
Beyond ωBS-regular languages: The class of
ωT -regular languages

Dario Della Monica1, Angelo Montanari2, and Pietro Sala3

1 ICE-TCS, School of Computer Science
Reykjavik University, Reykjavik, Iceland dariodm@ru.is

2 Department of Mathematics and Computer Science University of Udine, Udine, Italy
angelo.montanari@uniud.it

3 Department of Computer Science
University of Verona, Verona, Italy pietro.sala@univr.it

Abstract. In the last years, various meaningful extensions of ω-regular
languages have been proposed in the literature, including ωB-regular
languages (ω-regular languages extended with boundedness), ωS-regular
languages (ω-regular languages extended with strict unboundedness),
and ωBS-regular languages, which are obtained from the combination of
ωB- and ωS-regular languages. However, while its components satisfy a
generalized closure property, namely, the complement of an ωB-regular
(resp., ωS-regular) language is an ωS-regular (resp., ωB-regular) one,
the class of ωBS-regular languages is not closed under complementation.
The existence of non-ωBS-regular languages that are the complements of
some ωBS-regular ones and express fairly natural properties of reactive
systems motivates the search for larger, well-behaved classes of extended
ω-regular languages. In this paper, we introduce the class of ωT -regular
languages, that captures meaningful languages not belonging to the class
of ωBS-regular languages. We provide an automaton-based encoding
of this new class of languages and we prove the decidability of their
emptiness problem.

1 Introduction

Regular languages of infinite words (ω-regular languages) have a fundamental
role in computer science as they provide a natural setting for specification and
verification of nonterminating finite-state systems. Since the seminal work by
Büchi [5], McNaughton [8], and by Elgot and Rabin [6] in the sixties, a great
research effort has been devoted to the development of the theory and the
applications of ω-regular languages. In particular, equivalent characterizations
of ω-regular languages have been given in terms of formal languages (ω-regular
expressions), automata (Büchi, Rabin, and Muller automata), classical logic
(weak/strong monadic second-order logic of one successor, WS1S/S1S for short),
and temporal logic (quantified linear temporal logic, extended temporal logic).

Recent work by (among others) Bojańczyk and Colcombet has shown that
ω-regular languages can be successfully extended in various ways, preserving

their decidability and some of their closure properties [2,3,4]. As an example,
extended ω-regular languages make it possible to constrain the distance between
consecutive occurrences of a given symbol to be (un)bounded. Properties of this
kind are interesting in the specification of reactive systems, as argued in [1],
where the authors introduce and study finitary fairness as opposed to the classic
notion of fairness, widely used in automated verification of concurrent systems.
According to the latter, no individual process in a multi-process system is ignored
for ever; finitary fairness imposes the stronger constraint that every enabled
transition is executed within at most b time-units, where b is an unknown,
constant bound. In [1] it is shown that such a notion enjoys some desirable
mathematical properties that are violated by the weaker notion of fairness, and
yet it captures all reasonable schedulers’ implementations. An analogous property
has been studied from a logical perspective in [7], where the logic PROMPT-LTL
has been introduced. Roughly speaking, PROMPT-LTL extends LTL with the
prompt-eventually operator, which states that an event will happen within the
next b time-units, b being a constant bound.

From the point of view of formal languages, the proposed extensions pair
the Kleene star p.q˚ with bounding/unbounding variants of it. Intuitively, the
bounding exponent p.qB constrains parts of the input word to be of bounded
size, while the unbounding exponent p.qS forces parts of the input word to
be arbitrarily large. The two extensions have been studied both in isolation
(ωB- and ωS-regular expressions) and in conjunction (ωBS-regular expressions).
Equivalent characterizations of extended ω-regular languages have been given in
terms of automata (ωBS-automata) and classical logic (extensions of S1S with
an unbounding quantifier that allows one to express properties which are satisfied
by arbitrarily large sets). In [4], the authors show that the complement of an ωB-
regular language is an ωS-regular one and vice versa; moreover, they show that
ωBS-regular languages, featuring both B- and S-constructors, strictly extend
ωB- and ωS-regular languages and they are not closed under complementation.

In this paper, we focus our attention on those ω-languages which are com-
plements of ωBS-regular ones, but do not belong to the class of ωBS-regular
languages. Our ultimate goal is to provide a characterization of the class of these
languages. We will start with an in-depth analysis of a paradigmatic example
of the complement of an ωBS-regular language that lies outside the class of
ωBS-regular languages [4]. It will allow us to identify a meaningful extension
of ω-regular languages, which includes such a language and which is obtained
by adding a new, fairly natural constructor p.qT to the standard constructors
of ω-regular expressions. Decidability of the emptiness problem for this class
of ω-languages, called ωT -regular languages, will be proved using an automata-
theoretic argument: we introduce a new class of automata, called counter-queue
automata, and we show that their emptiness problem is decidable; then, we
provide an encoding of ωT -regular expressions into counter-queue automata, that
allows us to reduce the emptiness problem for the former to the one for the latter.

The rest of the paper is organized as follows. In Section 2, we summarize
existing extensions of ω-regular languages, with a special attention to ωBS-

regular ones, and we introduce the class of ωT -regular languages. In Section 3,
we formally define counter-queue automata (CQ automata, for short) and we
prove that their emptiness problem is decidable. Finally, in Section 4, we provide
the encoding of ωT -regular languages into CQ automata. Conclusions give a
short assessment of the work done and illustrate future research directions.

2 Extensions of ω-regular languages

In this section, we first provide a short account of the extensions of ω-regular
languages proposed in the literature (details can be found in [2,3,4]) and then we
outline a new meaningful one. To begin with, we observe that a word belonging
to an ω-regular language (ω-regular word) can be seen as the concatenation of a
finite prefix, belonging to a regular language, and an infinite sequence of finite
words, which we refer to as ω-iterations, belonging to another regular language.
ω-regular languages can be specified as ω-regular expressions. One interesting
case is that of ω-iterations consisting of a finite sequence of words, generated by
an occurrence of the Kleene star operator p.q˚, aka ˚-constructor, in the scope of
the ω-constructor p.qω. As an example, the ω-regular expression pa˚bqω generates
the language of all and only those ω-words featuring an infinite sequence of
ω-iterations consisting of a finite (possibly empty) sequence of a’s followed by
exactly one b. Given an ω-regular expression E featuring an occurrence of the ˚-
constructor (sub-expression R˚) in the scope of the ω-constructor and an ω-word
w belonging to the language of E, we refer to the sequence of the sizes of the
(maximal) blocks of consecutive iterations of R in the different ω-iterations as the
(sequence of) exponents of R in (the ω-iterations of) w. As an example, let us
consider the ω-word w “ abaabaaabaaaab . . ., generated by the above ω-regular
expression pa˚bqω. The sequence of exponents of a in w is 1, 2, 3, 4, Sometimes,
we will denote words in a compact way, by explicitly indicating the exponents of
a sub-expression, e.g., we will write w as a1ba2ba3ba4b Given an expression E,
we will denote by LpEq the language defined by E. With a little abuse of notation,
we will sometimes identify a language with the expression defining it, and vice
versa, so, for instance, we will simply write “the ω-regular language L “ pa˚bqω”
for Lppa˚bqωq. It is worth pointing out that the Kleene star operator allows one
to impose the existence of a finite sequence of words (described by its argument
expression) within each ω-iteration, but it cannot be used to express properties
on the sequence of exponents of its argument expression in the ω-iterations of an
ω-word. Aiming at overcoming such a limitation, some meaningful extensions
of ω-regular expressions have been investigated in the last years, that make it
possible to constrain the behavior of the Kleene star operator in the limit.

2.1 Beyond ω-regularity

A first class of extended ω-regular languages is that of ωB-regular languages,
which allow one to impose boundedness conditions. ωB-regular expressions are
obtained from ω-regular ones by adding a variant of Kleene star p.q˚, called

B-constructor and denoted by p.qB , to be used in the scope of the ω-constructor
p.qω. The bounded exponent B allows one to constrain the argument R of the
expression RB to be repeated in each ω-iteration a number of times less than a
given bound fixed for the whole ω-word. As an example, the expression paBbqω
denotes the language of ω-regular words in pa˚bqω for which there is an upper
bound on the number of consecutive occurrences of a (the sequence of exponents
of a is bounded). As the bound may vary from word to word, the language is
not ω-regular. The class of ωS-regular languages extends that of ω-regular ones
with strong unboundedness. By analogy with ωB-regular expressions, ωS-regular
expressions are obtained from ω-regular ones by adding a variant of Kleene star
p.q˚, called S-constructor and denoted by p.qS , to be used in the scope of the
ω-constructor p.qω. For every ωS-regular expression containing the sub-expression
RS and for each natural number k ą 0, the strictly unbounded exponent S
constrains the number of ω-iterations in which the argument R is repeated
exactly k times to be finite. Let us consider ω-regular words that feature an
infinite number of instantiations of the expression RS , that is, ω-regular words
for which there exists an infinite number of ω-iterations including a sequence of
consecutive R’s generated by RS . It can be easily checked that in these words the
sequence of exponents of R tends towards infinity. As an example, the expression
paSbqω denotes the language of ω-regular words w in pa˚bqω such that, for any
natural number k ą 0, there exists a suffix of w that only features maximal
sequences of consecutive a’s that are longer than k.

ωBS-regular expressions are built by making use of the operators of ω-regular
expressions and of both the B- and the S-constructor. In [4], the authors show that
the class of ωBS-regular languages strictly includes the classes of ωB- and ωS-
regular languages, as witnessed by the ωBS-regular language L “ paBb` aSbqω,
which is neither ωB- nor ωS-regular4. Moreover, they prove that the class of
ωBS-regular languages is not closed under complementation. A counter-example
is given precisely by the ωBS-regular language L, whose complement is not ωBS-
regular (notice that ωBS-regular languages whose complement is not an ωBS-
regular language are neither ωB- nor ωS-regular languages, as the complement
of an ωB-regular language is an ωS-regular one and vice versa).

In this paper, we investigate those ω-languages that do not belong to the
class of ωBS-regular languages, but whose complement belongs to this class.
To have some insights into these languages, let us consider the complement L
of the language L above. On the one hand, it can be checked that any ω-word
w in L that features an infinite number of occurrences of b must feature an
infinite sequence of blocks of consecutive a’s (between two consecutive b’s) of
unbounded size; otherwise, w would belong to L, as it would be captured by the
sub-expression aBb. On the other hand, for any such ω-word w, there must be
a natural number k ą 0 such that there exist infinitely many maximal blocks

4 It must be noticed that the constructor ` occurring in L must not be thought of
as performing the union of two languages, but rather as a “shuffling operator” that
mixes ω-iterations belonging to the two different (sub-)languages. This will be made
clear later on, when we will formally define the languages we deal with.

of consecutive a’s whose size is exactly k; otherwise, w would belong to L, as it
would be captured by the sub-expression aSb. Thus, w is such that piq for every
natural number k, there exists k1 ą k that occurs in the sequence of exponents
of a in w, and piiq there exists at least one natural number k ą 0 that occurs
infinitely often in the sequence of exponents of a in w. In fact, as an effect of the
combined use of both B- and S-constructors, w is subject to an even stronger
constraint: there exist infinitely many natural numbers that occur infinitely often
in the sequence of exponents of a in w (notice that this latter constraint implies
both the former ones). By way of contradiction, suppose that there are only
finitely many natural numbers (exponents) that occur infinitely often. Let k be
the largest one. Now, the ω-word w can be viewed as an infinite sequence of
ω-iterations, each of them characterised by the corresponding exponent of a. If
the exponent associated with an ω-iteration is greater than k, then it does not
occur infinitely often, and thus the ω-iteration is captured by the sub-expression
aSb. Otherwise, if the exponent is not greater than k, then the corresponding
ω-iteration is captured by the sub-expression aBb. As an example, the word
a1ba2ba1ba3ba1ba4b . . . does not belong to L as 1 is the only exponent occurring
infinitely often. The word a1ba2ba1ba2ba3ba1ba2ba3ba4b . . ., on the other hand,
does belong to L as infinitely many (actually all) natural numbers occur infinitely
often in the sequence of exponents.

In the following, we focus our attention on ω-words featuring infinitely many
exponents occurring infinitely often. More precisely, we introduce a new variant
of the Kleene star operator p.q˚, called T -constructor and denoted by p.qT , to
be used in the scope of the ω-constructor p.qω, and we define the corresponding
class of extended ω-regular languages (ωT -regular languages). An expression RT

occurring in some ω-expression E forces two conditions on the ω-words belonging
to E: (i) every exponent of R occurs infinitely often in the sequence, and (ii) the
sequence features an infinite number of distinct exponents. As an example, it can
be easily checked that the language L can be defined as ppa˚bq˚aT bqω`pa˚b˚q˚aω,
and thus it belongs to the class of ωT -regular languages. In the next two sections,
we first provide a formal account of ωBS-regular languages [4] and then we define
ωT -regular ones.

