
On the Complexity of Fragments of the Modal

Logic of Allen’s Relations over Dense Structures

D. Bresolin1, D. Della Monica2, A. Montanari3, P. Sala4, and G. Sciavicco5

1 Department of Computer Science and Engineering
University of Bologna (Italy) (davide.bresolin@unibo.it)

2 ICE-TCS, School of Computer Science
Reykjavik University (Iceland) (dariodm@ru.is)

3 Department of Mathematics and Computer Science
University of Udine (Italy) (angelo.montanari@uniud.it)

4 Department of Computer Science
University of Verona (Italy) (pietro.sala@univr.it)

5 Department of Information, Engineering and Communications
University of Murcia (Spain) (guido@um.es)

Abstract. Interval temporal logics provide a natural framework for
temporal reasoning about interval structures over linearly ordered do-
mains, where intervals are taken as the primitive ontological entities.
Their computational behaviour and expressive power mainly depend on
two parameters: the set of modalities they feature and the linear orders
over which they are interpreted. In this paper, we consider all fragments
of Halpern and Shoham’s interval temporal logic HS with a decidable
satisfiability problem over the class of all dense linear orders, and we
provide a complete classification of them in terms of their complexity
and expressiveness by solving the last two open cases.

1 Introduction

Most temporal logics proposed in the literature assume a point-based structure
of time. They have been successfully applied in a variety of fields, ranging from
the specification and verification of communication protocols to temporal data
mining. However, a number of relevant application domains, such as, for in-
stance, those of planning and synthesis of controllers, are often characterized
by advanced features like durative actions (and their temporal relationships),
accomplishments, and temporal aggregations, which are neglected or dealt with
in an unsatisfactory way by point-based formalisms. The distinctive features of
interval temporal logics turn out to be useful in these domains. As an example,
they allow one to model telic statements [17], that is, statements that express
goals or accomplishments, like the statement: “The airplane flew from Venice to
Toronto” (see [8, Sect. II.B]). Temporal logics with interval-based semantics have
also been proposed as suitable formalisms for the specification and verification of
hardware [14] and of real-time systems [9]. Finally, successful implementations
of interval-based systems can be found in the areas of learning (the adaptive

2

learning system TERENCE [10], that provides a support to poor comprehen-
ders and their educators, is based on the so-called Allen’s interval algebra [3])
and real-time data systems (the algorithm RISMA [12], for performance and
behaviour analysis of real-time data systems, is based on Halpern and Shoham’s
modal logic of Allen’s relations [11]).

The variety of binary relations between intervals in a linear order was first
studied by Allen [3], who investigated their use in systems for time management
and planning. In [11], Halpern and Shoham introduced and systematically ana-
lyzed the (full) modal logic of Allen’s relations (HS for short), that features one
modality for each Allen relation. In particular, they showed that HS is highly
undecidable over most classes of linear orders. This result motivated the search
for (syntactic) fragments of HS offering a good balance between expressiveness
and computational complexity. During the last decade, a systematic analysis has
been carried out to characterize the complexity of the satisfiability problem for
HS fragments [4, 5, 15], as well as their relative expressive power [1, 2, 5]. Such
an analysis pointed out that such characterizations also depend on the class of
linearly ordered set over which formulae are interpreted.

This paper aims at completing the classification of decidable HS fragments
with respect to both their complexity and expressiveness, relative to the class
of (all) dense linear orders. For our purposes, the class of dense linear orders
and the linear order of the rational numbers Q are indistinguishable. Thus, all
the results presented here directly apply to Q as well. The paper is organized as
follows. In Section 2, we introduce syntax and semantics of (fragments of) HS.
Next, in Section 3 we summarize known results about dense linear orders. In
Section 4 and Section 5, we solve the last two open problems, thus completing
the picture for the class of dense linear structures. It is worth mentioning that
an analogous classification has been provided in [5] for the class of finite linear
orders, the class of discrete linear orders, the linear order of the natural numbers
N, and the linear order of the integers Z.

2 The Modal Logic of Allen’s Relations

Let us consider a linearly ordered set D = 〈D,<〉, where D is an element domain
and < is a total ordering on it. An interval over D is an ordered pair [x, y], where
x, y ∈ D and x ≤ y. An interval is called a point interval if x = y and a strict
interval if x < y. In this paper, we assume the strict semantics, that is, we
exclude point intervals and only consider strict intervals. The adoption of the
strict semantics, excluding point intervals, instead of the non-strict semantics,
which includes them, conforms to the definition of interval adopted by Allen
in [3], but differs from the one given by Halpern and Shoham in [11]. It has
at least two strong motivations: first, a number of representation paradoxes
arise when the non-strict semantics is adopted, due to the presence of point
intervals, as pointed out in [3]; second, when point intervals are included there
seems to be no intuitive semantics for interval relations that makes them both
pairwise disjoint and jointly exhaustive. If we exclude the identity relation, there

3

HS modalities

〈A〉

〈L〉

〈B〉

〈E〉

〈D〉

〈O〉

Allen’s relations

[x, y]RA[x
′, y′] ⇔ y = x′

[x, y]RL[x
′, y′] ⇔ y < x′

[x, y]RB [x′, y′] ⇔ x = x′, y′ < y

[x, y]RE [x
′, y′] ⇔ y = y′, x < x′

[x, y]RD[x′, y′] ⇔ x < x′, y′ < y

[x, y]RO [x′, y′] ⇔ x < x′ < y < y′

Graphical representation
x y

x′ y′

x′ y′

x′ y′

x′ y′

x′ y′

x′ y′

Fig. 1. Allen’s interval relations and the corresponding HS modalities.

are 12 different relations between two strict intervals in a linear order, often
called Allen’s relations [3]: the six relations RA (meets or adjacent), RL (after
or later), RB (starts or begins), RE (finishes or ends), RD (during), and RO

(overlaps), depicted in Fig. 1, and their inverses, that is, RX = (RX)−1, for each
X ∈ {A,L,B,E,D,O}.

