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Abstract

Interval temporal logics take time intervals, instead of time instants, as their

primitive temporal entities. One of the most studied interval temporal logics is

Halpern and Shoham’s modal logic of time intervals HS, which associates a modal

operator with each binary relation between intervals over a linear order (the so-

called Allen’s interval relations). A complete classification of all HS fragments

with respect to their relative expressive power has been recently given for the

classes of all linear orders and of all dense linear orders. The cases of discrete

and finite linear orders turn out to be much more involved. In this paper, we make

a significant step towards solving the classification problem over those classes of

linear orders. First, we illustrate various non-trivial temporal properties that can be

expressed by HS fragments when interpreted over finite and discrete linear orders;

then, we provide a complete set of definabilities for the HS modalities correspond-

ing to the Allen’s relations meets, later, begins, finishes, and during, as well as

the ones corresponding to their inverse relations. Given the results presented here,

the only missing piece of the expressiveness puzzle is that of the definabilities for

the modality corresponding to the Allen relation overlaps (those for the inverse

relation overlapped by would immediately follow by symmetry).

1 Introduction

Interval reasoning naturally arises in various fields of computer science and artificial in-

telligence, ranging from hardware and real-time system verification to natural language

∗This paper is an extended version of [3], submitted to JELIA 2014. It contains a simplified version of

one of the proofs proposed there.
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processing, from constraint satisfaction to planning [4, 5, 14, 22, 23, 25]. Interval tem-

poral logics make it possible to reason about interval structures over linearly ordered

domains, where time intervals, rather than time instants, are the primitive ontological

entities. The distinctive features of interval temporal logics turn out to be useful in

various application domains [8, 11, 21, 22, 25]. For instance, they allow one to model

telic statements, that is, statements that express goals or accomplishments, e.g., the

statement: ‘The airplane flew from Venice to Toronto’ [21]. Moreover, when we re-

strict ourselves to discrete linear orders, such as, for instance, N or Z, some interval

temporal logics are expressive enough to constrain the length of intervals, thus allow-

ing one to specify safety properties involving quantitative conditions [21]. This is the

case, for instance, with the well-known ‘gas-burner’ example [25]. Temporal logics

with interval-based semantics have also been proposed as suitable formalisms for the

specification and verification of hardware [22] and of real-time systems [25].

The variety of binary relations between intervals in a linear order was first studied

by Allen [4], who investigated their use in systems for time management and plan-

ning. In [16], Halpern and Shoham introduced and systematically analyzed the (full)

logic of Allen’s relations, called HS in this paper, that features one modality for each

Allen relation. In particular, they showed that HS is highly undecidable over most

classes of linear orders. This result motivated the search for (syntactic) HS frag-

ments offering a good balance between expressiveness and decidability/complexity

[6, 7, 9, 10, 12, 18, 20, 21]. A comparative analysis of the expressive power of HS

fragments is far from being trivial, because some HS modalities are definable in terms

of others, and thus syntactically different fragments may turn out to be equally expres-

sive. Moreover, the definability of a specific modality in terms of other ones depends,

in general, on the class of linear orders over which the logic is interpreted, and the

classification of the relative expressive power of HS fragments with respect to a given

class of linear orders cannot be directly transferred to another class. More precisely,

while definabilities do transfer from a class C to all its proper sub-classes, there might

be new definability relations that hold in some sub-class of C, but not in C itself. Con-

versely, undefinabilities do transfer from a class to all its proper super-classes, but not

vice versa. Proving a specific undefinability result amounts to providing a counterex-

ample based on concrete linear orders from the considered class. As a matter of fact,

different assumptions on the underlying linear orders give rise, in general, to different

sets of definabilities [2, 13].

Contribution. Many classes of linear orders are of practical interest, including the

class of all (resp., dense, discrete, finite) linear orders, as well as the particular linear

order on R (resp., Q, Z, and N). A precise characterization of the expressive power of

all HS fragments with respect to the class of all linear orders and that of all dense linear

orders has been given in [13] and [2], respectively. The classification of HS fragments

over the classes of discrete and finite linear orders presents a number of convoluted

technical difficulties. In [12], the authors focus on strongly discrete linear orders, by

characterizing and classifying all decidable fragments of HS with respect to both com-

plexity of the satisfiability problem and relative expressive power. In this paper, we

make a significant step towards a complete classification of the expressiveness of all

(decidable and undecidable) fragments of HS over finite and discrete linear orders, and

in doing so we considerably extend the expressiveness results presented in [12]. As a

matter of fact, given the present contributions, the only missing piece of the expres-

siveness puzzle is that of the definabilities for the modality corresponding to the Allen

relation overlaps (those for the inverse relation overlapped by would immediately fol-
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HS modalities

〈A〉

〈L〉

〈B〉

〈E〉

〈D〉

〈O〉

Allen’s relations

[x, y]RA[x′, y′] ⇔ y = x′

[x, y]RL[x
′, y′] ⇔ y < x′

[x, y]RB [x′, y′] ⇔ x = x′, y′ < y

[x, y]RE [x′, y′] ⇔ y = y′, x < x′

[x, y]RD [x′, y′] ⇔ x < x′, y′ < y

[x, y]RO [x′, y′] ⇔ x < x′ < y < y′

Graphical representation
x y

x′ y′

x′ y′

x′ y′

x′ y′

x′ y′

x′ y′

Figure 1: Allen’s interval relations and the corresponding HS modalities.

low by symmetry).

Structure of the paper. In the next section, we introduce the logic HS. Then, in Sec-

tion 3, we introduce the notion of definability of a modality in an HS fragment, and we

present the main tool we use to prove our results. In order to provide the reader with

an idea of the expressive power of HS modalities, we also illustrate some meaningful

temporal properties, like counting and boundedness properties, which can be expressed

in HS fragments when interpreted over discrete linear orders. Then, as a warm-up, in

Section 4 we present a first, simple expressiveness result, by providing the complete

set of definabilities for the HS modalities 〈A〉, 〈L〉, 〈A〉, and 〈L〉, corresponding to

Allen’s relations meets and later, and their inverses met by and before, respectively.

Section 5 contains our main technical result, that is, a complete set of definabilities for

the HS modalities 〈D〉, 〈E〉, 〈B〉, 〈D〉, 〈E〉, and 〈B〉, corresponding to Allen’s rela-

tions during, finishes, and begins, and their inverses contains, finished by, and begun

by, respectively. The proofs of the results in this section are rather difficult and much

more technically involved than the ones in Section 4. We conclude the paper with some

final remarks.

2 Preliminaries

Let D = 〈D,<〉 be a linearly ordered set. An interval over D is an ordered pair [a, b],
where a, b ∈ D and a ≤ b. An interval is called a point interval if a = b and a strict

interval if a < b. In this paper, we assume the strict semantics, that is, we exclude

point intervals and only consider strict intervals. The adoption of the strict semantics,

excluding point intervals, instead of the non-strict semantics, which includes them,

conforms to the definition of interval adopted by Allen in [4], but differs from the one

given by Halpern and Shoham in [16]. It has at least two strong motivations: first, a

number of representation paradoxes arise when the non-strict semantics is adopted, due

to the presence of point intervals, as pointed out in [4]; second, when point intervals

are included, there seems to be no intuitive semantics for interval relations that makes

them both pairwise disjoint and jointly exhaustive. If we exclude the identity relation,

there are 12 different relations between two strict intervals in a linear order, often called

Allen’s relations [4]: the six relations RA (adjacent to), RL (later than), RB (begins),

RE (ends), RD (during), and RO (overlaps), depicted in Figure 1, and their inverses,

that is, RX = (RX)−1, for each X ∈ {A,L,B,E,D,O}.

We interpret interval structures as Kripke structures, with Allen’s relations play-

ing the role of the accessibility relations. Thus, we associate a modality 〈X〉 with
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each Allen relation RX . For each X ∈ {A,L,B,E,D,O}, the transpose of modal-

ity 〈X〉 is modality 〈X〉, corresponding to the inverse relation RX of RX . Halpern

and Shoham’s logic HS [16] is a multi-modal logic with formulae built from a finite,

non-empty set AP of atomic propositions (also referred to as proposition letters), the

propositional connectives ∨ and ¬, and a modality for each Allen relation. With every

subset {RX1 , . . . , RXk
} of these relations, we associate the fragment X1X2 . . .Xk of

HS, whose formulae are defined by the grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X1〉ϕ | . . . | 〈Xk〉ϕ,
where p ∈ AP . The other propositional connectives and constants (e.g., ∧, →, and ⊤),

as well as the dual modalities (e.g., [A]ϕ ≡ ¬〈A〉¬ϕ), can be derived in the standard

way. We define the modal depth of a formula as the largest nesting of modal operators

in it. For a fragment F = X1X2 . . .Xk and a modality 〈X〉, we write 〈X〉 ∈ F if

X ∈ {X1, . . . , Xk}. Given two fragments F1 and F2, we write F1 ⊆ F2 if 〈X〉 ∈ F1

implies 〈X〉 ∈ F2, for every modality 〈X〉. Finally, for a fragment F = X1X2 . . .Xk

and a formula ϕ, we write ϕ ∈ F or, equivalently, we say that ϕ is an F -formula,

meaning that ϕ belongs to the language of F .

The (strict) semantics of HS is given in terms of interval models M = 〈I(D), V 〉,
where D is a linear order, I(D) is the set of all (strict) intervals over D, and V is a

valuation function V : AP 7→ 2I(D), which assigns to each atomic proposition p ∈ AP
the set of intervals V (p) on which p holds. The truth of a formula on a given interval

[x, y] in an interval modelM is defined by structural induction on formulae as follows:

• M, [x, y]  p if and only if [x, y] ∈ V (p), for each p ∈ AP ;

• M, [x, y]  ¬ψ if and only if it is not the case that M, [x, y]  ψ;

• M, [x, y]  ϕ ∨ ψ if and only if M, [x, y]  ϕ or M, [x, y]  ψ;

• M, [x, y]  〈X〉ψ if and only if there exists [x′, y′] such that [x, y]RX [x′, y′] and

M, [x′, y′]  ψ, for each modality 〈X〉.