2.2 ωBS-regular languages

The class of ωBS-regular languages is the class of languages defined by ωBS-
regular expressions. These latter are built on top of BS-regular expressions,
just as ω-regular expressions are built on top of regular ones. Let Σ be a finite,
nonempty alphabet. A BS-regular expression over Σ is defined by the following
grammar [4]:

e ::“ H | a | e ¨ e | e` e | e˚ | eB | eS
where a belongs to Σ. We sometimes omit the concatenation operator, thus

writing ee instead of e ¨ e.
Syntactically, BS-regular expressions differ from standard regular ones for

the presence of the two constructors p.qB and p.qS . Since the latter constrain
the behaviour of the sequence of ω-iterations to the limit, it is not possible to

simply define the semantics of BS-regular expressions in terms of languages of
(finite) words, and then to obtain ωBS-regular languages through infinitely many,
unrelated iterations of such words. In the following, we specify the semantics
of BS-regular expressions in terms of languages of infinite sequences of words;
suitable constraints are then imposed to force these sequences to satisfy some
properties expressing the intended meaning of the B- and S-constructors.

Let u be an infinite sequence of words over Σ and let ui be the i-th element
of u. Moreover, let f : N Ñ N with fp0q “ 1. The semantics of BS-regular
expressions over Σ is defined as follows:

– LpHq “ H;
– for a P Σ, Lpaq is the infinite sequence of the one-letter word a tpa, a, a, . . .qu;
– Lpe1 ¨ e2q “ tw | @i.wi “ ui ¨ vi, u P Lpe1q, v P Lpe2qu;
– Lpe1 ` e2q “ tw | @i.wi P tui, viu, u,v P Lpe1q Y Lpe2qu5;
– Lpe˚q “ tpufp0qu2 . . . ufp1q´1, ufp1q . . . ufp2q´1, . . .q |

u P Lpeq and f is an unbounded and nondecreasing functionu;
– LpeBq “ tpufp0qu2 . . . ufp1q´1, ufp1q . . . ufp2q´1, . . .q |

u P Lpeq and f is an unbounded and nondecreasing function
such that Dn P N @i.pfpi` 1q ´ fpiq ă nqu;

– LpeSq “ tpufp0qu2 . . . ufp1q´1, ufp1q . . . ufp2q´1, . . .q |
u P Lpeq and f is an unbounded and nondecreasing function
such that @n P N Dk @i ą k.pfpi` 1q ´ fpiq ą nqu.

Given a sequence u “ pufp0qu2 . . . ufp1q´1, ufp1q . . . ufp2q´1, . . .q P eop, where
op P t˚, B, T u, we define the sequence of exponents of e in u as the sequence
tfpi` 1q ´ fpiquiPN. While the ˚-constructor does not impose any constraint on
the sequence of exponents of its operand, the B-constructor forces the sequence
of exponents to be bounded, while the S-constructor forces it to be strictly
unbounded, that is, its limit tends towards infinity (equivalently, the S-constructor
imposes that no exponent occurs infinitely many times in the sequence).

The ω-constructor defines languages of infinite words from languages of
infinite sequences of words. Given a BS-regular expression e, the semantics of
the ω-constructor is defined as follows:

– Lpeωq “ tw | w “ u1u2u3 . . . for some u P Lpequ.
ωBS-expressions are defined by the following grammar (we denote languages

of word sequences by lowercase letters, such as e, e1, . . . , and languages of words
by uppercase ones, such as E, E1, . . . , R, R1, . . .):

E ::“ E ` E | R ¨ E | eω
where R is a regular expression, e is a BS-regular expression, and the operators

` and ¨ respectively denote union and concatenation of word languages (formally,
LpE1 ` E2q “ LpE1q Y LpE2q and LpE1 ¨ E2q “ tu ¨ v | u P LpE1q, v P LpE2qu)6.

5 Unlike the case of word languages, when applied to languages of word sequences, the
operator ` does not return the union of the two argument languages. As an example,
Lpaq Y Lpbq Ĺ Lpa` bq, as witnessed by the word sequence pa, b, a, b, a, b, . . .q.

6 Notice the abuse of notation with the previous definition of the operators ` and ¨
over languages of infinite word sequences.

Similarly to what we did with the concatenation of languages of word sequences,
we will sometimes omit the concatenation operator between word languages.

2.3 ωT -regular languages

As we have already recalled, the class of ωBS-regular languages is not closed
under complementation, that is, there are ω-languages, that are the complements
of ωBS-regular ones, which are not ωBS-regular. This is the case, for instance,
with the language L̄, which is the complement of the ωBS-regular language
L “ paBb` aSbqω (see Subsection 2.1).

In Subsection 2.1, we studied in some detail the distinctive features of the
language L̄ and we showed that ω-words belonging to it are, to a certain extent,
characterised by sequences of exponents where infinitely many exponents occur
infinitely often. In order to capture extended ω-regular languages that satisfy
such a property, we now introduce a new class of ω-regular languages, called
ωT -regular languages, that includes all and only those languages that can be
expressed by ωT -regular expressions, which are defined by the following grammar:

T ::“ T ` T | R ¨ T | tω
t ::“ H | a | t ¨ t | t` t | t˚ | tT

where R is a regular expression and a P Σ.
The sub-grammar rooted in the non-terminal t generates the T -regular ex-

pressions. The only new ingredient in the above definition is the T -constructor
p.qT , that, given a language of word sequences t, defines the following language:
– LptT q “ tpufp0qu2 . . . ufp1q´1, ufp1q . . . ufp2q´1, . . .q |

u P Lptq and f is an unbounded and nondecreasing function such that
piq @nDi.fpi` 1q ´ fpiq ą n
piiq @n.rif Di.fpi` 1q ´ fpiq “ n, then @kDj ą k.fpj ` 1q ´ fpjq “ nsu.

It is not difficult to convince oneself that such a formal definition of the semantics
of the T -constructor conforms with the intuitive one we provided in Subsection 2.1:
item piq guarantees the existence of infinitely many exponents in the sequence
and item piiq forces each exponent (occurring at least once) to occur infinitely
many times in the sequence of exponents (of words).

3 Counter-queue automata

In this section, we introduce a new class of automata, called counter-queue
automata (CQ automata), and we show that their emptiness problem is decidable.

3.1 The class of CQ automata

To start with, we introduce the notion of a queue (of natural numbers) devoid
of repetitions: a queue q is a finite word over N such that all its elements are
different. We denote the empty queue by H. Given a queue q, we denote by
qris the i-th number in q. Moreover, we denote the set of the elements of q
and the maximum among them by Setpqq and maxpqq, respectively. Formally,

Setpqq “ tn P N : Di.qris “ nu and maxpqq “ maxpSetpqqq if Setpqq ‰ H, ´1
otherwise. The first and the last element of q can be selected by means of the usual
front and back operations: frontpqq “ qr1s and backpqq “ qr|q|s. The enqueue
operation satisfies the uniqueness constraint on the elements of q: for every n P N,
enqueuepq, nq “ q ¨n if n R Setpqq, q otherwise. The dequeue operation is defined
as usual: dequeuepqq “ qr2s . . . qr|q|s. We denote by Q the set of all queues.

s0

s3s1

s2

s4

ε

ε

ε

ε, (2, inc)
ε, (2, check)

a
b

b, (1, check)

a, (1, inc)

ε

Fig. 1. A CQ automaton for the lan-
guage ppa˚bq˚aT bqω (N “ 2).

A counter-queue automaton (CQ automa-
ton) is a quintuple A “ pS,Σ, s0, N,∆q,
where S is a finite set of states, Σ is a fi-
nite alphabet, s0 P S is the initial state, N
is a natural number, and ∆ Ď S ˆ pΣ Y
tεuq ˆ S ˆ pt1, . . . , Nu ˆ tno op, inc, checkuq
is a transition relation such that for every
ps, σ, s1, pk, no opqq P ∆, it holds k “ 1 (see
Figure 1). Given a CQ automaton A “
pS,Σ, s0, N,∆q, a configuration of A is a pair
c “ ps, Cq, where s P S and C P pNˆQqN is a
counter-queue configuration. For 1 ď i ď N ,
we denote by Cris “ pni, qiq the i-th component of a counter-queue configuration
C, where ni and qi are its counter and queue components, respectively. In the
following, we will often refer to ni as counterpCrisq and to qi as queuepCrisq.

Let A “ pS,Σ, s0, N,∆q. We define a ternary relation ÑA over pairs of
configurations and symbols in Σ Y tεu such that for all pairs of configurations
ps, Cq, ps1, C 1q and σ P Σ Y tεu, ps, Cq Ñσ

A ps1, C 1q iff there exists δ “ ps, σ, s1,
pk, opqq P ∆ such that Crk1s “ C 1rk1s for all k1 ‰ k, and
– if op “ no op, then Crks “ C 1rks;
– if op “ inc, then counterpC 1rksq “ counterpCrksq ` 1 and queuepC 1rksq “
queuepCrksq;

– if op “ check, then counterpC 1rksq “ 0; moreover,
‚ if counterpCrksq “ frontpqueuepCrksqq, then
queuepC 1rksq “ enqueuepdequeuepqueuepCrksqq, counterpCrksqq;

s0 s1 s1 s3 s2 s2 s2 s2 s4 s0 s2 s2 s2 s4

0 1 2 3 0 1 2 0

∅ 3 3, 2

0

∅ 0

c1

q1

c2

q2

ε a b ε

i1

a

i1

a

i1

a
c1

b
c2

ε ε a

i1

a

i1 c1

b

i2

ε

s0 s2 s2 s2 s4 s0 s2 s2 s2 s2 s4 s0

0 1 2 0 1 2 3 0

3, 2 2, 3

1 0

0 0, 1 1, 0

c1

q1

c2

q2

i2

ε ε a

i1

a

i1

b
c1

ε
c2

ε a

i1

a

i1

a

i1

b
c1

ε
c2

Fig. 2. A prefix of a computation of the automaton in Figure 1. A configuration is
characterised by a circle (state) and the rounded-corner rectangles above it (counter-
queue configuration). ci (resp., qi) is its counter (resp., queue) component.

‚ if counterpCrksq ‰ frontpqueuepCrksqq, then
queuepC 1rksq “ enqueuepqueuepCrksq, counterpCrksqq.

In such a case, we say that ps, Cq Ñσ
A ps1, C 1q via δ. Let ÑÅ be the reflexive

and transitive closure of Ñσ
A (where we abstract away symbols in Σ Y tεu). The

initial configuration of A is the pair ps0, C0q, where for every 1 ď k ď N we have
C0rks “ p0,Hq. A computation of A is an infinite sequence of configurations
C “ ps0, C0qps1, C1q . . ., where psi, Ciq Ñσ

A psi`1, Ci`1q, for some σ P Σ Y tεu,
for all i P N (see Figure 2). Given two configurations psi, Ciq and psj , Cjq in C,
with i ď j, we say that psj , Cjq is ε-reachable from psi, Ciq, written psi, Ciq Ñ˚ε

Apsj , Cjq, if for all i ă j1 ď j, psj1´1, Cj1´1q Ñε
A psj1 , Cj1q. Given a computation C

of A and an ω-word w P Σω, we say that w is a C-induced word if there exists
an increasing function f : NÑ N such that:
– ps0, C0q Ñ˚ε

A psfp1q, Cfp1qq, and

– for all i ě 1, psfpiq, Cfpiqq Ñwris
A psfpiq`1, Cfpiq`1q Ñ˚ε

A psfpi`1q, Cfpi`1qq.
A computation C of A is accepting if and only if:
piq there exists an ω-word w induced by C;
piiq for all 1 ď k ď N , limiÑ`8 |queuepCirksq| “ `8;
piiiq for all 1 ď k ď N , i ě 0, and n P SetpqueuepCirksqq, it holds that

|ti1 : backpqueuepCi1rksqq “ nu| “ `8.
In such a case, we say that w is accepted by A. We denote by LpAq the set of all
and only the ω-words w P Σω that are accepted by A, and we say that A accepts
the language LpAq. As an example, Figure 1 depicts a CQ automaton with two
counters (N “ 2) for the language ppa˚bq˚aT bqω. (Notice that an automaton for
the same language with one counter only can be devised.)

3.2 Decidability of the emptiness problem for CQ automata

In this section, we prove that the emptiness problem for CQ automata is decidable
by a game-theoretic argument.

W.l.o.g., from now on, we restrict our attention to simple CQ automata.
A CQ automaton A “ pS,Σ, s0, N,∆q is simple iff for each s P S, either
|tps, σ, s1, pk, opqq P ∆u| “ 1 or op “ no op, k “ 1, and σ “ ε for all
ps, σ, s1, pk, opqq P ∆. Basically, a simple CQ automaton has two kinds of state:
those in which it can fire exactly one action and those in which it makes a
nondeterministic choice. Moreover for every pair of configurations ps, Cq, ps1, C 1q
such that ps, Cq Ñσ

A ps1, C 1q, the transition δ P ∆ that has been fired in ps, Cq
is uniquely determined by s and s1. By exploiting ε-transitions and by adding a
suitable number of states, every CQ automaton A may be turned into a simple
one A1 such that LpAq “ LpA1q.

