Beyond wBS-regular languages: The class of
wT-regular languages

Dario Della Monica!, Angelo Montanari?, and Pietro Sala3

L ICE-TCS, School of Computer Science
Reykjavik University, Reykjavik, Iceland dariodm@ru.is
2 Department of Mathematics and Computer Science University of Udine, Udine, Italy
angelo.montanari@uniud.it
3 Department of Computer Science
University of Verona, Verona, Italy pietro.sala@univr.it

Abstract. In the last years, various meaningful extensions of w-regular
languages have been proposed in the literature, including wB-regular
languages (w-regular languages extended with boundedness), wS-regular
languages (w-regular languages extended with strict unboundedness),
and wBS-regular languages, which are obtained from the combination of
wB- and wS-regular languages. However, while its components satisfy a
generalized closure property, namely, the complement of an wB-regular
(resp., wS-regular) language is an wS-regular (resp., wB-regular) one,
the class of wBS-regular languages is not closed under complementation.
The existence of non-wB.S-regular languages that are the complements of
some wBS-regular ones and express fairly natural properties of reactive
systems motivates the search for larger, well-behaved classes of extended
w-regular languages. In this paper, we introduce the class of wT-regular
languages, that captures meaningful languages not belonging to the class
of wBS-regular languages. We provide an automaton-based encoding
of this new class of languages and we prove the decidability of their
emptiness problem.

1 Introduction

Regular languages of infinite words (w-regular languages) have a fundamental
role in computer science as they provide a natural setting for specification and
verification of nonterminating finite-state systems. Since the seminal work by
Biichi [5], McNaughton [8], and by Elgot and Rabin [6] in the sixties, a great
research effort has been devoted to the development of the theory and the
applications of w-regular languages. In particular, equivalent characterizations
of w-regular languages have been given in terms of formal languages (w-regular
expressions), automata (Blichi, Rabin, and Muller automata), classical logic
(weak/strong monadic second-order logic of one successor, WS1S/S1S for short),
and temporal logic (quantified linear temporal logic, extended temporal logic).
Recent work by (among others) Bojariczyk and Colcombet has shown that
w-regular languages can be successfully extended in various ways, preserving

their decidability and some of their closure properties [2/34]. As an example,
extended w-regular languages make it possible to constrain the distance between
consecutive occurrences of a given symbol to be (un)bounded. Properties of this
kind are interesting in the specification of reactive systems, as argued in [I],
where the authors introduce and study finitary fairness as opposed to the classic
notion of fairness, widely used in automated verification of concurrent systems.
According to the latter, no individual process in a multi-process system is ignored
for ever; finitary fairness imposes the stronger constraint that every enabled
transition is executed within at most b time-units, where b is an unknown,
constant bound. In [I] it is shown that such a notion enjoys some desirable
mathematical properties that are violated by the weaker notion of fairness, and
yet it captures all reasonable schedulers’ implementations. An analogous property
has been studied from a logical perspective in [7], where the logic PROMPT-LTL
has been introduced. Roughly speaking, PROMPT-LTL extends LTL with the
prompt-eventually operator, which states that an event will happen within the
next b time-units, b being a constant bound.

From the point of view of formal languages, the proposed extensions pair
the Kleene star (.)* with bounding/unbounding variants of it. Intuitively, the
bounding exponent (.)® constrains parts of the input word to be of bounded
size, while the unbounding exponent (.)¥ forces parts of the input word to
be arbitrarily large. The two extensions have been studied both in isolation
(wB- and wS-regular expressions) and in conjunction (wBS-regular expressions).
Equivalent characterizations of extended w-regular languages have been given in
terms of automata (wBS-automata) and classical logic (extensions of S1S with
an unbounding quantifier that allows one to express properties which are satisfied
by arbitrarily large sets). In [4], the authors show that the complement of an wB-
regular language is an wS-regular one and vice versa; moreover, they show that
wBS-regular languages, featuring both B- and S-constructors, strictly extend
wB- and wS-regular languages and they are not closed under complementation.

In this paper, we focus our attention on those w-languages which are com-
plements of wBS-regular ones, but do not belong to the class of wBS-regular
languages. Our ultimate goal is to provide a characterization of the class of these
languages. We will start with an in-depth analysis of a paradigmatic example
of the complement of an wBS-regular language that lies outside the class of
wBS-regular languages [4]. It will allow us to identify a meaningful extension
of w-regular languages, which includes such a language and which is obtained
by adding a new, fairly natural constructor (.)7 to the standard constructors
of w-regular expressions. Decidability of the emptiness problem for this class
of w-languages, called wT-regular languages, will be proved using an automata-
theoretic argument: we introduce a new class of automata, called counter-queue
automata, and we show that their emptiness problem is decidable; then, we
provide an encoding of wT-regular expressions into counter-queue automata, that
allows us to reduce the emptiness problem for the former to the one for the latter.

The rest of the paper is organized as follows. In Section [2] we summarize
existing extensions of w-regular languages, with a special attention to wB.JS-

regular ones, and we introduce the class of wT-regular languages. In Section [3]
we formally define counter-queue automata (CQ automata, for short) and we
prove that their emptiness problem is decidable. Finally, in Section [4] we provide
the encoding of wT-regular languages into C'Q automata. Conclusions give a
short assessment of the work done and illustrate future research directions.

2 Extensions of w-regular languages

In this section, we first provide a short account of the extensions of w-regular
languages proposed in the literature (details can be found in [2/3/4]) and then we
outline a new meaningful one. To begin with, we observe that a word belonging
to an w-regular language (w-regular word) can be seen as the concatenation of a
finite prefix, belonging to a regular language, and an infinite sequence of finite
words, which we refer to as w-iterations, belonging to another regular language.
w-regular languages can be specified as w-regular expressions. One interesting
case is that of w-iterations consisting of a finite sequence of words, generated by
an occurrence of the Kleene star operator (.)*, aka =-constructor, in the scope of
the w-constructor (.)¥. As an example, the w-regular expression (a*b)* generates
the language of all and only those w-words featuring an infinite sequence of
w-iterations consisting of a finite (possibly empty) sequence of a’s followed by
exactly one b. Given an w-regular expression E featuring an occurrence of the *-
constructor (sub-expression R*) in the scope of the w-constructor and an w-word
w belonging to the language of E, we refer to the sequence of the sizes of the
(maximal) blocks of consecutive iterations of R in the different w-iterations as the
(sequence of) exponents of R in (the w-iterations of) w. As an example, let us
consider the w-word w = abaabaaabaaaab . .., generated by the above w-regular
expression (a*b)“. The sequence of exponents of a in w is 1,2, 3,4, Sometimes,
we will denote words in a compact way, by explicitly indicating the exponents of
a sub-expression, e.g., we will write w as a'ba?ba®ba’b Given an expression E,
we will denote by L(F) the language defined by E. With a little abuse of notation,
we will sometimes identify a language with the expression defining it, and vice
versa, so, for instance, we will simply write “the w-regular language L = (a*b)“”
for L((a*b)*). It is worth pointing out that the Kleene star operator allows one
to impose the existence of a finite sequence of words (described by its argument
expression) within each w-iteration, but it cannot be used to express properties
on the sequence of exponents of its argument expression in the w-iterations of an
w-word. Aiming at overcoming such a limitation, some meaningful extensions
of w-regular expressions have been investigated in the last years, that make it
possible to constrain the behavior of the Kleene star operator in the limit.

2.1 Beyond w-regularity

A first class of extended w-regular languages is that of wB-regular languages,
which allow one to impose boundedness conditions. wB-regular expressions are
obtained from w-regular ones by adding a variant of Kleene star (.)*, called

B-constructor and denoted by (.)Z, to be used in the scope of the w-constructor
(.)¥. The bounded exponent B allows one to constrain the argument R of the
expression R? to be repeated in each w-iteration a number of times less than a
given bound fixed for the whole w-word. As an example, the expression (a®b)“
denotes the language of w-regular words in (a*b)¥ for which there is an upper
bound on the number of consecutive occurrences of a (the sequence of exponents
of a is bounded). As the bound may vary from word to word, the language is
not w-regular. The class of wS-regular languages extends that of w-regular ones
with strong unboundedness. By analogy with wB-regular expressions, wS-regular
expressions are obtained from w-regular ones by adding a variant of Kleene star
(.)*, called S-constructor and denoted by (.)°, to be used in the scope of the
w-constructor (.)¥. For every wS-regular expression containing the sub-expression
RS and for each natural number k > 0, the strictly unbounded exponent S
constrains the number of w-iterations in which the argument R is repeated
exactly k times to be finite. Let us consider w-regular words that feature an
infinite number of instantiations of the expression R, that is, w-regular words
for which there exists an infinite number of w-iterations including a sequence of
consecutive R’s generated by RS. It can be easily checked that in these words the
sequence of exponents of R tends towards infinity. As an example, the expression
(a®b)“ denotes the language of w-regular words w in (a*b)¥ such that, for any
natural number k£ > 0, there exists a suffix of w that only features maximal
sequences of consecutive a’s that are longer than k.

wBS-regular expressions are built by making use of the operators of w-regular
expressions and of both the B- and the S-constructor. In [4], the authors show that
the class of wBS-regular languages strictly includes the classes of wB- and wS-
regular languages, as witnessed by the wBS-regular language L = (a®b + ab)*,
which is neither wB- nor wS—regulaIﬂ Moreover, they prove that the class of
wBS-regular languages is not closed under complementation. A counter-example
is given precisely by the wBS-regular language L, whose complement is not wBS-
regular (notice that wBS-regular languages whose complement is not an wB.S-
regular language are neither wB- nor wS-regular languages, as the complement
of an wB-regular language is an wS-regular one and vice versa).

In this paper, we investigate those w-languages that do not belong to the
class of wBS-regular languages, but whose complement belongs to this class.
To have some insights into these languages, let us consider the complement L
of the language L above. On the one hand, it can be checked that any w-word
w in L that features an infinite number of occurrences of b must feature an
infinite sequence of blocks of consecutive a’s (between two consecutive b’s) of
unbounded size; otherwise, w would belong to L, as it would be captured by the
sub-expression a®b. On the other hand, for any such w-word w, there must be
a natural number k£ > 0 such that there exist infinitely many maximal blocks

4 It must be noticed that the constructor 4+ occurring in L must not be thought of
as performing the union of two languages, but rather as a “shuffling operator” that
mixes w-iterations belonging to the two different (sub-)languages. This will be made
clear later on, when we will formally define the languages we deal with.

of consecutive a’s whose size is exactly k; otherwise, w would belong to L, as it
would be captured by the sub-expression a®b. Thus, w is such that (i) for every
natural number k, there exists k' > k that occurs in the sequence of exponents
of @ in w, and (i7) there exists at least one natural number k > 0 that occurs
infinitely often in the sequence of exponents of a in w. In fact, as an effect of the
combined use of both B- and S-constructors, w is subject to an even stronger
constraint: there exist infinitely many natural numbers that occur infinitely often
in the sequence of exponents of a in w (notice that this latter constraint implies
both the former ones). By way of contradiction, suppose that there are only
finitely many natural numbers (exponents) that occur infinitely often. Let k& be
the largest one. Now, the w-word w can be viewed as an infinite sequence of
w-iterations, each of them characterised by the corresponding exponent of a. If
the exponent associated with an w-iteration is greater than k, then it does not
occur infinitely often, and thus the w-iteration is captured by the sub-expression
a®b. Otherwise, if the exponent is not greater than k, then the corresponding
w-iteration is captured by the sub-expression a®b. As an example, the word
a'ba’ba'ba®ba'ba’b . .. does not belong to L as 1 is the only exponent occurring
infinitely often. The word a'ba?ba'ba®ba®ba'ba?ba’ba’h . .., on the other hand,
does belong to L as infinitely many (actually all) natural numbers occur infinitely
often in the sequence of exponents.