Formulae of HS can be interpreted over a class of interval models (built on a given

class of linear orders). Among others, we mention the following classes of (interval

models built on important classes of) linear orders: (i) the class of all linear orders

Lin; (ii) the class of (all) dense linear orders Den, that is, those in which for every

pair of distinct points there exists at least one point in between them (e.g., Q and R);

(iii) the class of (all) discrete linear orders Dis, that is, those in which every element,

apart from the greatest element, if it exists, has an immediate successor, and every

element, other than the least element, if it exists, has an immediate predecessor (e.g.,

N, Z, and Z + Z); (iv) the class of (all) finite linear orders Fin, that is, those having

only finitely many points. A formula φ of HS is valid over a class C of linear orders,

denoted by C φ, if it is true on every interval in every interval model belonging to C.

Two formulae φ and ψ are equivalent relative to the class C of linear orders, denoted

by φ ≡C ψ, if C φ↔ ψ.

3 Definability and expressivenesss

Definition 1 (Definability) A modality 〈X〉 of HS is definable in an HS fragment F
relative to a class C of linear orders, denoted 〈X〉 ✁C F , if 〈X〉p ≡C ψ for some

F -formula ψ over the atomic proposition p, for any p ∈ AP . Then, the equivalence

〈X〉p ≡C ψ is called a definability equation for 〈X〉 in F relative to C. We write

〈X〉 6✁ CF if it is not the case that 〈X〉✁C F .

As we have already noted, smaller classes of linear orders inherit the definabilities
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holding for larger classes: if C1 and C2 are classes of linear orders such that C1 ⊂ C2,

then all definabilities holding for C2 are also valid for C1. However, more definabilities

can possibly hold for C1. On the other hand, undefinability results for C1 hold also for

C2. In the rest of the paper, we omit the class of linear orders when it is clear from

the context (e.g., we will simply write 〈X〉p ≡ ψ and 〈X〉 ✁ F for 〈X〉p ≡C ψ and

〈X〉✁C F , respectively).

It is known from [16] that, when the strict semantics is assumed, all HS modali-

ties are definable in the fragment containing modalities 〈A〉, 〈B〉, and 〈E〉, and their

transposes 〈A〉, 〈B〉, and 〈E〉, while in the non-strict semantics, the four modalities

〈B〉, 〈E〉, 〈B〉, and 〈E〉 suffice, as shown in [24]. Given two HS fragments F1 and

F2, we say that F2 is at least as expressive as F1, denoted F1 � F2, if each operator

〈X〉 ∈ F1 is definable in F2, and that F1 is strictly less expressive than F2, denoted

F1 ≺ F2, if F1 � F2 holds but F2 � F1 does not. The notions of expressively equiv-

alent fragments and expressively incomparable fragments can be defined likewise.

Definition 2 (Optimal definability) A definability 〈X〉✁F is optimal if 〈X〉 6✁F ′ for

each fragment F ′ such that F ′ ≺ F .

3.1 Proof techniques to disprove definability

In order to show non-definability of a given modality in a certain fragment, we use the

standard notion of N-bisimulation [15, 17, 19], suitably adapted to our setting.

Definition 3 Let F be an HS-fragment. An FN -bisimulation between two models

M = 〈I(D), V 〉 and M ′ = 〈I(D′), V ′〉 over a set of proposition letters AP is a se-

quence ofN relationsZN , . . . , Z1 ⊆ I(D)×I(D′) such that: (i) for every ([x, y], [x′, y′]) ∈
Zh, withN ≥ h ≥ 1,M, [x, y]  p if and only ifM ′, [x′, y′]  p, for all p ∈ AP (local

condition); (ii) for every ([x, y], [x′, y′]) ∈ Zh, with N ≥ h > 1, if [x, y]RX [v, w] for

some [v, w] ∈ I(D) and some 〈X〉 ∈ F , then there exists ([v, w], [v′, w′]) ∈ Zh−1 such

that [x′, y′]RX [v′, w′] (forward condition); (iii) for every ([x, y], [x′, y′]) ∈ Zh, with

N ≥ h > 1, if [x′, y′]RX [v′, w′] for some [v′, w′] ∈ I(D′) and some 〈X〉 ∈ F , then

there exists ([v, w], [v′, w′]) ∈ Zh−1 such that [x, y]RX [v, w] (backward condition).

Given an FN -bisimulation, the truth of F -formulae of modal depth at most h − 1 is

invariant for pairs of intervals belonging to Zh, withN ≥ h ≥ 1 (see, e.g., [15]). Thus,

to prove that a modality 〈X〉 is not definable in F , it suffices to provide, for every nat-

ural number N , a pair of models M and M ′, and an FN -bisimulation between them

for which there exists a pair ([x, y], [x′, y′]) ∈ ZN such that M, [x, y]  〈X〉p and

M ′, [x′, y′]  ¬〈X〉p, for some p ∈ AP (in this case, we say that the FN -bisimulation

violates 〈X〉). To convince oneself that this is enough to ensure that 〈X〉 is not de-

finable by any F -formula of any modal depth, assume, towards a contradiction, that

φ is an F -formula of modal depth n such that 〈X〉p ≡ φ. Since, for each N , there

is an FN -bisimulation that violates 〈X〉, there exists, in particular, one such bisimu-

lation for N = n + 1. Let ([x, y], [x′, y′]) ∈ ZN be the pair of intervals that violates

〈X〉, that is, M, [x, y]  〈X〉p and M ′, [x′, y′]  ¬〈X〉p. Then, the truth value of

φ over [x, y] (in M ) and [x′, y′] (in M ′) is the same, and this is in contradiction with

the fact that M, [x, y]  〈X〉p and M ′, [x′, y′]  ¬〈X〉p. A result obtained following

this argument applies to all classes of linear orders that contain (as their elements) both

structures on which M and M ′ are based. Notice that, in some cases, it is convenient

to define FN -bisimulations between a model M and itself.
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It is worth pointing out that the standard notion of F -bisimulation can be recovered

as a special case of FN -bisimulation. Formally, an F -bisimulation can be thought of

as an FN -bisimulation withN = 2 andZ1 = Z2. In the following, as is customary, we

will treat F -bisimulations as relations instead of sequences of two equal relations: if the

sequenceZ2, Z1 is an F -bisimulation, with Z1 = Z2 = Z , then we will simply refer to

it as to the relationZ . It is important to notice that showing that two intervals are related

by an F -bisimulation (i.e., they are F -bisimilar) is stronger than showing that they are

related by a relation ZN , which belongs to a sequence ZN , . . . , Z1 corresponding to

an FN -bisimulation (i.e., the intervals are FN -bisimilar). Indeed, while in the latter

case we are only guaranteed invariance of F -formulae of modal depth at most N − 1,

in the former case the truth of F -formulae of any (possibly unbounded) modal depth is

preserved. This means that undefinability results obtained using F -bisimulations are

not restricted to the finitary logics we consider in this paper, but also apply to extensions

with infinite disjunctions and with fixed-point operators.

Since F -bisimulations are notationally easier to deal with than FN -bisimulations,

it is in principle more convenient to use the former, rather than the latter, when proving

an undefinability result. However, while in few cases (see Section 4) a proof based

on F -bisimulations is possible, this is not generally the case, because some modalities

that cannot be defined in fragments of HS can be expressed in their infinitary versions.

In those cases (see Section 5), we resort to a proof via FN -bisimulations.

For a given modality 〈X〉 and a given class C of linear orders, we shall identify a set

of definabilities for 〈X〉, and we shall prove its soundness, by shoving that each defin-

ability equation is valid in C, and its completeness, by arguing that each definability is

optimal and that there are no other optimal definabilities for 〈X〉 in C. Completeness is

proved by computing all maximal fragments F that cannot define 〈X〉 (in the attempt

of defining 〈X〉 in F , we can obviously make use of the set of known definabilities).

For each modality, such fragments are listed in the last column of Figure 2. Depending

on the number of known definabilities, such a task can be time-consuming and error-

prone, so an automated procedure has been devised and implemented in [1] to serve

the purpose. Then, for each such F and each N ∈ N, we provide an FN -bisimulation

that violates 〈X〉. Notice that all the classes of linear orders we consider in this paper

are (left/right) symmetric, namely, if a class C contains a linear order D = 〈D,≺〉, then

it also contains (a linear order isomorphic to) its dual linear order Dd = 〈D,≻〉, where

≻ is the inverse of ≺. This implies that the definabilities for 〈L〉, 〈A〉, 〈B〉, and 〈B〉
can be immediately deduced (and shown to be sound and optimal) from those for 〈L〉,
〈A〉, 〈E〉, and 〈E〉, respectively.

Figure 2 depicts the complete sets of optimal definabilities holding in Dis and Fin

for the modalities 〈L〉, 〈A〉, 〈D〉, 〈D〉, 〈E〉, and 〈E〉 (recall that those for 〈L〉, 〈A〉,
〈B〉, and 〈B〉 follow by symmetry). Section 4 and Section 5 are devoted to proving

completeness of such sets. For all the modalities, but 〈A〉 and 〈A〉, soundness is an

immediate consequence of the corresponding soundness in Lin, shown in [13]. For

lack of space, we omit the proofs of the soundness of the definabilities for 〈A〉 and

〈A〉, which anyway are quite straightforward. Finally, while it is known from [16] that

〈O〉✁BE (resp., 〈O〉✁BE), it is still an open problem whether this is the only optimal

definability for 〈O〉 (resp., 〈O〉) in Dis and in Fin.