The set of states of a simple CQ automaton can be partitioned in four subsets:
piq the set of states s from which only one transition of the form ps, σ, s1, pk, checkqq
can be fired (checkk states); piiq the set of states s from which only one transition
of the form ps, σ, s1, pk, incqq can be fired (inck states); piiiq the set of states s
from which only one transition of the form ps, σ, s1, p1, no opqq, with σ ‰ ε, can be
fired (sym states); pivq the set of states s from which possibly many transitions
of the form ps, ε, s1, p1, no opqq can be fired (choice states).

Let A “ pS,Σ, s0, N,∆q be a CQ automaton. A partial computation of
A is a finite sequence P “ ps0, C0q . . . psn, Cnq such that, for all 0 ď i ă n,
psi, Ciq Ñσ

A psi`1, Ci`1q, for some σ P Σ Y tεu. If ps0, C0q is the initial config-
uration of A, then P is a prefix computation of A. We denote by PartialA
and PrefixesA the sets of all partial computations of A and of all pre-
fix computations of A, respectively. Clearly, PrefixesA Ď PartialA holds.
Given a prefix computation P “ ps0, C0q . . . psn, Cnq and a partial computa-
tion P 1 “ ps10, C 10q . . . ps1m, C 1mq, we say that P can be extended with P 1 iff
P2 “ P ¨ P 1 “ ps0, C0q . . . psn, Cnqps10, C 10q . . . ps1m, C 1mq is a prefix computation.
In such a case, we say that P2 is an extension of P.

Let A “ pS,Σ, s0, N,∆q be a CQ automaton and P “ ps0, C0q . . . psn, Cnq P
PartialA. For all s P S, it holds that if psn, Cnq Ñσ

A ps, Cq, for some counter-
queue configuration C, then C is uniquely determined by sn, s, and Cn, that is,
there is no C 1 ‰ C such that psn, Cnq Ñσ

A ps, C 1q. We define the extension of P
with s, denoted by P ăă s, as ps0, C0q . . . psn, Cnqps, Cq.

We can associate a two-player game, called CQ game, with each CQ au-
tomaton A. The configurations of the game are the prefix computations of
A. The initial configuration is the shortest prefix computation of A, namely,
P0 “ ps0, C0q. Let i ě 0 be the current turn and Pi “ ps0, C0q . . . psn, Cnq be
the current game configuration. The first player (Spoiler) moves by choosing
a priority pi P tcheckk,maxk|1 ď k ď Nu Y tsymu; the second player (Dupli-
cator) replies with a partial computation Qi “ ps10, C 10q . . . ps1m, C 1mq such that:
piq Pi can be extended with Qi; piiq if pi “ checkk, for some 1 ď k ď N , then
there exists 0 ď j ă m such that frontpqueuepC 1jrksqq “ backpqueuepC 1j`1rksqq;
piiiq if pi “ maxk, for some 1 ď k ď N , then there exists 0 ď j ă m such that
backpqueuepC 1j`1rksqq ą maxpqueuepC 1jrksqq; pivq if pi “ sym, then there exists
0 ď j ă m such that ps1j , σ, s1j`1, pk, opqq P ∆, for some pair pk, opq and some
σ ‰ ε. A play of a CQ game is a sequence of pairs P` “ pP0, p0qpP1, p1q . . ., where,
at each round i ě 0, pi is Spoiler’s move and Pi`1 is the result of the extension
of Pi with Duplicator’s move Qi. Let P`pnq be the finite prefix of P` of length n;
moreover, let PlayA be the set of all possible finite prefixes of all possible plays
of the CQ game on A. Duplicator wins a play of the CQ game iff the play is
infinite, that is, she is able to reply to Spoiler’s move at every round. A strategy
for Duplicator in the CQ game on A is a function str : PlayA Ñ PartialA. In
a play P` “ pP0, p0qpP1, p1q . . ., Duplicator acts according to str if for all i ě 0,
Pi`1 “ Pi ¨ strpP`piqq, that is, Pi`1 is the result of the extension of Pi with
strpP`piqq. A strategy str for Duplicator is winning iff Duplicator wins every
play in which she acts according to str. The proof of the following lemma is
straightforward and thus omitted.

Lemma 1. Let A be a CQ automaton. We have that LpAq ‰ H iff there exists
a winning strategy for Duplicator in the CQ game on A.

We now show that the problem of deciding whether there exists a winning
strategy for Duplicator in the CQ game on a given CQ automaton A is decidable.
To this end, we introduce the concept of a winning witness. An N-word α is a
finite word over N` such that, for all 1 ď i ă |α|, αris ă αri` 1s holds. Given an

N-word α, we say that n belongs to α, written n P α, iff there exists i for which
αris “ n, and we denote by Setpαq the set tn P N : n P αu. Clearly, for any given
set S Ă N`, there is exactly one N-word α such that Setpαq “ S; we denote such
a word by αS . Given two N-words α1 and α2, we define α1 Y α2 and α1 X α2

as the N-words αSetpα1qYSetpα2q and αSetpα1qXSetpα2q, respectively. Moreover, we

denote by rb, es the N-word αtb,b`1,...,eu. Finally, for each 1 ď k ď N , let βP
k be

the N-word i1 . . . im such that tsi1 , . . . simu is the set of all and only the checkk
state in P and let γPk be the N-word i1 . . . im such that tsi1 , . . . simu is the set of
all and only the inck state in P . We let βP “ Ť

1ďkďN βP
k and γP “ Ť

1ďkďN γPk .

Definition 1 (winning witness). Let P “ ps0, C0q . . . psn, Cnq P PrefixesA.
P is a winning witness iff there exist 2N ` 3 indexes 0 ď begin ă b1 ă e1 ă
. . . ă bN ă eN ă limit ă end ď n such that the following conditions hold:

– there is j such that begin ď j ď end and sj is a sym state;
– sbegin “ send and, for each 1 ď k ď N , sbk “ sek , sbk is an inck state, and,

for any bk ď j ď ek, sj is not a checkk state;
– for each 1 ď k ď N , there is eN ă j ă limit such that sj is a checkk state;
– let βP X r0, limits “ j1 . . . jM ; then, there are 2M indexes b1 ă e1 ă . . . ă
bM ă eM , with limit ă b1 and eM ă end, such that, for each 1 ď i ď M ,
there is 1 ď k ď N for which ji P βP

k , rbi, eis X βP
k “ biei (that is, sbi

and sei are checkk states and there are no checkk states in between), and
counterpCjirksq “ |rbi, eis X γPk |.

A winning witness can be seen as a finite representation of a winning strategy, as
stated by the following lemma, which links the existence of a winning strategy
for Duplicator in the CQ game to the existence of a winning witness.

Lemma 2. Let A be a CQ automaton. Then, Duplicator has a winning strategy
in the CQ game on A iff PrefixesA contains a winning witness.

Proof (sketch—details in the appendix). As for the left-to-right direction, let
us assume that there exists a winning strategy for Duplicator. By Lemma 1, it
follows that there is an accepting computation C of A. It is not difficult to show
that one can choose the index end in C large enough to guarantee the existence of
a sequence of indexes 0 ď begin ă b1 ă e1 ă . . . ă bN ă eN ă limit ă end ď n
that satisfies the conditions of Definition 1.

As for the converse implication, let us assume that PrefixesA contains a
winning witness P “ ps0, C0q . . . psn, Cnq. Let 0 ď begin ă b1 ă e1 ă . . . ă bN ă
eN ă limit ă end ď n be the indexes satisfying the conditions of Definition 1.
We show how to devise a winning strategy strP for Duplicator in the CQ game
on A. Since the strategy we define is memoryless, i.e., it only depends on the last
pair of a finite sequence (play prefix) P`pmq, with m P N, it is enough to define
it for a generic configuration P and Spoiler’s move p. Strategy strP is defined
inductively as follows.

(Base case) Let P0 be the initial game configuration. To all possible
moves by Spoiler, Duplicator replies with the partial computation Q0 “

ps1, C1q . . . psend, Cendq. It can be easily checked that, independently from
Spoiler’s move, Q0 is a correct move for Duplicator.

(Inductive step) Let Pi “ ps0, C0qps1, C1q . . . psend, Cendq . . . psni , Cniq, with
i ą 0, be a generic game configuration. The next move by Duplicator depends on
Spoilers’s one, pi (notice that ps0, C0qps1, C1q . . . psend, Cendq is a prefix of the win-
ning witness P as well as of every game configuration Pi of a play in which Duplica-
tor applies strP): piq if pi “ sym, Duplicator replies with the partial computation
psbegin, Cbeginq . . . psend, Cendq; piiq if pi “ checkk, Duplicator replies with the
partial computation psbegin, Cbeginq . . . psni , Cniq; piiiq if pi “ maxk, Duplicator
replies with the partial computation obtained from psbegin, Cbeginq . . . psend, Cendq,
by “pumping” its fragment psbk , Cbkq . . . psek , Cekq, that is, by looping over it a
suitable number of times so that the k-th counter of the last configuration of the
last loop iteration is greater than every element inserted so far in the k-th queue.
Notice that the last element psni

, Cni
q of every resulting game configuration Pi,

with i ą 0, is such that sni “ send. It is possible to show that all moves returned
by the strategy are valid moves for Duplicator. [\
Theorem 1. The emptiness problem for CQ automata is decidable.

Proof (sketch—details in the appendix). Thanks to Lemma 2, given a CQ au-
tomaton A, it suffices to provide an algorithm that searches PrefixesA for
winning witnesses. Starting from the initial configuration, the algorithm nonde-
terministically extends prefix computations by guessing, at each step, the next
configuration. When a configuration psi, Ciq is generated, thus building the prefix
computation ps0, C0q . . . psi, Ciq, the algorithm guesses whether or not i is one
of the indexes in I “ tbegin, b1, e1, . . . , bN , eN , limit, endu (see Definition 1). If
all those indexes are located, the algorithm returns true iff all the conditions of
Definition 1 are fulfilled. (The problem of checking the fulfillment of the conditions
of Definition 1 with respect to a prefix computation is clearly decidable.) In
principle, if one of the indexes in I has not been reached yet, the search should
go on. However, termination is guaranteed as it is possible to show that if there
is a winning witness with two consecutive indexes belonging to I being located
too far away from each other (according to some computable bound), then there
is a winning witness where the distance between those indexes is shorter (and
previously located indexes are unchanged). This gives the following termination
condition: if the search for an index in I fails too many times (according to the
aforementioned bound), the algorithm returns false. [\

4 From ωT -regular languages to CQ automata

In this section, we show how to map an ωT -regular expression T into a corre-
sponding CQ automaton A such that LpT q “ LpAq. We build the automaton A
in a compositional way: for each sub-expression T 1 of T , starting from the atomic
ones, we introduce a set ST 1 of CQ automata and then we show how to produce
the set of automata for complex sub-expressions by suitably combining automata
in the sets associated with their sub-expressions. Eventually, we obtain a set of

automata for the ωT -regular expression T . The automaton A results from the
merge of the automata in such a set. W.l.o.g., we assume the sets of states of all
automata generated in the construction to be pairwise disjoint, i.e., if A1 P ST 1
and A2 P ST2 , where T 1 and T 2 are two (not necessarily distinct) sub-expressions
of T , then the set of states of A1 and the one of A2 are disjoint.

We proceed by structural induction on ωT -regular expressions, that is, when
building the set ST 1 of CQ automata for a sub-expression T 1 of T , we assume the
sets of CQ automata for the sub-expressions of T 1 to be available. In addition,
by construction, we force all generated CQ automata A “ pS,Σ, s0, N,∆q to
feature a distinguished final state sf such that psf , σ, s1, pk, opqq P ∆ implies
σ “ ε, s1 “ sf , k “ 1, and op “ inc.

We first deal with T -regular expressions (sub-grammar rooted in t in Sec-
tion 2.3). Since a T -regular expression produces a language of word sequences
and our automata accept ω-words, we must find a way to extract sequences
from ω-words. Let C “ ps0, C0qps1, C1q . . . be an accepting computation of A
such that psi, Ciq Ñσ

A psi`1, Ci`1q via δi, for each i ě 0, and let w be C-induced
via a function f . Moreover, let g : N Ñ N be an increasing function such
that, for every i P N, i P imgpgq iff δi has the form psi, σ, si`1, p1, checkqq P ∆.
We denote by uw,f the word sequence whose i-th element is wrjs . . . wrj ` ns,
where fpj ´ 1q ă gpiq ď fpjq ă fpj ` nq ă gpi ` 1q ď fpj ` n ` 1q.
We define the language of sequences accepted by A as LspAq “ tuw,f :
w is C-induced via f , for some accepting computation C of Au.

