ 1, i ·

(
2 · (k + 1)2 + 3

)
], with

TIME 2017

23:12 Evaluation of temporal datasets via interval temporal logic model checking

Algorithm 1 Transforming a sparse instance into an equivalent non-sparse one.
1: function De-Sparsify(M,ϕ)
2: while (M = 〈[n], V 〉, ϕ) is sparse do
3: let [a, b] be a gap in M and let b′ = a+ 2 · (k + 1)2 + 1
4: for each p ∈ AP do V ′(p)← ∅
5: for each p ∈ AP and [w, z] ∈ V (p) do
6: if z < a then
7: V ′(p)← V ′(p) ∪ {[w, z]}
8: else if w < a and z > b then
9: V ′(p)← V ′(p) ∪ {[w, z − (b− b′)]}

10: else if w > b then
11: V ′(p)← V ′(p) ∪ {[w − (b− b′), z − (b− b′)]}
12: M ← 〈[n− (b− b′)], V ′〉
13: return (M,ϕ)

1 ≤ i ≤ b nM

2·(k+1)2+3c, is equal to 2 · (k+ 1)2 + 2, any such interval must contain a non-useless
point, otherwise there would be a gap in M . It immediately follows that there are at least
b nM

2·(k+1)2+3c non-useless points in M , and thus it holds that:

uM ≤ nM −
⌊

nM

2 · (k + 1)2 + 3

⌋
≤ nM −

nM

2 · (k + 1)2 + 3 + 1 = 2 · (k + 1)2 + 2
2 · (k + 1)2 + 3 · nM + 1,

which is in contradiction with I being sparse.
Algorithm 1 computes a non-sparse MC instance that is equivalent to the one given in

input. To this end, it iteratively applies a suitable transformation τ[a,b] to each gap [a, b],
until a non-sparse MC instance is obtained.

Given an interval model M and a gap [a, b] in it, the transformation τ[a,b](M) returns
the pair 〈[n′], V ′〉, where n′ = n− (b− a− 2 · (k + 1)2 − 1) and V ′ : I([n′]) → 2AP is such
that V ′([w, z]) is equal to:

V ([w, z]) if z < a

V ([w, z + (b− a− 2 · (k + 1)2 − 1)]) if w < a ≤ z
V ([w + (b− a− 2 · (k + 1)2 − 1), z + (b− a− 2 · (k + 1)2 − 1)]) if w ≥ a.

It can be easily checked that the model τ[a,b](M) returned by one application of τ[a,b] is
equivalent to the one returned by (b− a− 2 · (k+ 1)2 − 1) applications of the transformation
τc, where c is the center of the gap [a, b]. Any such application of τc produces a model
where (the current configuration of the interval) [a, b] is shrunk into the interval [a, b′], where
b′ = b− 1 (and thus b′− a = b− a− 1). Hence, after (b− a− 2 · (k+ 1)2− 1)− 1 applications
of τc, [a, b] is reduced to the interval [a, b′], with b′ = b − (b − a − 2 · (k + 1)2 − 2) and
b′− a = b− b+ a+ 2 · (k+ 1)2 + 2− a = 2 · (k+ 1)2 + 2 > 2 · (k+ 1)2 + 1, meaning that [a, b′]
is still a gap in the resulting model. By Lemma 1, the model returned by an application
of τc is equivalent to the input model, and thus we have that (M,ϕ) ≡MC (τ[a,b](M), ϕ). It
is worth pointing out that executing (b− a− 2 · (k + 1)2 − 1) times the transformation τc,
instead of executing τ[a,b] only once, would result in an algorithm whose execution time is
exponential when the instance features exponentially large gaps.

D. Della Monica, D. de Frutos-Escrig, A. Montanari, A. Murano, G. Sciavicco 23:13

Termination of the algorithm is guaranteed by the fact that τ[a,b], applied to M , produces
a model M ′ with a reduced number of gaps: a gap [a, b] in M is shrunk into an interval
[a, b′], which is not a gap in M ′, as b′ − a = 2 · (k + 1)2 + 1.

As for the computational complexity, it is not difficult to check that the algorithm runs
in polynomial time. Let N be the size of the input. The number of gaps is bounded by
nM − uM + 1 (nM − uM is the number of non-useless points—observe that there is at least
one non-useless point between any two gaps), thus implying that the body of the outermost
loop (line 2) is executed at most N times. Both innermost loops (lines 4 and 5) are clearly
executed at most N times as well, giving an overall time complexity of O(N2). J