3.2 Expressing properties of a model in HS fragments

We give here a short account of meaningful temporal properties, such as counting and

(un)boundedness ones, which can be expressed in HS fragments, when they are inter-
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Modalities Equations Definabilities Maximal fragments not defining it

〈L〉 〈L〉p ≡ 〈A〉〈A〉p 〈L〉 ✁ A
BDOALBEDO

BEDOALEDO

〈A〉
〈A〉p ≡ ϕ(p) ∨ 〈E〉ϕ(p)∗ 〈A〉 ✁ BE

LBDOALBEDO

LBEDOALEDO
∗ϕ(p) := [E]⊥∧ 〈B〉([E][E]⊥∧〈E〉(p ∨ 〈B〉p))

〈D〉 〈D〉p ≡ 〈B〉〈E〉p 〈D〉 ✁ BE
ALBOALBEDO

ALEOALBEDO

〈D〉 〈D〉p ≡ 〈B〉〈E〉p 〈D〉 ✁ BE
ALBEDOALBO

ALBEDOALEO

〈E〉 no definabilities ALBDOALBEDO

〈E〉 no definabilities ALBEDOALBDO

Figure 2: Optimal definabilities in Dis and Fin. The last column contains the maximal

fragments not defining the modality under consideration.

preted over discrete linear orders. The outcomes of such an analysis are summarized

in Figure 3 (other properties can obviously be expressed as Boolean combinations of

those displayed). They demonstrate the expressiveness capabilities of HS modalities,

which are of interest by themselves. As an example, the ability of constraining the

length of intervals is a desirable feature of any formalism for representing and rea-

soning about temporal knowledge over a discrete domain. As a matter of fact, most

HS fragments have many chances to succeed in practical applications, and thus it is

definitely worth carrying out a taxonomic study of their expressiveness. As we alreay

pointed out, such a study presents various intricacies. For instance, in some fragments,

assuming the discreteness of the linear order suffices to constrain the lenght of intervals

(this is the case with the fragment E); other fragments rely on additional assumptions

(this is the case with the fragment DO, which requires the linear order to be right-

unbounded). This gives evidence of how expressiveness results can be affected by the

specific class of linear orders under consideration.

Counting properties. When the linear order is assumed to be discrete, some HS frag-

ments are powerful enough to constrain (to some extent) the length of an interval, that

is, the number of its points minus one. Let ∼∈ {<,≤,=,≥, >}. For every k ∈ N,

we define ℓ∼k as a (pre-interpreted) atomic proposition which is true over all and only

those intervals whose length is ∼-related to k. Moreover, for a modality 〈X〉, we

denote by 〈X〉kϕ the formula 〈X〉 . . . 〈X〉ϕ, with k occurrences of 〈X〉 before ϕ.

Limiting ourselves to a few examples, we highlight here the ability of some of the HS

modalities to express ℓ∼k, for any k. It is well known that the fragments E and B can

express ℓ∼k, for every k and ∼ (see, e.g., [16]). As an example, the formulae 〈E〉k⊤
and [E]k⊥ are equivalent to ℓ>k and ℓ≤k, respectively. The fragment D features lim-

ited counting properties, as, for every k, 〈D〉k⊤∧ [D]k+1⊥ is true over intervals whose

length is either 2 · k+1 or 2 · (k+1) (notice that, as a particular instance, [D]⊥ is true

over intervals whose length is either 1 or 2). In a sense, it is not able to discriminate the

parity of an interval. The counting capabilities of the fragment O are limited as well:

it allows one to discriminate between unit intervals (intervals whose length is 1) and

non-unit intervals (which are longer than 1), provided that the underlying linear order

is right-unbounded, like Z or N (〈O〉 possesses the same capability, provided that the

underlying linear order is left-unbounded, like Z or Z−). However, quite interestingly,

by pairing 〈D〉 and 〈O〉, or, symmetrically, 〈D〉 and 〈O〉, it is possible to express ℓ∼k

for every k and ∼ over right-unbounded linear order (left-unbounded linear orders if
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Counting properties Right Unboundedness (∃r)

ℓ>k ≡ 〈E〉k⊤ 〈B〉⊤, 〈A〉⊤
ℓ=k ≡ 〈E〉k−1⊤ ∧ [E]k⊥ (‡) 〈O〉⊤, [B]〈L〉⊤

ℓ>2·k ≡ 〈D〉k⊤ (§) 〈D〉⊤, 〈E〉〈O〉⊤

ℓ≤2·k ≡ [D]k⊥ (‡,§) [O]〈L〉⊤

ℓ>1 ≡† 〈O〉⊤ (♭) [D]〈L〉⊤
ℓ>2·k+1 ≡† 〈D〉k〈O〉⊤
ℓ=2·(k+1) ≡† 〈D〉k〈O〉⊤ ∧ [D]k+1⊥

†: only on right-unbounded domains; ‡: only on intervals longer than 1;
§: only on left-unbounded domains; ♭: only on intervals longer than 2.

Figure 3: Expressiveness of HS modalities over discrete linear orders.

〈O〉 is replaced by 〈O〉): it suffices to first use 〈D〉 to narrow the length down to k or

k + 1, and then 〈O〉 (or 〈O〉) to discriminate the parity.

(Un)boundedness properties. Let us denote by ∃r (resp., ∃l) a (pre-interpreted)

atomic proposition that is true over all and only the intervals that have a point to their

right (resp., left). Various combinations of HS operators can express ∃r. Once again,

while in some cases we need to assume only the discreteness of the underlying linear

order, there are cases where the validity of the definability relies on additional assump-

tions. For example, to impose that the current interval has a point to the right within the

fragmentO, we can use 〈O〉⊤ only on non-unit intervals (otherwise, 〈O〉 has no effect).

Analogously, it is possible to express ∃l, possibly under analogous assumptions.

4 The Easy Cases

In this section, we prove the completeness of the set of definabilities for the modalities

〈L〉, 〈L〉, 〈A〉, and 〈A〉, thus strengthening a similar result presented in [12, Theo-

rem 1].

Theorem 1 The sets of optimal definabilities for 〈L〉 and 〈A〉 (listed in Figure 2), as

well as (by symmetry) those for 〈L〉 and 〈A〉, are complete for the classes Dis and Fin.

Proof. The results for 〈L〉 (and, symmetrically, for 〈L〉) immediately follows from

[13], as the completeness proof for 〈L〉 presented there used a bisimulation between

models based on finite linear orders. Notice that 〈L〉 ✁ BE holds in Dis and Fin, as

it does in Lin. However, such a definability, which is optimal in Lin, is not optimal

in Dis and Fin (and thus it is not listed in Figure 2), due to the fact that 〈A〉 ✁ BE

(which is not a sound definability in Lin) holds over Dis. As a pleasing consequence,

we can extend Venema’s result from [24] concerning the expressive completeness of

the fragment BEBE in the non-strict semantics to the strict one under the discreteness

assumption.

According to Figure 2, 〈A〉 is definable in terms of BE, implying that the maximal

fragments not defining 〈A〉 are, as shown in the last column of Figure 2, LBDOALBEDO

and LBEDOALEDO. Thus, proving that 〈A〉 ✁ BE is the only optimal definability

amounts to providing two bisimulations, namely an LBDOALBEDO- and an LBEDOALEDO-

bisimulation that violate 〈A〉. As for the first one, we consider two models M and M ′,

both based on the finite linear order {0, 1, 2}. We set V (p) = {[1, 2]}, V ′(p) = ∅, and

Z = {([0, 1], [0, 1]), ([0, 2], [0, 2])}. It is easy to verify that Z is an LBDOALBEDO-

bisimulation that violates 〈A〉, as M, [0, 1]  〈A〉p and M ′, [0, 1]  ¬〈A〉p. As
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for the second one, models and valuations are defined as before, but we take now

Z = {([0, 1], [0, 1])}. Once again, it is easy to see that Z is an LBEDOALEDO-

bisimulation that violates 〈A〉, as M, [0, 1]  〈A〉p and M ′, [0, 1]  ¬〈A〉p. Since the

result is based on a finite linear order, it holds for both Dis and Fin.

5 The hard cases

In this section, we provide the completeness result for the modalities 〈D〉 and 〈D〉
(Theorem 2), as well as for 〈E〉, 〈E〉, 〈B〉, and 〈B〉 (Theorem 3).

A much more difficult and technically involved proof to deal with the modality

〈D〉 is sketched in [3], which is under submission. After the submission we devised a

simpler proof, which we propose in the following. For the sake of completeness, we

give the sketch of the original proof in Appendix A.

As a preliminary step, we introduce the notion of equivalence up to, denoted by

≃g
h, which is used in both proofs. It is a series of equivalence relations over Z up to a

certain threshold, which is given by the value of a suitably defined distance function g

on h.

Definition 4 (≃g
h) For any given function g : D → N, where D can be any prefix of

N, that is, D = {1, . . . , N}, for some N ∈ N, and for every h ∈ D, we define the

relation of equivalence up to g(h), denoted ≃g
h, as follows. For every pair of integers

n1, n2 ∈ Z, n1 ≃g
h n2 if and only if one of the following holds:

• n1 = n2,

• n1, n2 > g(h),

• n1, n2 < −g(h).

It is easy to see that the relation ≃g
h is an equivalence, that is, it is reflexive, symmet-

ric, and transitive. In particular, symmetry of ≃g
h will be useful for our purposes. In

addition, the following proposition can be easily verified.

Proposition 1 If g : D → N is monotonically non-decreasing, then n1 ≃g
h+1 n2

implies n1 ≃g
h n2, for each n1, n2 ∈ Z and each h ∈ D.

5.1 A simplified proof for 〈D〉

Theorem 2 The sets of optimal definabilities for 〈D〉 and 〈D〉 (listed in Figure 2) are

complete for the classes Dis and Fin.

In the following, we let N>c = {x ∈ N | x > c} and Z<−c = {x ∈ Z | x < −c},

for each c ≥ 0. Moreover, N+ and Z− denote the sets N>0 and Z<−0, respectively.

First, we define the function f : {1, . . . , N} → N as:

f(h) = h+ 1.

Let ξ̄ be a bijection from Z × N+ to N>k such that ξ̄(x, y) ≥ x + k for each

(x, y) ∈ Z × N+, and where k = 2 · f(N) + 4. It is not difficult to convince oneself

of the existence of such a function. For example, consider the classic enumeration

of the plane N+ × N+ (i.e., a bijection from N+ × N+ to N+), shown in Figure 4.
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Figure 4: An enumeration of the plane N+ × N+.