We interpret interval structures as Kripke structures, with Allen’s relations
playing the role of the accessibility relations. Thus, we associate a modality 〈X〉
with each Allen relation RX . For each X ∈ {A,L,B,E,D,O}, the transpose
of modality 〈X〉 is modality 〈X〉, corresponding to the inverse relation RX of
RX . Halpern and Shoham’s logic HS [11] is a multi-modal logic with formulae
built from a finite, non-empty set AP of atomic propositions (also referred to
as proposition letters), the propositional connectives ∨ and ¬, and a modality
for each Allen relation. With every subset {RX1

, . . . , RXk
} of these relations,

we associate the fragment X1X2 . . .Xk of HS, whose formulae are defined by the
grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X1〉ϕ | . . . | 〈Xk〉ϕ,

where p ∈ AP. The other propositional connectives and constants (e.g., ∧, →,
and ⊤), as well as the dual modalities (e.g., [A]ϕ ≡ ¬〈A〉¬ϕ), can be derived in
the standard way.

The (strict) semantics of HS is given in terms of interval models M =
〈I(D), V 〉, where D is a linear order, I(D) is the set of all (strict) intervals over
D, and V is a valuation function V : AP → 2I(D), which assigns to each atomic
proposition p ∈ AP the set of intervals V (p) on which p holds. The truth of a
formula on a given interval [x, y] in an interval model M is defined by structural
induction on formulae as follows:
– M, [x, y] p if and only if [x, y] ∈ V (p), for each p ∈ AP ;
– M, [x, y] ¬ψ if and only if it is not the case that M, [x, y] ψ;
– M, [x, y] ϕ ∨ ψ if and only if M, [x, y] ϕ or M, [x, y] ψ;
– M, [x, y] 〈X〉ψ if and only if there exists [x′, y′] such that [x, y]RX [x′, y′]

and M, [x′, y′] ψ, for each modality 〈X〉.
Formulae of HS can be interpreted over a given class of interval models; we
identify the class of interval models over linear orders in C with the class C itself.

4

Thus, we will use, for example, the expression ‘formulae of HS are interpreted
over the class C of linear orders’ instead of the extended one ‘formulae of HS
are interpreted over the class of interval models over linear orders in C’. Among
others, we mention the following important classes of linear orders: (i) the class
of all linear orders Lin; (ii) the class of all dense linear orders Den, that is,
those in which for every pair of different points there exists at least one point
in between them; (iii) the class of all weakly discrete linear orders WDis, that
is, those in which every element, apart from the greatest one, if it exists, has an
immediate successor, and every element, other than the least one, if it exists, has
an immediate predecessor; (iv) the class of all strongly discrete linear orders Dis,
that is, those in which for every pair of different points there are only finitely
many points in between them; (v) the class of all finite linear orders Fin, that
is, those having only finitely many points; (vi) the singleton classes consisting of
the standard linear orders over R, Q, Z, and N. The mirror image (or, simply,
mirror) of a fragment F is obtained by simultaneously substituting 〈A〉 with
〈A〉, 〈B〉 with 〈E〉, 〈B〉 with 〈E〉, 〈O〉 with 〈O〉, 〈L〉 with 〈L〉, and the other
way around. When interpreted over left/right symmetric classes of structures
(i.e., classes C such that if C contains a linear order D = 〈D,≺〉, then it also
contains a linear order isomorphic to its dual linear order Dd = 〈D,≻〉, where ≻
is the inverse of ≺), such as Den, all computational properties of a fragment are
preserved for its mirror one; thanks to this observation, we can safely deal with
only one fragment for each pair of mirror fragments.

3 Known and Unknown Results

It has been proved in [1] that there are precisely nine different optimal definabil-
ities that hold among HS modalities in the dense case; as a consequence, only
966 HS fragments are expressively different (out of 4096 different subsets of 12
modalities). Of those, 146 are decidable, thanks to the following results:

Undecidability: we know by [4] that every fragment containing (as definable)
O, AD, or AD is undecidable;

Non-primitive recursive: the decidability of AABB has been proved in [13],
where it has also been shown that every fragment containing AAB or AAB

is non-primitive recursive;
ExpSpace-completeness: as a consequence of the results presented in [8], we

know that ABBL is in ExpSpace, and every fragment containing AB or AB
is ExpSpace-hard (in particular, the hardness result given in [8] for ABB

can be suitably rephrased to deal with the smaller fragments AB and AB);
NExpTime-completeness: it has been proved in [7] that AA is inNExpTime,

and both A and A are NExpTime-hard;
PSpace-completeness: every sub-fragment of BBDDLL that contains (as de-

finable) D or D is shown to be PSpace-complete in [6, 15].

The purpose of this paper is to fill in the few gaps still uncovered by this
collection of results. Here, we shall prove that:(i) BBLL and all its fragments are

5

Complexity Class

1: Non-primitive recursive

2: EXPSPACE-complete

3: NEXPTIME-complete

4: PSPACE-complete

5: NP-complete

Definabilities

1) 〈L〉p ≡ 〈A〉〈A〉p

2) 〈L〉p ≡ 〈B〉[E]〈B〉〈E〉p

3) 〈L〉p ≡ 〈O〉(〈O〉⊤ ∧ [O]〈D〉〈O〉p)

4) 〈L〉p ≡ 〈B〉[D]〈B〉〈D〉〈B〉p

5) 〈L〉p ≡ 〈O〉[E]〈O〉〈O〉p

6) 〈L〉p ≡ 〈O〉(〈O〉⊤ ∧ [O]〈B〉〈O〉〈O〉p)

7) 〈L〉p ≡ 〈O〉(〈O〉⊤ ∧ [O][L]〈O〉〈O〉p)

8) 〈O〉p ≡ 〈E〉〈B〉p

9) 〈D〉p ≡ 〈E〉〈B〉p

AABB
1

AAB
1

AAB
1

AB
1

AB
1

ABB
1

ABBL
1

ABL
1

ABL
1

AB
2

AB
2

ABB
2ABBL

2

ABL
2

ABL
2

A
3

A3

AA
3

AL
3

AL
3

BBD
4

BBD
4

BBDD
4

BBDDL
4

BBDDL
4

BBDDLL
4

BBDL
4

BBDL
4

BBDL
4

BBDL
4

BBDLL
4

BBDLL
4

BD
4

BD
4

BD
4

BD
4

BDD
4

BDD
4

BDDL
4

BDDL
4

BDDL
4

BDDL
4

BDDLL
4

BDDLL
4

BDL
4

BDL
4

BDL
4

BDL
4

BDL
4

BDL
4

BDL
4

BDL
4

BDLL
4

BDLL
4

BDLL
4

BDLL
4

D
4

D
4

DD
4

DDL
4

DDL
4

DDLL
4

DL
4

DL
4

DL
4

DL
4

DLL
4

DLL
4

B
5

B
5

BB
5

BBL
5

BBL
5

BBLL
5

BL
5

BL
5

BL
5

BL
5

BLL
5

BLL
5

L
5

L
5

LL
5

Fig. 2. Decidable fragments of HS in the dense case and their relative expressive power.