Automata for T -regular expressions are built as follows. For each expression t,
we build a set St “ tA1, . . . ,Anu, with Ai “ pSi, Σ, si0, Ni, ∆iq, with final state
sif , for 1 ď i ď n, such that Lptq “ Ť

1ďiďn LsppSi, Σ, si0, Ni, ∆i Y tpsif , ε, si0,
p1, checkqquqq. Moreover, for any CQ automaton A “ pS,Σ, s0, N,∆q and natural
number N 1 ą 1, we define the N 1-shifted version of A as the automaton A1 “
pS,Σ, s0, N `N 1, tps, σ, s, pk `N 1, opqq : ps, σ, s, pk, opqq P ∆uq.

Base cases. If t “ H, then St “ tpts0, sfu, Σ, s0, 1, tuqu; if t “ a, then
St “ tpts0, sfu, Σ, s0, 1, tps0, a, sf , p1, no opqq, psf , ε, sf , p1, incqququ.

Inductive step. Let t “ t1 ¨ t2, A “ pS,Σ, s0, N,∆q P St1 , and A1 “ pS1,
Σ, s10, N 1, ∆1q P St2 . Moreover, let A2 “ pS,Σ, s0, N ` 1, ∆2q and A3 “
pS1, Σ, s10, N 1 `N ` 1, ∆3q be the 1-shifted version of A and the N ` 1-shifted
version of A1, respectively. We define A ¨A1 “ pS Y S1 Y ts2fu, Σ, s0, N `N 1 `
1, ∆2Y∆3Ytpsf , ε, s10, p2, checkqq, ps1f , ε, s2f , pN`2, checkqq, ps2f , ε, s2f , p1, incqquq,
with s2f as the final state of A ¨A1. St1¨t2 is the set tA ¨A1 : A P St1 ,A1 P St2u.

Let t “ t1 ` t2, A “ pS,Σ, s0, N,∆q P St1 , and A1 “ pS1, Σ, s10, N 1, ∆1q P St2 .
Moreover, let A2 and A3 be defined as in the previous case. We define A`A1 as the
set tA`1

,A`2
,A`3

u, where A`1
“ pSYS1Yts01, sf1u, Σ,N 1`N`1, ∆2Y∆3Y

tps01, ε, s0, p1, no opqq, ps01, ε, s
1
0, p1, no opqq, psf , ε, sf1, p2, checkqq, ps1f , ε, sf1, pN

`2, checkqq, psf1, ε, sf1, p1, incqqu Y tpsf , ε, sf , pk, ˚qq : ˚ P tinc, checku, N ` 2 ď
k ď N ` N 1 ` 1uq, A`2 “ pS Y S1 Y ts02, sf2u, Σ,N 1 ` N ` 1, ∆2 Y ∆3 Y
tps02, ε, s0, p1, no opqq, ps02, ε, s

1
0, p1, no opqq, psf , ε, sf2, p2, checkqq, ps1f , ε, sf2, pN

`2, checkqq, psf2, ε, sf2, p1, incqqu Y tps1f , ε, s1f , pk, ˚qq : ˚ P tinc, checku, 2 ď
k ď N ` 1uq, and A`3

“ pS Y S1 Y ts03, sf3u, Σ,N 1 ` N ` 1, ∆2 Y ∆3 Y

s01

A+1

s0 sf

sf1

•1 = ✏, (2, check)
•2 = ✏, (N + 2, check)

✏ •
1

✏, (N + 2, inc) . . . ✏, (N + N 0 + 1, inc)
✏, (N + 2, check) . . . ✏, (N + N 0 + 1, check)

A00

s00 s0f✏ •2A000

✏, (1, inc)

s02

A+2

s0 sf

sf2

✏ •1A00

s00 s0f✏ •2

✏, (2, inc) . . . ✏, (N + 1, inc)
✏, (2, check) . . . ✏, (N +1, check)

✏, (1, inc)

A000
s03

A+3

s0 sf

sf3

✏, (2, inc) . . . ✏, (N + 1, inc)
✏, (2, check) . . . ✏, (N +1, check)

✏ •
1A00

s00 s0f✏ •2

✏, (1, inc)

A000

✏, (N + 2, inc) . . . ✏, (N + N 0 + 1, inc)
✏, (N + 2, check) . . . ✏, (N + N 0 + 1, check)

Fig. 3. The automata A`1 , A`2 , and A`3 (inductive step t1 ` t2).

tps03, ε, s0, p1, no opqq, ps03, ε, s
1
0, p1, no opqq, psf , ε, sf3, p2, checkqq, ps1f , ε, sf3, pN

`2, checkqq, psf3, ε, sf3, p1, incqqu Y tpsf , ε, sf , pk, ˚qq : ˚ P tinc, checku, 2 ď k ď
N ` 1u Y tps1f , ε, s1f , pk, ˚qq : ˚ P tinc, checku, N ` 2 ď k ď N ` N 1 ` 1uq. The
final state of A`i is sfi, for 1 ď i ď 3. St1`t2 is the set

Ť
APSt1

,A1PSt2
A`A1.

Let t “ t1̊ and A “ pS,Σ, s0, N,∆q P St1 . Moreover, let A2 be de-
fined as in the previous cases. We let A˚ “ pS Y ts2fu, Σ, s0, N ` 1, ∆2 Y
tps2f , ε, s2f , p1, incqq, psf , ε, s2f , p2, checkqq, psf , ε, s0, pε, no opqquq, with s2f as the fi-
nal state. St˚1 is the set tA˚ : A P St1u.

Let t “ tT1 and A “ pS,Σ, s0, N,∆q P St1 . Moreover, let A2 “ pS,Σ, s0, N `
2, ∆2q be the 2-shifted version of A. We let AT “ pS Y ts2fu, s0, N ` 2, ∆2 Y
tpsf , ε, sf , p3, checkqq, psf , ε, s0, p2, incqq, psf , ε, s2f , p2, checkqq, ps2f , ε, s2f , p1, incqquq,
with s2f as the final state. StT1 is the set tAT : A P St1u.

The following lemma states the correctness of the proposed encoding.

Lemma 3. Let t be a T -regular expression and St be the corresponding set of au-
tomata. It holds that Lptq “ Ť

Ai“pSi,Σ,si0,Ni,∆iqPSt

LsppSi, Σ, si0, Ni, ∆iYtpsif , ε, si0, p1, checkqquqq.

Proof (sketch—details in the appendix). The proof is by induction on the structure
of T -regular expressions. We only consider the case in which t “ t1 ` t2, which is
definitely the most complex one. A sequence w belonging to Lspt1 ` t2q features
words belonging to either Lspt1q or Lspt2q. Hence, for w P Lspt1 ` t2q, there are
ui P Lsptiq pi P t1, 2uq and f : N` Ñ t1, 2u such that wris “ ufpiqris, for all
i P N`. Three cases may arise.
– If there is an index i such that wrjs “ u1rjs for each j ě i, then w is accepted

by A`1. The computation will eventually end up visiting, besides states s01

and sf1, only states of the fragment A2 of A`1 (see Figure 3). Since states of
the fragment A3 are visited a finite number of times only, the problem arises
of fulfilling automaton’s acceptance conditions relative to the counter-queue
configuration components corresponding to A3 (see accepting conditions ii
and iii in Section 3.2). More precisely, for each j P tN ` 2, . . . , N `N 1 ` 1u,
the queue associated with the j-th component must never stop growing up
during the computation and every element in the queue must eventually be
checked. Both conditions are handled by the loop transitions on state sf ,
which permit free increment and check. (Acceptance conditions relative to the
counter-queue configuration components corresponding to A2 are handled by
A2 itself, as its states are visited infinitely often.)

– The case in which there is an index i such that wrjs “ u2rjs for each j ě i
is symmetric (w is accepted by A`2).

– If there are infinitely many indexes i and i1 such that wris “ u1ris and
wri1s “ u2ri1s, then w is accepted by A`3. The computation will visit
infinitely many times both the states of A2 and those of A3. Therefore, all
acceptance conditions are fulfilled, each fragment of the automaton taking
care of the corresponding components.

For each Ai “ pSi, Σ, si0, Ni, ∆iq P St, we define A1i as pSi, Σ, si0, Ni, ∆i Y
tpsif , ε, si0, p1, checkqquq. It is not difficult to show that

Ť
AiPSt

LspA1iq “ Lptq, by
making use of the invariant of the inductive construction. [\

We are now ready to deal with ωT -regular expressions (see Section 2.3). We
must distinguish three cases. If T “ T1 ` T2, then ST1`T2

is equal to ST1
Y ST2

.
Let T “ R ¨ T 1, AR “ pSR, FR, Σ, sR0 , ∆Rq be the NFA that recognises the
regular language LpRq, and A “ pS,Σ, s0, N,∆q P ST 1 . We let AR ¨ A “ pS Y
SR, Σ, s

R
0 , N,∆ Y tps, σ, s1, p1, no opqq : ps, σ, s1q P ∆Ru Y tps, ε, s0, p1, no opqq :

s P FRuq, with final state sf . SR¨T 1 is the set tAR ¨ A : A P ST 1u. Finally, let
T “ tω. We define St as tA1, . . . ,Anu, where Ai “ pSi, Σ, si0, Ni, ∆iq and sif is

the final state of Ai, for every 1 ď i ď n. Stω is the set tpSi, Σ, si0, Ni, ∆i Y
tpsif , ε, si0, p1, checkqquq : 1 ď i ď nu. As in the case of T -regular expressions, it
can be easily checked that

Ť
APST

LpAq “ LpT q for all ωT -regular expressions T .

To complete the reduction, we only need to show how to merge the automata
in ST into a single one AT accepting the language LpT q. Let ST “ tA1, . . . ,Anu,
with Ai “ pSi, Σ, si0, Ni, ∆iq, for 1 ď i ď n, and let Nmax “ maxtNi : 1 ď i ď nu.
For each 1 ď i ď n, let ∆i “ ∆i Y tps, ε, s, pNj , ˚qq : ˚ P tinc, checku, s P Si,
Ni ă Nj ď Nmaxuq and let s0 be a fresh state. We define AT as the automaton
pŤ1ďiďn Si Y ts0u, Σ, s0, Nmax,

Ť
1ďiďnp∆i Y tps0, ε, s

i
0, p1, no opqquqq.

Theorem 2. For every ωT -regular expression T , there is a CQ automaton A
such that LpT q “ LpAq.

Corollary 1. The emptiness problem for ωT -regular languages is decidable.

5 Conclusions

In this paper, we investigated a new class of extended ω-regular languages, called
ωT -regular languages, that captures meaningful languages not belonging to the
class of ωBS-regular languages. We proved the decidability of its emptiness
problem by exploiting of a new class of automata, called counter-queue automata.

As for future work, we would like to study the class of ωBST -regular languages,
which is obtained from the combination of ωT - and ωBS-regular languages. In
particular, we are interested in the problem of establishing whether or not it
is closed under complementation. In addition, we would like to investigate the
logical side of the problem. At the best of our knowledge, no (classical) temporal
logic counterparts of extended ω-regular languages were provided in the literature.
Recently, we started to work to fill in such a gap [9,10].

References

1. Alur, R., Henzinger, T.A.: Finitary fairness. ACM Trans. Program. Lang. Syst.
20(6), 1171–1194 (1998), http://doi.acm.org/10.1145/295656.295659

2. Bojańczyk, M.: A bounding quantifier. In: CSL. LNCS, vol. 3210, pp. 41–55. Springer
(2004)

3. Bojańczyk, M.: Weak MSO with the unbounding quantifier. Theory of Computing
Systems 48(3), 554–576 (2011)

4. Bojanczyk, M., Colcombet, T.: Bounds in ω-regularity. In: LICS. pp. 285–296. IEEE
Computer Society (2006)

5. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc. of
the 1960 International Congress on Logic, Methodology and Philosophy of Science.
pp. 1–11. Stanford Univ. Press (1962)

6. Elgot, C.C., Rabin, M.O.: Decidability and undecidability of extensions of second
(first) order theory of (generalized) successor. J. Symb. Log. 31(2), 169–181 (1966),
http://dx.doi.org/10.2307/2269808

7. Kupferman, O., Piterman, N., Vardi, M.Y.: From liveness to promptness. Formal
Methods in System Design 34(2), 83–103 (2009), http://dx.doi.org/10.1007/
s10703-009-0067-z

8. McNaughton, R.: Testing and generating infinite sequences by a finite automaton.
Information and Control 9(5), 521–530 (1966)

9. Montanari, A., Sala, P.: Adding an equivalence relation to the interval logic ABB:
complexity and expressiveness. In: LICS. pp. 193–202. IEEE Computer Society
(2013)

10. Montanari, A., Sala, P.: Interval logics and ωB-regular languages. In: LATA. LNCS,
vol. 7810, pp. 431–443. Springer (2013)

http://doi.acm.org/10.1145/295656.295659
http://dx.doi.org/10.2307/2269808
http://dx.doi.org/10.1007/s10703-009-0067-z
http://dx.doi.org/10.1007/s10703-009-0067-z

A Proofs for Section 3.2

A.1 Proof of Lemma 2

Lemma 2. Let A be a CQ automaton. Then, Duplicator has a winning strategy
in the CQ game on A iff PrefixesA contains a winning witness.