It is clear that such enumeration defines a bijection µ : N+ × N+ → N+ such that

µ(x, y) ≥ x for each (x, y) ∈ N+ × N+. It is also easy to verify that the function

µ̄ : Z \ {0} × N+ → N+, defined as

µ̄(x, y) =

{

2 · µ(x, y)− 1 if x > 0
2 · µ(−x, y) if x < 0

is a bijection from Z \ {0} × N+ to N+ such that µ̄(x, y) ≥ x for each (x, y) ∈
Z \ {0} × N+. Consequently, ¯̄µ : Z \ {0} × N+ → N>k, defined as ¯̄µ(x, y) =
µ̄(x, y)+k is a bijection from Z\{0}×N+ to N>k such that ¯̄µ(x, y) ≥ x+k for each

(x, y) ∈ Z \ {0} × N+. The existence of the desired bijection ξ̄ immediately follows:

it can be obtained following the same technique used for obtaining µ̄ from µ.

In the following we will consider the function ξ : Z × N+ → Z<−k, defined as:

ξ(x, y) = −ξ̄(−x, y) for each (x, y) ∈ Z × N+. Clearly, ξ is a bijection such that

ξ(x, y) ≤ x− k for each (x, y) ∈ Z× N+.

Now, we define the function η : Z → N+ as follows:

η(x) =

{

ȳ + x̄− x if x = ξ(x̄, ȳ) for some x̄, ȳ

k − 2 otherwise

Notice that if x = ξ(x̄, ȳ), then η(x) ≥ k + 1 holds, because ξ(x̄, ȳ) = x ≤ x̄− k and

ȳ ≥ 1. Thus, for each x, we have:

η(x) ≥ k − 2. (1)

Proposition 2 There exist two integers x and x+ 1 such that η(x) ≥ η(x+ 1) + 3.

Proof. Consider some x′ = ξ(x̄, ȳ), for some (x̄, ȳ) ∈ Z× N+. We have that η(x′) =
ȳ + x̄ − x′. Let y be the smallest integer such that y > x′ and η(y) = k − 2 (by

the definitions of η and ξ such an integer exists and it is not greater than −k). Let
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x p y

η(x)

(a) δ(x, y) = y − x− η(x) > 0.

w ¬p z

η(w)

(b) δ(w, z) = z − w − η(w) < 0.

Figure 5: Function δ and valuation V .

x = y− 1. Since η(x) 6= k− 2, it obviously holds η(x) = ¯̄y+ ¯̄x− x for some ¯̄x and ¯̄y
such that ξ(¯̄x, ¯̄y) = x. The thesis follows from η(x) ≥ k+1 and η(x+1) = k− 2.

Let δ(x, y) = y − x − η(x), for each interval [x, y] ∈ I(Z) (see Figure 5). The

following lemma will be useful in the proof of Lemma 2.

Lemma 1 The following statements hold.

a) For each interval [x, y] and each i ∈ Z, with −f(N)− 1 ≤ i ≤ f(N)+ 1, there

exist x′ and x′′ such that x− x′ = |i| and δ(x′′, x) = i.

b) For each interval [x, y] and each i ∈ Z, with −f(N)− 1 ≤ i ≤ f(N)+ 1, there

exists x′ < x such that δ(x′, y) = i.

Proof.

a) The fact that for each interval [x, y] and for each i ∈ Z, with −f(N)− 1 ≤ i ≤
f(N) + 1, there exists x′ such that x− x′ = |i| trivially holds. It suffices to take

x′ = x− |i|.

In order to show that for each interval [x, y] and for each i ∈ Z, with −f(N)−
1 ≤ i ≤ f(N)+1, there exists x′′ such that δ(x′′, x) = i, we proceed as follows.

For any given interval [x, y] and any given −f(N)−1 ≤ i ≤ f(N)+1, consider

the interval [x− f(N)− 2, x− i], and let x̄ = x− f(N)− 2 and ȳ = x− i− x̄.

Clearly, (x̄, ȳ) ∈ Z× N+. We take x′′ = ξ(x̄, ȳ). From η(x′′) = ȳ + x̄ − x′′, it

follows δ(x′′, x) = i, hence the thesis.

b) Analogously to what we have done above, for any given interval [x, y] and any

given −f(N) − 1 ≤ i ≤ f(N) + 1, we consider the interval [x̄, y − i], where

x̄ = min{y−f(N)−2, x−1}, and we let ȳ = y−i−x̄. Clearly, (x̄, ȳ) ∈ Z×N+.

We take x′ = ξ(x̄, ȳ). Since δ(x′, y) = i, we have proven the thesis.

Now, we can define the model M as M = 〈I(Z), V 〉, where the valuation V is as

follows.

[x, y] ∈ V (p) ⇔ δ(x, y) ≥ 0.

Notice that the model M is parametric in N because k, used in the definitions of ξ

and η, depends on N . Notice also that the length of p-intervals is at least k − 2. In

Figure 5 both an interval [x, y] satisfying p (thus δ(x, y) ≥ 0—Figure 5(a)) and an

interval [w, z] satisfying ¬p (thus δ(w, z) < 0—Figure 5(b)) are shown.
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We introduce here a sequence of relations ZN , . . . , Z1. In Lemma 2, we will show

that it is an ALBOALBEDON -bisimulation that violates 〈D〉. To this end, it is conve-

nient to define the equivalence relations ≡h
ℓ and ≡h

δ , for each h ∈ {1, . . . , N}, as

[x, y] ≡h
ℓ [w, z] if and only if y − x ≃f

h z − w

[x, y] ≡h
δ [w, z] if and only if δ(x, y) ≃f

h δ(w, z).

Intuitively, ≡h
ℓ relates pairs of intervals such that their lengths coincide or are both

larger than f(h). Analogously, ≡h
δ relates pairs of intervals [x, y] and [w, z] such

that δ(x, y) = δ(w, z) or min{δ(x, y), δ(w, z)} > f(h) or max{δ(x, y), δ(w, z)} <
−f(h). Everything is set for the definition of the sequence of relations {Zh}1≤h≤N .

Definition 5 For each h ∈ {1, . . . , N}, the hth component Zh of the sequence of

relations ZN , . . . , Z1 is defined as:

[x, y]Zh[w, z] ⇔ [x, y] ≡h
ℓ [w, z] and [x, y] ≡h

δ [w, z].

Since ≡h
ℓ and ≡h

δ are equivalence relations, so is Zh, for each h. Moreover, for each h,

the relations ≡h
ℓ and ≡h

δ induce the sets of equivalence classes

{[i]≡h
ℓ
| i ∈ {1, . . . , f(h)}∪{∞}} and {[i]≡h

δ
| i ∈ {−f(h), . . . , f(h)}∪{−∞,+∞}},

respectively, where,

[i]≡h
ℓ
=

{

{[x, y] | y − x = i} if i ∈ {1, . . . , f(h)}
{[x, y] | y − x > f(h)} if i = ∞

and

[i]≡h
δ
=







{[x, y] | δ(x, y) = i} if i ∈ {−f(h), . . . , f(h)}
{[x, y] | δ(x, y) < −f(h)} if i = −∞
{[x, y] | δ(x, y) > f(h)} if i = +∞.

Classes [i]≡h
ℓ

and [j]≡h
δ

are disjoint for each i ∈ {1, . . . , f(h)} and j ∈ {−f(h), . . . , f(h)}.

This is because δ(x, y) < −f(h) holds for each interval [x, y] such that y− x ≤ f(h),
as shown in the following:

δ(x, y) = y − x− η(x)
≤ f(h)− η(x) (by y − x ≤ f(h))
≤ f(h)− (k − 2) (by Formula (1))

= f(h)− 2 · f(N)− 2 (by k = 2 · f(N) + 4)

≤ f(h)− 2 · f(h)− 2 (by f(N) ≥ f(h))
< −f(h).

Let [∩]Zh
= [∞]≡h

ℓ
∩[−∞]≡h

δ
and let us rename [i]≡h

ℓ
as [ℓi]Zh

for each i ∈ {1, . . . , f(h)},

and [i]≡h
δ

as [δi]Zh
for each i ∈ {−f(h), . . . , f(h)} ∪ {+∞}. For each h, the set

EZh
= {[∼]Zh

| ∼ ∈ {ℓ1, . . . , ℓf(h), δ−f(h), . . . , δf(h), δ+∞,∩}}

characterizes the equivalence classes of Zh.

Lemma 2 The sequence of relationsZN , . . . , Z1 is anALBOALBEDON -bisimulation

that violates 〈D〉.

In order to make the proof of the lemma simpler, we introduce the following nota-

tion.
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Definition 6 For each modality 〈X〉, each interval [x, y], and each h ∈ {2, . . . , N},

and given a sequence of relations ZN , . . . , Z1, we define the set h
X,[x,y] as follows:

 
h
X,[x,y]= {[∼]Zh−1

∈ EZh−1
| [x, y]RX [w, z] for some [w, z] ∈ [∼]Zh−1

}.

Intuitively, h
X,[x,y] contains the equivalence classes in EZh−1

that are reachable from

the interval [x, y] using the modality 〈X〉. We are now ready to prove Lemma 2.

Proof (Lemma 2). First, we show the existence of two intervals [x, y] and [w, z], with

([x, y], [w, z]) ∈ ZN , such that M, [x, y]  ¬〈D〉p and M, [w, z]  〈D〉p. To this end,

consider the intervals [x, y] = [0, k−3] and the interval [w, z], where z = w+η(w)−1
and w is such that η(w) ≥ η(w + 1) + 3 (the existence of such w is guaranteed by

Proposition 2). Now, since δ(x, y) = −1 = δ(w, z), we have that [x, y] ≡h
δ [w, z]

holds. To verify that also the condition [x, y] ≡h
ℓ [w, z] is fulfilled, it suffices to observe

that y − x = k − 3 > f(N) ≥ f(h) and z −w = η(w)− 1 ≥ k − 3 > f(N) ≥ f(h)
(recall that, by Formula (1), η(w) ≥ k − 2). Thus, we have that ([x, y], [w, z]) ∈ ZN .