6

NP-complete (observe that every fragment is NP-hard, given that it is at least
as expressive as propositional logic), and (ii) all the fragments that contain AB

or AB are non-primitive recursive. All the aforementioned results allow us to
draw a picture that encompasses all HS fragments, ordered according to their
relative expressive power and grouped by computational complexity. We show
here such a picture (see Fig. 2), limited to all and only decidable HS fragments
(for the sake of readability, we omit fragments that are expressively equivalent
or mirror image of another fragment featured in the picture). In Fig. 2 we also
show the nine definabilities that hold among HS modalities over dense linear
orders.

4 NP-Complete Fragments

In this section we prove that the fragment BBLL is NP-Complete. The proof
consists of two main steps. First, we provide a pseudo-model property for for-
mulas of BBLL, that is there exists a finitely representable structure that satisfies
a given set of constraints if and only if the BBLL formula of input is satisfiable.
Second we prove that each satisfiable formula admits a pseudo model of size at
most P (|ϕ|) where P is some polynomial, together with the fact that the con-
straints on the structure may be checked in non deterministic polynomial time
the fact that our problem belongs to NP immediately follows.

We now introduce basic terminology and notation that are common in the
temporal logic setting. The closure of a formula ϕ is defined as the set Cl(ϕ) of all
sub-formulas of ϕ and all their negations (we identify ¬¬ψ with ψ, ¬〈B〉ψ with
[B]¬ψ, etc.). For a technical reason that will be clear soon, we also introduce the
extended closure of ϕ, denoted ECl(ϕ), that extends Cl(ϕ) by adding all formulas
of the form 〈R〉ψ and [R]ψ, with R ∈ {B, B̄, L, L̄} and ψ ∈ Cl(ϕ).

Now we introduce the concept of atom by means of a maximal “locally con-
sistent” subset of ECl(ϕ). Formally, we call ϕ-atom any set F ⊆ ECl(ϕ) such
that (i) ψ ∈ F iff ¬ψ /∈ F , for all ψ ∈ ECl(ϕ), (ii) ψ ∈ F iff ψ1 ∈ F or ψ2 ∈ F ,
for all ψ = ψ1 ∨ ψ2 ∈ ECl(ϕ), We denote by atoms(ϕ) the set of all ϕ-atoms.

Given an atom F and a relation R ∈ {B, B̄, L, L̄, }, we let ReqR(F) be the
set of requests of F for the interval relation R, namely, the formulas ψ ∈ Cl(ϕ)
such that 〈R〉ψ ∈ F . Similarly, we let Obs(F) be the set of observables of F ,
namely, the formulas ψ ∈ F ∩ Cl(ϕ) – intuitively, the observables of F are those
formulas ψ ∈ F that fulfil requests of the form 〈R〉ψ from other atoms. An atom
F is said to be B-reflexive iff for each [B]ψ ∈ F (resp. [B̄]ψ ∈ F) we have ψ ∈ F .
Given an given a linear order D a labelled interval structure, LIS for short,
over it is a tuple L = (D,L) where L : I(D) → atoms(ϕ) is a function mapping
each interval on D in an atom with the following properties:
1. for every pair of intervals [x, y], [x′, y′] ∈ I(D) and for each ∗ ∈ {B,B,L, L}

we have that if [x, y] ∗ [x′, y′] then Obs(L([x′, y′])) ⊆ Req∗([x, y]);
2. for every interval [x, y] ∈ I(D), for each ∗ ∈ {B,B,L, L} and for each ψ ∈

Req∗([x, y]) we have that there exists [x′, y′] ∈ I(D) with [x, y] ∗ [x′, y′] and
ψ ∈ Obs(L([x′, y′]));

7

3. there exists an interval [x, y] ∈ I(D) with ϕ ∈ L([x, y]).
The following theorem states that LIS are sufficient witnesses for satisfiability.

Theorem 1. Given an BBLL formula ϕ, ϕ is satisfiable over Q if and only if
there exists a LIS L = (Q,L) for it.

We omit the proof of Theorem 1 since it is straightforward and consists of
simple adaptation of proofs presented in [7, 15].

Definition 1. Given an BBLL formula ϕ an LL sequence is a sequence of
pairs in σLL̄ = (L0, L̄0, k0), . . . , (Ln, L̄n, kn) with Li, L̄i ⊆ Cl(ϕ) and ki ∈
{cluster, point} for each 1 ≤ i ≤ n such that:
– k0 = kn = cluster, for each 0 < i < n if ki = point then ki−1 = ki+1 =
cluster;

– for each 0 ≤ i < m we have Li ⊇ Li+1 and L̄i ⊆ L̄i+1 with ∗ ∈ {B,L};
– for each 0 ≤ i < m there exists ∗ in {L, L̄} for which ∗i 6= ∗i+1;

Definition 2. Given an BBLL formula ϕ a set L̄ ⊆ Cl(ϕ) an BB sequence over
L̄ is a sequence of tuples σBB̄ = (B0, B̄0, L0, L̄0, Ψ0, k0), . . . , (Bm, Lm, L̄m, Ψm,
km) with Bi, L̄i ⊆ Cl(ϕ), Ψi ⊆ Cl(ϕ) and ki ∈ {cluster, point} for each 1 ≤ i ≤ m
such that:
– k0 = km = cluster, for each 0 < i < m if ki = point then ki−1 = ki+1 =
cluster;

– for each 0 ≤ i < m we have ∗i ⊇ ∗i+1 and ∗̄i ⊆ ∗̄i+1 with ∗ ∈ {B,L};
– for each 0 ≤ i < m there exists ∗ in {B, B̄, L, L̄} for which ∗i 6= ∗i+1;
– for each 0 ≤ i ≤ n if ki = cluster then for each ψ ∈ Ψi there exists a B-

reflexive atom F with Req(F) = Bi ∪ B̄i ∪ Li ∪ L̄ and ψ ∈ F , if ki = point
we have that Ψi ∪Bi ∪ B̄i ∪ Li ∪ L̄ is an atom;

– for each 0 ≤ i < m we have Li ⊇ Li+1 and L̄i ⊆ L̄i+1 and Li 6= Li+1 or
L̄i 6= L̄i+1;

– for each 0 ≤ i ≤ m and for each ψ ∈ Bi (resp. ψ ∈ B̄i) there exists 0 ≤ i′ ≤ i
(resp. i ≤ i′ ≤ m) with ψ ∈ Ψi′ , if ki = point we have i′ 6= i;

– for each 0 ≤ i ≤ m we have
⋃

0≤i′<i Ψi′ ⊆ L̄i if ki = cluster we have also

Ψi ⊆ L̄i.