In the following, we focus our attention on w-words featuring infinitely many
exponents occurring infinitely often. More precisely, we introduce a new variant
of the Kleene star operator (.)*, called T-constructor and denoted by (.)7, to
be used in the scope of the w-constructor (.)¥, and we define the corresponding
class of extended w-regular languages (wT-regular languages). An expression RT
occurring in some w-expression F forces two conditions on the w-words belonging
to E: (i) every exponent of R occurs infinitely often in the sequence, and (ii) the
sequence features an infinite number of distinct exponents. As an example, it can
be easily checked that the language L can be defined as ((a*b)*a®b)* + (a*b*)*a®,
and thus it belongs to the class of wT-regular languages. In the next two sections,
we first provide a formal account of wBS-regular languages [4] and then we define
wT-regular ones.

2.2 wBS-regular languages

The class of wBS-reqular languages is the class of languages defined by wBS-
regular expressions. These latter are built on top of BS-regular expressions,
just as w-regular expressions are built on top of regular ones. Let X' be a finite,
nonempty alphabet. A BS-regular expression over X is defined by the following
grammar [4]:
ex=F |aleel|etel] e | el | e

where a belongs to . We sometimes omit the concatenation operator, thus
writing ee instead of e - e.

Syntactically, BS-regular expressions differ from standard regular ones for
the presence of the two constructors (.)Z and (.)°. Since the latter constrain
the behaviour of the sequence of w-iterations to the limit, it is not possible to

simply define the semantics of BS-regular expressions in terms of languages of
(finite) words, and then to obtain wBS-regular languages through infinitely many,
unrelated iterations of such words. In the following, we specify the semantics
of BS-regular expressions in terms of languages of infinite sequences of words;
suitable constraints are then imposed to force these sequences to satisfy some
properties expressing the intended meaning of the B- and S-constructors.

Let u be an infinite sequence of words over Y’ and let u; be the i-th element
of u. Moreover, let f : N — N with f(0) = 1. The semantics of BS-regular
expressions over Y is defined as follows:

- L(D) = &
for a € X, L(a) is the infinite sequence of the one-letter word a {(a, a,a,...)};
— L(eg-e2) ={w | Viw; = u; - v;, we L(e1), veLle)};
L(er + e2) = {w | Viw; € {u;,vi}, u,ve L{er) U L(ea) [}
- E(e*) = {(Uf(O)UQ ce uf(l)_l,uf(l) . .Uf(g)_l, ..) |
u € L(e) and f is an unbounded and nondecreasing function};
- £(€B) = {(Uf(O)UQ e Up() =1 Up(1) - UF(2) =15 - -) |
u € L(e) and f is an unbounded and nondecreasing function
such that Ine NVi.(f(i +1) — f(i) <n)};
- C(es) = {(Uf(O)UQ ce Uf(l)—la Uf(l) ce Uf(g)_l, ..)
u € L(e) and f is an unbounded and nondecreasing function
such that Vn e N 3k Vi > k.(f(i + 1) — f(i) > n)}.

Given a sequence w = (UgyUz - .. Up(1)—1,Uf(1) - - - Uf(2)—1,- - -) € P, where
op € {*, B, T}, we define the sequence of exponents of e in u as the sequence
{f(i+1) = f(i)}sen. While the #-constructor does not impose any constraint on
the sequence of exponents of its operand, the B-constructor forces the sequence
of exponents to be bounded, while the S-constructor forces it to be strictly
unbounded, that is, its limit tends towards infinity (equivalently, the S-constructor
imposes that no exponent occurs infinitely many times in the sequence).

The w-constructor defines languages of infinite words from languages of
infinite sequences of words. Given a B.S-regular expression e, the semantics of
the w-constructor is defined as follows:

— L(e¥) = {w | w = uyugug ... for some u € L(e)}.
wBS-expressions are defined by the following grammar (we denote languages
of word sequences by lowercase letters, such as e, eq, ..., and languages of words
by uppercase ones, such as E, Fy, ..., R, Ry, ...):

E = F+FE | R-E | e
where R is a regular expression, e is a BS-regular expression, and the operators

+ and - respectively denote union and concatenation of word languages (formally,
l:(El + EQ) = ,C(El) U E(Eg) and £(E1 . EQ) = {u - ‘ u e E(El),v € ﬁ(Eg)})ﬂ

5 Unlike the case of word languages, when applied to languages of word sequences, the
operator + does not return the union of the two argument languages. As an example,
L(a) u L(b) < L(a + b), as witnessed by the word sequence (a,b,a,b,a,b,...).

5 Notice the abuse of notation with the previous definition of the operators + and -
over languages of infinite word sequences.

Similarly to what we did with the concatenation of languages of word sequences,
we will sometimes omit the concatenation operator between word languages.

2.3 wT-regular languages

As we have already recalled, the class of wBS-regular languages is not closed
under complementation, that is, there are w-languages, that are the complements
of wBS-regular ones, which are not wBS-regular. This is the case, for instance,
with the language L, which is the complement of the wBS-regular language
L = (aPb+ a®b)* (see Subsection .

In Subsection we studied in some detail the distinctive features of the
language L and we showed that w-words belonging to it are, to a certain extent,
characterised by sequences of exponents where infinitely many exponents occur
infinitely often. In order to capture extended w-regular languages that satisfy
such a property, we now introduce a new class of w-regular languages, called
wT -reqular languages, that includes all and only those languages that can be
expressed by wT'-regular expressions, which are defined by the following grammar:

T:=T+T | R-T | t*
t o=@ |a|t-t|t+t |t | T
where R is a regular expression and a € Y.

The sub-grammar rooted in the non-terminal ¢ generates the T-reqular ex-
pressions. The only new ingredient in the above definition is the T-constructor
()T, that, given a language of word sequences ¢, defines the following language:

- E(tT) = {(Uf(O)UQ ce uf(l),l, uf(l) ce uf(2)717 .o) |
u € L(t) and f is an unbounded and nondecreasing function such that

(1) Vni.f(i+1)— f(i) >n

(40) Vn.[if Ji.f(i+ 1) — f(i) = n, then YkIj > k.f(j + 1) — f(§) = n]}.
It is not difficult to convince oneself that such a formal definition of the semantics
of the T-constructor conforms with the intuitive one we provided in Subsection|2.1
item (i) guarantees the existence of infinitely many exponents in the sequence
and item (4i) forces each exponent (occurring at least once) to occur infinitely
many times in the sequence of exponents (of words).

3 Counter-queue automata

In this section, we introduce a new class of automata, called counter-queue
automata (C'Q automata), and we show that their emptiness problem is decidable.

3.1 The class of CQ automata

To start with, we introduce the notion of a queue (of natural numbers) devoid
of repetitions: a queue ¢ is a finite word over N such that all its elements are
different. We denote the empty queue by J. Given a queue ¢, we denote by
q[¢] the i-th number in ¢q. Moreover, we denote the set of the elements of ¢
and the maximum among them by Set(q) and max(q), respectively. Formally,

Set(q) = {n € N : Jiq[i] = n} and max(q) = max(Set(q)) if Set(q) # &, —1
otherwise. The first and the last element of g can be selected by means of the usual
front and back operations: front(q) = ¢[1] and back(q) = ¢[|q|]. The enqueue
operation satisfies the uniqueness constraint on the elements of ¢: for every n € N,
enqueue(q,n) = q-n if n ¢ Set(q), ¢ otherwise. The dequeue operation is defined
as usual: dequeue(q) = ¢[2]...q[|q|]. We denote by Q the set of all queues.

A counter-queue automaton (CQ automa-
ton) is a quintuple A = (S5,X, sg, N, AQ),
where S is a finite set of states, X is a fi-
nite alphabet, sq € S is the initial state, N
is a natural number, and A < § x (¥ v
{e}) x S x ({1,...,N} x {no_op,inc, check})
is a transition relation such that for every S
(s,0,8, (k,no_op)) € A, it holds k = 1 (see 2 0ino) Zé :‘:e’ck)
Figure . Given a CQ@Q automaton A =
(5,2, 50, N, A), a configuration of Ais a pair Fig.1. A CQ automaton for the lan-

= (5,0), where s € S and C € (Nx Q)" is a guage ((a*b)*aTb)* (N = 2).
counter-queue configuration. For 1 <i < N,
we denote by C[i] = (n;, ¢;) the i-th component of a counter-queue configuration
C, where n; and g; are its counter and queue components, respectively. In the
following, we will often refer to n; as counter(C[i]) and to g¢; as queue(C[i]).

Let A = (S5,X,sp,N,A). We define a ternary relation — 4 over pairs of
configurations and symbols in X' U {e} such that for all pairs of configurations
(5,0),(s,C") and 0 € X U {e}, (5,C) =% (s',C") iff there exists § = (s, 0,5,
(k,op)) € A such that C[K'] = C’[k;’] for all & # k, and

— if op = no_op, then C[k] = C'[k];

— if op = ine, then counter(C'[k]) = counter(C[k]) + 1 and queue(C'[k]) =

queue(C[k]);
— if op = check, then counter(C'[k]) = 0; moreover,
o if counter(C[k]) = front(queue(C[k])), then
queue(C'[k]) = enqueue(dequeue(queue(C[k])), counter(C[k]));

a2(0) (0
cz(0)
a1 0) (3) (3,2
e @@ . cC o Y@ . Co_

G@&OG

0,1) (1,0
2 (1)(0
q 3,2) (273

:-.i)--.(

**O@&@O

Fig. 2. A prefix of a computation of the automaton in Figure [} A configuration is
characterised by a circle (state) and the rounded-corner rectangles above it (counter-
queue configuration). ¢; (resp., ¢;) is its counter (resp., queue) component.

o if counter(C[k]) # front(queue(C[k])), then
queue(C'[k]) = enqueue(queue(C[k]), counter(C[k])).

In such a case, we say that (s,C) —9% (s',C’) via 6. Let —% be the reflexive
and transitive closure of —% (where we abstract away symbols in X' U {e}). The
initial configuration of A is the pair (sq, Cp), where for every 1 < k < N we have
Colk] = (0,). A computation of A is an infinite sequence of configurations
C = (50,Co)(51,C1) ..., where (s;,C;) =% (Si4+1,Ciy1), for some o € X U {€},
for all i € N (see Figure . Given two configurations (s;, C;) and (s;,C;) in C,
with 4 < j, we say that (s;,C}) is e-reachable from (s;, C;), written (s;, C;) —%¢
(s5,Cj), if for all i < 5" < j, (sj1—1,Cj—1) = (s;,Cj). Given a computation C
of A and an w-word w € X%, we say that w is a C-induced word if there exists
an increasing function f : N — N such that:

= (s0,Co) =% (s¢(1): Cr(1)), and

— for all i > 1, (s, o) =4 (541 Criipn) =% (85641, Crain):
A computation C of A is accepting if and only if:

(¢) there exists an w-word w induced by C;

(1) for all 1 < k < N, lim;_, 1o, |queue(Ci[k])| = +o0;
(z9i) for all 1 < k < N, i = 0, and n € Set(queue(C;[k])), it holds that

[{i’ : back(queue(Cy[k])) = n}| = +oo.

In such a case, we say that w is accepted by A. We denote by L£(.A) the set of all
and only the w-words w € X* that are accepted by A, and we say that A accepts
the language £(A). As an example, Figure |1| depicts a CQ automaton with two
counters (N = 2) for the language ((a*b)*a’b)“. (Notice that an automaton for
the same language with one counter only can be devised.)