Moreover, since y − x < k − 2, it is clear, from the definition of V , that none

of its sub-interval satisfies p (because p-intervals are long at least k − 2), and thus

M, [x, y]  ¬〈D〉p holds. Contrarily, [w, z] is such that M, [w, z]  〈D〉p because the

interval [w + 1, z − 1] satisfies p. To see the latter, observe that δ(w + 1, z − 1) =
z − 1− w − 1− η(w + 1) = η(w) − η(w + 1)− 3 ≥ 0.

To complete the proof, we have to show that ZN , . . . , Z1 is an ALBOALBEDON -

bisimulation. The local condition is trivially fulfilled, as [x,w]Zh[w, z] implies [x,w] ≡h
δ

[w, z], which, in turn, implies δ(x, y) ≥ 0 if and only if δ(w, z) ≥ 0, and thus

M, [x, y]  p if and only if M, [w, z]  p.

We have to prove now that the forward and the backward conditions are fulfilled.

According to the definabilities shown in Figure 2, the fragment ALBOALBEDO is

equivalent to ABOABE, so we can restrict our attention to the operators featured by

the latter fragment. Thus, we distinguish several cases, corresponding to the different

modalities, and for each case we will show that the set of equivalence classes reachable

from both [x, y] and [w, z] is the same. Formally, let X ∈ {A,B,O,A,B,E} and

([x, y], [w, z]) ∈ Zh for some h > 1, we show that  h
X,[x,y]= 

h
X,[w,z]. Both the

forward and the backward conditions immediately follow.

• X = A. It holds h
X,[x′,y′]= EZh−1

, for each [x′, y′]. Thus, it trivially holds

 
h
X,[x,y]= 

h
X,[w,z].

• X = O. Similarly to the previous case, we have that  h
X,[x′,y′]= EZh−1

\

{[ℓ1]Zh−1
} holds for each [x′, y′]. Thus, it trivially holds h

X,[x,y]= 
h
X,[w,z].

• X = B. In this case, we observe that the value of  h
X,[x′,y′], for any given

interval [x′, y′], depends on the equivalence class [x′, y′] belongs to. Precisely, it

is as follows:

–  h
X,[x′,y′]= {[ℓi′ ]Zh−1

| i′ < i}, if ([x, y], [w, z]) ∈ [ℓi]Zh
, for some

i ∈ {1, . . . , f(h)};

–  h
X,[x′,y′]= {[ℓi′ ]Zh−1

| i′ < i} ∪ {[∩]Zh−1
}, if ([x, y], [w, z]) ∈ [∩]Zh

.

Notice that the function f plays a role here, allowing us to “simulate” den-

sity: if an interval [x, y] is h-long (i.e., its length is greater than f(h)), the

interval [x, y− 1], despite being shorter than [x, y], is (h− 1)-long as well;
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–  h
X,[x′,y′]= {[ℓi′ ]Zh−1

| i′ < i} ∪ {[∩]Zh−1
} ∪ {[δi′ ]Zh−1

| i′ < i}, if

([x, y], [w, z]) ∈ [δi]Zh
, for some i ∈ {−f(h), . . . , f(h)};

–  h
X,[x′,y′]= EZh−1

, if ([x, y], [w, z]) ∈ [δ∞]Zh
Again, we “simulate” den-

sity here in the same sense described before, to guarantee that, if [x, y] ∈
[δ∞]Zh

, then [x, y − 1] ∈ [δ∞]Zh−1
.

Since ([x, y], [w, z]) ∈ Zh, they belong to the same equivalence class in EZh
.

Thus, h
X,[x,y]= 

h
X,[w,z] holds.

• X = B. In this case an argument very similar to the one for the previous case

can be used to show that h
X,[x,y]= 

h
X,[w,z] holds, so we omit the details.

• X = A. It suffices to observe that from Lemma 1a it immediately follows that

 
h
X,[x′,y′]= EZh−1

, for each [x′, y′]. Thus, h
X,[x,y]= 

h
X,[w,z] holds.

• X = E: analogously to the previous case, by Lemma 1b, we have that h
X,[x′,y′]

contains the set {[δi]Zh−1
| i ∈ {−f(h − 1), . . . , f(h − 1)} ∪ {+∞}} ∪

{[∩]Zh−1
}. Moreover, if ([x, y], [w, z]) ∈ [ℓi]Zh

, for some i ∈ {1, . . . , f(h)},

then h
X,[x′,y′] also includes the set of equivalence classes {[ℓi′ ]Zh−1

| i′ > i}.

Again, since [x, y] and [w, z] belong to the same equivalence class in EZh
, it

holds that h
X,[x,y]= 

h
X,[w,z].

Since we have that h
X,[x,y]= 

h
X,[w,z] holds in all the above cases, we can conclude

that both the forward and the backward conditions are satisfied, hence the thesis.

The above proof makes use of a model based on the infinite set of integers Z, and

thus it proves the result for the class Dis. The whole construction can be adapted to

deal with the class Fin as well, by using a finite, “large enough” portion of Z, and then

by taking special care of the intervals that are “close” to the borders.

Based on the observation that 〈D〉 and 〈D〉 behave in a very similar way when

interpreted over classes of finite linear orders, using the same idea it is possible to

show that the result also holds for the modality 〈D〉.

5.2 The cases 〈E〉, 〈E〉, 〈B〉, and 〈B〉

In what follow, we state the undefinability result for the remaining modalities, namely,

〈E〉, 〈E〉, 〈B〉, and 〈B〉. Because of the technical complexity of the proof, we only pro-

vide here a sketch that explains the main idea behind the proof, and refer the interested

reader to Appendix B for the details.

Theorem 3 There are no definabilities for 〈E〉 and 〈E〉 (as shown in Figure 2), as well

as for their transposes 〈B〉 and 〈B〉, in the classes Dis and Fin.

Proof (sketch). We only give the sketch of the proof for the operators 〈E〉 and 〈E〉.
The result for 〈B〉 and 〈B〉 follows from a symmetric argument. According to Fig-

ure 2, there are no definabilities for 〈E〉 when the underlying structure is discrete, and

therefore ALBDOALBEDO is the only maximal fragment not defining it. This is also

true on Lin and Den, but on Dis and Fin it is simply harder to prove. An indication

of such a difficulty comes from the analysis of the proofs presented in [13], where the

density of the models involved plays a major role. Similarly to the case of Theorem 2,

〈E〉 is definable in an infinitary extension of the language AB:
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Figure 6: A graphical account of the ALBDOALBEDON -bisimulation that violates

〈E〉.

〈E〉p ≡
∨

k∈N
(ℓ=k ∧

∨

i<k(〈B〉(ℓ=i ∧ 〈A〉(ℓ=k−i ∧ p))),

since, as stated in Section 3.2, 〈B〉 can express ℓ=k, for every k ∈ N. Thus, there

exists no ALBDOALBEDO-bisimulation that violates 〈E〉, and we need to find an

ALBDOALBEDON -bisimulation. Unlike the case of Theorem 2, the best way to sketch

the construction is by explicitly giving models and relative valuation functions.

Let D be a finite domain, e.g., an arbitrarily large prefix of N. We define a modelM

based on it and an ALBDOALBEDON -bisimulation betweenM and itself that violates

〈E〉. Given N ∈ N, we make use of h ≤ N to refer to the hth component of the N -

bisimulation, also called in the following the hth step of the N -bisimulation. Building

the ALBDOALBEDON -bisimulation relies on a very technical construction that allows

us to “simulate density” over discrete models up to a certain threshold. To this end, in

analogy to what we did in the proof of Theorem 2, we will use monotonically increasing

threshold functions, which are parametric in h and which characterize a notion of “long

interval”, relative to a generic step h of the N -bisimulation. Since such functions

are monotonic, intervals that are “long” at the step h of the N -bisimulation always

contain intervals that are still “long” at the step h− 1, despite being obviously shorter

of the the containing interval. We will also use suitably defined equivalences up to

a threshold (given by the aforementioned threshold functions) to recognize when two

intervals are “long enough” to be indistinguishable by modal formulae in the fragment

ALBDOALBEDO whose modal depth is less than h ≤ N .

Now, we define the function f(h) = h+1, which will be used as threshold function,

and the function fP(h) =
∑h

i=1 f(i). Notice that both functions are monotonically

increasing. Moreover, we let t = 2(fP(1) + N + 4), a+ = t2

2 − 1, and a− = − t2

2 .

Finally, we consider a partition of D as in Figure B.

Three subsets, from left to right, are clearly identified in Figure B:

P = {p1, . . . , pt}, R = {x ∈ D | pt < x < a−}, A = {x ∈ D | a− ≤ x ≤ a+},

where we let pt = a− − t and, for each i < t, pi = pi+1 − 1.

For each h, we define a further partition of the subsets P and A, as follows:

P =
⋃







P−
h = {x | p1 ≤ x ≤ pfP(h)}

P+
h = {x | pt−fP(h)+1 ≤ x ≤ pt}

Ph = {x | pfP(h) < x < pt−fP(h)+1},

Ai = {x ∈ D | a− + (i − 1) · t ≤ x < a− + i · t},

A =
⋃











A−
h =

⋃fP (h)
i=1 Ai

A+
h =

⋃t

i=t−fP (h)+1 A
i

Ah = A \ (A−
h ∪ A+

h ) =
⋃t−fP (h)

i=fP (h)+1 A
i.
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Roughly speaking, we can say that stepping from h + 1 to h, the sets P−
h+1, P+

h+1,

A−
h+1, and A+

h+1 shrink, while the sets Ph+1 and Ah+1 expand. Now, let M be a

model based on D described as above. We first define a function V : A → P , and then

the valuation function V of M , which uses V :

V(y) =

{

p1 + i if y = a− + i, for each 0 ≤ i < t

V(y − t) if a− + t ≤ y ≤ a+,

V (p) = {[x, y] | y ∈ A implies x ≤ V(y)}.