Proof. For the left-to-right direction, since there exists a winning strategy for
Duplicator in the CQ game on A we have from Lemma 1 that LpAq ‰ H. Let
C “ ps0, CQ0q . . . an accepting computation for A. Let begin be the minimum
index for which the state sbegin is repeated infinitely often in C. Since C is
accepting we have that for every 1 ď k ď C there exists an infinite sequence of
indexes Sk “ b1k ă e1

k ă b2k ă e2
k ă . . . for which for every i P N we have sbik “ seik ,

sbik is an inck state, for every bik ă j ă eik we have that sj is not a checkk. Then,

there exists i1, . . . , iC indexes that satisfy begin ă bi11 ă ei11 ă . . . ă biCC ă eiCC .
Since C is accepting we have that for every 1 ď k ď C a checkk state is visited
infinitely many times, thus we can choose an index limit for which for every
1 ď k ď C there exists eC ă j ă limit for which sj is checkk state. For every
1 ď k ď C and for every m P SetpCQlimitrksq we take an index jm,k ą limit such
that m “ counterpCQjm,k

rksq and sjm,k
is a checkk state, the existence of such

index is guaranteed by the fact that C is accepting. Finally it suffices to take an
index end ą maxptjm,k : 1 ď k ď C,m P SetpCQlimitrksq, uq with send “ sbegin.
We have that the prefix P “ ps0, CQ0q . . . psend, CQendq is a winning witness for
the CQ game on A.

For the right-to-left direction let us suppose that there exists a winning
witness P P PrefixesA then we build a winning strategy str for Duplicator
in the CQ game on A. Let us observe that for every prefix in PrefixesA
ps0, CQ0q . . . psn, CQnq we have that Duplicator may extend it by simply intro-
ducing a sequence of states sn`1, . . . , sn`m such that psn, σ, sn`1, pk, opqq P ∆
the resulting prefix ps0, CQ0q . . . psn, CQnqpsn`1, CQn`1q . . . psn`m, CQn`mq is
uniquely determined since the automata is simple. Then we will describe the
answers of Duplicator according to str as finite word of states in S since the
resulting prefix is uniquely determined. Let P “ ps0, CQ0q . . . psn, CQnq be our
winning witness. We build the strategy str inductively. We denote with P`ris
the i-th element in the play P`. We begin by putting strpPlp0qq “ s0 . . . s1 no
matter what is the priority of Plr0s. It is easy to see that the winning witness is
a successful response for every priority in Plr0s. at each step i ą 0 we guarantee
the following invariant conditions on the play Pl:
– strpPlpiqq “ sbegin`1 . . . sb1´1psb1 . . . se1´1qki1se1 . . . psbC . . . seC´1qkiCseC . . .
slimit . . . send for some kij ě 1 for every 1 ď j ď C. Basically is the suf-
fix starting at position begin ` 1 in which for every 1 ď j ď C we have
repeated every sub-word sbj . . . sej´1 k

i
j number of times;

– let strpPlrisq “ pps0, CQ0q . . . psn1 , CQn1q, pq then we have
counterpCQn1rjsq “ counterpCQnrjsq for every 1 ď j ď C. After ev-
ery answer the counters on the top of the prefix computation are the same of
the ones on the top of the winning witness.

Suppose that we are at the step i ą 0 in a play Pl that Duplicator is playing
according to str and let pi the priority in Plris (i.e., the Spoiler’s move) three
cases may arise:
– pi “ sym, then Duplicator put strpPlpiqq “ sbegin`1 . . . send, since there

exists begin ď j ď end which is a sym state we have that a transition
ps, σ, s1, pk, opqq is fired in the extension of the i-th prefix;

– pi “ maxk for some 1 ď k ď C. Let Plris “
pps0, CQ0q . . . psn1 , CQn1q, piq then we put strpPlpiqq “
sbegin`1 . . . sbk´1psbk . . . sek´1qmaxpCQn1 rksq`1sek . . . send. Since by defi-
nition of winning witness there is no checkk state in the incremented loop
psbk . . . sek´1qmaxpCQn1 rksq`1 and there is at least one checkk state afterwards
we have that a number m ą maxpCQn1rksq will be introduced in the queue
CQn1`pek´bkq˚maxpCQn1 rksq`pend´beginqrks;

– pi “ maxk for some 1 ď k ď C. Let Plris “ pps0, CQ0q . . . psn1 , CQn1q, piq
and m “ frontpCQn1rksq (i.e., the number to be checked for the counter k).
Two cases may arise: (i) m P SetpCQnrksq (i.e. m has been introduced in
strpPlp0qq), then Duplicator puts strpPlpiqq “ sbegin`1 . . . send. Let lastk be
the maximum index or which slastk is a checkk state and lastk ď limit, such
an index always exists for the third condition in the definition of winning
witness. We have from the combination of the third and the fourth condition
in the definition of winning witness that there exist an index lastk ă j1 ă end
for which m “ counterpCQj1rksq and j1 is a checkk state, thus m is checked
at least one time in the extension of the prefix; (ii) m P CounterpCQn2rksq
and sn2 is a checkk state with n ă n2 ď n1, then let 0 ă i1 ď i the iteration
for which the index n2 has been introduced in the prefix. Then we put
strpiq “ strpi1q, from the second invariant condition we have that the value
m is checked.

The above infinite procedure generate a winning strategy str for winning the CQ
game on A. [\

A.2 More definitions on N words

An N-word is a finite word over the set N` of positive natural numbers such that,
for every 1 ď i ă |α|, αris ă αri` 1s holds. Given an N-word α, we say that n
belongs to α, written n P α, if and only if there exists i for which αris “ n, and
we denote by Setpαq the set tn P N : n P αu. Clearly, for any given set S Ă N`
there is exactly one N-word α such that Setpαq “ S; we denote such a word by
αS . Given two N-words α1 and α2, we define the union α1 Y α2 as the N-word
αSetpα1qYSetpα2q, the intersection α1 X α2 as αSetpα1qXSetpα2q, and the difference
α1zα2 as αSetpα1qzSetpα2q.

We denote by rb, es the N-word αtb,b`1,...,eu, and by pb, eq the N-word
rb ` 1, e ´ 1s. Moreover, for a word w on some alphabet and an N-word α
we define the projection of w on α, denoted by παpwq, as the word παpwq “
wrαr1ss . . . wrαr|α|ss.

Let P “ ps0, C0q . . . psn, Cnq P PartialA for some CQ automaton A. We define
the word PS as PS “ s0 . . . sn. Moreover, for each 1 ď k ď N , we define the

N-word βP
k as βP

k “ i1 . . . im such that tsi1 , . . . simu is the set of all and only the
checkk state in P, and the N-word γPk as γPk “ i1 . . . im such that tsi1 , . . . simu
is the set of all and only the inck state in P. We let βP “ Ť

1ďkďN βP
k and

γP “ Ť
1ďkďN γPk .

A.3 Introducing decorations

Let P “ ps0, C0q . . . psn, Cnq P PartialA for some CQ automaton A. A decoration
PD “ S1 . . .Sn is a sequence of elements in pS˚qN (N -dimensional vectors on
finite words over S) such that for each 0 ď i ď n and each 1 ď k ď N we have
|Sirks| “ counterpCirksq.

Given P “ ps0, CQ0q . . . psn, CQnq P PartialA and a decoration PD “
S1 . . .Sn for it, we have that P 1 and P 1D is an extension of P an D iff P 1
and P 1D form a decorated partial and both P is a prefix of P 1 and D is a prefix
of D1. We have a partial order ď on decorated-partials given by the extension
property.

Given a partial P “ ps0, CQ0q . . . psn, CQnq P PartialA and a decora-
tion PD “ S1 . . .Sn for it let Cchk Ď t1, . . . , Cu the set of indexes k such
that there exists 0 ď i ď n for which si is a checkk state, Cchk “ tk :
Di si is a checkk state u. We say that P is contractible if and only if there exists
M ě 1 indexes b1 ă e1 ă . . . ă bM ă eM and for every k P t1, . . . , kuzCchk
there exists Nk indexes b

k

1 ă ek1 ă . . . ă b
k

Nk
ă ekNk

for which:(i) for every
1 ď i ď M we have sbi “ sei and counterpCQbirksq “ counterpCQeirksq
for every k P Cchk; (ii) for every k P t1, . . . , kuzCchk and every 1 ď i ď Nk

we have Snrksrbki s “ Snrksreki s; (iii) for every k P t1, . . . , kuzCchk we have

Σ1ďiďMcounterpCQeirksq ´ counterpCQbirksq “ Σ1ďiďNk
eki ´ b

k

i . We say that
a decorated-partial admits a contraction if and only if it admits a sub-decorated-
partial that is contractible. If a decorated-partial does not admit a contraction
we say that is contraction-safe

A.4 Lemmas instrumental in proving Theorem 1

Lemma 4. The partial order ď, restricted to the set of contraction-safe decorated-
partials, does not admit infinite chains.

Proof. Suppose by contraddiction that there exists an infinite chain pP0,PD0q ă
pP1,PD1q ă . . . an infinite chain in the set of all contraction-free decorated-
partials. Let Pω “ ps0, CQ0q . . . ps1, CQnq . . . and PDω “ S0S1 . . . the limit of
such chain. Let b0 ă e0 ă b1 ă e1 ă . . . be a sequence of indexes such that:
(i) there exists 1 ď h ď C for which for every i P N sbi and sei for every
bi ď j ď ei sj is not a checkk state, sei “ sei`1

and counterpCQeirksq ď
counterpCQei`1

rksq for each 1 ď k ď C; (ii) Let Cichk “ tk : 1 ď k ď
C, Dbi ă j ă ei sj is a checkk state u then Cichk “ Ci`1

chk for every i P N and
exists B P N for which for every k P Cichk we have counterpCQeirksq ď B,

since such sets are all the same we will denote them with Cchk; (iii) for every
i P N either (a) counterpCQeirhsq ´ counterpCQbirhsq ă counterpCQei`1

rhsq ´
counterpCQbi`1rhsq or (b) counterpCQeirksq “ counterpCQei`1rksq for each
1 ď k ď C. We assume w.l.o.g that Cchk “ tk, . . . , Cu for some 1 ď k ď C Notice
that if condition (iii-b) holds we have that the prefix ending in s1 admits a con-
traction (contradiction). Let us assume counterpCQeirhsq ´ counterpCQbirhsq ă
counterpCQei`1

rhsq ´ counterpCQbi`1
rhsq for every i P N. Since increments hap-

pen one at a time we may assume w.l.o.g. that ei´bi ă ei`1´bi`1 (we may always
take an infinite subsequence that satisfy this property). Let M “ B|Cchk| ¨ |S| ` 1.
Let us observe that we have that for every i P N and for every bi ă j ă ei ´M
that there exists at least two indexes j ď j ă j1 ă j2 ă ei´M for which sj1 “ sj2

and counterpCQj1rhsq “ counterpCQj2rhsq for each h P Cchk and j2 ´ j1‘ ďM .
For every j for which there exists j ď j ă j1 ă ei which is the minimum in-
dex for which j1 ´ j ď M sj “ sj1 and counterpCQjrhsq “ counterpCQj1rhsq
for each h P Cchk we define zj as the C 1 “ C ´ |Cchk| dimensional vector
such that zjrhs “ counterpCQjrhsq “ counterpCQj1rhsq for each 1 ď h ď C 1.
Let us observe that for each j that admits the above property we have |zj | “ř

1ďhďC1 zjrhs ď M then we have C 1M possible different vectors. Then since
ei ´ bi ă ei`1 ´ bi`1 for every i P N there exists z for which for every i P N there
exists i ă i1 such that |tj : ei ă j ă bi, zj “ zu| ă |tj : ei1 ă j ă bi1 , zj “ zu|. Let
NZ “ tk : zrks ą 0u then for every i P N there exists i ă i1 we have that there
exists i ă i1 such that counterpCQirksq ă counterpCQi1rksq for every k P NZ
(recall that counter k P NZ is not checked between bi and ei and the number
of vectors z is increasing). Then we have for every i P N there exists i ă i1 that
|PDirks| ă |PDi1rks| for each k P NZ. Given a word w P S˚ we have that there

exist at least o “ t
|w|
|S| u indexes i1, . . . , io such that for every 1 ď j ď o there exists

ij ă i1 ď i1 ` |S| for which wrijs “ wri1s. For every k P NZ and every i P N we
define the set of pairs Oki “ tpj,mq : PDirksrjs “ PDirksrj `ms, 1 ď m ď |S|u.
Since for every i P N there exists i ă i1 we have that there exists i ă i1 such that
counterpCQirksq ă counterpCQi1rksq for every k P NZ then there for every i P N
there exists i ă i1 we have that there exists i ă i1 such that |Oki | ă |Oki1 |. Then for
every k P NZ there exists mk for which for every i P N there exists i ă i1 with
|tpj,mkq P Oki u| ă |tpj,mkq P Oki1u|. Summing up since the second sub-sequence
is built on the first one there exists a subsequence b0 ă e0 ă b1 ă e1 ă . . . of
b0 ă e0 ă b1 ă e1 ă . . . such that:

– for every i P N we have |tj : bi ă j ă ei, zj “ zu| ă |tj : bi`1 ă j ă ei`1, zj “
zu|;

– for every i P N and every k P NZ we have |tpj,mkq P Oki u| ă |tpj,mkq P
Oki`1u|.