3.2 Decidability of the emptiness problem for CQ automata

In this section, we prove that the emptiness problem for C'QQ automata is decidable
by a game-theoretic argument.

W.lo.g., from now on, we restrict our attention to simple C'Q automata.
A CQ automaton A = (S, X, s9,N,A) is simple iff for each s € S, either
{(s,0,5,(k,op)) € A} = 1 or op = noop, k = 1, and 0 = € for all
(s,0,8,(k,op)) € A. Basically, a simple CQ automaton has two kinds of state:
those in which it can fire exactly one action and those in which it makes a
nondeterministic choice. Moreover for every pair of configurations (s, C), (s',C")
such that (s,C) =% (s',C’), the transition § € A that has been fired in (s, C)
is uniquely determined by s and s’. By exploiting e-transitions and by adding a
suitable number of states, every C'Q) automaton A may be turned into a simple
one A’ such that £(A) = L(A").

The set of states of a simple C'() automaton can be partitioned in four subsets:
(1) the set of states s from which only one transition of the form (s, o, s', (k, check))
can be fired (checky, states); (i7) the set of states s from which only one transition
of the form (s, 0,5, (k,inc)) can be fired (incy states); (iii) the set of states s
from which only one transition of the form (s, o, s’, (1,n0-0p)), with o # €, can be
fired (sym states); (iv) the set of states s from which possibly many transitions
of the form (s,¢,s’, (1,n0_0p)) can be fired (choice states).

Let A = (5,X,s0,N,A) be a CQ automaton. A partial computation of
A is a finite sequence P = (sg,Cp) ... (8n,Cp) such that, for all 0 < i < n,
(5i,C5) =% (Si41,Ciy1), for some o € X U {e}. If (s0,Cp) is the initial config-
uration of A, then P is a prefix computation of A. We denote by Partial 4
and Prefires, the sets of all partial computations of A and of all pre-
fix computations of A, respectively. Clearly, Prefires, < Partial 4 holds.
Given a prefix computation P = (sg,Cp) ... (sn,Cy) and a partial computa-
tion P = (s(,C}) ... (sh,,Cl,), we say that P can be extended with P’ iff
P’ =P P = (5,C0)...(80,Cn)(sh,Ch) ... (s},,Cr,) is a prefix computation.
In such a case, we say that P” is an extension of P.

Let A= (S, X, s9, N, A) be a CQ automaton and P = (s9,Cy) ... (sn,Cy) €
Partial 4. For all s € S, it holds that if (s,,C,) =% (s,C), for some counter-
queue configuration C, then C is uniquely determined by s,, s, and C,, that is,
there is no C’ # C such that (s, Cy,) =% (s,C"). We define the extension of P
with s, denoted by P << s, as (s0,Co) . .. ($n,Cn)(s,C).

We can associate a two-player game, called CQ game, with each CQ au-
tomaton A. The configurations of the game are the prefix computations of
A. The initial configuration is the shortest prefix computation of A, namely,
Po = (80,Co). Let i = 0 be the current turn and P; = (s, Cp) ... (sn, Cn) be
the current game configuration. The first player (Spoiler) moves by choosing
a priority p; € {checkp, maxp|l < k < N} U {sym}; the second player (Dupli-
cator) replies with a partial computation Q; = (sj, C)) ... (s,,, Cr,) such that:
(i) P; can be extended with Q;; (ii) if p; = checky, for some 1 < k < N, then
there exists 0 < j < m such that front(queue(C}[k])) = back(queue(C} 1[k]));
(#41) if p; = maxy, for some 1 < k < N, then there exists 0 < j < m such that
back(queue(C’ 1 [k])) > max(queue(Cj[k])); (iv) if p; = sym, then there exists
0 < j < m such that (s},0,s},,(k,op)) € A, for some pair (k,op) and some
o # €. A play of a CQ game is a sequence of pairs P£ = (Py, po)(P1,p1) - - ., where,
at each round ¢ > 0, p; is Spoiler’s move and P, is the result of the extension
of P; with Duplicator’s move Q;. Let P£(n) be the finite prefix of P/ of length n;
moreover, let Play 4 be the set of all possible finite prefixes of all possible plays
of the CQ game on A. Duplicator wins a play of the CQ game iff the play is
infinite, that is, she is able to reply to Spoiler’s move at every round. A strategy
for Duplicator in the CQ game on A is a function str : Play4 — Partial 4. In
a play P¢ = (Po,po)(P1,p1) ..., Duplicator acts according to str if for all ¢ > 0,
Pit1 = P; - str(PL(i)), that is, P;y1 is the result of the extension of P; with
str(PL(i)). A strategy str for Duplicator is winning iff Duplicator wins every
play in which she acts according to str. The proof of the following lemma is
straightforward and thus omitted.

Lemma 1. Let A be a CQ automaton. We have that L(A) # & iff there exists
a winning strategy for Duplicator in the CQ game on A.

We now show that the problem of deciding whether there exists a winning
strategy for Duplicator in the C'@Q game on a given C'Q) automaton A is decidable.
To this end, we introduce the concept of a winning witness. An N-word « is a
finite word over N such that, for all 1 < ¢ < |al, ai] < a[i + 1] holds. Given an

N-word «, we say that n belongs to a, written n € «, iff there exists ¢ for which
ali] = n, and we denote by Set(a) the set {n € N: n € a}. Clearly, for any given
set S < N there is exactly one N-word « such that Set(«) = S; we denote such
a word by ag. Given two N-words «; and as, we define a; U as and a1 N as
as the N-words auges(a;)uSet(as) A0 Qset(a,)nSet(as), TeSPectively. Moreover, we
denote by [b, e] the N-word oy, 41,... ¢} Finally, for each 1 <k < N, let BL be
the N-word 41 ... 4,, such that {s;,,...s;, } is the set of all and only the checky,
state in P and let 7} be the N-word iy .. .4,, such that {s;,,...s;, } is the set of
all and only the incy, state in P. We let 57 = Ui<hen BE and 4* = Ui<ken yE.

Definition 1 (winning witness). Let P = (s9,Cy) ... (sn,Cp) € Prefivesy.
P is a winning witness iff there exist 2N + 3 indexes 0 < begin < b; < e <
o< by <eny < limit < end <n such that the following conditions hold:
— there is j such that begin < j < end and s; is a sym state;
— Sbegin = Send and, for each 1 <k < N, sp, = s¢,, Sp, 15 an incy state, and,
for any by, < j < eg, s; is not a checky, state;
— for each 1 < k < N, there is eny < j < limit such that s; is a checky, state;
— let BF A [0,limit] = jy...j,; then, there are 2M indeves by <& < ... <
by < €, with limit < by and €y < end, such that, for each 1 < i < M,
there is 1 < k < N for which j; € BT, [bi,e;] n BF = bie; (that is, 53,
and sz, are checky, states and there are no checky, states in between), and
counter(C5 [k]) = I[b:, €] N]

k

A winning witness can be seen as a finite representation of a winning strategy, as
stated by the following lemma, which links the existence of a winning strategy
for Duplicator in the C'QQ game to the existence of a winning witness.

Lemma 2. Let A be a CQ automaton. Then, Duplicator has a winning strategy
in the CQ game on A iff Prefizes contains a winning witness.

Proof (sketch—details in the appendiz). As for the left-to-right direction, let
us assume that there exists a winning strategy for Duplicator. By Lemma [T} it
follows that there is an accepting computation C of A. It is not difficult to show
that one can choose the index end in C large enough to guarantee the existence of
a sequence of indexes 0 < begin <b; <e; <...<by <eny <limit<end<n
that satisfies the conditions of Definition [l

As for the converse implication, let us assume that Prefires4 contains a
winning witness P = (s9,Cp) ... (Sn, Cp). Let 0 < begin < by <e; <...<by <
en < limit < end < n be the indexes satisfying the conditions of Definition [I}
We show how to devise a winning strategy strp for Duplicator in the C'QQ game
on A. Since the strategy we define is memoryless, i.e., it only depends on the last
pair of a finite sequence (play prefix) P¢(m), with m € N, it is enough to define
it for a generic configuration P and Spoiler’s move p. Strategy strp is defined
inductively as follows.

(Base case) Let Py be the initial game configuration. To all possible
moves by Spoiler, Duplicator replies with the partial computation Qy =

(81,C1) -+ - (Send; Cend).- It can be easily checked that, independently from
Spoiler’s move, Qg is a correct move for Duplicator.

(Inductive step) Let P; = (s0,Co)(s1,C1) ... (Send, Cend) - - - (Sn;, Cn;), with
i > 0, be a generic game configuration. The next move by Duplicator depends on
Spoilers’s one, p; (notice that (s, Co)(s1,C1) ... (Send, Cend) is a prefix of the win-
ning witness P as well as of every game configuration P; of a play in which Duplica-
tor applies strp): (7) if p; = sym, Duplicator replies with the partial computation
(Sbegin, Coegin) - - - (Send; Cena); (1%) if p; = checky, Duplicator replies with the
partial computation (Spegin, Coegin) - - - (Sn;» Cn,); (it4) if p; = maxy, Duplicator
replies with the partial computation obtained from (spegin; Chegin) - - - (Sends Cend),
by “pumping” its fragment (sp,,Cp,) ... (Se,, Ce,), that is, by looping over it a
suitable number of times so that the k-th counter of the last configuration of the
last loop iteration is greater than every element inserted so far in the k-th queue.
Notice that the last element (s,,,Cy,) of every resulting game configuration P;,
with ¢ > 0, is such that s, = Senq. It is possible to show that all moves returned
by the strategy are valid moves for Duplicator. O

Theorem 1. The emptiness problem for CQ automata is decidable.

Proof (sketch—details in the appendiz). Thanks to Lemma [2} given a CQ au-
tomaton A, it suffices to provide an algorithm that searches Prefizes for
winning witnesses. Starting from the initial configuration, the algorithm nonde-
terministically extends prefix computations by guessing, at each step, the next
configuration. When a configuration (s;, C;) is generated, thus building the prefix
computation (sg,Cp) ... (s;, C;), the algorithm guesses whether or not 4 is one
of the indexes in Z = {begin, by, e1,...,bn,en,limit,end} (see Definition . If
all those indexes are located, the algorithm returns true iff all the conditions of
Deﬁnitionare fulfilled. (The problem of checking the fulfillment of the conditions
of Definition || with respect to a prefix computation is clearly decidable.) In
principle, if one of the indexes in Z has not been reached yet, the search should
go on. However, termination is guaranteed as it is possible to show that if there
is a winning witness with two consecutive indexes belonging to Z being located
too far away from each other (according to some computable bound), then there
is a winning witness where the distance between those indexes is shorter (and
previously located indexes are unchanged). This gives the following termination
condition: if the search for an index in Z fails too many times (according to the
aforementioned bound), the algorithm returns false. O

4 From wT-regular languages to C'Q automata

In this section, we show how to map an w7 -regular expression T into a corre-
sponding C'Q automaton A such that £(T) = £L(A). We build the automaton A
in a compositional way: for each sub-expression 7" of T', starting from the atomic
ones, we introduce a set S7v of C'Q automata and then we show how to produce
the set of automata for complex sub-expressions by suitably combining automata
in the sets associated with their sub-expressions. Eventually, we obtain a set of

automata for the wT-regular expression T. The automaton A results from the
merge of the automata in such a set. W.l.o.g., we assume the sets of states of all
automata generated in the construction to be pairwise disjoint, i.e., if A’ € Sy
and A” € Syv, where T" and T” are two (not necessarily distinct) sub-expressions
of T, then the set of states of A’ and the one of A” are disjoint.