In order to define an ALBDOALBEDON -bisimulation, we first define a sequence ZN ,

. . . , Z1, which is common to both cases 〈E〉 and 〈E〉, and then we show how to adjust

it to obtain our results. To characterize the generic hth component Zh of the sequence

ZN , . . . , Z1 we make use of an equivalence relation ≡h, parameterized by h, which is

defined as follows. Let us denote by x (resp., w) the nth element of Ai (resp., the mth

element of Aj), that is, x = ain and w = ajm. Then, we have:

x ≡h w iff















x = w or

x,w ∈ Ph or

x,w ∈ A and

{

i = j ∨ x,w ∈ Ah, and

m = n ∨ fP(h) < m,n < t− fP(h) + 1.

As already pointed out, to define the desired N -bisimulation, we also need an equiv-

alence up to a threshold. Such a relation, denoted ≃f
h, relates integers, which rep-

resent interval lengths, as follows: a ≃f
h b if and only if either a = b or both a

and b are greater than the threshold f(h). We can now define Zh as follows: for

each 1 ≤ h ≤ N , ([x, y], [w, z]) ∈ Zh if and only if: (a) x ≡h w and y ≡h z,

(b) y − x ≃f
h z − w, (c) if x,w ∈ P and y, z ∈ A, then V(y) − x ≃f

h V(z) − w,

and (d) if x ∈ Ai and y ∈ Aj for some i, j ∈ {1, . . . , t}, then w ∈ Ak and

z ∈ Aℓ for some k, ℓ ∈ {1, . . . , t} such that j − i ≃f
h ℓ − k. As a last step, we

define a new sequence of relations ZE
N , . . . , Z

E
1 such that ZE

N ∪ ZN , . . . , Z
E
1 ∪ Z1 is

an ALBDOALBEDON -bisimulation (the proof is technically involved, so details are

omitted). Consider a point a = aim such that i = m = t
2 , that is, a is the t

2 th point of

the t
2 th sub-group of A. It holds that V(a) = pm = p t

2
. Now, for each 1 ≤ h ≤ N ,

let ZE
h = {([V(a) − (N − h + 1), a], [V(a) − (N − h), a])}. It is easy to see that

M, [V(a)− 1, a]  〈E〉p, M, [V(a), a]  ¬〈E〉p, and ([V(a)− 1, a], [V(a), a]) ∈ ZE
N .

Thus, ZE
N ∪ZN , . . . , Z

E
1 ∪Z1 is an ALBDOALBEDON -bisimulation that violates 〈E〉.

To deal with the modality 〈E〉, a new sequence ZE
N , . . . , Z

E
1 can be defined, fol-

lowing a technique similar to the above-described one, so that ZE
N ∪ZN , . . . , Z

E
1 ∪Z1

is an ALBEDOALBDON -bisimulation that violates 〈E〉. Once again, since the proof

only uses a finite linear order, the result holds for both Dis and Fin.

6 Conclusions

In this paper we studied the expressiveness of fragments of the interval temporal logic

HS interpreted over both discrete and finite linear orders. A complete classification

of all such fragments with respect to their relative expressive power has been recently

given for the classes of all linear orders and all dense linear orders. The cases of discrete

and finite linear orders turn out to be much more involved. We illustrated here various

non-trivial temporal properties that can be expressed when HS is interpreted over them,

and we provided a complete set of definabilities for the modalities corresponding to

the Allen’s relations meets, later, begins, finishes, and during, plus their transposes.
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We leave open the problem of identifying the complete set of definabilities for the

modalities corresponding to the Allen relation overlaps and to its inverse overlapped

by.
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Figure 7: Grid-based interpretation of intervals (top) and a graphical account of the

ALBOALBEDON -bisimulation that violates 〈D〉 (bottom).

Appendix

In this appendix we first give, in Appendix A, the sketch of the original proof of The-

orem 2, proposed in [3], which is under submission. A simplified, fully-detailed proof

is provided in Section 5.1. Then, we provide, in Appendix B, full details of the proof

of Theorem 3.

A Sketch of the (more complex) original proof of The-

orem 2

Theorem 2 The sets of optimal definabilities for 〈D〉 and 〈D〉 (listed in Figure 2) are

complete for the classes Dis and Fin.

Proof (sketch). According to Figure 2, 〈D〉 is definable in terms of BE; thus there are

two maximal fragments not defining it, namely, ALBOALBEDO and ALEOALBEDO.

First, we observe that it is possible to define 〈D〉 in infinitary extensions of AB or AE,

using, respectively, the following formulae of unbounded modal depths:

〈D〉p ≡

{ ∨

k∈N
(ℓ=k ∧

∨

i<k−1(〈B〉(ℓ=i ∧ 〈A〉(ℓ<k−i ∧ p)))),
∨

k∈N
(ℓ=k ∧

∨

i<k−1(〈E〉(ℓ=i ∧ 〈A〉(ℓ<k−i ∧ p)))),
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where length constraints of the form ℓ=k and ℓ<k can be expressed using either 〈B〉
or 〈E〉 (see Section 3.2). It immediately follows that there exists no ALBOALBEDO-

bisimulation (resp., ALEOALBEDO-bisimulation) that violates 〈D〉, and thus we have

to resort to ALBOALBEDON -bisimulations (resp., ALEOALBEDON -bisimulations).

Besides, since the two fragments ALBOALBEDO and ALEOALBEDO are symmetric,

that is, they are indistinguishable over symmetric classes of linear orders, providing an

ALBOALBEDON -bisimulation that violates 〈D〉 suffices to prove the result.

For the purposes of the proof, it is convenient to introduce a new interpretation for

intervals over grid-like structures (the so-called compass structures [24]), by exploiting

the existence of a natural bijection between the intervals [x, y] of an interval model and

the points p = (x, y), with x < y, of an N × N grid. A graphical account is given in

Figure 7 (top), where the N ×N grid has been rotated by a 45-degree angle clockwise,

so that the bisector of the I and III quadrant is the base of the picture.

First, we define the model M , as depicted in Figure 7 (bottom), where intervals

satisfying p are all and only the points belonging to the black areas. Thus, intervals

satisfying p are grouped into stripes. The dotted lines in the picture are perpendicular

to the stripes, more precisely, to (the ideal continuations of) their edges. Each dotted

line intersects exactly one such continuation at the base of the picture (dashed line,

representing the bisector of the I and III quadrant). Intersections of dotted lines with

stripes give rise to small squares. Black (resp., white) squares only contains intervals

satisfying p (resp., ¬p). Now, let us focus on the gray, zigzag solid line. If we ideally

draw the straight lines continuing the segments making up such a zigzag line, their

intersections shape bigger squares, each of them containing a (square) number of the

above-mentioned small squares.

In order to define an ALBOALBEDON -bisimulation, we focus on the generic hth

element of the sequence, namely, the relation Zh. The idea is to relate points that are

either “far enough” from the elements of discontinuity of the model (stripes’ edges,

dotted lines, dashed line, and gray line) or at the same distance from them. The key

element is the notion of “far enough”, which can be formalized by means of monoton-

ically increasing distance functions on h, representing the number of nested modalities

that can still be used to build a formula that discriminates between the related intervals,

before reaching the greatest allowed modal depthN . In other words, the notion of dis-

tance is induced by h through suitable distance functions, and the distance decreases

as h does: in this way, if an interval i1 is far from a significant element e of the model,

according to the notion of distance induced by some h (i.e., i1 is h-far from e), it is

always possible to find another interval i2, that is closer to e, but still far from e ac-

cording to the “new” notion of distance induced by h − 1 (i.e., i2 is (h − 1)-far from

e).

Now, still at a very high level, by exploiting such a notion of “far enough”, we can

conclude that the two red circles in the two white stripes in the middle of the picture

are Zh-related, because, according to suitable distance functions, both of them are far

from all the elements of discontinuity of the model, that is, the edges of their own

small squares (both points are in the middle of a small square, with enough points in

between them and the edges), as well as the ones of the big square. Moreover, the

relative position of the two small squares in the big one is the same (up to a certain

distance from the edges of the big square), with the exception of the position relative

to the bottom-right edge of the big square: one of the circles is in the first small square,

the other in the third one. This is not a problem, because distances in the bottom-

right directions can be ignored as moving in that direction corresponds to using the

modality 〈E〉, which does not belong to ALBOALBEDO. Finally, from Figure 7, it
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Figure 8: A graphical account of the ALBDOALBEDON -bisimulation that violates

〈E〉.

is clear that the lower circle does not “see” any interval satisfying p (black stripes)

in the triangle underneath, and thus 〈D〉p is false on it. On the contrary, the higher

circle “sees” intervals satisfying p in the triangle underneath, which means that 〈D〉p
is true over it. Thus, we have an ALBOALBEDON -bisimulation that violates 〈D〉. A

similar construction can be done to deal with the modality 〈D〉, which somehow turns

the picture upside-down, thus showing that the result holds also for 〈D〉.

B Proof of Theorem 3

In this section, we provide a fully-detailed proof of Theorem 3.

Theorem 3 There are no definabilities for 〈E〉 and 〈E〉 (as shown in Fig. 2), as well

as for their transposes 〈B〉 and 〈B〉, in the classes Dis and Fin.

B.1 The auxiliary functions f and fP

• The function f : {1, . . . , N} → N is defined as:

f(h) = N + 2− h, for each h ∈ {1, . . . , N}

Notice that f(h− 1)− f(h) = 1 for each h > 1.

If the length of an interval [x, y] is greater than f(h), then we say that [x, y] is

h-long; otherwise, we say that [x, y] is h-short.

The function f is used for conditions (b), (c), and (d) of the definition of Zh.

• The function fP : {1, . . . , N} → N is defined as:

fP(h) =

N
∑

i=h

f(i), for each h ∈ {1, . . . , N}

Notice that fP(h − 1) − fP(h) = f(h − 1) > 0 for each h > 1, and that

fP(h) ≥ f(h) for each h; indeed, fP(h) > f(h) if h < N and fP(h) = f(h)
otherwise.

Moreover, for each h > 1, the following properties of fP hold:

– fP(h− 1) > f(h);

21



– [x, y] is (h − 1)-long (and thus h-long as well), for each y > fP(h − 1)
and x ≤ fP(h);

– for each y > fP(h− 1), there exists x > fP(h) such that [x, y] is h-long.