A non-sparse instance (M,ϕ) can be represented in space polynomial in nM . To see
that, it suffices to show that nM ≤ p(N), for a polynomial p, where N is the size of the
representation of (M,ϕ). First, we observe that

nM = uM + eM

where eM is the number of non-useless points, that is, those points that occur explicitly
in the model. Since non-useless points are explicitly represented in the model, it clearly
holds that eM ≤ N . By definition of (non-)sparse instance, we have that (recall that
k ≤ 4 ·md(ϕ) ≤ 4 ·N):

uM ≤ 2·(k+1)2+2
2·(k+1)2+3 · (uM + eM) + 1⇔

⇔ uM − 2·(k+1)2+2
2·(k+1)2+3 · uM ≤ 2·(k+1)2+2

2·(k+1)2+3 · eM + 1⇔

⇔ 1
2·(k+1)2+3 · uM ≤ 2·(k+1)2+2

2·(k+1)2+3 · eM + 1⇔

⇔ uM ≤ (2 · (k + 1)2 + 2) · eM + (2 · (k + 1)2 + 3) ≤

≤ (2 · (4 ·N + 1)2 + 2) ·N + (2 · (4 ·N + 1)2 + 3) =

= 32 ·N3 + 48 ·N2 + 20 ·N + 5,

which means that

nM = uM + eM ≤ 32 ·N3 + 48 ·N2 + 21 ·N + 5.

Therefore the number |I([nM])| of intervals in M is also bounded by a polynomial in N

(O(N6)), thus making it possible to adapt Emerson and Clarke’s algorithm to obtain a
polynomial model checking algorithm for non-sparse instances.

Algorithm 2 implements such an adaptation. Let us assume ϕ to be represented as a
binary tree and M to be represented as in Figure 3. Moreover, for each sub-formula ψ of ϕ,
let L(ψ) be the set of all intervals ofM where ψ holds. For every node of the tree representing
ϕ (corresponding to a sub-formula ψ of ϕ), the algorithm computes the corresponding set
of intervals L(ψ). Initially, we set L(ψ) = ∅, for each sub-formula ψ of ϕ which is not a
proposition letter, and we set L(p) = V (p) for each proposition letter p. Modalities 〈A〉, 〈B〉,
and 〈E〉 are not dealt with by the algorithm as they are specular to the other ones.

I Lemma 3. If I = (M,ϕ) is a non-sparse instance of MC, then Algorithm 2 returns true
if and only if M, [0, 1] ϕ. Moreover, it runs in polynomial time.

Proof. It is immediate to see that Algorithm 2 is sound and complete. In order to show that
it runs in polynomial time, we proceed as follows. Let N be the size of the representation of

TIME 2017

23:14 Evaluation of temporal datasets via interval temporal logic model checking

Algorithm 2 Checking a non-sparse model.
1: function Check(M,ϕ)
2: for each ψ sub-formula of ϕ do
3: if ψ = p then
4: L(ψ) = V (p)
5: else
6: L(ψ) = ∅
7: for each ψ sub-formula of ϕ (ordered by increasing size) do
8: if ψ = ¬τ then
9: L(ψ) = I([n]) \ L(τ)
10: else if ψ = τ ∨ ξ then
11: L(ψ) = L(τ) ∪ L(ξ)
12: else if ψ = 〈A〉τ then
13: for [x, y] ∈ L(τ) and for z < x do
14: L(ψ) = L(ψ) ∪ {[z, x]}
15: else if ψ = 〈B〉τ then
16: for [x, y] ∈ L(τ) and for z > y do
17: L(ψ) = L(ψ) ∪ {[x, z]}
18: else if ψ = 〈E〉τ then
19: for [x, y] ∈ L(τ) and for z < x do
20: L(ψ) = L(ψ) ∪ {[z, y]}
21: if [0, 1] ∈ L(ϕ) then
22: return True
23: else
24: return False

the input I. Since I is non-sparse, the number of intervals in M is polynomial in N , thus
providing a polynomial upper bound to the cardinality of L(ψ), for each sub-formula ψ of ϕ.

The body of the loop at line 7 is executed at most N times (as |ϕ| ≤ N). Whenever ψ is
a Boolean formula, computing L(ψ) takes a linear time in the number |I([nM])| of intervals
in M . The remaining cases can be efficiently implemented (in O(N6)) by using a symbolic
representation. As an example, in order to store the set of intervals on which 〈A〉τ holds,
knowing that τ holds on an interval [x, y], it suffices to store the number x, with the intended
meaning that it represents all intervals ending at x. By suitably adapting the representation
of L(ψ), one is able to guarantee the complexity of these cases to be at most linear in the
number of intervals as well. This allows us to conclude that Algorithm 2 runs in O(N7) time,
and thus it is deterministic polynomial. J

I Theorem 4. The finite interval model checking problem can be solved by a deterministic
algorithm that runs in polynomial time in the size of the input.