We proceed by structural induction on wT-regular expressions, that is, when
building the set S7v of C'Q automata for a sub-expression 7" of T, we assume the
sets of C'Q) automata for the sub-expressions of 7" to be available. In addition,
by construction, we force all generated CQ automata A = (5, X, sg, N, A) to
feature a distinguished final state sy such that (ss,0,s', (k,op)) € A implies
o=¢ 8 =s5, k=1, and op = inc.

We first deal with T-regular expressions (sub-grammar rooted in ¢ in Sec-
tion . Since a T-regular expression produces a language of word sequences
and our automata accept w-words, we must find a way to extract sequences
from w-words. Let C = (sg,Cp)(s1,C1) ... be an accepting computation of A
such that (s;, C;) =% (si+1,Ciy1) via 6;, for each i > 0, and let w be C-induced
via a function f. Moreover, let ¢ : N — N be an increasing function such
that, for every i € N, i € img(g) iff §; has the form (s;,0,s;41, (1, check)) € A.
We denote by u,, ; the word sequence whose i-th element is w[j]...w[j + n],
where f(j — 1) < g(i) < f(j) < f(G +n) < gli +1) < fG +n+1).
We define the language of sequences accepted by A as Ls(A) = {wy,s :
w is C-induced via f, for some accepting computation C of A}.

Automata for T-regular expressions are built as follows. For each expression t,
we build a set S; = {Ay,...,A,}, with A; = (S;, X, 8, N;, 4;), with final state
sk, for 1 < i < n, such that £(t) = U;;<, Ls((Si, ¥, 55, Ni, Ai U {(s?,e,sé,
(1, check))})). Moreover, for any CQ automaton A = (S, X, sg, N, A) and natural
number N’ > 1, we define the N'-shifted version of A as the automaton A’ =
(S, %, s0, N + N', {(s,0,s,(k+ N',op)) : (s,0,s,(k,op)) € A}).

Base cases. If t = &, then S; = {({s0,sf}, 2, 50,1,{})}; if t = a, then
St = {({s0,s¢}, X, 50,1, {(s0,a,sf, (1,n0-0p)), (s¢,€ 5¢,(1,inc))})}.

Inductive step. Let t = ty - ta, A = (S, 2,80, N,A) € S, and A = (5,
X, s5,N",A") € S,. Moreover, let A" = (5,X,s9, N + 1,4”) and A" =
(8", 2,84, N' + N + 1, A”) be the 1-shifted version of A and the N + 1-shifted
version of A’, respectively. We define A- A" = (S U S U {s}}, X, 50, N + N' +
L,A"OA" O{(sf,€, 50, (2, check)), (s’f, €, s'Jﬁ, (N +2, check)), (53{, €, s’;, (1,inc))}),
with s} as the final state of A - A". S, ., is the set {A- A" : A€ &, A" € S, }.

Let t =t + to, A= (S,X,50, N,A) € S,, and A = (5, X, 55, N, A') € Sy,.
Moreover, let A” and A" be defined as in the previous case. We define A+.A’ as the
set {Ay,, As,, Ay}, where Ay, = (SuS'U{EN,5n}LE, N+ N+1,A"0A" O
{(Bo1, €, s0, (1,n0-0p)), (501, €, S, (1,n0-0p)), (¢, €,5 1, (2, check)), (8}, 6,551, (N
+2, check)), (551,€,51, (1,inc))} U {(sy,€, 57, (k, %)) = = € {inc,check}, N +2 <
k< N+N+1}), Ay, = (Su S8 U {502,502}, 2,N + N+ 1,47 v A" U
{(S02, €, 50, (1, n0_0p)), (502,.67 50, (1,n0-0p)), (s¢,€,552, (2, check)'), (s’f, €,5f2, (N
+2, check)), (Sy2, €, 352, (1,inc))} U {(s},€,8%, (k%)) + = € {inc,check},2 <
E< N+1}), and Ay, = (Su S U {503,553}, N+ N+ 1,A" 0 A" U

e, (N + 2, check) . (\ + N+ l check
€, (1,inc)

& (N + 2,inc) ... (\ + N + 1,inc) ‘

(2 nc) ... € (\ + 1,inc) ‘

(2, (hnk) (\+1 check)
AL @ (L, ine
O o Dy o<' U
A+2: ‘W.? A+3 e {
)

i) ... 6, (N + 1,inc) e, (N +27n().. (('\+;\ + 1,inc)
(2 (}IE‘(;w) N +1, check ¢, (N +2,check) ... e, (N + N’ +1,check)

Fig. 3. The automata A4, A4,, and A, (inductive step 1 + ¢2).

¢, (1,inc))

A U

e = ¢,(2,check)
o> =¢, (N + 2, check)

{(5037 €, 50, (17 no,op)), (5037 € 567 (17 ’I’L0,0p>), (Sf7 €7§f37 (2, Ch€Ck))a (S‘lfa €, §f37 (N
+2, check)), (Sr3,€,5ys, (1,inc))} U {(sy, €, s7, (k, %)) : * € {inc, check},2 < k <
N + 1} v {(s}.€,8%, (k%)) : = € {inc,check}, N +2 < k < N + N’ + 1}). The
final state of AL, is 3¢, for 1 <7 < 3. S, 44, is the set UAeStl,A/eSf,z A+ A

Let t = t¥ and A = (5,X,50,N,A) € &;,. Moreover, let A" be de-
fined as in the previous cases. We let A, = (S u {s}}, X, s0,N + 1,4" v
{(s’},e, s}, (1,inc)), (sy, €, s’]ﬁ, (2, check)), (st €, S0, (€,n0_0p))}), with sgﬁ as the fi-
nal state. S;x is the set {Ay : A€ &y, }.

Let t = tT and A = (S, X, 50, N, A) € S;,. Moreover, let A" = (S, X, 50, N +
2, A") be the 2-shifted version of A. We let Ap = (S u {s},s0,N +2,4" v
{(.sf, €,5¢, (3, check)), (sf,€, 50,1(2, inc)), (sg, €, s’Ji, (2, check)), (s'Jﬁ, €, S’JZ, (1,inc))}),
with s% as the final state. Syr is the set {Ar: A€ Sy, }.

The following lemma states the correctness of the proposed encoding.

Lemma 3. Lett be a T-regular expression and S; be the corresponding set of au-
tomata. It holds that L(t) = | Ls((Si, X, 80, Ni, Ai0{(s%, €, 50, (1, check))})).
Ai=(8:,%,s},Ni,A;)eS,

Proof (sketch—details in the appendiz). The proof is by induction on the structure
of T-regular expressions. We only consider the case in which ¢ = ¢ + to, which is
definitely the most complex one. A sequence w belonging to Ls(t1 + t2) features
words belonging to either L, (t1) or Ls(t2). Hence, for w € L4(t1 + t2), there are
u; € Ly(t;) (i € {1,2}) and f : N* — {1,2} such that w[i] = wug [i], for all
i € NT. Three cases may arise.

— If there is an index ¢ such that w[j] = w1[j] for each j > 4, then w is accepted
by Ay1. The computation will eventually end up visiting, besides states Sg;
and 51, only states of the fragment A" of Ay, (see Figure . Since states of
the fragment A" are visited a finite number of times only, the problem arises
of fulfilling automaton’s acceptance conditions relative to the counter-queue
configuration components corresponding to A" (see accepting conditions
and |iii| in Section . More precisely, for each j € {N +2,...,N + N' + 1},
the queue associated with the j-th component must never stop growing up
during the computation and every element in the queue must eventually be
checked. Both conditions are handled by the loop transitions on state s¢,
which permit free increment and check. (Acceptance conditions relative to the
counter-queue configuration components corresponding to A" are handled by
A" itself, as its states are visited infinitely often.)

— The case in which there is an index 7 such that w[j] = uz[j] for each j > i
is symmetric (w is accepted by Ao).

— If there are infinitely many indexes ¢ and 4’ such that w[i] = wq[i] and
w[i'] = wz[i'], then w is accepted by Ays. The computation will visit
infinitely many times both the states of A” and those of A"”. Therefore, all
acceptance conditions are fulfilled, each fragment of the automaton taking
care of the corresponding components.

For each A; = (S;, Y, sb, Ni, A;) € S, we define A, as (S;, X, s4, Niy A;
{(s%, € b, (1,check))}). Tt is not difficult to show that | J 4 s, £s(Af) = L(t), by
making use of the invariant of the inductive construction. O

We are now ready to deal with wT-regular expressions (see Section . We
must distinguish three cases. If T' = T1 + T, then St, 11, is equal to S, U S,
Let T = R-T', Ag = (Sr, Fr, %, sf, Ar) be the NFA that recognises the
regular language L(R), and A = (S, X, 50, N, A) € Spr. Welet Ap- A= (Su
Sr, X, s8N, AU {(s,0,5,(1,n0.0p)) : (s,0,8) € Ar} U {(s,¢, s0, (1,n0_0p)) :
s € Fr}), with final state sy. Sg.yv is the set {Ag - A : A € Spv}. Finally, let
T = t*. We define S; as {Ai,..., A}, where A; = (S, ¥, 55, Ni, 4;) and s is
the final state of A;, for every 1 < i < n. S is the set {(S;, X, s{, N;, A; U
{(s?,e7 s8,(1,check))}) : 1 < i < n}. As in the case of T-regular expressions, it
can be easily checked that | J 4.5, £(A) = L(T) for all wT-regular expressions 7',

To complete the reduction, we only need to show how to merge the automata
in St into a single one Ay accepting the language L(T'). Let Sy = {A4, ..., An},
with A; = (S;, X, 88, Ny, 4;), for 1 <i < n, and let Nyay = max{N; : 1 <i < n}.
For each 1 < i < n, let A; = A; U {(s,€,5,(Nj,*)) : * € {inc,check},s € S;,
N; < N;j < Nyax}) and let sg be a fresh state. We define Ar as the automaton
(Ui<icn Si U {0}, 2, 50, Nmax, Ut <i<n (Qi U { (50, € 80, (1,n0_0p))})).

Theorem 2. For every wT-regular expression T, there is a CQ automaton A

such that L(T) = L(A).

Corollary 1. The emptiness problem for wT-reqular languages is decidable.

5 Conclusions

In this paper, we investigated a new class of extended w-regular languages, called
wT-regular languages, that captures meaningful languages not belonging to the
class of wBS-regular languages. We proved the decidability of its emptiness
problem by exploiting of a new class of automata, called counter-queue automata.

As for future work, we would like to study the class of wBST-regular languages,
which is obtained from the combination of wT- and wBS-regular languages. In
particular, we are interested in the problem of establishing whether or not it
is closed under complementation. In addition, we would like to investigate the
logical side of the problem. At the best of our knowledge, no (classical) temporal
logic counterparts of extended w-regular languages were provided in the literature.
Recently, we started to work to fill in such a gap [9/I0].

References

10.

. Alur, R., Henzinger, T.A.: Finitary fairness. ACM Trans. Program. Lang. Syst.