We denote with ΣBB̄ the set of all the BB̄ sequences over L̄ for some L̄ ⊆
Cl(ϕ). We extend the concept of observables to BB sequences. Given an BBLL

formula ϕ and a BB sequence σBB̄ = (B0, B̄0, L0, L̄0, Ψ0, k0), . . . , (Bm, Lm, L̄m,
Ψm, km) and an index 0 ≤ j ≤ m we identify with Obs(σBB̄)|Lj ,L̄j

the set
⋃

0≤j′′≤j′ Ψ
′′
j with j′ = j − 1 if kj = point and j′ = j otherwise. We will use

Obs(σBB̄) to denote Obs(σBB̄)|Lm,L̄m
(i.e.,when restrictions are not needed).

Definition 3. Given an BBLL formula ϕ, a set L̄ ⊆ Cl(ϕ), an LL sequence
σLL̄ = (L0, L̄0, k0), . . . , (Ln, L̄n, kn) and a BB sequence σBB̄ = (B′

0, B̄
′
0, L

′
0, L̄

′
0,

Ψ ′
0, k

′
0), . . . , (B

′
m, L

′
m, L̄

′
m, Ψ

′
m, k

′
m) over L̄ we say that σBB̄ agrees with σLL̄ at

point i if and only if L̄ = L̄i and there exists a strictly increasing function
f : [i, n] → [0,m] such that (i) f(n) = m and f(i) = 0; (ii) if ki = point we have
Li = L′

1 and Li = L′
0 otherwise (iii) for each i < i′ ≤ n we have Li′ = L′

f(i′) ,

8

for each i ≤ i′ ≤ n we have L̄i′ = L̄′
f(i′) and ki′ = k′

f(i′); (iv) for each 1 ≤ i′ < n

and for each pair of indexes f(i′) ≤ j, j′ < f(i′ + 1) we have L′
j = L′

j′ and

L̄′
j = L̄′

j′ .

Definition 4. Given an BBLL formula ϕ a pseudo model for it is a tuple (σLL̄,
Σ0, . . . , Σn) where σLL̄ = (L0, L̄0, k0), . . . , (Ln, L̄n, kn) is an LL sequence with
ϕ ∈ Li for some 0 ≤ i ≤ n, and for each 0 ≤ i ≤ n the following conditions hold:
1. Σi = {σi,0

BB̄
, . . . , σi,hi

BB̄
} is a non-empty set of BB sequences and for each

0 ≤ j ≤ hi we have that σi,j

BB̄
agrees with σLL̄ at point i and |Σi| = 1 if

ki = point;

2. for each ψ ∈ Li there exists i ≤ i′ ≤ n such that Σi′ = {σi′,0

BB̄
, . . . , σ

i′,hi′

BB̄
}

and there exists 0 ≤ j ≤ hi′ for which ψ ∈ Obs(σi′,j

BB̄
), if ki = point we have

i < i′;

3. for each ψ ∈ L̄i there exists 0 ≤ i′ ≤ i ≤ n such that Σi′ = {σi′,0

BB̄
, . . . , σ

i′,hi′

BB̄
}

and there exists 0 ≤ j ≤ hi′ for which ψ ∈ Obs(σi′,j

BB̄
)|Li,L̄i

, if ki = point we

have i′ < i, if ki′ = point and ki = cluster we have ψ ∈ Obs(σi′,j

BB̄
)|Li−1,L̄i−1

.

Theorem 2. For every BBLL formula ϕ we have that ϕ is satisfiable over the
class of dense linear orders if and only if there exists a pseudo-model for it.

Proof. Let (σLL̄, Σ0, . . . , Σn) be a pseudo model for ϕ with σLL̄ = (L0, L̄0, k0),

. . . , (Ln, L̄n, kn) and Σi = {σi,0
BB̄

, . . . , σi,hi

BB̄
} for each 0 ≤ i ≤ n. First we take a

non-decreasing function fsup : {0, . . . , n− 1} → R such that for each 0 ≤ i ≤ n
we have that fsup(i) = fsup(i + 1) if and only if ki = cluster and ki+1 = point
and fsup(i) ∈ Q if and only if ki = point or ki+1 = point. Using fsup we build
a region function freg : Q → {0, . . . , n} such that for each i with ki = point we
have freg(q) = i for the rational q with fsup(i) = q, if q /∈ img(fsup) we have
freg(q) = i such that fsup(i− 1) < q < fsup(i).

The proof is done by building iteratively a model for ϕ as the limit of an
infinite sequence of modelsM0,M1, EachMi is a partial interval model build
on some finite subset Qi ⊂ Q with Qi ⊆ Qi+1 for every i ∈ N. We say partial
model because, as we will see, the labeling for some intervals on Qi may not
be defined at step i. In order to provide a fairness condition that will guarantee
that the final construction is a model for ϕ we define a partial order ≤ over the
intervals on

⋃

i∈N
Qi. Given a point q ∈ Qi we define its birthdate as birth(q) =

minj∈N q ∈ Qj Given two intervals [q, q′], [q, q′] ∈
⋃

i∈N
Qi we have that [q, q′] ≤

[q, q′] if and only if max(birth(q), birth(q′)) ≤ max(birth(q), birth(q′)).
For each i we introduce an auxiliary function f i

BB
: Qi →

⋃

0≤i≤nΣi. For
each step i ∈ N we guarantee the following invariant conditions:
1. for each q ∈ Qi we have that f i

BB
(q) ∈ Σj iff either q ∈ img(fsup) and

fsup(j) = q or q /∈ img(fsup) and fsup(j − 1) < q < fsup(j);
2. for each labelled interval [q, q′] on Qi let F be its label and f i

σBB̄
(q) =

(B0, B̄0, L0, L̄0, Ψ0, k0), . . . , (Bm, Lm, L̄m, Ψm, km) we have that ReqL̄(F) =
L̄freg(q), ReqL(F) = Lfreg(q′) and there exists 0 ≤ j ≤ m such that

Req∗(F) = ∗j with ∗ ∈ {B,B,L}.