Then there exists an index i P N for which:

– there exist P “ś
kPNZ mk points j1 ă . . . ă jP in tj : ei ă j ă bi, zj “ zu

such that ji`1 ´ ji ąM for every 1 ď i ă P ;
– for every k P NZ there exists Pk “ zrks ¨śk1PNZ,k1‰kmk1 indexes j1 ă . . . ă
jPk

in Ok
i

such that ji`1 ´ ji ą |S| for every 1 ď i ă Pk.

Then it is easy to see that the decorated-partial pP0,PD0q ă pPei ,PDeiq admits
a contraction (contradiction). [\

Lemma 5. Given a decorated winning witness P “ ps0, CQ0q . . . psn, CQnq P
PartialAwith decoration PD “ S1 . . .Sn with indexes 0 ď begin ă b1 ă e1 ă
. . . ă bC ă eC ă limit ă b1 ă e1 ă . . . ă bM ă eM ă end if one of the following
conditions holds:

– there exists one interval pb, eq among p0, beginq, pbegin, b1q, tpbk, ekq : 1 ď
k ď Cu, tpek, bk`1q : 1 ď k ă Cu, peC , limitq for which pP,PDq|pb,eq is not
decoration safe;

– there exists one interval pb, eq among plimit, b1q, tpei, bi`1q : 1 ď i ăMu for
which pP,PDq|pb,eq is not state-contraction-free;

– there exists one interval pb, eq among tpbi, eiq : 1 ď i ďMu for which b is a
checkk state for some 1 ď k ď C and P|pb,eq is not inck-contraction-free;

– the partial P|peM ,endq is not sym-contraction-free;

then there exists a decorated winning witness P 1 “ ps10, CQ10q . . . ps1n1 , CQ1n1q P
PartialA with decoration P 1D “ S 11 . . .S 1n1 where n1 ă n

Proof. We prove that in each of then four cases we can contract P into a
shorter winning witness. Let us suppose that the first case holds. Without loss
of generality we can assume that πp0,beginqpP,PDq is not decoration safe (the
case for the other intervals is analogous). By definition we have that there
exists two indexes 0 ă b ă e ă begin for witch πp0,beginqpP,PDq is contractible.
Let Cchk Ď t1, . . . , Cu the set of indexes k such that there exists b ď i ď e
for which si is a checkk state and let Cchk “ t1, . . . , CuzCchk. For the sake
of simplicity we assume w.l.o.g. that the counters in Cchk are the counters
t1, . . . , |Cchk|u and we put C “ |Cchk| . Then we have that there exists N ě 1

indexes b̂1 ă ê1 ă . . . ă b̂N ă êN such that for every k P Cchk there exists Nk
indexes qbk1 ă qek1 ă . . . ă qbkNk

ă qekNk
for which: (i) for every 1 ď i ď N we have

sb̂i “ sêi and counterpCQb̂irksq “ counterpCQêirksq for every k P Cchk; (ii) for

every k P Cchk and every 1 ď i ď Nk we have πqbki
pSnrksq “ πqeki pSnrksq; (iii) for

every k P Cchk we have:
ÿ

1ďiďM
counterpCQêirksq ´ counterpCQb̂irksq “

ÿ

1ďiďNk

qeki ´qbki .

Since P is simple witness there exists a unique strictly increasing function
f : SetpβP X r0, limitsq Ñ tb1, . . . bMu such that for each i P βP X r0, limits
we have fpiq “ |βP X r0, is|. For each k ď C let lk “ maxSetpβP

k X r0, bsq, by
definition of decorated witness we have for each k ď C:

πr1,counterpCQrksqspSerksq “ πrbfplkq,efplkqsXγP
k Xr1,counterpCQrksqspPSq

Thus, for all k ď C and all j P ri,Nks, it holds that:

πqbkj
pSerksqp“ πqekj pSerksqq “ πqbkj

pπrbfplkq,efplkqsXγP
k
pPSqq

which, in its turn, is equal to

πqekj pπrbfplkq,efplkqsXγP
k
pPSqqq

Again, w.l.o.., we assume that l1 ă . . . ă lC and for each k ď C and each

j P r1, Nks we define qpbk,j “ fplkq ` πqbkj prbfplkq, efplkqs X γ
P
k q and qpek,j “ fplkq `

πqekj prbfplkq, efplkqs X γPk q we define the following word α over the naturals:

α “
r0, b̂1s Y

NŤ
i“2

pêi´1, b̂is Y pêN , qpb1,1s Y
CŤ
k“1

NkŤ
i“2

p qpek,i´1,
qpbk,isY

Y
C´1Ť
k“1

p qpek,Nk
, qpbk`1,1s Y p qpeC,NC

, ends.

Since A is simple the computation is uniquely determined by the sequence
of states then we define P 1 as the element of PrefixesA such that P 1S “ παPS
and its decoration P 1D “ παpPDq. Now we have to define the indexes for the

new witness. Let shift “ ř
1 ď j ď N |pb̂j , êjs| and for every 1 ď i ď N let

shiftichk “ |ti : D1 ď j ď N, i P pb̂j , êjs X βPu|. We put begin1 “ begin ´
shift, for every 1 ď k ď C we put b1k “ bk ´ shift and e1k “ ek ´ shift,
limit1 “ limit ´ shift and M 1 “ M ´ shiftNchk. For every 1 ď i ď M 1 let

i1 “ i `ř
tj:Di2pi2Ppb̂j ,êjsXβP ,fpi2qăiqu shift

j
chk we have b

1
i “ bi1 ´ shift and e1i “

ei1 ´ shift. Finally we put end1 “ end ´ shift. It is easy to see that pP 1,P 1Dq
with indexes 0 ď begin1 ă b11 ă e11 ă . . . ă b1C ă e1C ă limit1 ă b

1
1 ă e11 ă . . . ă

b
1
M 1 ă e1M 1 ă end1 is a decorated winning witness for A.

For the second case let us suppose that there exists one interval pb, eq among
plimit, b1q, tpei, bi`1q : 1 ď i ăMu for which pP,PDq|pb,eq is not state-contraction-

free. Suppose that such interval is plimit, b1q (the other cases are analogous).
Then by definition there exist two indexes limit ď b ă e ď b1 for which sb “ se.
Then we put α “ r0, bs Y pe, ends we define P 1 as the element of PrefixesA such
that P 1S “ παPS and its decoration P 1D “ παpPDq. Now we have to define the

indexes 0 ď begin1 ă b11 ă e11 ă . . . ă b1C ă e1C ă limit1 ă b
1
1 ă e11 ă . . . ă

b
1
M 1 ă e1M 1 ă end1 for the new witness. We have M 1 “ M , ˚1 “ ˚ for every

˚ P tbegin, b1, e1, bC , eC , limitu, for each 1 ď j ď M b
1
j “ bj ´ pe ´ bq and for

each 1 ď j ď M e1j “ ej ´ pe ´ bq . Finally we put end1 “ end ´ pe ´ bq. It is
easy to see that pP 1,P 1Dq with indexes 0 ď begin1 ă b11 ă e11 ă . . . ă b1C ă e1C ă
limit1 ă b

1
1 ă e11 ă . . . ă b

1
M 1 ă e1M 1 ă end1 is a decorated winning witness for A.

For the third case let us suppose that there exists i for which for which bi
is a checkk state for some 1 ď k ď C and P|pbi,eiq is not inck-contraction-free.

Then by definition there exist two indexes bi ď b ă e ď ei for which sb “ se and
for every b ď i ď e we have that si R γPk . Then we put α “ r0, bs Y pe, ends we
define P 1 as the element of PrefixesA such that P 1S “ παPS and its decoration
P 1D “ παpPDq. Now we have to define the indexes 0 ď begin1 ă b11 ă e11 ă . . . ă
b1C ă e1C ă limit1 ă b

1
1 ă e11 ă . . . ă b

1
M 1 ă e1M 1 ă end1 for the new witness.

We have M 1 “ M , ˚1 “ ˚ for every ˚ P tbegin, b1, e1, bC , eC , limitu, for each

1 ď j ď i b
1
j “ bj , for each 1 ď j ă i e1j “ ej , for each i ă j ďM b

1
j “ bj´pe´ bq

and for each i ď j ăM e1j “ ej ´ pe´ bq . Finally we put end1 “ end´ pe´ bq.
It is easy to see that pP 1,P 1Dq with indexes 0 ď begin1 ă b11 ă e11 ă . . . ă b1C ă
e1C ă limit1 ă b

1
1 ă e11 ă . . . ă b

1
M 1 ă e1M 1 ă end1 is a decorated winning witness

for A.
For the fourth case let us suppose that the partial P|peM ,endq is not sym-

contraction-free. Then by definition there exist two indexes bi ď b ă e ď ei
for which sb “ se and for every b ď i ď e we have that si is not a sym state.
Then we put α “ r0, bs Y pe, ends we define P 1 as the element of PrefixesA such
that P 1S “ παPS and its decoration P 1D “ παpPDq. Now we have to define the

indexes 0 ď begin1 ă b11 ă e11 ă . . . ă b1C ă e1C ă limit1 ă b
1
1 ă e11 ă . . . ă

b
1
M 1 ă e1M 1 ă end1 for the new witness. We have M 1 “ M , ˚1 “ ˚ for every

˚ P tbegin, b1, e1, bC , eC , limitu, for each 1 ď j ďM b
1
j “ bj , for each 1 ď j ăM

e1j “ ej . Finally we put end1 “ end´ pe´ bq. It is easy to see that pP 1,P 1Dq with

indexes 0 ď begin1 ă b11 ă e11 ă . . . ă b1C ă e1C ă limit1 ă b
1
1 ă e11 ă . . . ă b

1
M 1 ă

e1M 1 ă end1 is a decorated winning witness for A. [\
For a graphical account of how the contraction described in Lemma 5 works

take a look to Figure 4 (before contraction) and Figure 5 (after contraction).

A.5 Proof of Theorem 1

Theorem 1. The emptiness problem for CQ automata is decidable.

Proof. The algorithm given in Figures 6 and 7 decides whether or not there exists
a winning witness for A. Its soundness and completeness are guaranteed by the
results proved in section A.4.

B Proofs for Section 4

B.1 Additional results on sequences

Given a sequence u “ pu1, u2, . . .q of finite words in Σ˚ and two indexes
i, i1 P N`. We define the i1, i-scrambled version of u as the sequence ui,i1 “
pu1, . . . , ui, ui1 , ui`1, . . .q. Basically we can choose every words in the sequence
and put everywhere we want. Now we prove that ωT sequences are closed for
the scrambling operation.

Lemma 6. Given a T -regular expression t we have that for every u P Lsptq and
every pair of indexes i, i1 P N` we have ui,i1 P Lsptq.
Proof. By structural induction on the T -regular expression t.

If t “ H the result is trivial since there are no sequences in Lptq.

check1
check2

f f

0 l1 l2 b b̂1 ê1 b̂2 ê2 e limit bfpl1q efpl1q bfpl2q efpl2q end

b̂1 ê1 b̂2 ê2

bfpl1q qb11 qe11 efpl1q bfpl2q qb21 qe21 qb22 qe22 efpl2q

inc1 state

inc2 state

Fig. 4. A winning witness in which the contraction operation described in Lemma 5
may be applied.

check1
check2

f f

0 l1 l2 b b̂1 ê1 ` 1 b̂2 ê2 ` 1 e limit bfpl1q efpl1q bfpl2q efpl2q end

bfpl1q qb11 qe11 ` 1 efpl1q bfpl2q qb21 qe21 ` 1 qb22 qe22 ` 1 efpl2q

inc1 state

inc2 state

Fig. 5. The winning witness resulting from the application of the contraction operation
to the witness Figure 4.

nextCSps0 . . . sn P S˚q
nÐ |σ|
guess sn`1 P S
if D P “ ps0, CQ0q . . . psn, CQnqpsn`1, CQn`1q P PartialA

then

$
&
%
guess a decoration PD “ S0 . . .Sn`1

if pP,PDq is not contraction-safe

then fail

else fail

return psnq

nextINCps0 . . . sn P S˚, kq
nÐ |σ|
guess sn`1 P S
if D P “ ps0, CQ0q . . . psn, CQnqpsn`1, CQn`1q P PartialA

then

$
&
%
if psn`1 is a checkk stateq _ Dipi ď n^ si “ sn`1^
@i ď j ď npsj is not an inck stateqq
then fail

else fail

return psnq
nextSFps0 . . . sn P S˚q
nÐ |σ|
guess sn`1 P S
if D P “ ps0, CQ0q . . . psn, CQnqpsn`1, CQn`1q P PartialA
then

"
if D0 ď i ď n psi “ sn`1q
then fail

return psnq

nextSYMps0 . . . sn P S˚q
nÐ |σ|
guess sn`1 P S
if D P “ ps0, CQ0q . . . psn, CQnqpsn`1, CQn`1q P PartialA

then

$
&
%
if D0 ď i ď n psi “ sn`1q ^
@i ď j ď npsj is not a sym stateq
then fail

return psnq

Fig. 6. The auxiliary procedures for Algorithm A.1

If t “ a then we have that Lptq “ tpa, a, . . .qu and pa, a, . . .qi,i1 “ pa, a, . . .q
for every i, i1 P N`.