20(6), 1171-1194 (1998), http://doi.acm.org/10.1145/295656.295659

. Bojaniczyk, M.: A bounding quantifier. In: CSL. LNCS, vol. 3210, pp. 41-55. Springer

(2004)

. Bojanczyk, M.: Weak MSO with the unbounding quantifier. Theory of Computing

Systems 48(3), 554-576 (2011)

. Bojanczyk, M., Colcombet, T.: Bounds in w-regularity. In: LICS. pp. 285-296. IEEE

Computer Society (2006)

. Biichi, J.R.: On a decision method in restricted second order arithmetic. In: Proc. of

the 1960 International Congress on Logic, Methodology and Philosophy of Science.
pp. 1-11. Stanford Univ. Press (1962)

. Elgot, C.C., Rabin, M.O.: Decidability and undecidability of extensions of second

(first) order theory of (generalized) successor. J. Symb. Log. 31(2), 169-181 (1966),
http://dx.doi.org/10.2307/2269808

Kupferman, O., Piterman, N., Vardi, M.Y.: From liveness to promptness. Formal
Methods in System Design 34(2), 83-103 (2009), http://dx.doi.org/10.1007/
s10703-009-0067-z

McNaughton, R.: Testing and generating infinite sequences by a finite automaton.
Information and Control 9(5), 521-530 (1966)

Montanari, A., Sala, P.: Adding an equivalence relation to the interval logic ABB:
complexity and expressiveness. In: LICS. pp. 193-202. IEEE Computer Society
(2013)

Montanari, A., Sala, P.: Interval logics and wB-regular languages. In: LATA. LNCS,
vol. 7810, pp. 431-443. Springer (2013)

http://doi.acm.org/10.1145/295656.295659
http://dx.doi.org/10.2307/2269808
http://dx.doi.org/10.1007/s10703-009-0067-z
http://dx.doi.org/10.1007/s10703-009-0067-z

A Proofs for Section 3.2

A.1 Proof of Lemma [2]

Lemma [2| Let A be a CQ automaton. Then, Duplicator has a winning strategy
in the CQ game on A iff Prefires4 contains a winning witness.

Proof. For the left-to-right direction, since there exists a winning strategy for
Duplicator in the CQ game on A we have from Lemma [I| that £(A) # &J. Let
C = (50,CQyp) ... an accepting computation for A. Let begin be the minimum
index for which the state speqin is repeated infinitely often in C. Since C is
accepting we have that for every 1 < k < C there exists an infinite sequence of
indexes Sy, = b}, < e} < b? < e < ... for which for every i € N we have Spi = Sei
Spi is an incy, state, for every b} < j < e} we have that s; is not a checky. Then,
there exists iy, ...,ic indexes that satisfy begin < bzf < elf <...< bg’ < eiCC.
Since C is accepting we have that for every 1 < k < C a checky, state is visited
infinitely many times, thus we can choose an index limit for which for every
1 < k < C there exists ec < j < limit for which s; is check;, state. For every
1 < k < C and for every m € Set(CQuimit[k]) we take an index jy, x > limit such
that m = counter(CQ)j,, . [k]) and s;,, , is a checky, state, the existence of such
index is guaranteed by the fact that C is accepting. Finally it suffices to take an
index end > max({jmx : 1 <k < C,m € Set(CQuimit[k]),}) With Send = Spegin-
We have that the prefix P = (s0,CQo) . - . (Send, CQend) is a winning witness for
the CQ game on A.

For the right-to-left direction let us suppose that there exists a winning
witness P € Prefixes then we build a winning strategy str for Duplicator
in the CQ game on A. Let us observe that for every prefix in Prefizesy4
(s0,CQo) - .. (8n,CQy) we have that Duplicator may extend it by simply intro-
ducing a sequence of states s,41,...,Sntm such that (s,,o,sn11, (k,0p)) € A
the resulting prefix (so, CQo) ... (85, CQn)(Sn+1, CQnt1) - - (Sntms CQnim) is
uniquely determined since the automata is simple. Then we will describe the
answers of Duplicator according to str as finite word of states in S since the
resulting prefix is uniquely determined. Let P = (30,CQo) . .. (3,, CQy) be our
winning witness. We build the strategy str inductively. We denote with P¢[i]
the i-th element in the play P£. We begin by putting str(PI(0)) =3¢ ...51 no
matter what is the priority of PI[0]. It is easy to see that the winning witness is
a successful response for every priority in PI[0]. at each step i > 0 we guarantee
the following invariant conditions on the play PI: ‘

— str(Pl(i)) = Sbegint1---5b,—1(56 B)5 (Bhe - Bep1)FCFe . .
Stimit - - - Send for some ki > 1 for every 1 < j < C. Basically is the suf-
fix starting at position begin + 1 in which for every 1 < j < C we have
repeated every sub-word S, ... 8., -1 k! number of times;

—let str(Pl[i]) = ((50,CQo) ... (sn/,CQps),p) then we have
counter(CQu[j]) = counter(CQyulj]) for every 1 < j < C. After ev-
ery answer the counters on the top of the prefix computation are the same of
the ones on the top of the winning witness.

Suppose that we are at the step ¢ > 0 in a play PI that Duplicator is playing
according to str and let p; the priority in PI[i] (i.e., the Spoiler’s move) three
cases may arise:

— p; = sym, then Duplicator put str(Pl(i)) = Spegint1 - - - Send, since there
exists begin < j < end which is a sym state we have that a transition
(s,0,8,(k,op)) is fired in the extension of the i-th prefix;

—pi = maxy for some 1 < k < C. Let PIi] =
((50,CQ0) ... (50, CQnr),p;) then we put str(Pl(i)) =
Sbegint1 - - Sop—1(5by - - e 1) CRQw D5 5,4 Since by defi-
nition of winning witness there is no checky state in the incremented loop
(Bby, - - - Bep—1)"o¥(CQuFD+1 and there is at least one checky, state afterwards
we have that a number m > max(CQ,/[k]) will be introduced in the queue
CQn’Jr(ekfbk)*maz(CQn/[k])+(end7begin) [k]v

— p; = maxy, for some 1 < k < C. Let Pl[i] = ((s0,CQo) ... (807, CQun),pi)
and m = front(CQ,[k]) (i.e., the number to be checked for the counter k).
Two cases may arise: (i) m € Set(CQn[k]) (i.e. m has been introduced in
str(P1(0))), then Duplicator puts str(PI(i)) = Spegin+1 - - - Send- Let lasty be
the maximum index or which 5,5, is a checky state and lasty, < limit, such
an index always exists for the third condition in the definition of winning
witness. We have from the combination of the third and the fourth condition
in the definition of winning witness that there exist an index lasty < j' < end
for which m = counter(CQ;/[k]) and j’ is a checky, state, thus m is checked
at least one time in the extension of the prefix; (ii) m € Counter(CQ,~[k])
and s, is a checky state with n < n” < n’, then let 0 < ¢/ < i the iteration
for which the index n” has been introduced in the prefix. Then we put
str(i) = str(i’), from the second invariant condition we have that the value
m is checked.

The above infinite procedure generate a winning strategy str for winning the C'Q
game on A. |

A.2 More definitions on N words

An N-word is a finite word over the set NT of positive natural numbers such that,
for every 1 <1 < |al, afi] < afi + 1] holds. Given an N-word «, we say that n
belongs to a, written n € «, if and only if there exists ¢ for which «[i] = n, and
we denote by Set(a) the set {n € N:n € a}. Clearly, for any given set S ¢ N*t
there is exactly one N-word « such that Set(a) = S; we denote such a word by
ag. Given two N-words o7 and as, we define the union oy U ag as the N-word
QSet(ar)uSet(as), the intersection a1 M g as Ager(ar)~Set(as), and the difference
a1\@2 88 QSet(ar)\Set(as)-

We denote by [b,e] the N-word aypi1,..cp, and by (b,e) the N-word
[b + 1,e — 1]. Moreover, for a word w on some alphabet and an N-word «
we define the projection of w on «, denoted by 7, (w), as the word m,(w) =
wla[l]]... wlaf|al]].

Let P = (s9,Co) . .. (8n, Cp) € Partial 4 for some C'Q automaton .A. We define
the word Pg as Ps = sg...S,. Moreover, for each 1 < k < N, we define the

N-word 8] as BF =iy ...im such that {s;,,...s; } is the set of all and only the
checky, state in P, and the N-word 7} as v/ = i1 ...i,, such that {s;,...s; }
is the set of all and only the inc; state in P. We let gF = Usi<ren BF and

P _ P
7= U1<k<N Vi -

A.3 Introducing decorations

Let P = (s0,C0) ... (sn, Cpn) € Partial 4 for some CQ automaton A. A decoration
Pp = S1...8, is a sequence of elements in (S*)V (N-dimensional vectors on
finite words over S) such that for each 0 < i < n and each 1 < k < N we have
|S;i[k]| = counter(C;[k]).

Given P = (s0,CQo)...(81,CQy) € Partialy and a decoration Pp =
S1...8, for it, we have that P’ and Pj is an extension of P an D iff P’
and P, form a decorated partial and both P is a prefix of P’ and D is a prefix
of D’. We have a partial order < on decorated-partials given by the extension
property.

Given a partial P = (s0,CQo)...(sn,CQn) € Partial4 and a decora-
tion Pp = 8&1...8, for it let Cepre {1,...,C} the set of indexes k such
that there exists 0 < ¢ < n for which s; is a check, state, Cepr = {k :
Ji s; is a checky, state }. We say that P is contractible if and only if there exists
M > 1 indexes by < e1 < ... < by < ey and for every k € {1,...,k}P\Cenk

. . -k _ —k _ . .
there exists N, indexes b, < ¥ < ... < by, < eka for which:(i) for every

1 < i < M we have s, = s., and counter(CQy,[k]) = counter(CQ.,[k])
for every k € Cepg; (i) for every k € {1,...,k}\Cenr and every 1 < i < Ni
we have Sn[k][gf] = S,[k][eF]; (iii) for every k € {1,...,k}\C.opr we have
Yi<icpcounter(CQ,, [k]) — counter(CQy,[k]) = Shi<i<n, & — Ef. We say that
a decorated-partial admits a contraction if and only if it admits a sub-decorated-
partial that is contractible. If a decorated-partial does not admit a contraction
we say that is contraction-safe

A.4 Lemmas instrumental in proving Theorem 1

Lemma 4. The partial order <, restricted to the set of contraction-safe decorated-
partials, does not admit infinite chains.