9

Moreover for each point q on Qi let fσBB̄
(q) = (B0, B̄0, L0, L̄0, Ψ0, k0), . . . , (Bm,

Lm, L̄m, Ψm, km) we define a function f q
σBB̄

: {q′ > q : q ∈ Qi} → [0...m]
which is defined for q′ ∈ Qi iff [q, q′] has been labelled up to step i. For every
q′ ∈ Qi for which the function f q

σBB̄
is defined we have that f q

σBB̄
satisfies:

(i) Req∗(L([q, q
′])) = ∗fq

σ
BB̄

(q′) for each ∗ ∈ {B,BL} and Obs(L([q, q′])) ⊆

Ψf
q
σ
BB̄

(q′) (ii) for each q′′ > q′ in Qi for which f q
σBB̄

(q′′) is defined we have

f q
σBB̄

(q′) ≤ f q
σBB̄

(q′′). Now we proceed describing the initial step 0 and then how
the iterations are done at the generic step i. From Definition 4 we have that there
exists an index i for which ϕ ∈ Li and for condition 2 of the same definition we

have that there exists i ≤ i′ for which Σi′ = {σi′,0
BB̄

, . . . , σ
i′,hi′

BB̄
} and there exists

0 ≤ j ≤ hi′ for which ϕ ∈ Obs(σi′,j

BB̄
) two cases may arise:

1. ki′ = point then we have that |Σi′ | = 1 then we put f0
BB(q) = σi′,j

BB̄
and we

take q = fsup(i
′);

2. ki′ = cluster then we take a point q ∈ Q such that freg(q) = i′ then we put

f0
BB(q) = σi′,j

BB̄
.

Let σi′,j

BB̄
= (Bi′,j

0 , B̄i′,j
0 , Li′,j

0 , L̄i′,j
0 , Ψ i′,j

0 , ki
′,j
0), . . . , (Bi′,j

m(i′,j), L
i′,j

m(i′,j) , L̄
i′,j

m(i′,j) ,

Ψ i′,j

m(i′,j), k
i′,j

m(i′,j)) since ϕ ∈ Obs(σi′,j

BB̄
) we have that there exists 0 ≤ j′ ≤ m(i′, j)

for which with ϕ ∈ Ψi′,j′ then since we have that σi′,j

BB̄
) agrees with σLL̄ at i′

then there exists i′′ for which (Li′,j
j′ , L̄

i′,j
j′) = (Li′′ , L̄i′′) again we have two cases:

1. ki′′ = point then we have that |Σi′′ | = 1 then we put f0
BB(q

′) = σi′′

BB̄
where

σi′′

BB̄
is the sole element in Σi′′ and we take q = fsup(i

′′);
2. ki′′ = cluster then we take a point q′ ∈ Q such that freg(q

′) = i′′ then we

put f0
BB(q

′) = σi′′

BB̄
for some σi′′

BB̄
in Σi′′ .

If the first case arises we label the interval [q, q′] with the atom L̄i′ ∪ Ψi′,j′ ∪
Bi′,j′ ∪ Bi′,j′ ∪ Li′,j′ , if the second one does we have by Definition 2 that there
exists an atom F with Req(F) = L̄i′ ∪Bi′,j′ ∪Bi′,j′ ∪Li′,j′ and ϕ ∈ A in such a
case we use A for labeling the interval [q, q′]. At the generic step i the procedure
executes the first among the following operations that is active:

1. suppose that there exists an interval [q, q′] inQi for which the labeling has not
yet been defined. Let f i

σBB̄
(q) = (B0, B̄0, L0, L̄0, Ψ0, k0), . . . , (Bm, Lm, L̄m,

Ψm, km), freg(q) = L and freg(q
′) = L′ for some L,L′ ⊆ Cl(ϕ) From the

agreement property we have that there exists an index j and an atom F
such that ReqL(F) = Lj = L′, ReqL(F) = L and Req∗(F) = ∗j with
∗ ∈ {B,B} then we put F as the label for the interval [q, q′];

2. let [q, q′] ∈ Qi be an interval such that q′ is the successor of q in Qi and for all
the intervals [q, q′] we have that [q, q′] ≤ [q, q′] or there exists q < q′′ < q′ in
Qi. Three cases may arise (i) q′ = maxQi is such a case we take a new point
q′′ from Q with q′′ > q′ and we define Qi+1 = Qi∪{q′′} and fσBB̄

(q′′) = σBB̄

for some σBB̄ ∈ Σn (ii)q = minQi is such a case we take a new point q′′

from Q with q′′ < q′ and we define Qi+1 = Qi ∪ {q′′} and fσBB̄
(q′′) = σBB̄

for some σBB̄ ∈ Σ0 (iii) we take q < q′′ < q′ and we put fσBB̄
(q′′) = σBB̄

for some σBB̄ ∈ Σfreg(q′′).

10

3. if there exists an interval [q, q′] on Qi such that there exists a requests ψ ∈
ReqB(L([q, q

′])) and does not exist a point q′′ ∈ Qi with ψ ∈ Obs(L([q, q′′])).
Let fσBB̄

(q) = (B0, B̄0, L0, L̄0, Ψ0, k0), . . . , (Bm, Lm, L̄m, Ψm, km) from the
second invariant condition we have that there exists 0 ≤ j ≤ m for which
Req∗(L([q, q

′])) = ∗j for each ∗ ∈ {B,B,L, L} then by Definition 2 we have
that there exists j′ ≤ j for which ψ ∈ Ψj′ . Let q ≤ q < q′ ≤ q′ be a pair
of consecutive points such that Req∗(L([q, q])) ⊆ ∗j ⊆ Req∗(L([q, q

′])) (if
q′ is the immediate successor and ∗ ∈ {B,B,L} of q in Qi we simply take
q = q and q′ = q′) then we take a point q < q′′ < q′ in Q \ Qi and we
define the labeling L([q, q′′]) such that ψ ∈ L([q, q′′]) and Req∗(L([q, q

′′])) =
Bj , Bj , Lj , Lfreg(q). Moreover we define f q

σBB̄
(q′′) = j fσBB̄

(q′′) = σ′
BB̄

for

some σBB̄ in Σi′ where (Li′ , Li′) = (Lj , Lj);
4. if there exists an interval [q, q′] on Qi such that there exists a requests ψ ∈

ReqB(L([q, q
′])) and does not exist a point q′′ ∈ Qi with ψ ∈ Obs(L([q, q′′])).