The function fP is used, in combination with the function f , for condition (c) of

the definition of Zh.

B.2 Partitioning D

Let t be defined as t = 2 · (fP(1)+N +4). We partition D as follows (see Figure B):

• A = {x ∈ D | a− ≤ x ≤ a+}, where a− = − t2

2 and a+ = t2

2 − 1. Thus,

|A| = t2,

• P = {p1, . . . , pt} such that pi = pi+1 − 1, for each 1 ≤ i < t, and pt ≪ a−,

e.g., a− − pt = t,

• R = {x ∈ D | pt < x < a−},

• R− = {x ∈ D | x < p1},

• R+ = {x ∈ D | x > a+}.

Now, for each h ∈ {1, . . . , N}, we define new partitions for both P and A. The

sets P−
h , Ph, and P+

h , defined below, define a partition of P :

• P−
h = {x ∈ P | p1 ≤ x ≤ pfP(h)}

• Ph = {x ∈ P | pfP(h) < x < pt−fP(h)+1}

• P+
h = {x ∈ P | pt−fP(h)+1 ≤ x ≤ pt}

The sets Ai, for 1 ≤ i ≤ t, defined below, define a partition of A:

• Ai = {x ∈ A | a− + (i − 1) · t ≤ x < a− + i · t}

For each 1 ≤ i ≤ t, we denote by ai1, a
i
2, · · · , a

i
t (with aij+1 = aij + 1 for every

1 ≤ j < t) the elements of Ai. Thus, a11 = a− and att = a+.

Finally, the sets A−
h , Ah, and A+

h , defined below, define a partition of A:

• A−
h =

⋃fP(h)
i=1 Ai

• A+
h =

⋃t

i=t−fP (h)+1 A
i

• Ah = A \ (A−
h ∪ A+

h ) =
⋃t−fP(h)

i=fP (h)+1A
i

Notice that, when stepping from h − 1 to h, the sets A−
h−1 and A+

h−1 shrink, while

Ah−1 grows. Precisely, |A−
h−1|− |A−

h | = |A+
h−1|− |A+

h | = t · (fP(h−1)−fP(h)) =

t · f(h − 1), and |Ah| − |Ah−1| = 2 · (|A−
h−1| − |A−

h |) = 2 · t · f(h − 1), for each

h > 1.
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B.3 The valuation function V

V (p) = {[x, y] | y ∈ A implies x ≤ V(y)}, where V : A → P is defined as follows:

V(y) =

{

p1 + i if y = −a+ i, for each 0 ≤ i < t

V(y − t) if − a+ t ≤ y ≤ a

Let y = aim be a point in A (i.e., y is themth point in Ai). The following properties

of V hold:

• V(y) = pm;

• if m ≤ fP(h) (resp., m ≥ t− fP(h) + 1, fP(h) < m < t− fP(h) + 1), then

V(y) ∈ P−
h (resp., V(y) ∈ P+

h , V(y) ∈ Ph);

• for each x ∈ P−
h (resp., x ∈ P+

h ), if fP(h− 1) < m < t− fP(h− 1) + 1, then

[x,V(y)] is h-long (resp., [V(y), x] is h-long);

• for each x = ajn for some n, j ∈ {1, . . . , t} (i.e., x is the nth point in Aj), if

m = n, then V(x) = V(y).

• for each x ∈ Ai′ , for some i′ ≤ fP(h) (resp., i′ ≥ t− fP(h) + 1), i.e., x ∈ A−
h

(resp., x ∈ A+
h ), if fP(h − 1) < i < t − fP(h − 1) + 1, i.e., y ∈ Ah−1, then

i− i′ > f(h) (resp., i′ − i > f(h));

B.4 The N-bisimulation relation

First, we define the equivalences ≡h (1 ≤ h ≤ N ) between points as follows: x ≡h w

if and only if the following conditions hold:

(i) one of the following holds:

• x = w,

• x 6= w and x,w ∈ Ph,

• x 6= w and x,w ∈ A;

(ii) if x,w ∈ A, then the following properties hold (we denote x by aim and w by

ajn, i.e., x is the ith element in Ai and w is the nth element in Aj):

• either i = j or x,w ∈ Ah (i.e., fP(h) < min{i, j} < max{i, j} <

t− fP(h) + 1),

• either m = n or fP(h) < m < t − fP(h) + 1 and fP(h) < n < t −
fP(h) + 1.

For each h ∈ {1, . . . , N}, Zh is defined as follows. [x, y]Zh[w, z] if and only if all of

the following hold:

(a) endpoints ≡h-related: x ≡h w and y ≡h z,

(b) same length up to f(h): y − x ≃f
h z − w,

(c) same distance between the left endpoint and the value of V over the right

endpoint up to f(h): if x,w ∈ P and y, z ∈ A, then V(y)− x ≃f
h V(z)− w,
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(d) same number of sub-groups Ai up to f(h): if x ∈ Ai and y ∈ Aj for some

i, j ∈ {1, . . . , t}, then w ∈ Ak and z ∈ Aℓ for some k, ℓ ∈ {1, . . . , t} such that

j − i ≃f
h ℓ− k.

Proposition 3 The relations Zh (1 ≤ h ≤ N ) are symmetric.

Notice that, for each pair ([x, y], [w, z]) ∈ Zh (1 ≤ h ≤ N ), at least one condition

among (c) and (d) is vacuously satisfied (i.e., the premise is false).

Lemma 3 (forward condition wrt 〈B〉) Let [x, y]Zh−1[w, z] for some 2 ≤ h ≤ N

and let [x, y]B[x, y′]. Then, there exists an interval [w, z′] such that [w, z]B[w, z′] and

[x, y′]Zh[w, z
′].

Proof. First, notice that, whenever [x, y] = [w, z], the property is trivially verified.

Thus, in the rest of the proof, we will assume [x, y] 6= [w, z]. We proceed by cases.

• If x = w, then it must be y 6= z. Thus, both [x, y] and [w, z] are (h − 1)-long.

We can safely assume y′ ≥ z because if it was y′ < z, then we would select

z′ = y′ and we are done. As an immediate consequence of y′ ≥ z and y′ < y,

we have that z < y holds. Moreover, [x, y′] is h-long, because it is not shorter

than [w, z], which, in turn, is (h − 1)-long, and thus also h-long. Now, since

y 6= z, either y, z ∈ Ph−1 or y, z ∈ A.

– If y, z ∈ Ph−1, then y′ ∈ Ph (because z ≤ y′ < y). We select z′ = z − 1,

and [w, z′] is such that [w, z]B[w, z′] and ([x, y′], [w, z′]) ∈ Zh.

– If y, z ∈ A, then y′ ∈ A, too (due to z ≤ y′ < y). Let us denote y (resp.,

z, y′) by aim (resp., ajn, ai
′

m′). We distinguish the following cases.

∗ If i 6= j (notice that the only possibility is that j < i, because z < y),

then y, z ∈ Ah−1 (i.e., fP(h−1) < j < i < t−fP(h−1)+1). From

z ≤ y′ < y, it follows j ≤ i′ ≤ i, which implies y′ ∈ Ah. Moreover,

by the condition (d) of the definition of Zh, if x(= w) ∈ Ak , for some

k, then i−k > f(h−1) and j−k > f(h−1). We choose z′ in Aj−1

such that z′ − a
j−1
1 = y′ − ai

′

1 , and [w, z′] is such that [w, z]B[w, z′]
and ([x, y′], [w, z′]) ∈ Zh.

∗ If i = j, then it must be n < m (because z < y), and thus fP(h−1) <
n < m < t−fP(h−1)+1. Since z ≤ y′ < y, i′ = i and n ≤ m′ < m

hold. By the condition (c) of the definition of Zh and by the fact that

x = w and m 6= n hold, if x,w ∈ P , then |V(y) − x| > f(h − 1),
|V(z) − w| > f(h − 1), and V(y) > x iff V(z) > w. Now, if

V(y) < x, then |V(y′) − x| > |V(y) − x| > f(h − 1) > f(h); if

V(y) > x, then |V(y′)− x| > |V(z)−w| > f(h− 1) > f(h). Then,

|V(y′)−x| > f(h) holds. We select z′ = z−1 and [w, z′] is such that

[w, z]B[w, z′] and ([x, y′], [w, z′]) ∈ Zh. Notice, in particular, that, if

x,w ∈ P , then |V(z′)− w| > f(h) and V(y′) > x iff V(z′) > w.

• If x 6= w, then either x,w ∈ Ph−1 or x,w ∈ A.

– If x,w ∈ Ph−1, then we distinguish the following cases.

∗ If y′ 6∈ A ∪ Ph, then we select z′ = y′ and [w, z′] is such that

[w, z]B[w, z′] and ([x, y′], [w, z′]) ∈ Zh.
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∗ If [x, y′] is h-short (thus y′ ∈ Ph) then we select z′ = w + (y′ − x).
Notice that z′ ∈ Ph as well, and [w, z′] is such that [w, z]B[w, z′] and

([x, y′], [w, z′]) ∈ Zh.

∗ If y′ ∈ Ph and [x, y′] is h-long, then we select z′ = min{z, t −
fP(h) + 1} − 1. Notice that z′ is such that z′ < z, z′ ∈ Ph,

and [w, z′] is h-long. Thus, [w, z′] is such that [w, z]B[w, z′] and

([x, y′], [w, z′]) ∈ Zh.

∗ If y′ ∈ A (thus [x, y′] is h-long), let us denote y′ by aim. We select

z′ = ajn ∈ A such that z′ < z and according to the following:

· if m ≤ fP(h) or m ≥ t − fP(h) + 1, and y′ 6∈ Ah (i.e., y′ ∈
A−

h ∪ A+
h ), then n = m and j = i;

· if m ≤ fP(h) or m ≥ t − fP(h) + 1, and y′ ∈ Ah, then n = m

and fP(h) < j < t− fP(h) + 1;

· if fP(h) < m < t−fP(h)+1 and y′ 6∈ Ah (i.e., y′ ∈ A−
h ∪A+

h ),

then fP(h) < n < t− fP(h) + 1 and j = i;

· if fP(h) < m < t− fP(h) + 1 and y′ ∈ Ah, then fP(h) < n <

t− fP(h) + 1 and fP(h) < j < t− fP(h) + 1.