Proof. Suppose by contraddiction that there exists an infinite chain (Pg, Ppo) <
(P1,Pp1) < ... an infinite chain in the set of all contraction-free decorated-
partials. Let P, = (s9,CQq) ... (51,CQy) ... and Pp, = SoS; ... the limit of
such chain. Let by < eg < by < €7 < ... be a sequence of indexes such that:
(i) there exists 1 < h < C for which for every i € N s, and s, for every
b < j < e; s; is not a checky, state, s., = sc,,, and counter(CQ.,[k]) <
counter(CQ.,,,[k]) for each 1 < k < C; (ii) Let C%,, = {k : 1 < k <
C,3b; < j < e; s; is a checky state } then Ci,, = C'! for every i € N and
exists B € N for which for every k € C%,, we have counter(CQ.,[k]) < B,

since such sets are all the same we will denote them with Cqpy; (iii) for every
i € N either (a) counter(CQ.,[h]) — counter(CQy,[h]) < counter(CQ.,,,[h]) —
counter(CQy,,,[h]) or (b) counter(CQ.,[k]) = counter(CQ.,,,[k]) for each
1 <k < C. We assume w.l.o.g that Cepp = {k,...,C} for some 1 < k < C Notice
that if condition (iii-b) holds we have that the prefix ending in s; admits a con-
traction (contradiction). Let us assume counter(CQ.,[h]) — counter(CQy,[R]) <
counter(CQe, ., [h]) — counter(CQy,, ,[h]) for every i € N. Since increments hap-
pen one at a time we may assume w.l.o.g. that e; —b; < ;41 —b; 1 (we may always
take an infinite subsequence that satisfy this property). Let M = BlCensl .| S| 4 1.
Let us observe that we have that for every i € N and for every b; < j <e; — M
that there exists at least two indexes j < j < 7' < j” < e;—M for which s;; = s;»
and counter(CQj/[h]) = counter(CQ;~[h]) for each h € Cepi and j” — j'* < M.
For every j for which there exists j < j < 7' < e; which is the minimum in-
dex for which j' —j < M s; = s;; and counter(CQ,[h]) = counter(CQ; [h])
for each h € Cepp we define z; as the C' = C — |Cepi| dimensional vector
such that z;[h] = counter(CQ;[h]) = counter(CQ;[h]) for each 1 < h < C'.
Let us observe that for each j that admits the above property we have |z;| =
Yi<necr zjlh] < M then we have C'M possible different vectors. Then since
e; —b; < ejr1 — b1 for every i € N there exists z for which for every ¢ € N there
exists i < i’ such that [{j :e; <j <b;,z; = z}| <|{j : es <j <by,z; = z}|. Let
NZ = {k : z[k] > 0} then for every i € N there exists ¢ < i’ we have that there
exists ¢ < ¢’ such that counter(CQ;[k]) < counter(CQy[k]) for every k € NZ
(recall that counter k € NZ is not checked between b; and e; and the number
of vectors z is increasing). Then we have for every i € N there exists ¢ < i’ that
|Ppilk]| < |Pps[k]| for each k € NZ. Given a word w € S* we have that there

exist at least o = [%J indexes 41, . . ., i, such that for every 1 < j < o there exists

i; <1 < i +|S| for which w[i;] = w[i']. For every k € NZ and every i € N we
define the set of pairs OF = {(j,m) : Ppi[k][j] = Ppi[k][j + m],1 < m < |S|}.
Since for every i € N there exists ¢ < ¢’ we have that there exists ¢ < ¢’ such that
counter(CQ;[k]) < counter(CQy[k]) for every k € NZ then there for every i € N
there exists i < i’ we have that there exists i < i’ such that |OF| < |O%|. Then for
every k € NZ there exists my, for which for every i € N there exists i < ¢/ with
I{(j, mr) € OF}| < |{(j,mr) € OF}|. Summing up since the second sub-sequence
is built on the first one there exists a subsequence by < & < by < é; < ... of
bo < €p <b1 <e <... such that:

— foreveryie Nwehave |{j:b; <j <@,z =2} <|{j:bis1 <j<@C1,2 =

z};

— for every i € N and every k € NZ we have |{(j,mz) € OF}| < |{(j,ms) €
Of 1}
Then there exists an index i € N for which:

— there exist P = [[, .y, m& points j1 < ... <jpin {j:e; <j <b;z = 2}
such that j; .1 — j; > M for every 1 < i < P;
— for every k € NZ there exists Py = 2[k] - [[ez 41k T indexes j; < ... <

Jjp, in O% such that j;11 — j; > |S| for every 1 <i < Py.

Then it is easy to see that the decorated-partial (Po, Ppo) < (Pe,, Pps,) admits
a contraction (contradiction). o

Lemma 5. Given a decorated winning witness P = (s9,CQo) ... (8n,CQp) €
Partial qwith decoration Pp = S1...8, with inderes 0 < begin < by < e; <

. <bo <ec <limit<by <€ <...<by <eéum <end if one of the following
condztzons holds:

— there exists one interval (b,e) among (0,begin), (begin, by), {(bg,ex) : 1 <
k< C}{(ex, bry1) : 1 < k < C}, (ec, limit) for which (P, Pp)|w,e) is not
decoration safe;

— there exists one interval (b,e) among (limit,by), {(€;,bir1) : 1 <i < M} for
which (P,Pp)|p,e) is not state-contraction-free;

— there exists one interval (b,e) among {(b;,&;) : 1 <i < M} for which b is a
checky, state for some 1 < k < C and P|,) is not incy-contraction-free;

— the partial P|<€M’end> is mot sym-contraction-free;

then there exists a decorated winning witness P' = (s, CQy) ... (s,,,CQ.,) €
Partial 4 with decoration Py, = Si...S,, where n’ <n

Proof. We prove that in each of then four cases we can contract P into a
shorter winning witness. Let us suppose that the first case holds. Without loss
of generality we can assume that 7o pegin) (P, Pp) is not decoration safe (the
case for the other intervals is analogous). By definition we have that there
exists two indexes 0 < b < e < begin for witch (g pegin) (P, Pp) is contractible.
Let Cepx < {1,...,C} the set of indexes k such that there exists b < i < e
for which s; is a checky state and let Copp = {1,...,C})\Cenr. For the sake
of simplicity we assume w.l.o.g. that the counters in C,p; are the counters
{1,.. |Cchk|} and we put C = |Cenk| - Then we have that there exists N > 1
indexes él <é1<...< bN < én such that for every k € Cepi there exists Ny
indexes ¥ < &¥ < ... < bﬁ‘{, < eﬁ‘{, for which: (i) for every 1 < i < N we have
s, = Se; and counter(CQb []) = counter(C’Qel[]) for every k € Cepy; (ii) for
every k € Cop, and every 1 < i < Np we have T (Snlk]) = mar (Su[k]); (iii) for

every k € Cepj, we have:

2 counter(CQg,[k]) — counter(CQ; [k]) = 2 &bk,

1<i<M 1<i< Ny,

Since P is simple witness there exists a unique strictly increasing function
f: Set(B” ~ [0,limit]) — {b1,...bar} such that for each i € % n [0, limit]
we have f(i) = |87 n [0,i]|. For each k < C let I, = max Set(3] n [0,b]), by
definition of decorated witness we have for each k < C:

T[1,counter(CQ[k])] (Se[k]) = ’/T[Ef(lk),Ef(,k)]mfy]’:m[l,counter(CQ[k])] (PS)
Thus, for all ¥ < C and all j € [i, Ni], it holds that:

i (Se K1) (= 7t (Se[KD)) = 3 (7, 2y 1 (PS))

which, in its turn, is equal to

mer (g (Ps)))

G bragyBramlnyE

Again, w.l.o.., we assume that [; < ... < [z and for each k < C and each
j €[1, Ni] we define pby ;= fy) +775§([bf(lk)7€f(lk)] N 7,7:) and pey, ; = fle) +

Ter ([0r10), €4)] N VL) we define the following word a over the naturals:

2

k ~
(Pek,iq) pbk,i] Y
1i=2

TCal

(=1, bi] U (én,pby 4] U

=)

S

C
1=

a= =

i—
—1 o - o
Y kUl (Pek,Nk,PkaJ] v (PeaNa, end].

Since A is simple the computation is uniquely determined by the sequence
of states then we define P’ as the element of Prefires4 such that Py = 7, Ps
and its decoration P, = 7, (Pp). Now we have to define the indexes for the
new witness. Let shift = 3.1 <j < N|(b;,¢;]| and for every 1 < i < N let
shifti, = |{i : 31 < j < N,i € (bj,é;] n BP}|. We put begin’ = begin —
shift, for every 1 < k < C we put b) = by — shift and e, = ex — shift,
limit' = limit — shift and M’ = M — shift}),. For every 1 < i < M’ let
i =it X ey e 1np7 iy <iy) St we have by = by — shift and ¢ =
ey — shift. Finally we put end’ = end — shift. It is easy to see that (P’, Pp)
with indexes 0 < begin’ < b] <€} < ... < by < e < limit/ <5/1 <e <...<
E/M, < €y < end is a decorated winning witness for A.

For the second case let us suppose that there exists one interval (b, e) among
(limit, by), { (€, bit1) : 1 < i < M} for which (P, Pp)]s,e) is not state-contraction-
free. Suppose that such interval is (limit,b;) (the other cases are analogous).
Then by definition there exist two indexes limit < b < e < b; for which s, = se.
Then we put a = [0,b] U (e, end] we define P’ as the element of Prefizes such
that Py = m,Ps and its decoration P, = 7, (Pp). Now we have to define the
i{ldexes 0 <begin’ < b <e€] <...<bp <ep < limit/ < 5/1 <€ <...<
by < €y < end for the new witness. We have M’ = M, ' = = for every
x € {begin, by, e1,bc, ec, limit}, for each 1 < j < M 5; =b; — (e —b) and for
each 1 < j < M €; =¢€; — (e — D) . Finally we put end’ = end — (e —b). It is
easy to see that (P’,P},) with indexes 0 < begin’ < b} <e} <...<by <ep <
limit’ < 5/1 <e <...< EIM, < ey < end is a decorated winning witness for A.

For the third case let us suppose that there exists i for which for which b;
is a checky, state for some 1 < k < C' and P|(E,€i) is not incg-contraction-free.
Then by definition there exist two indexes b; < b < e < €; for which s, = s, and
for every b < i < e we have that s; ¢ 7. Then we put a = [0,b] U (e, end] we
define P’ as the element of Prefizesy such that Py = m,Pg and its decoration
Pl = 7o (Pp). Now we have to define the indexes 0 < begin’ < b] <ej <...<
by < e < limit’ < by <@ <..<by < ey < end for the new witness.

We have M’ = M, ' = x for every * € {begin,by,e1,bc,ec,limit}, for each
1<j<ib,=bj foreach 1 <j<ie;=e, foreachi<j<Mb;=b;—(e—b)
and for each i < j < M €; =¢€; — (e — b) . Finally we put end’ = end — (e — b).
It is easy to see that (P’,P}) with indexes 0 < begin’ < b} <€} <...<b <
eq < limit’ < 5/1 <egp<...< B/M, < ey < end is a decorated winning witness
for A.

For the fourth case let us suppose that the partial P|z,, enay is not sym-
contraction-free. Then by definition there exist two indexes b; < b < e < &
for which s, = s. and for every b < i < e we have that s; is not a sym state.
Then we put a = [0, b] U (e, end] we define P’ as the element of Prefizes such
that Py = m,Ps and its decoration P, = 7, (Pp). Now we have to define the
indexes 0 < begin’ < b, < €| < ... < by < el < limit' < by <€ < ... <
EEW < &y < end' for the new witness. We have M’ = M, ' = = for every
x € {begin, by, e1,bc, ec, limit}, for each 1 < j < M 5; = Bj, foreach1<j< M
€, = ¢;. Finally we put end’ = end — (e — b). It is easy to see that (P’,P},) with
indexes 0 < begin’ < b} <¢) < ... <bp < ey < limit/ <5/1 <e <... <5/M, <
ey < end' is a decorated winning witness for A. O

For a graphical account of how the contraction described in Lemma [5] works
take a look to Figure [4] (before contraction) and Figure [5| (after contraction).
A.5 Proof of Theorem 1
Theorem 1. The emptiness problem for C'QQ automata is decidable.

Proof. The algorithm given in Figures[6] and [7] decides whether or not there exists
a winning witness for A. Its soundness and completeness are guaranteed by the
results proved in section [A4]

B Proofs for Section 4

B.1 Additional results on sequences

Given a sequence u = (uj,us,...) of finite words in X* and two indexes
i,i" € NT. We define the 4’,i-scrambled version of u as the sequence w;; =
(U1 .oy Uiy Uy, Uis1, - -). Basically we can choose every words in the sequence

and put everywhere we want. Now we prove that w7 sequences are closed for
the scrambling operation.

Lemma 6. Given a T-regular expression t we have that for every u € L4(t) and
every pair of indexes i,i" € NT we have w; i € L(t).

Proof. By structural induction on the T-regular expression ¢.
If t = ¢ the result is trivial since there are no sequences in L(t).