In such a case we operate in a very symmetric way with respect to case 3;
5. if there exists an interval [q, q′] on Qi such that there exists a requests ψ ∈

ReqL(L([q, q
′])) and does not exist a point q′′ ∈ Qi with q′ < q′′ and ψ ∈

Obs(fσBB̄
(q′′)). Let Freg(q

′) = i′ by definition 4 there exists i′′ ≥ i′ and
σBB̄ ∈ Σi′′ with ψ ∈ Obs(σBB̄). Two cases may arise if ki′′ = point then we
define Qi+1 = Qi ∪ {fsup(i

′′)} and fσBB̄
(fsup(i

′′)) = σBB̄ . If ki′′ = cluster
we choose a point q′ < q′′ < fsup(i

′′) and we define Qi+1 = Qi ∪ {q′′} and
fσBB̄

(q′′) = σBB̄ ;
6. if there exists an interval [q, q′] on Qi such that there exists a requests
ψ ∈ ReqL(L([q, q

′])) and does not exist a point q′′ ∈ Qi with q′′ < q
and ψ ∈ ReqB(L([q

′′, q])). Let Freg(q) = i′ by definition 4 there exists
i′′ ≤ i′ and σBB̄ ∈ Σi′′ with ψ ∈ Obs(σBB̄)|Li,Li

. Let σBB̄ = (B0, B̄0, L0,

L̄0, Ψ0, k0), . . . , (Bm, Lm, L̄m, Ψm, km) two cases may arise if ki′′ = point then
we define Qi+1 = Qi∪{fsup(i

′′)} and fσBB̄
(fsup(i

′′)) = σBB̄ . If ki′′ = cluster
we choose a point q′′ < q′′ < fsup(i

′′) and we define Qi+1 = Qi ∪ {q′′}
and fσBB̄

(q′′) = σBB̄ . From definition 4 we have that there exists j such
that ψ ∈ Bj L̄j = ReqL̄(L([q, q

′])) (Lj , L̄) = freg(q
′) for some L̄ and

L([q′′, q]) = F s.t. Req∗(F) = ∗j , for ∗ ∈ {B,B,L} and ReqL̄(F) = L̄i′′ .

Definition 5. Given an BBLL formula ϕ and a pseudo model P = (σLL̄, Σ0, . . . ,
Σn) for it we say that P is minimal if and only if for each 0 ≤ i ≤ n and each
σBB̄ ∈ Σi the structure P ′ = (σLL̄, Σ0, . . . , Σi \ {σBB̄}, . . . , Σn) is not a pseudo
model for ϕ.

Theorem 3. Given an BBLL formula ϕ and a minimal pseudo model P =
(σLL̄, Σ0, . . . , Σn) for it then we have that (i) n ≤ 2·|ϕ|, (ii) |

⋃

0≤i≤nΣi| ≤ 4·|ϕ|,

(iii) for each 0 ≤ i ≤ n and each σBB̄ = {σi,0
BB̄

, . . . , σi,hi

BB̄
} in Σi we have

hi ≤ 4 · |ϕ|.

Corollary 1. The satisfiability problem for the logic BBLL interpreted over the
class of dense linear orders is in NP.

11

5 Non-Primitive Recursive Fragments

As we have mentioned, the last piece needed to complete the picture in Fig. 2
concerns the non-primitive recursive fragments. In [13] the non-primitive recur-
siveness of AAB and AAB has been proved. We shall prove here that, in actuality,
every fragment that contains AB or AB is non-primitive recursive.

Lossy counter machines are a variant of Minsky counter automata where
transitions may non-deterministically decrease the values of counters. A compre-
hensive survey on faulty machines and on the relevant complexity, decidability,
and undecidability results can be found in [16]. Formally, a counter automaton
is a tuple A = (Q, q0, C,∆), where Q is a finite set of control states, q0 ∈ Q is
the initial state, C = {c1, . . . , ck} is the set of counters, whose values range over
N, and ∆ is a transition relation. The relation ∆ is a subset of Q×L×Q, where
L is the instruction set L = {inc, dec, ifz}×{1, . . . , k}. A configuration of A is a
pair (q, v̄), where q ∈ Q and v̄ is the vector of counter values. A run of a Minsky
(i.e., with no error) counter automaton is a finite or infinite sequence of config-
urations such that, for every pair of consecutive configurations (q, v̄), (q′, v̄′), a

transition (q, v̄)
l
−→ (q′, v̄′) has been taken (for some (q, l, q′) ∈ ∆). The value of

v̄′ is obtained from the value of v̄ by performing instruction l, where l = (dec, i)
requires vi > 0 and l = (ifz, i) requires vi = 0. In lossy machines, which is
the type in which we are interested, once a faulty transition has been taken,
counter values may have been decreased nondeterministically before or after the
execution of the exact transition by an arbitrary natural number. We use the

notation (q, v̄)
l
−→† (q′, v̄′) to denote that there exist v̄†, v̄

′
† such that v̄ ≥ v̄†,

(q, v̄†)
l
−→ (q′, v̄′†), and v̄

′
† ≥ v̄′, where the ordering ≤ is defined component-wise

in the obvious way. We are interested here in the non-termination problem for
lossy machines, defined as the problem of deciding whether A has at least one
infinite run starting with the initial configuration (q0, 0̄). This problem is non-
primitive recursive [16].

Lemma 1. There exists a reduction from the non-termination problem for lossy
counter machines to the satisfiability problem for AB over the class of all dense
linear orders.

Proof. Let A = (Q, q0, C,∆) be a lossy counter machine. We write an AB-
formula ϕA which is satisfiable over a dense linear order if and only if A has at
least one infinite run starting with the initial configuration. The computation is
encoded left-to-right over a dense domain D, by choosing an evaluation interval
[x, y] that works as the “last” one, and taking into account that, given any
x0 < x, there are infinitely many intervals between x0 and x. We shall make use
of the propositional letters u (units), qi (states, where i ranges from 0 to |Q|),
conf (configurations), ci (counters’ instances, where i ranges from 1 to |C|), and
corr , corri (corresponds; i ranges from 1 to |C|). Counters’ instances, or simply
counters, allow us to encode the counters of A: given a configuration where
the value of the i-th counter is n, the corresponding conf -interval will contain
precisely n ci-intervals. (By p-interval we denote those intervals that satisfy p,

12

for every propositional letter p.) Additional propositional letters will be used in
the reduction for technical reasons.