To be understood in perspective, such a result must be compared to other classic model
checking problems [36]. While model checking of CTL formulas is quadratic (therefore, more
efficient than ours), model checking of LTL as well as of CTL∗ formulas is PSPACE-complete
(therefore, much less efficient than ours). Moreover, model checking of HS formulas over
Kripke structures goes from coNP-complete to non-elementary, depending on the particular
fragment of HS under consideration [26].

D. Della Monica, D. de Frutos-Escrig, A. Montanari, A. Murano, G. Sciavicco 23:15

5 Conclusions

In this paper, we formally defined the problem of temporal dataset evaluation, and we
highlighted the role that finite interval temporal model checking plays in it. We also showed
how the problem of temporal dataset evaluation has several applications that range from
temporal query answering to temporal constraint checking and rule evaluation, the last one
being a key element in various machine learning processes. We identified the finite interval
model checking problem for the interval temporal logic HS as the main problem to be solved
in this perspective, and we devised an efficient (deterministic polynomial) algorithm for it.

We are currently working on an implementation of the developed model checking procedure,
which uses symbolic techniques to obtain better performances, and we plan to integrate such
a procedure in an existing module for (temporal) rule extracion [17], based on an evolutionary
algorithm, to compute a suitable fitting function of a set of temporal rules.

References
1 L. Aceto, D. Della Monica, A. Ingólfsdóttir, A. Montanari, and Guido Sciavicco. On the

expressiveness of the interval logic of Allen’s relations over finite and discrete linear orders.
In Proc. of the 14th European Conference on Logics in Artificial Intelligence (JELIA),
volume 8761 of LNAI, pages 267–281, 2014.

2 J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,
26(11):832–843, 1983.

3 M. H. Böhlen, J. Gamper, and C. S. Jensen. How would you like to aggregate your temporal
data? In Proc. of the 13th International Symposium on Temporal Representation and
Reasoning (TIME), 15-17 June 2006, Budapest, Hungary, pages 121–136. IEEE Computer
Society, 2006.

4 A. Bottrighi, L. Giordano, G. Molino, S. Montani, P. Terenziani, and M. Torchio. Adopt-
ing model checking techniques for clinical guidelines verification. Artificial Intelligence in
Medicine, 48(1):1–19, 2010.

5 L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Interval temporal logic
model checking: The border between good and bad HS fragments. In Proc. of the 8th
International Joint Conference on Automated Reasoning (IJCAR), volume 9706 of LNCS,
pages 389–405. Springer, 2016.

6 L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Interval vs. point temporal
logic model checking: an expressiveness comparison. In Proc. of the 36th IARCS An-
nual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), volume 65 of LIPIcs, pages 26:1–26:14. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2016.

7 L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Model checking the logic
of allen’s relations meets and started-by is pnp-complete. In Proc. of the 7th International
Symposium on Games, Automata, Logics and Formal Verification (GandALF), volume 226
of EPTCS, pages 76–90, 2016.

8 A. Chaves, M. Vellasco, and R. Tanscheit. Fuzzy rules extraction from support vector
machines for multi-class classification. Neural Computing and Applications, 22(7-8):1571–
1580, 2013.

9 E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2002.
10 C. Combi and A. Montanari. Data models with multiple temporal dimensions: Completing

the picture. In Proc. of the 13th International Conference on Advanced Information Systems
Engineering (CAiSE), volume 2068 of LNCS, pages 187–202. Springer, 2001.

TIME 2017

23:16 Evaluation of temporal datasets via interval temporal logic model checking

11 C. Combi and P. Sala. Mining approximate interval-based temporal dependencies. Acta
Informatica, 53(6-8):547–585, 2016.

12 K. Deb. Multi-objective optimization using evolutionary algorithms. Wiley, London, UK,
2001.

13 E.A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer Science,
volume B: formal models and semantics, pages 995–1072. Elsevier MIT Press, 1990.

14 V. Goranko and M. Otto. Model theory of modal logic. In P. Blackburn, J. van Benthem,
and F. Wolter, editors, Handbook of Modal Logic, pages 249–329. Elsevier, 2007.

15 J.Y. Halpern and Y. Shoham. A propositional modal logic of time intervals. Journal of the
ACM, 38(4):935–962, 1991.

16 Y. Hayashi, S. Nakano, and S. Fujisawa. Use of the recursive-rule extraction algorithm
with continuous attributes to improve diagnostic accuracy in thyroid disease. Informatics
in Medicine Unlocked, 1:1–8, 2015.

17 F. Jiménez, G. Sánchez, and J. M. Juárez. Multi-objective evolutionary algorithms for fuzzy
classification in survival prediction. Artificial Intelligence in Medicine, 60(3):197–219, 2014.

18 V. Khatri, S. Ram, R.T. Snodgrass, and P. Terenziani. Capturing telic/atelic temporal
data semantics: Generalizing conventional conceptual models. IEEE Trans. Knowl. Data
Eng, 26(3):528–548, 2014.