O incy state

O incy state

0 € limit p
(1)
by ér by

(OversonsonsensoniO) (OrrensononO)

[va@vam] (0O~ e \@vwo]

bry) bl el €r) bpay B2 b2 €1 (1)

Fig.4. A winning witness in which the contraction operation described in Lemma [f]
may be applied.

f f O ncy state
O ince state

o0

) €fl) Ef(l2) €r(1y) end

(0000000 (00000 ensO)

bf(ll) \5% e1 +1 €fh) B f(ls) b2 61 +1 b% é’% +1 €£(1,)

e1+1 62 ey +1 € limit Zf(h

Fig. 5. The winning witness resulting from the application of the contraction operation
to the witness Figure [

nextINC(sg...sy, € S*, k) nextCS(sg...s, € S*)
n <« |o| n « |o|
guess Sp4+1 € S guess Sp4+1 €S
if 3P =(s50,CQ0)...(5n,CQn)(Sn+1,CQn+1) € Partial 4 if 3P = (50,CQ0)...(5n,CQn)(Sn+1,CQn+1) € Partial 4
if (sp+1 is a checky state) v i(i K n A 85 = Sp41A guess a decoration Pp = So...Sn41
then { Vi < j < n(s; is not an incy state)) then {if (P,Pp) is not contraction-safe

then fail then fail
else fail else fail
return (s,) return (s,)
nextSYM(sg...s, € S*)

nextSF(sg...sp € S*)
n « |o|
guess S,41 €S
if 3P = (s0,CQo0)...(5n,CQn)(Sn+1,CQn+1) € Partial o
if30<i<n(si =S8n+1)
then fail
return (s,)

n « |o|
guess Sp4+1 € S
if 3P = (50,CQ0)...(8n,CQn)(Sn+1,CQn+1) € Partial o
if3I0<i<n (si =58nt1) A
then { Vi < j < n(s; is not a sym state) then {
then fail
return (s,)

Fig. 6. The auxiliary procedures for Algorithm [A7]]

If ¢t = a then we have that £(t) = {(a,a,...)} and (a,a,...); s = (a,q,...)
for every 4,7’ € N*.

If t = t1 - t2 given two indexes 4,7’ € Nt and two sequences u € L(t1) an
w € L(t2). By definition we have (u - w) = (u1 - wy, ug - wa,...) and (u - w); i
(U1 - Wy, ug - Wa, . .., U - Wi, Ui - Wir, Uig1 - Wit1). Let us observe that (uw - w); i
u;i - w7 By inductive hypothesis we have w; € £(t1) and w; ;v € L(t2) an
thus (u . UJ)i)i/ € C(tl . tg).

If t = t; + to given two indexes i, € NT two sequences u € L(t1) and
w € L(t2). By definition we have (u + w) = (v1,v2,...) where v; € {u;,w;}
and (u + w);;j = (v1,...,0;, 0y, vi4+1). Let us observe that (u + w), » = u;i +
w; . By inductive hypothesis we have u; s € L(t1) and w; € L(t2) and thus
(u + w)m-z € E(tl + tz).

(=W

[oN

If ¢ = tf given a sequence uw € L(tf). For every un-
bounded non-decreasing function g : N — N such that we
have u* = (Ug(o) - - - Ug(1)=1> Ug(1) - - - Ug(2)—15---) and u;‘ji, =
(Ug(O) s Ug(1)—=1y -+ 5 Ug(i) - - - Ug(i41)—15 Ug(i?) - - - Ug(ir+1)—15 Ug(i+1) - - - Ug(i+2)—1>

Let A = g + 1) — g(’) Let us ob-
serve that the sequence u’ = (Ug(0), - -+ Ug(1)—15
sy Ug(i) -y Ug(i41)—15 Ug(ir)s - - - Ug(i/+1)—15 Ug(i+1)s - - - Ug(i+2)—15 - -) satis-

fies u' = (((ug(ir1)—1,9())g(i+1).9(")+1) - -)g(i+1)+A—1,g(ir+2)—1 and by inductive
hypothesis (we repeat the scrambling operation a finitely number of times on a
sequence in L4(t)) we have u' € L4(t) and thus for ¢'(n) = {g(n) nst .
g(n) + A otherwise
we have u’ € L(t%).
If t = I given a sequence u € L(tf). For every un-
bounded and nondecreasing function g : N — N such that:
(1) VnIig(i+1)—g(i) >n
(#4) Vn.[if Ji.g(i + 1) — g(i) = n, then YkIj > k.g(j + 1) — g(j) = n]}.

Algorithm A.1: FINDWITNESS(A = (S, ¥, so, C, A))

1«1

let ¢ .

begin_flag «— L

let P = (s0,CQo) where (s0, CQo)

the initial configuration of A

while —begin_flag

do

dbegin
i1

for j

do

..cpm be the sequence

of indexes c¢; < limit s.t. c; is a check state
for j «—1to M

let P = (s0,CQo)...(si—1,CQi—1) € Prefizesa
let k s.t. c; is a checky, state

guess begin_flag e {1, T} =1
if begin,flaq) then pre < limit
then {begzn —i—1 else pre « j — 1
s; < nextCS(P) b_flag — L
else 4P —P-si while —b_flag
Peit 1 guess b_flage {L, T}
“«— nethS(sl A Sbegin—l) if E,flaq
+1 do then {5]-&2'71
—1lto C :
e s; < nextSF (Spret1 ... 5i—1)
ifj=1 else PR
then pre « begin count < counter(CQ..[k])
else pre < e; 1 _ 1 J
b_flag «— L e-flag —
. while —e_flag
while —b_flag = 1 1T
guess b_flag e {1, T} 'gu:ess e-flag € {1,
if b_fla if e-flag
-Itag . . . si_1 is a checky state A
if s;_1 is an inc; state do
. count = 0 A 87 = S;_1
do then then b; «—i—1 then B Y
else fail do thene; —i—1
si < nextCS(spres1 .- Si—1) else fail
else P it 1 S; enextINC(SEj_*_l...si,l,k)
e_flag «— L clse if s; is an incy state
while —e_flag then count < count — 1
guess e_flage {1, T} ie—i+1
if e_flag ifj =M
if s;_1 is an inc; state end_flag < L
then then e; —i—1 sym_flag «— L
do else fail while —end_flag
s; <« nextCS(Spre41 .- - Si—1) guess end_flage {1, T}
if s; is a check; state if end_flag
else \ then fail then then {end «—i—1
ie—i+1 do s; « nextSY M(sey,+1 -
ifj=C 1 if s; is a sym state
limit_flag «— L ese then sym_flag < T
while —limit_flag ie—i+1
guess limit_flag e {1, T} if Send = Siimit A sym_flag
then if limit_flag then success
do { then {limit <« i—1 else fail
else {81 <—_ nextCS(sc41...8i—-1)
i«— 1+ 1

Fig. 7. The algorithm that decides the existence of a winning witness for A

L.8i—1)

we have u” (Ug(0) - - - Ug(1)—1, Ug(1) - - - Ug(2)—15---) and ul, =
(Ug(0) - - Ug(1) =15 - - Ug i) - - Ug(i+1)—1, Ug(i") - - - Ug(ir+1)—1, Ug(i+1) - - - Ug(i-+2)—1,
Let A = g+ 1) — g@@) Let us ob-
serve that the sequence u = (ug(o), ey Ug(1)—1
. ,ug(i) N 7ug(i+1)_1, ug(i/), ce ug(i/+1)_1, ug(H_l), ey ug(i+2)_1, .) satis-

fies u' = (((ug(ile)fl,g(i’))g(i+1),g(i’)+1) . ')g(i+1)+A71,g(i’+2)71 and by inductive
hypothesis (we repeat the scrambling operation a finitely number of times on a
g9(n) n<i

sequence in L(t)) we have v’ € L4(t) and thus for ¢'(n) = {g(n) A otherwise

(¢’ satisfies the same properties of g) we have v/ € £L(¢T). o

Moreover, given a language of word sequences L, we define its subse-
quence language II(L) as the language I1(£) = {w : v’ € L£,37 : Nt —
N increasing s.t. u', = wu}. Finally, for any T-regular expression e, we define
e[T/*] as the regular expression obtained from e by replacing each occurrence of
the T operator by the * one

Lemma 7. For every T-reqular t expression we have IT(L4(t)) = Ls(¢[T/+]).

Proof. Both II(L4(t)) S Ls(t[T/+]) and II(Ls(t)) 2 Ls(¢[T/*]) are proved by
structural induction on the T-regular expression t.
We begin with IT(L4(t)) € Ls(t[T/#]).
Base cases are trivial since t[T/*] T for t € {a, T}
If t = a then we have that £(t) = {(a,qa,...)} and (a,a,...) = (a,aq,...) for
every increasing function 7.
If t = ¢ - t2 given two sequences two sequences u € L(t1) and w € L(t2)
we have u - w = (uy - wy,us - wa,...). Given an increasing function = we have
W)y = (Un(1) - Wr(1), Ur(2) " Wr(2), - - -) by inductive hypothesis we have u, €
(s(t1)) = Ls(t1[T/#]) and w, € IT(Ls(t2)) = Ls(t2[T/*]) and thus (u-w), =
Ug * Wi
If t = t; + t2 given two sequences u € L(t1) and w € L(t2) we have u + w =
(v1,v2,...) with v; € {u;,w;} for every i € Nt. Given an increasing function
7 we have (u - w)r = (Vx(1),Vr(2),--.) by inductive hypothesis we have u, €
I(Ls(t1)) = Ls(t1[T/#]) and wy € I (Ls(t2)) = Ls(t2[T/*]) and thus (u+w), =
Ur + Wi

If ¢ = tf given a sequence u € L(tF), an unbounded
non-decreasing function g : N — N and an increasing func-
tion 7. We have u* = (ugq).. Ug)—1,Ug(1)- - Ug2)—1,---) and
uf o= (Ug(iy) - Ug(iy+1)— 1> Ug(ia) - - - Ug(in+1)—1 ...) such that for ev-
ery j € Nt we have i; = 7(j). Conblder now the sequence
’lL/ = (ug(i1)7"'7 g(i1+1),1,ug(i2),...,’U,g(inrl),l,...) this is the Se-
quence ul of w(L(t1)) for the increasing function 7« with img(n’) =
[g(i1),. g(zl + 1) — 1] v [g(i2),g(iz + 1) — 1] U Let us define

Aj (g(z] +1) — 1) — g(i;). By inductive hypothesis we have u/. € t[T/«]. Thus
uk € L((t[T/+])*)) using the function ¢’'(n) = Xy ,A;.

If ¢t = tI' given a sequence wu € L), an un-

bounded non-decreasing function ¢ : N — N that satisfies
(1) VnIig(i+1)—g(i)>n

(#9) Vn.[if Ji.g(i + 1) — g(i) = n, then Vk3Ij > k.g(j + 1) — g(j) =

an increasing function 7. We have u? = (Ug(0) - - - Ug(1)=15 Ug(1) - - - Ug(2)—15 - - -)

nl}. and

and UZ; = (ug(il) Ui +1)—15 Ug(in) - - - Ug(ig+1)—1s - - .) such that for
every j € Nt we have i; = 7(j). Consider now the sequence
u' = (Ug(iy)s ey Ug(in+1)—15 Ug(ig)s - - - » Ug(iz+1)—15---) this is the sequence

ul. of w(L(t1)) for the increasing function 7’ with img(n’) = [g(i1),...g(i1 +
1) — 1] u [g(i2),g(i2 + 1) — 1] U Let us define A; = (g(i; + 1) — 1) — g(4;).
By inductive hypothesis we have u € t[T/]. For ¢'(n) = Xy ,A4; let us
observe that ¢’ is unbounded non decreasing but it does not necessarily satisfies
(1) Vndig(i+1)—g(i) >n
(#9) Vn.[if Ji.g(i + 1) — g(i) = n, then YkIj > k.g(j + 1) —g(j) =n
thus uk € Ls((¢[T/])*).
Now we prove IT(L,(t)) 2 Ls(t[T/#]).
Base cases are trivial since ¢[T/«] = T for t € {a, J}.