Let [G] (universal modality) be the following shortcut:

[G]ϕ = ϕ ∧ [B]ϕ ∧ [A]ϕ ∧ [A][A]ϕ.

The first step in our construction consists in discretizing the domain, making
use of a propositional variable u. In doing so, we also set the first configuration:

ϕu−chain =

〈A〉〈A〉(u ∧ conf ∧ start ∧ q0) ∧ [A](〈A〉u→ 〈B〉u)

[G](u→ [B]¬u) ∧ [G](u→ [B]ub) ∧ [G](u→ [A]¬ub)
[G](start → u) ∧ [G](start → [A](¬u ∧ [A]¬u))

Consider an interval [x, y] over which the formula of our reduction is evaluated.
The sense of the above formula ϕu−chain is to generate an infinite discrete chain
x0, x1, . . . such that x0 < x1 < . . . < x < y, and that each [xk, xk+1] is labeled
by u. With the above formulae we also guarantee that start is unique and no
u-interval overlaps a u-interval in the chain.

With the next formulae we make sure that there is a infinite sequence of con-
figurations. The first one (start) coincides with the unit [x0, x1], and contains the
starting state q0 only. This is consistent with our requirement that all counters
start with the value 0. Moreover, we guarantee that configurations’ endpoints
coincide with endpoints of elements of the u-chain, that every configuration con-
tains a state, and that start is unique. In our reduction, the state is placed on
the last unit of every configuration.

ϕconf−chain =

[G](conf → (u ∨ 〈B〉u)) ∧ [G](〈A〉conf → 〈A〉u)
[A](〈A〉conf → 〈B〉conf) ∧ [G](conf → [B]confb ∧ [B]¬conf)
[G](conf → [A]¬confb) ∧ [G](〈A〉conf ↔ 〈A〉(

∨

i=0,...,|Q| qi))

Notice that states (qi-intervals) occur exactly as last u-intervals of configurations.
Since configurations do not overlap, this implies that each configuration contains
exactly one state.

Configurations also contain counters’ instances ci for each counter i whose
value is greater than zero. Besides, a special placeholder c+i or c−i may be placed
in a configuration, in order to make it possible to deal with increment and
decrement operations. States, counters’ instances, and placeholders may only
hold over units, which, in turn, all have to contain one of the above. A placeholder
must be placed over the counter to which it refers. Moreover, counters and states
are mutually incompatible, and there cannot be more than one per type on a
given unit. These requirements are guaranteed by the following formula:

ϕunits =

[G](
∧

i=0,...,|Q|(qi → u) ∧
∧

i=1,...,|C|((ci ∨ c
+
i ∨ c−i) → u))

[G](u→ ((
∨

i=0,...,|Q| qi) ∨ (
∨

i=1,...,|C| ci)))

[G]
∧

i=0,...,|Q|(qi → (
∧

j=i+1,...,|Q| ¬qj))

[G]
∧

i=0,...,|Q|(qi → (
∧

j=1,...,|C| ¬cj))

[G]
∧

i=1,...,|C|((ci → (
∧

j=i+1,...,|C| ¬cj)) ∧ (c−i → ci) ∧ (c+i → ci))

13

Before we can actually encode the transition function ∆, we have to ax-
iomatize the properties of corr and corri for each i. In a perfect (non-faulty)
machine, when a counter is not modified by any operation from a configuration
to the next one its value is preserved. Since we are encoding a lossy machine, it
suffices to guarantee that no counter’s value is ever incremented, except for the
special case of an incrementing operation. To this end, we use the propositional
letter corr as a basis for correspondence, and the proposition corri to identify
the correspondence for the i-th counter:

ϕcorr =

[G]
∧

i=1,...,|C|(((ci ∧ ¬c+i) → 〈A〉corri) ∧ (c+i → ¬〈A〉corri))

[G]
∧

i=1,...,|C|(corri → corr)

[G]
∧

i=1,...,|C|(corri → 〈A〉(ci ∧ ¬c−i)) ∧ [G](corr → [B]corrb)

[G](((
∨

i=0,...,|Q| qi) ∧ corrb) → corrb
∗)

[G]((
∨

i=0,...,|Q| qi) → [A](corrb → corrb
∗))

[G](corr → [B]¬corr) ∧ [G](corrb
∗ → [B]¬corrb

∗)
[G](〈A〉corrb

∗ → 〈A〉u) ∧ [G](corr → 〈B〉corrb
∗)

[G]((u ∧ ¬(
∨

i=0,...,|Q| qi)) → [A]¬corrb
∗)

To finalize the reduction, we now take care of incrementing and decrementing
operations, as well as of the zero test. For each (q, l, q′) ∈ ∆, let conf(q,l,q′) be a
special propositional letter holding on a configuration and carrying information
on which transition produced that configuration. Clearly, every configuration
but start is the result of precisely one transition. Therefore, we have:

ϕconf =

{

[G]((conf ∧ ¬start) ↔ (
∨

(q,l,q′)∈∆ conf (q,l,q′)))

[G](
∧

(q,l,q′)∈∆(conf (q,l,q′) → (
∧

(q′′,l′,q′′′) 6=(q,l,q′) ¬conf (q′′,l′,q′′′))))

We can now implement the actual transitions. To deal with the increment (resp.,
decrement) operation we make use of the symbol c+i (resp., c−i), as follows:

ϕinc =

[G](
∧

(q,(inc,i),q′)∈∆(conf(q,(inc,i),q′) → (〈A〉q ∧ 〈B〉c+i,b)))

[G](
∧

(q,(inc,i),q′)∈∆(〈A〉conf(q,(inc,i),q′) → 〈A〉q′))

[G](
∧

i=1,...,|C|(〈A〉c
+
i,b ↔ 〈A〉c+i))

[G](
∧

i=1,...,|C|(c
+
i,b → (〈A〉conf ∧ [B]¬conf)))

[G](
∧

i,j=1,...,|C|(c
+
i,b → [B]¬c+j,b))