If t “ t1 ¨ t2 given two indexes i, i1 P N` and two sequences u P Lpt1q and
w P Lpt2q. By definition we have pu ¨ wq “ pu1 ¨w1, u2 ¨w2, . . .q and pu ¨ wqi,i1 “
pu1 ¨w1, u2 ¨w2, . . . , ui ¨wi, ui1 ¨wi1 , ui`1 ¨wi`1q. Let us observe that pu ¨ wqi,i1 “
ui,i1 ¨ wi,i1 . By inductive hypothesis we have ui,i1 P Lpt1q and wi,i1 P Lpt2q and
thus pu ¨ wqi,i1 P Lpt1 ¨ t2q.

If t “ t1 ` t2 given two indexes i, i1 P N` two sequences u P Lpt1q and
w P Lpt2q. By definition we have pu ` wq “ pv1, v2, . . .q where vj P tuj , wju
and pu ` wqi,j “ pv1, . . . , vi, vi1 , vi`1q. Let us observe that pu ` wqi,i1 “ ui,i1 `
wi,i1 . By inductive hypothesis we have ui,i1 P Lpt1q and wi,i1 P Lpt2q and thus
pu ` wqi,i1 P Lpt1 ` t2q.

If t “ t1̊ given a sequence u P Lpt1̊ q. For every un-
bounded non-decreasing function g : N Ñ N such that we
have u˚ “ pugp0q . . . ugp1q´1, ugp1q . . . ugp2q´1, . . .q and ui̊,i1 “
pugp0q . . . ugp1q´1, . . . , ugpiq . . . ugpi`1q´1, ugpi1q . . . ugpi1`1q´1, ugpi`1q . . . ugpi`2q´1,
. . .q. Let ∆ “ gpi1 ` 1q ´ gpi1q Let us ob-
serve that the sequence u1 “ pugp0q, . . . , ugp1q´1,
. . . , ugpiq . . . , ugpi`1q´1, ugpi1q, . . . ugpi1`1q´1, ugpi`1q, . . . , ugpi`2q´1, . . .q satis-
fies u1 “ pppugpi`1q´1,gpi1qqgpi`1q,gpi1q`1q . . .qgpi`1q`∆´1,gpi1`2q´1 and by inductive
hypothesis (we repeat the scrambling operation a finitely number of times on a

sequence in Lsptq) we have u1 P Lsptq and thus for g1pnq “
#
gpnq n ď i

gpnq `∆ otherwise

we have u1 P Lpt˚q.
If t “ tT1 given a sequence u P Lpt1̊ q. For every un-

bounded and nondecreasing function g : N Ñ N such that:
piq @nDi.gpi` 1q ´ gpiq ą n
piiq @n.rif Di.gpi` 1q ´ gpiq “ n, then @kDj ą k.gpj ` 1q ´ gpjq “ nsu.

Algorithm A.1: FindWitness(A “ pS,Σ, s0, C,∆q)

iÐ 1

begin flag Ð K
let P “ ps0, CQ0q where ps0, CQ0q

the initial configuration of A
while begin flag

do

$
’’’’’’&
’’’’’’%

guess begin flag P tK,Ju
if begin flag

then

beginÐ i´ 1

else

$
&
%
si Ð nextCSpPq
P Ð P ¨ si
iÐ i` 1

qbegin Ð nextCSps1 . . . sbegin´1q
iÐ i` 1

for j Ð 1 to C

do

$
’’&
’’%

if j “ 1

then preÐ begin

else preÐ ej´1

b flag Ð K
while b flag

do

$
’’’’’’’’&
’’’’’’’’%

guess b flag P tK,Ju
if b flag

then

$
&
%
if si´1 is an incj state

then bj Ð i´ 1

else fail

else

"
si Ð nextCSpspre`1 . . . si´1q
iÐ i` 1

e flag Ð K
while e flag

do

$
’’’’’’’’’’’’’&
’’’’’’’’’’’’’%

guess e flag P tK,Ju
if e flag

then

$
&
%
if si´1 is an incj state

then ej Ð i´ 1

else fail

else

$
’’&
’’%

si Ð nextCSpspre`1 . . . si´1q
if si is a checkj state

then fail

iÐ i` 1

if j “ C

then

$
’’’’’’’’&
’’’’’’’’%

limit flag Ð K
while limit flag

do

$
’’’’&
’’’’%

guess limit flag P tK,Ju
if limit flag

then

limitÐ i´ 1

else

"
si Ð nextCSpsC`1 . . . si´1q
iÐ i` 1

. . .

let c1 . . . cM be the sequence

of indexes cj ď limit s.t. cj is a check state

for j Ð 1 to M

do

$
’’&
’’%

let P “ ps0, CQ0q . . . psi´1, CQi´1q P PrefixesA
let k s.t. cj is a checkk state

if j “ 1

then preÐ limit

else preÐ j ´ 1

b flag Ð K
while b flag

do

$
’’’’&
’’’’%

guess b flag P tK,Ju
if b flag

then

bj Ð i´ 1

else

"
si Ð nextSF pspre`1 . . . si´1q
iÐ i` 1

countÐ counterpCQcj
rksq

e flag Ð K
while e flag

do

$
’’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’’%

guess e flag P tK,Ju
if e flag

then

$
’’’&
’’’%

if
si´1 is a checkk state ^
count “ 0^ sbj “ si´1

then ej Ð i´ 1

else fail

else

$
’’’&
’’’%

si Ð nextINCpsbj`1 . . . si´1, kq
if si is an inck state

then countÐ count´ 1

iÐ i` 1

if j “M

then

$
’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’%

end flag Ð K
sym flag Ð K
while end flag

do

$
’’’’’’’’&
’’’’’’’’%

guess end flag P tK,Ju
if end flag

then

endÐ i´ 1

else

$
’’&
’’%

si Ð nextSYMpseM`1 . . . si´1q
if si is a sym state

then sym flag Ð J
iÐ i` 1

if send “ slimit ^ sym flag

then success

else fail

Fig. 7. The algorithm that decides the existence of a winning witness for A

we have uT “ pugp0q . . . ugp1q´1, ugp1q . . . ugp2q´1, . . .q and ui̊,i1 “
pugp0q . . . ugp1q´1, . . . , ugpiq . . . ugpi`1q´1, ugpi1q . . . ugpi1`1q´1, ugpi`1q . . . ugpi`2q´1,
. . .q. Let ∆ “ gpi1 ` 1q ´ gpi1q Let us ob-
serve that the sequence u1 “ pugp0q, . . . , ugp1q´1,
. . . , ugpiq . . . , ugpi`1q´1, ugpi1q, . . . ugpi1`1q´1, ugpi`1q, . . . , ugpi`2q´1, . . .q satis-
fies u1 “ pppugpi`1q´1,gpi1qqgpi`1q,gpi1q`1q . . .qgpi`1q`∆´1,gpi1`2q´1 and by inductive
hypothesis (we repeat the scrambling operation a finitely number of times on a

sequence in Lsptq) we have u1 P Lsptq and thus for g1pnq “
#
gpnq n ď i

gpnq `∆ otherwise

(g1 satisfies the same properties of g) we have u1 P LptT q. [\

Moreover, given a language of word sequences L, we define its subse-
quence language ΠpLq as the language ΠpLq “ tu : Du1 P L, Dπ : N` Ñ
N` increasing s.t. u1π “ uu. Finally, for any T -regular expression e, we define
erT {˚s as the regular expression obtained from e by replacing each occurrence of
the T operator by the ˚ one

Lemma 7. For every T -regular t expression we have ΠpLsptqq “ LsptrT {˚sq.

Proof. Both ΠpLsptqq Ď LsptrT {˚sq and ΠpLsptqq Ě LsptrT {˚sq are proved by
structural induction on the T -regular expression t.

We begin with ΠpLsptqq Ď LsptrT {˚sq.
Base cases are trivial since trT {˚s “ T for t P ta,Hu.
If t “ a then we have that Lptq “ tpa, a, . . .qu and pa, a, . . .qπ “ pa, a, . . .q for

every increasing function π.

If t “ t1 ¨ t2 given two sequences two sequences u P Lpt1q and w P Lpt2q
we have u ¨ w “ pu1 ¨ w1, u2 ¨ w2, . . .q. Given an increasing function π we have
pu ¨ wqπ “ puπp1q ¨ wπp1q, uπp2q ¨ wπp2q, . . .q by inductive hypothesis we have uπ P
ΠpLspt1qq “ Lspt1rT {˚sq and wπ P ΠpLspt2qq “ Lspt2rT {˚sq and thus pu ¨wqπ “
uπ ¨ wπ.

If t “ t1 ` t2 given two sequences u P Lpt1q and w P Lpt2q we have u` w “
pv1, v2, . . .q with vi P tui, wiu for every i P N`. Given an increasing function
π we have pu ¨ wqπ “ pvπp1q, vπp2q, . . .q by inductive hypothesis we have uπ P
ΠpLspt1qq “ Lspt1rT {˚sq and wπ P ΠpLspt2qq “ Lspt2rT {˚sq and thus pu`wqπ “
uπ ` wπ.

If t “ t1̊ given a sequence u P Lpt1̊ q, an unbounded
non-decreasing function g : N Ñ N and an increasing func-
tion π. We have u˚ “ pugp0q . . . ugp1q´1, ugp1q . . . ugp2q´1, . . .q and
uπ̊ “ pugpi1q . . . ugpi1`1q´1, ugpi2q . . . ugpi2`1q´1, . . .q such that for ev-
ery j P N` we have ij “ πpjq. Consider now the sequence
u1 “ pugpi1q, . . . , ugpi1`1q´1, ugpi2q, . . . , ugpi2`1q´1, . . .q this is the se-
quence u1π of πpLpt1qq for the increasing function π1 with imgpπ1q “
rgpi1q, . . . gpi1 ` 1q ´ 1s Y rgpi2q, gpi2 ` 1q ´ 1s Y Let us define
∆j “ pgpij ` 1q ´ 1q ´ gpijq. By inductive hypothesis we have u1π P trT {˚s. Thus
uπ̊ P LspptrT {˚sq˚qq using the function g1pnq “ Σ0...n∆j .

If t “ tT1 given a sequence u P LptT1 q, an un-
bounded non-decreasing function g : N Ñ N that satisfies

piq @nDi.gpi` 1q ´ gpiq ą n
piiq @n.rif Di.gpi` 1q ´ gpiq “ n, then @kDj ą k.gpj ` 1q ´ gpjq “ nsu. and

an increasing function π. We have uT “ pugp0q . . . ugp1q´1, ugp1q . . . ugp2q´1, . . .q
and uTπ “ pugpi1q . . . ugpi1`1q´1, ugpi2q . . . ugpi2`1q´1, . . .q such that for
every j P N` we have ij “ πpjq. Consider now the sequence
u1 “ pugpi1q, . . . , ugpi1`1q´1, ugpi2q, . . . , ugpi2`1q´1, . . .q this is the sequence
u1π of πpLpt1qq for the increasing function π1 with imgpπ1q “ rgpi1q, . . . gpi1 `
1q ´ 1s Y rgpi2q, gpi2 ` 1q ´ 1s Y Let us define ∆j “ pgpij ` 1q ´ 1q ´ gpijq.
By inductive hypothesis we have u1π P trT {˚s. For g1pnq “ Σ0...n∆j let us
observe that g1 is unbounded non decreasing but it does not necessarily satisfies

piq @nDi.gpi` 1q ´ gpiq ą n
piiq @n.rif Di.gpi` 1q ´ gpiq “ n, then @kDj ą k.gpj ` 1q ´ gpjq “ nsu. and

thus uπ̊ P LspptrT {˚sq˚q.
Now we prove ΠpLsptqq Ě LsptrT {˚sq.
Base cases are trivial since trT {˚s “ T for t P ta,Hu.
If t “ t1 ¨ t2 given two sequences two sequences u P Lpt1rT {˚sq and w P

Lpt2rT {˚sq. By inductive hypothesis there exist two sequences u1 P Lpt1q and
w1 P Lpt2q and two increasing functions π and π1 for which u1π “ uand w1π1 “ w.
We build a word w2 as follows:

1. w2 “ w1;
2. if for every j we have w1π1pjq “ w2πpjq then exit;

3. let j be the minimum index such that w1π1pjq ‰ w2πpjq;
4. let j1 be an index such that w2j1 “ w1π1pjq;
5. we put w2 “ w2πpjq´1,j1 ;
6. return to 2.