1. and

If t = t1 - t2 given two sequences two sequences u € L(t1[T/*]) and w €
L(t2[T/*]). By inductive hypothesis there exist two sequences v’ € L(t1) and
w' € L(t2) and two increasing functions 7 and 7’ for which v/ = vand w/, = w.

We build a word w” as follows:

w// _ wl,

if for every 7 we have w;/(j) = wz(j
let j be the minimum index such that w;,(j) # wg(j);

) then exit;

let j" be an index such that wf, = wl,
we put w” = wl oy
return to 2.

B i o

The existence of the index j’ in step four is guaranteed 4 by the fact that w”
is build by taking only the words of the sequence w’ and thus of the sequence
w!, = w. The limit of this (possibly infinite) procedure is a sequence w” such
that:
— w” € L(t2) since w’ € L(t2) and w” is built via scrambling operations only
(we apply Lemma |§| here);
- wl =wl,.
Finally we have (u'-w”); = w-w and (v'-w”); € II(L4(t)). thus u-w € IT(L,(t)).
If t = ¢1 + t2 given two sequences two sequences u € L(t1[T/+]) and w €
L(t2[T/*]). By inductive hypothesis there exist two sequences v’ € L(t1) and
w' € L(t2) and two increasing functions 7 and 7’ for which v/, = wand w/, = w.
We build a word w” as in the previous step. Finally we have (v’ + w"); = u + w
and (u' +w"), € IT(Ls(t)). thus u + w € I (L4(t)).
If t = t¥ given a sequence u € L(¢1[T/#]) by inductive hypothesis there exist
a sequence v’ € L(t1) and an increasing functions = such that u] = u. Let f an
unbounded non decreasing function we build a sequence u” as follows:

" __ /.
1. v =y

2. if for every i € N* and every 0 < j < f(i+1)— f(i) we have u;’r(i)ﬂ = Uf(i)4j
then exit;

3. let ¢ be the t minimum index such there exists 0 < j < f(i + 1) — f(7) for
which we have u;’r(i)ﬂ. # Ug(i)+j, let us assume j be the minimum among
such indexes;

4. let j" be an index such that uj, = w13

"N " .

5. we put w” = Wi (5y—1,55

6. return to 2.

For the very same arguments explained in the previous cases we have
that «” € L(¢1). Moreover for every ¢ € Nt and every 0 < j <

fi+1) = f(i) we have ul .. = uggiy;- Let us define the sequence

(u"* = (uf.. 'u;:'(l)-&-f(l)—l’ ug(1)+f(1) .. u;:@)_l, u;’r(z) . u;’r(2)+f(2)_1, ...) we
have (u”)* € Ls(t) and let 7’ be the increasing function with img(n’) = {2n+1:
n € N} it is easy to see that (u”)% € Ly(t) = (w1 ... up1)—1,Us) .- Up@)—1,- - -)
and thus u € IT(L(t)).

If t = tT given a sequence u € L(t,[T/+]) by inductive hypothesis there exist
a sequence v’ € L(t1) and an increasing functions = such that u. = u. Let f an
unbounded non decreasing function we build a sequence u” as in the previous
case and we have that for every i € NT and every 0 < j < f(i +1) — f(i) we

have w7 ;= s+

We define the sequence u"”, the functions f’ and n’ as the result of the
following procedure:

1. v” =", 7T = 7, 7 is the increasing function with img(7’) = {2n+1: n € N}
, ¢ is the increasing function with img(g) = {0, 7(1), 7 (1) + f(1),...} and we
put i = 1; 4

2. let M; =35 (f(j) — f(j — 1)) + X5y j(=i(i + 1)/2) for some k > i such
that M; > 7(i + 1) —7(3) + (f(4));

3. let A2 =M; —7(i +1) = 7(i) + (f(9)) we apply u” = usiy\ ¢y wiiy+ (i) fOT
A; times;

4. let 7 be the function 7 (n) = 7(n) for n < i and 7 (n) = 7(n) + A; otherwise
we put ™ = 7;

5. let " be the increasing function with 7" ()
7'(4) + k + (i(i + 1)/2) otherwise, we put «’

= 7'(j) for each j < i n"(j) =

6. let ¢’ the increasing function with img(g')*: {’i € img(g) s < 7(d) +

FOY O Upo,, o AT @) + £ + 252, () = G = 1) 0 Uy 7 + () +
g

Y1 (F(G) = £(G = 1) + 4}, we put g =
T.i=14+1;
8. go back to step 2.

Let us define the sequence (u")" = (uf'...uj | ujyy ... uyy ,,...) where

u” and ¢ are the limit of the sequence and function generated by the above
procedure. Clearly, (u”)” belongs to L4(t7). Finally, we have that (v”)%, =«

where 7’ is the limit of the function 7’ by the above procedure belongs.

B.2 Proof of Lemma 3

Given a CQ automaton A = (S, X, sg, N, A) we define the relation —*¢ as the
reflexive and transitive closure of the relation —¢. Given a CQ automaton
A= (S,%,59,N,A) and a word w € X* We define the relation —' between the
configurations of A where (s,CQ) —% (s',CQ’) if and only if (s,CQ) —7%
(51,CQ1) —4M (52,CQ2) =% .. % (52,0Qa) =4 (53,CQs) —%
.- _>:k4€ (82\w\—1ch2\w|—1) _)1_,1:\“1“” (52\w|7CQ2|w|) _)je (slchl)'

Lemma 3.

Let t be a T-regular expression and S; be the corresponding set of automata.
It holds that £(t) = | L£s((Si, X, sh, Ni, Ai U {(s%, €, 55, (1, check))})).

Ai=(8;,5,58,N;, A;)ES;

Proof. Given a T-regular expression we prove that the set of automata S; build
inductively as described in Sectionsatisﬁes Lt)= U Ls((Si, X, sh, Ni, Aju

Ai:(Si,E,sg,Ni,Ai)eSt
{(s%: €, 50, (1, check))})).
If t = ¢J we have the automaton S; = {({so,ss}, X, s0,1,{})} as the unique
element of S;. It is easy to see that ({so,s¢}, X, 50,1,{($f,e,50, (1,ch¢ck‘))})
does not recognize any sequence thus |J Ls((Si, X, sf, Ni, 4; v {(3},6,56,

Ai=(8:, 5,58, Ni,A:)eS,
(1, check)})) = @.

If ¢t = a we have the set of automata consisting of S =
{({s0,5¢}, X, 50,1,{(50,a,5¢,(1,n0-0p)), (sf,€ 5¢,(1,inc))})} and we con-
sider the automaton A’ = (sg,a, sy, (1,n0-0p)),(sy, €, 57, (1,inc)), (s, €, So,
(1,check))}). We have to prove that Ls(A) = {(a,a,...)}. For
Ls(A) < {(a,a,...)} consider a successful computation P of A’ we have
by the structure of the automata that it is of the form P = (so,) —%
(Sf,CQ1>k1 - (S(),CQQ) —>?4, (Sf,CQ3)k2 - (80,0Q4)... where
(s7,CQ;)% is a shorthand for the iteration (sf, CQ;) =% (sf,CQ;) k; times.
It is easy to see that exactly one a symbol appear in between two consecutive
so where the counter one has been checked exactly once. Since we have that
{(a,a,...)} is a singleton set and we already proved that £s(A") < {(a,qa,...)}
and L4(A") # & we may conclude that L;(A") = {(a,a,...)}. lf t = t; - t3 by in-
ductive hypothesis we have that £(t1) = | Ls((Si, X, 88, Ni, Ai v {(s}, €, b,

Ai=(8:,5,85,Ni, A)eS,
(1,check))})) and L(ta) = U Ls((Si, ¥, 85, Ni, Aiw{(sh, €, 55, (1, check))})).
Ai=(8:,%,s},Ni,A;)ES,
For every pair of automata A € S;, and A’ € S, let A” = (S, X, s9, N + 1, A4”)
and A” = (8,%,s(,N' + N + 1,A”) be the 1-shifted version of A and
the N + 1-shifted version of A’, respectively. For every such pair we have
that the automata A- A = (Su S U {s}},E,sO,N + N +1,A" v A" U
{(sf.€ 50, (2, check)), (s}, €, 8%, (N + 2,check)), (s}, €, 8%, (1,inc))}) belongs to
Sty-1,- An accepting computation P of the automata (SuS"U{s’}, X, s, N+N'+
LA"OA" U{(sf, €, 80, (2, check)), (s, €, 8%, (N +2, check)), (s}, €, 8%, (1,inc)) }u
{(s, € 50, (1, check))}) has the following form P =

(807 CQO) LU (Sfa CQTL])(£67 CQTL1+1) .. (S/f') CQ”Q)(S}/‘7 CQn2+1)k1 (507 CQ’!L?,) e

(£, CQny) (80, CQnys1) - - (84, CQny) (8%, CQn.+1)*2.... This means that we
have exactly one check operation of the counters 2 and N + 2 in this order in
between two consecutive check operations of the counter 1. Since A” and A" are
only shifted version of the automata A and A" we have, by inductive hypothesis
that the sequences v and w induced by the traces s,,,CQp,)...(sf,CQn,+1)
and (s4,CQn;yy+1) - (84, CQn,,,) (for i € N) respectively, satisfy u € Ls(t1)
and w € L(t2) (inductive hypothesis) and thus u - w € L4(¢; - t2). On the other
hand let us consider a sequence (vi,va,...) € L(t1 - t2) by definition such a
sequence may be seen as a sequence (uj - wy,us - Wa,...) where v; = u; - w;
then u = (uj,us,...) € Ls(t1) and w = (wy,ws,...) € Ls(t2). By inductive
hypothesis we have that there exists an automaton A = (S, X, s, N, A) € S,
and an automaton A" = (5', X s{, N, A") € S, such that u € L,(A) and
w € Ly(A"). Then we have two accepting computations P = (so,CQo) —%
(sfv CQn1)kl (307 CQn1 +k1+1) _’?42 (sfa CQn2)k2 .. wPl = (56, CQ{)) _>_,u¢{1
(51, CQun) (56, CQlr i) —% (57,0Qu)2 of (8,550, N, A U
{(sf,€ 50, (1, check))}) and (S, X, s, N, A" U {(s},¢€, 50, (1, check))}) re-
spectively. ~ Let us consider the computation P” = (s0,CQp) —%
(55, CQn)" (50, CQY) =% (57, CQ)" (57, CQ1)" (50, CQny k1) —%
(55 CQu V(s CQpy 1) —1% (57, CQl)2 (5, Q) ... where CQ! s
the 1-shifted version of the queue C'Q;,CQY is the N + 1-shifted version of the
queue CQ; and |{h; : i e N}| = w and for every je N |{i: h; = h;}| = w.

By construction we have that P” is an accepting computation of the automata
(SusS'u {s’;}, X,50, N+ N'+1, A" 0 A" U {(sf,¢€, 50, (2, check)), (s}, €, S’Ji, (N +
2, check)), (s’}f7 €, s’}, (1,inc))}u {(s’j’»7 €, S0, (1, check))}) and thus u-w € L;(A-A').

	Beyond omegaBS-regular languages: The class of omegaT-regular languages