19 K. Kulkarni and J.E. Michels. Temporal features in SQL:2011. ACM SIGMOD Record,
41(3):34–43, 2012.

20 S. le Cessie and J.C. van Houwelingen. Ridge estimators in logistic regression. Applied
Statistics, 41(1):191–201, 1992.

21 L. Liu and M. T. Özsu, editors. Encyclopedia of Database Systems. Springer NY, 2nd
edition, 2017.

22 A. Lomuscio and J. Michaliszyn. An epistemic halpern-shoham logic. In Proc. of the 23rd
International Joint Conference on Artificial Intelligence (IJCAI), pages 1010–1016, 2013.

23 A. Lomuscio and J. Michaliszyn. Decidability of model checking multi-agent systems against
a class of EHS specifications. In Proc. of the 21st European Conference on Artificial Intel-
ligence (ECAI), pages 543–548, 2014.

24 A. Lomuscio and J. Michaliszyn. Model checking multi-agent systems against epistemic HS
specifications with regular expressions. In Proc. of the 15th International Conference on
Principles of Knowledge Representation and Reasoning (KR), pages 298–308. AAAI Press,
2016.

25 M. Mashayekhi and R. Gras. Rule extraction from random forest: the RF+HC methods.
In Proc. of the 28th Canadian Conference on Advances in Artificial Intelligence, pages
223–237, 2015.

26 A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron. Checking interval prop-
erties of computations. Acta Informatica, 53(6-8):587–619, 2016.

27 A. Molinari, A. Montanari, and A. Peron. Complexity of ITL model checking: Some well-
behaved fragments of the interval logic HS. In Proc. of the 22nd International Symposium
on Temporal Representation and Reasoning (TIME), pages 90–100. IEEE Computer Society,
2015.

28 A. Molinari, A. Montanari, and A. Peron. A model checking procedure for interval temporal
logics based on track representatives. In Proc. of the 24th EACSL Annual Conference on
Computer Science Logic (CSL), volume 41 of LIPIcs, pages 193–210, 2015.

29 A. Molinari, A. Montanari, A. Peron, and P. Sala. Model checking well-behaved fragments
of HS: the (almost) final picture. In Proc. of the 15th International Conference on Principles
of Knowledge Representation and Reasoning (KR), pages 473–483. AAAI Press, 2016.

D. Della Monica, D. de Frutos-Escrig, A. Montanari, A. Murano, G. Sciavicco 23:17

30 A. Montanari, A. Murano, G. Perelli, and A. Peron. Checking interval properties of com-
putations. In Proc. of the 21st International Symposium on Temporal Representation and
Reasoning (TIME), pages 59–68. IEEE Computer Society, 2014.

31 A. Pnueli. The temporal logic of programs. In Proc. of the 18th Annual Symposium on
Foundations of Computer Science (FOCS), pages 46–57, 1977.

32 A. Pnueli. The temporal semantics of concurrent programs. Theoretical Computer Science,
13(1):45 – 60, 1981.

33 D. M. W. Powers. Evaluation: From precision, recall and F-measure to ROC, informedness,
markedness & correlation. Journal of Machine Learning Technologies, 2(1):37–63, 2011.

34 J. R. Quinlan. C45: Programs for Machine Learning. Morgan Kaufmann, 1992.
35 E. Quintarelli. Model-Checking Based Data Retrieval, An Application to Semistructured

and Temporal Data, volume 2917 of LNCS. Springer, 2004.
36 P. Schnoebelen. The complexity of temporal logic model checking. In Proc. of the 4th

Conference on Advances in Modal Logic, pages 393–436, 2002.
37 R.T. Snodgrass, editor. The TSQL2 Temporal Query Language. Kluwer Academic Publish-

ers, 1995.
38 R.T. Snodgrass, I. Ahn, G. Ariav, D.S. Batory, J. Clifford, C.E. Dyreson, R. Elmasri,

F. Grandi, C.S. Jensen, W. Käfer, N. Kline, K. Kulkarni, T.Y.C. Leung, N. Lorentzos, J.F.
Roddick, A. Segev, M.D. Soo, and S.M. Sripada. TSQL2 language specification. SIGMOD
Record, 23(1):65–86, 1994.

39 A. U. Tansel, J. Clifford, S. K. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass, editors.
Temporal Databases: Theory, Design, and Implementation. Benjamin/Cummings, 1993.

40 M. Y. Vardi. Model checking for database theoreticians. In Proc. of the 10th International
Conference on Database Theory (ICDT), volume 3363 of LNCS, pages 1–16. Springer, 2005.

41 I.H. Witten, E. Frank, and M.A. Hall. Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann Publishers Inc., 3rd edition, 2011.

TIME 2017

	Introduction
	Preliminaries
	Temporal Dataset Evaluation
	Model Checking
	Conclusions