The existence of the index j1 in step four is guaranteed 4 by the fact that w2
is build by taking only the words of the sequence w1 and thus of the sequence
w1π1 “ w. The limit of this (possibly infinite) procedure is a sequence w2 such
that:

– w2 P Lpt2q since w1 P Lpt2q and w2 is built via scrambling operations only
(we apply Lemma 6 here);

– w2π “ w1π1 .
Finally we have pu1 ¨w2qπ “ u ¨w and pu1 ¨w2qπ P ΠpLsptqq. thus u ¨w P ΠpLsptqq.

If t “ t1 ` t2 given two sequences two sequences u P Lpt1rT {˚sq and w P
Lpt2rT {˚sq. By inductive hypothesis there exist two sequences u1 P Lpt1q and
w1 P Lpt2q and two increasing functions π and π1 for which u1π “ uand w1π1 “ w.
We build a word w2 as in the previous step. Finally we have pu1 ` w2qπ “ u` w
and pu1 ` w2qπ P ΠpLsptqq. thus u` w P ΠpLsptqq.

If t “ t1̊ given a sequence u P Lpt1rT {˚sq by inductive hypothesis there exist
a sequence u1 P Lpt1q and an increasing functions π such that u1π “ u. Let f an
unbounded non decreasing function we build a sequence u2 as follows:

1. u2 “ u1;

2. if for every i P N` and every 0 ď j ă fpi`1q´fpiq we have u2πpiq`j “ ufpiq`j
then exit;

3. let i be the t minimum index such there exists 0 ď j ă fpi ` 1q ´ fpiq for
which we have u2πpiq`j ‰ ufpiq`j , let us assume j be the minimum among
such indexes;

4. let j1 be an index such that u2j1 “ ufpiq`j ;
5. we put w2 “ w2πpjq´1,j1 ;
6. return to 2.

For the very same arguments explained in the previous cases we have
that u2 P Lpt1q. Moreover for every i P N` and every 0 ď j ă
fpi ` 1q ´ fpiq we have u2πpiq`j “ ufpiq`j . Let us define the sequence

pu2q˚ “ pu21 . . . u2πp1q`fp1q´1, u
2
πp1q`fp1q . . . u

2
πp2q´1, u

2
πp2q . . . u

2
πp2q`fp2q´1, . . .q we

have pu2q˚ P Lsptq and let π1 be the increasing function with imgpπ1q “ t2n` 1 :
n P Nu it is easy to see that pu2qπ̊1 P Lsptq “ pu1 . . . ufp1q´1, ufp1q . . . ufp2q´1, . . .q
and thus u P ΠpLsptqq.

If t “ tT1 given a sequence u P Lpt1rT {˚sq by inductive hypothesis there exist
a sequence u1 P Lpt1q and an increasing functions π such that u1π “ u. Let f an
unbounded non decreasing function we build a sequence u2 as in the previous
case and we have that for every i P N` and every 0 ď j ă fpi ` 1q ´ fpiq we
have u2πpiq`j “ ufpiq`j .

We define the sequence u3, the functions f 1 and π1 as the result of the
following procedure:

1. u3 “ u2, π “ π, π1 is the increasing function with imgpπ1q “ t2n`1 : n P Nu
, g is the increasing function with imgpgq “ t0, πp1q, πp1q ` fp1q, . . .u and we
put i “ 1;

2. let Mi “ řk
j“1pfpjq ´ fpj ´ 1qq `ři

j“1 jp“ ipi` 1q{2q for some k ą i such
that Mi ą πpi` 1q ´ πpiq ` pfpiqq;

3. let ∆i “Mi ´ πpi` 1q ´ πpiq ` pfpiqq we apply u3 “ u3π1piq`fpiq,π1piq`fpiq for
∆i times;

4. let π1 be the function π1pnq “ πpnq for n ď i and π1pnq “ πpnq`∆i otherwise
we put π “ π1;

5. let π2 be the increasing function with π2pjq “ π1pjq for each j ď i π2pjq “
π1pjq ` k ` pipi` 1q{2q otherwise, we put π1 “ π2;

6. let g1 the increasing function with imgpg1q “ ti P imgpgq : i ď πpiq `
fpiqu YŤ

k1“1,...k1tπpiq ` fpiq `
řk1

j“1pfpjq ´ fpj ´ 1qq YŤi
j1“1tπpiq ` fpiq `řk

j“1pfpjq ´ fpj ´ 1qq ` j1u, we put g “ g1;
7. i “ i` 1;
8. go back to step 2.

Let us define the sequence pu3qT “ pu31 . . . u3gp1q´1, u
3
gp1q . . . u

3
gp2q´1, . . .q where

u3 and g are the limit of the sequence and function generated by the above
procedure. Clearly, pu3qT belongs to LsptT q. Finally, we have that pu3qTπ1 “ u
where π1 is the limit of the function π1 by the above procedure belongs.

B.2 Proof of Lemma 3

Given a CQ automaton A “ pS,Σ, s0, N,∆q we define the relation Ñ˚ε
A as the

reflexive and transitive closure of the relation Ñε
A. Given a CQ automaton

A “ pS,Σ, s0, N,∆q and a word w P Σ˚ We define the relation Ñw
A between the

configurations of A where ps, CQq Ñw
A ps1, CQ1q if and only if ps, CQq Ñ˚ε

A
ps1, CQ1q Ñwr1s

A ps2, CQ2q Ñ˚ε
A . . . Ñ˚ε

A ps2, CQ2q Ñwr2s
A ps3, CQ3q Ñ˚ε

A
. . .Ñ˚ε

A ps2|w|´1, CQ2|w|´1q Ñwr|w|s
A ps2|w|, CQ2|w|q Ñ˚ε

A ps1, CQ1q.
Lemma 3.
Let t be a T -regular expression and St be the corresponding set of automata.

It holds that Lptq “ Ť
Ai“pSi,Σ,si0,Ni,∆iqPSt

LsppSi, Σ, si0, Ni, ∆i Y tpsif , ε, si0, p1, checkqquqq.

Proof. Given a T -regular expression we prove that the set of automata St build
inductively as described in Section 4 satisfies Lptq “ Ť

Ai“pSi,Σ,si0,Ni,∆iqPSt

LsppSi, Σ, si0, Ni, ∆iY
tpsif , ε, si0, p1, checkqquqq.

If t “ H we have the automaton St “ tpts0, sfu, Σ, s0, 1, tuqu as the unique
element of St. It is easy to see that pts0, sfu, Σ, s0, 1, tpsf , ε, s0, p1, checkqquq
does not recognize any sequence thus

Ť
Ai“pSi,Σ,si0,Ni,∆iqPSt

LsppSi, Σ, si0, Ni, ∆i Y tpsif , ε, si0,
p1, checkqquqq “ H.

If t “ a we have the set of automata consisting of St “
tpts0, sfu, Σ, s0, 1, tps0, a, sf , p1, no opqq, psf , ε, sf , p1, incqququ and we con-
sider the automaton A1 “ ps0, a, sf , p1, no opqq, psf , ε, sf , p1, incqq, psf , ε, s0,
p1, checkqquq. We have to prove that LspA1q “ tpa, a, . . .qu. For
LspA1q Ď tpa, a, . . .qu consider a successful computation P of A1 we have
by the structure of the automata that it is of the form P “ ps0,Hq Ña

A1
psf , CQ1qk1 Ñε

A1 ps0, CQ2q Ña
A1 psf , CQ3qk2 Ñε

A1 ps0, CQ4q . . . where
psf , CQjqki is a shorthand for the iteration psf , CQjq Ñε

A1 psf , CQjq ki times.
It is easy to see that exactly one a symbol appear in between two consecutive
s0 where the counter one has been checked exactly once. Since we have that
tpa, a, . . .qu is a singleton set and we already proved that LspA1q Ď tpa, a, . . .qu
and LspA1q ‰ H we may conclude that LspA1q “ tpa, a, . . .qu. If t “ t1 ¨ t2 by in-
ductive hypothesis we have that Lpt1q “ Ť

Ai“pSi,Σ,si0,Ni,∆iqPSt1

LsppSi, Σ, si0, Ni, ∆iYtpsif , ε, si0,
p1, checkqquqq and Lpt2q “ Ť

Ai“pSi,Σ,si0,Ni,∆iqPSt2

LsppSi, Σ, si0, Ni, ∆iYtpsif , ε, si0, p1, checkqquqq.
For every pair of automata A P St1 and A1 P St2 let A2 “ pS,Σ, s0, N ` 1, ∆2q
and A3 “ pS1, Σ, s10, N 1 ` N ` 1, ∆3q be the 1-shifted version of A and
the N ` 1-shifted version of A1, respectively. For every such pair we have
that the automata A ¨ A1 “ pS Y S1 Y ts2fu, Σ, s0, N ` N 1 ` 1, ∆2 Y ∆3 Y
tpsf , ε, s10, p2, checkqq, ps1f , ε, s2f , pN ` 2, checkqq, ps2f , ε, s2f , p1, incqquq belongs to
St1¨t2 . An accepting computation P of the automata pSYS1Yts2fu, Σ, s0, N`N 1`
1, ∆2Y∆3Ytpsf , ε, s10, p2, checkqq, ps1f , ε, s2f , pN`2, checkqq, ps2f , ε, s2f , p1, incqquY
tps2f , ε, s0, p1, checkqquq has the following form P “
ps0, CQ0q . . . psf , CQn1

qps10, CQn1`1q . . . ps1f , CQn2
qps2f , CQn2`1qk1ps0, CQn3

q . . .

psf , CQn4
qps10, CQn4`1q . . . ps1f , CQn5

qps2f , CQn5`1qk2 This means that we
have exactly one check operation of the counters 2 and N ` 2 in this order in
between two consecutive check operations of the counter 1. Since A2 and A3 are
only shifted version of the automata A and A1 we have, by inductive hypothesis
that the sequences u and w induced by the traces sni

, CQni
q . . . psf , CQni`1q

and ps10, CQni`1`1q . . . ps1f , CQni`2
q (for i P N) respectively, satisfy u P Lspt1q

and w P Lpt2q (inductive hypothesis) and thus u ¨ w P Lspt1 ¨ t2q. On the other
hand let us consider a sequence pv1, v2, . . .q P Lpt1 ¨ t2q by definition such a
sequence may be seen as a sequence pu1 ¨ w1, u2 ¨ w2, . . .q where vi “ ui ¨ wi
then u “ pu1, u2, . . .q P Lspt1q and w “ pw1, w2, . . .q P Lspt2q. By inductive
hypothesis we have that there exists an automaton A “ pS,Σ, s0, N,∆q P St1
and an automaton A1 “ pS1, Σ, s10, N 1, ∆1q P St2 such that u P LspAq and
w P LspA1q. Then we have two accepting computations P “ ps0, CQ0q Ñu1

Apsf , CQn1
qk1ps0, CQn1`k1`1q Ñu2

A psf , CQn2
qk2 . . .,P 1 “ ps10, CQ10q Ñw1

Aps1f , CQ1m1
qh1ps10, CQ1m1`h1`1q Ñu2

A psf , CQ1m2
qh2 . . . of pS,Σ, s0, N,∆ Y

tpsf , ε, s0, p1, checkqquq and pS1, Σ, s10, N 1, ∆1 Y tps1f , ε, s10, p1, checkqquq re-
spectively. Let us consider the computation P2 “ ps0, CQ

2
0q Ñu1

Apsf , CQ2n1
qk1ps10, CQ30 q Ñw1

A ps1f , CQ3m1
qh1ps2f , CQ1ql1ps0, CQn1`k1`1q Ñu2

A
psf , CQn2

qk2ps10, CQ1m1`h1`1q Ñu2

A psf , CQ1m2
qh2ps2f , CQ2ql2 . . . where CQ2i is

the 1-shifted version of the queue CQi,CQ
3
i is the N ` 1-shifted version of the

queue CQ1i and |thi : i P Nu| “ ω and for every j P N |ti : hi “ hju| “ ω.
By construction we have that P2 is an accepting computation of the automata

pSYS1Yts2fu, Σ, s0, N `N 1`1, ∆2Y∆3Ytpsf , ε, s10, p2, checkqq, ps1f , ε, s2f , pN `
2, checkqq, ps2f , ε, s2f , p1, incqquYtps2f , ε, s0, p1, checkqquq and thus u¨w P LspA¨A1q.

	Beyond omegaBS-regular languages: The class of omegaT-regular languages