[G](
∧

i=1,...,|C|((conf ∧ 〈B〉c+i,b) → (
∨

q,q′∈Q conf(q,(inc,i),q′))))

ϕdec =

[G](
∧

(q,(dec,i),q′)∈∆(conf(q,(dec,i),q′) → (〈A〉q ∧ [A](conf → 〈B〉c−i,b))))

[G](
∧

(q,(dec,i),q′)∈∆(〈A〉conf(q,(dec,i),q′) → 〈A〉q′))

[G](
∧

i=1,...,|C|(〈A〉c
−
i,b ↔ 〈A〉c−i))

[G](
∧

i=1,...,|C|(c
−
i,b → (〈A〉conf ∧ [B]¬conf)))

[G](
∧

i,j=1,...,|C|(c
−
i,b → [B]¬c−j,b))

[G](
∧

i=1,...,|C|((conf ∧ 〈A〉〈B〉c−i,b) → (
∨

q,q′∈Q conf(q,(dec,i),q′))))

ϕifz =

[G](
∧

(q,(ifz,i),q′)∈∆(conf(q,(ifz ,i),q′) → (〈A〉q ∧ [A](conf → [B]czi,b))))

[G](
∧

(q,(ifz,i),q′)∈∆(〈A〉conf(q,(ifz ,i),q′) → 〈A〉q′))

[G](
∧

i=1,...,|C|((〈A〉ci → [A]czi,b) ∧ (¬〈A〉ci → [A]¬czi,b)))

14

The formula:

ϕu−chain ∧ ϕconf−chain ∧ ϕunits ∧ ϕcorr ∧ ϕconf ∧ ϕinc ∧ ϕdec ∧ ϕifz

is satisfiable if and only if A has at least one infinite run. ⊓⊔

Since it is possible to construct a similar reduction using the fragment AB,
we can conclude the following theorem.

Theorem 4. The complexity of the satisfiability problem for the fragments AB

and AB over the class of dense linear orders is non-primitive recursive.

Acknowledgements. The authors acknowledge the support from the Spanish fellow-

ship program ‘Ramon y Cajal’ RYC-2011-07821 (G. Sciavicco), the project Processes

and Modal Logics (project nr. 100048021) and the project Decidability and Expressive-

ness for Interval Temporal Logics (project nr. 130802-051) of the Icelandic Research

Fund (D. Della Monica), and the Italian GNCS project Automata, Games, and Tem-

poral Logics for the verification and synthesis of controllers in safety-critical systems

(A. Montanari).

References

1. Aceto, L., Della Monica, D., Goranko, V., Ingólfsdóttir, A., Montanari, A., Sciav-
icco, G.: A complete classification of the expressiveness of interval logics of Allen’s
relations: the dense and the general case. Acta Informatica (2014), in press

2. Aceto, L., Della Monica, D., Ingólfsdóttir, A., Montanari, A., Sciavicco, G.: On
the expressiveness of the interval logic of Allen’s relations over finite and discrete
linear orders. In: Proc. of the 14th European Conference on Logics in Artificial
Intelligence (JELIA), LNCS, vol. 8761, pp. 267 – 281. Springer (2014)

3. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of
the ACM 26(11), 832–843 (1983)

4. Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: The
dark side of interval temporal logic: marking the undecidability border. Annals of
Mathematics and Artificial Intelligence 71(1-3), 41–83 (2014)

5. Bresolin, D., Della Monica, D., Montanari, A., Sala, P., Sciavicco, G.: Interval
temporal logics over strongly discrete linear orders: Expressiveness and complexity.
Theoretical Computer Science (2014), in press

6. Bresolin, D., Goranko, V., Montanari, A., Sala, P.: Tableaux for logics of subin-
terval structures over dense orderings. Journal of Logic and Computation 20(1),
133–166 (2010)

7. Bresolin, D., Montanari, A., Sala, P., Sciavicco, G.: Optimal tableau systems for
propositional neighborhood logic over all, dense, and discrete linear orders. In:
Proc. of the 20th International Conference on Automated Reasoning with Ana-
lytic Tableaux and Related Methods (TABLEAUX). LNAI, vol. 6793, pp. 73–87.
Springer (2011)

8. Bresolin, D., Montanari, A., Sala, P., Sciavicco, G.: What’s decidable about
Halpern and Shoham’s interval logic? The maximal fragment ABBL. In: Proc.
of the 26th Annual IEEE Symposium on Logic in Computer Science, (LICS). pp.
387–396 (2011)

15

9. Chaochen, Z., Hansen, M.R.: Duration calculus: A formal approach to real-time
systems. EATCS: Monographs in Theoretical Computer Science, Springer (2004)

10. Gennari, R., Tonelli, S., Vittorini, P.: An AI-based process for generating games
from flat stories. In: Proc. of the 33th SGAI International Conference on Artificial
Intelligence. pp. 337–350 (2013)

11. Halpern, J., Shoham, Y.: A propositional modal logic of time intervals. Journal of
the ACM 38(4), 935–962 (1991)

12. Laban, S., El-Desouky, A.: RISMA: A rule-based interval state machine algorithm
for alerts generation, performance analysis and monitoring real-time data process-
ing. In: Proc. of the European Geosciences Union General Assembly. Geophysical
Research Abstracts, vol. 15 (2013)

13. Montanari, A., Puppis, G., Sala, P.: Decidability of the interval temporal logic
AABB over the rationals. In: Proc. of the 39th International Symposium on Math-
ematical Foundations of Computer Science (MFCS). LNCS, vol. 8634, pp. 451–463.
Springer (2014)

14. Moszkowski, B.: Reasoning about digital circuits. Tech. rep. stan-cs-83-970, Dept.
of Computer Science, Stanford University, Stanford, CA (1983)

15. Sala, P.: Decidability of Interval Temporal Logics. Ph.D. thesis, Department of
Mathematics and Computer Science, University of Udine, Udine, Italy (2010)

16. Schnoebelen, P.: Lossy counter machines decidability cheat sheet. In: Proc. of the
4th International Workshop (RP 2010). pp. 51–75 (2010)

17. Terenziani, P., Snodgrass, R.T.: Reconciling point-based and interval-based seman-
tics in temporal relational databases: A treatment of the telic/atelic distinction.
IEEE Transactions on Knowledge and Data Engineering 16(5), 540–551 (2004)