It is not difficult to verify that such a z′ exists and that V(y′) − x ≃f
h

V(z′) − w. To convince oneself about the latter, observe that, if m ≤
fP(h) (resp., m ≥ t− fP(h) + 1), then V(y′) = V(z′) ∈ P−

h (resp.,

V(y′) = V(z′) ∈ P+
h ) holds; since, x,w ∈ Ph−1, it follows x −

V(y′) > f(h) and w − V(z′) > f(h) (resp., V(y′) − x > f(h)
and V(z′) − w > f(h)). Thus, [w, z′] is such that [w, z]B[w, z′] and

([x, y′], [w, z′]) ∈ Zh.

– If x,w ∈ A, let us denote x (resp., w) by aim (resp., ajn). If y′ 6∈ A (i.e.,

y′ ∈ R+), then we select z′ = y′, and [w, z′] is such that [w, z]B[w, z′]
and ([x, y′], [w, z′]) ∈ Zh. Similarly, if [x, y′] is h-short, then we choose

z′ such that z′ = w + (y′ − x), and [w, z′] is such that [w, z]B[w, z′] and

([x, y′], [w, z′]) ∈ Zh. Thus, we assume in this context that y′, which we

denote by ai
′

m′ is such that y′ ∈ A and [x, y′] is h-long. We distinguish the

following cases.

∗ If i′ − i = 0, we select z′ = a
j′

n′ such that z′ < z, j′ = j, [w, z′] is

h-long, and either n′ = m′ (if m′ ≤ fP(h) or m′ ≥ t− fP(h)+ 1) or

fP(h) < n′ < t− fP(h) + 1 (if fP(h) < m′ < t− fP(h) + 1). The

interval [w, z′] is such that [w, z]B[w, z′] and ([x, y′], [w, z′]) ∈ Zh.

∗ If 0 < i′− i ≤ f(h), then, by the properties of fP , it is guaranteed the

existence of a point z′ = a
j′

n′ < z, with j′ = j + (i′ − i) and either

n′ = m′ (if m′ ≤ fP(h) or m′ ≥ t − fP(h) + 1) or fP(h) < n′ <

t− fP(h) + 1 (if fP(h) < m′ < t− fP(h) + 1). The interval [w, z′]
is such that [w, z]B[w, z′] and ([x, y′], [w, z′]) ∈ Zh.

∗ If i′ − i > f(h), then we distinguish four cases.

· If either i′ ≤ fP(h) or i′ ≥ t−fP(h)+1, and eitherm′ ≤ fP(h)
or m′ ≥ t− fP(h) + 1, then we select z′ = y′.

· If fP(h) < i′ < t − fP(h) + 1 and either m′ ≤ fP(h) or m′ ≥

t − fP(h) + 1, then we select z′ = a
j′

n′ such that n′ = m′ and

j′ = min{k, t− fP(h)+ 1}− 1, where k is t if z 6∈ A, otherwise

it is the index such that z ∈ Ak.
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· If either i′ ≤ fP(h) or i′ ≥ t − fP(h) + 1, and fP(h) < m′ <

t− fP(h) + 1, then we select z′ = a
j′

n′ < z such that j′ = i′ and

fP(h) < n′ < t− fP(h) + 1.

· If fP(h) < i′ < t− fP(h)+1 and fP(h) < m′ < t− fP(h)+1,

then we select z′ = a
j′

n′ such that fP(h) < n′ < t−fP(h)+1 and

j′ = min{k, t− fP(h)+ 1}− 1, where k is t if z 6∈ A, otherwise

it is the index such that z ∈ Ak.

In all the above cases [w, z′] is such that [w, z]B[w, z′] and

([x, y′], [w, z′]) ∈ Zh.

Lemma 4 (forward condition wrt 〈B〉) Let [x, y]Zh−1[w, z] for some 2 ≤ h ≤ N

and let [x, y]B̄[x, y′]. Then, there exists an interval [w, z′] such that [w, z]B̄[w, z′] and

[x, y′]Zh[w, z
′].

Proof. The proof of this lemma proceeds likewise to the one of Lemma 3. As usual,

we can safely assume [x, y] 6= [w, z], as the property is trivially verified when [x, y] =
[w, z] holds. We proceed by cases.

• If x = w, then it must be y 6= z. Thus, both [x, y] and [w, z] are (h − 1)-long.

We can safely assume y < y′ ≤ z because if it was y′ > z, then we would select

z′ = y′ and we are done. Moreover, [x, y′] is h-long, because it is longer than

[x, y]. Now, since y 6= z, either y, z ∈ Ph−1 or y, z ∈ A.

– If y, z ∈ Ph−1, then y′ ∈ Ph (because y < y′ ≤ z). We select z′ = z + 1,

and [w, z′] is such that [w, z]B̄[w, z′] and ([x, y′], [w, z′]) ∈ Zh.

– If y, z ∈ A, then y′ ∈ A, too (due to y < y′ ≤ z). Let us denote y (resp.,

z, y′) by aim (resp., ajn, ai
′

m′). We distinguish the following cases.

∗ If i 6= j (notice that the only possibility is that i < z, because y < z),

then y, z ∈ Ah−1 (i.e., fP(h−1) < i < j < t−fP(h−1)+1). From

y < y′ ≤ z, it follows i ≤ i′ ≤ j, which implies y′ ∈ Ah. Moreover,

by the condition (d) of the definition of Zh, if x(= w) ∈ Ak , for some

k, then i−k > f(h−1) and j−k > f(h−1). We choose z′ in Aj+1

such that z′ − a
j+1
1 = y′ − ai

′

1 , and [w, z′] is such that [w, z]B̄[w, z′]
and ([x, y′], [w, z′]) ∈ Zh.

∗ If i = j, then it must bem < n (because y < z), and thus fP(h−1) <
m < n < t−fP(h−1)+1. Since y < y′ ≤ z, i′ = i andm < m′ ≤ n

hold. By the condition (c) of the definition of Zh and by the fact that

x = w and m 6= n hold, if x,w ∈ P , then |V(y) − x| > f(h − 1),
|V(z) − w| > f(h − 1), and V(y) > x iff V(z) > w. Now, if

V(y) < x, then |V(y′) − x| > |V(z) − w| > f(h − 1) > f(h); if

V(y) > x, then |V(y′)− x| > |V(y)− x| > f(h− 1) > f(h). Then,

|V(y′)−x| > f(h) holds. We select z′ = z+1 and [w, z′] is such that

[w, z]B̄[w, z′] and ([x, y′], [w, z′]) ∈ Zh. Notice, in particular, that, if

x,w ∈ P , then |V(z′)− w| > f(h) and V(y′) > x iff V(z′) > w.

• If x 6= w, then either x,w ∈ Ph−1 or x,w ∈ A.

– If x,w ∈ Ph−1, then we distinguish the following cases.
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∗ If y′ 6∈ A ∪ Ph, then we select z′ = y′ and [w, z′] is such that

[w, z]B̄[w, z′] and ([x, y′], [w, z′]) ∈ Zh.

∗ If [x, y′] is h-short (thus y′ ∈ Ph) then we select z′ = w + (y′ − x).
Notice that z′ ∈ Ph as well, and [w, z′] is such that [w, z]B̄[w, z′] and

([x, y′], [w, z′]) ∈ Zh.

∗ If y′ ∈ Ph and [x, y′] is h-long, then it must be y < y′ < pt−fP (h)+1,

which, by y ≡h z, implies z < pt−fP(h)+1 − 1. Then, we select z′ =
z+1. Notice that z′ is such that z′ > z, z′ ∈ Ph, and [w, z′] is h-long.

Thus, [w, z′] is such that [w, z]B̄[w, z′] and ([x, y′], [w, z′]) ∈ Zh.

∗ If y′ ∈ A (thus [x, y′] is h-long), let us denote y′ by aim. We select

z′ = ajn ∈ A such that z′ > z and according to the following:

· if m ≤ fP(h) or m ≥ t − fP(h) + 1, and y′ 6∈ Ah (i.e., y′ ∈
A−

h ∪ A+
h ), then n = m and j = i;

· if m ≤ fP(h) or m ≥ t − fP(h) + 1, and y′ ∈ Ah, then n = m

and fP(h) < j < t− fP(h) + 1;

· if fP(h) < m < t−fP(h)+1 and y′ 6∈ Ah (i.e., y′ ∈ A−
h ∪A+

h ),

then fP(h) < n < t− fP(h) + 1 and j = i;

· if fP(h) < m < t− fP(h) + 1 and y′ ∈ Ah, then fP(h) < n <

t− fP(h) + 1 and fP(h) < j < t− fP(h) + 1.

It is not difficult to verify that such a z′ exists and that V(y′) − x ≃f
h

V(z′) − w. To convince oneself about the latter, observe that, if m ≤
fP(h) (resp., m ≥ t− fP(h) + 1), then V(y′) = V(z′) ∈ P−

h (resp.,

V(y′) = V(z′) ∈ P+
h ) holds; since, x,w ∈ Ph−1, it follows x −

V(y′) > f(h) and w − V(z′) > f(h) (resp., V(y′) − x > f(h)
and V(z′) − w > f(h)). Thus, [w, z′] is such that [w, z]B̄[w, z′] and

([x, y′], [w, z′]) ∈ Zh.

– If x,w ∈ A, let us denote x (resp., w) by aim (resp., ajn). If y′ 6∈ A (i.e.,

y′ ∈ R+), then we select z′ = y′, and [w, z′] is such that [w, z]B̄[w, z′]
and ([x, y′], [w, z′]) ∈ Zh. Similarly, if [x, y′] is h-short, then we choose

z′ such that z′ = w + (y′ − x), and [w, z′] is such that [w, z]B̄[w, z′] and

([x, y′], [w, z′]) ∈ Zh. Thus, we assume in this context that y′, which we

denote by ai
′

m′ is such that y′ ∈ A and [x, y′] is h-long. We distinguish the

following cases.

∗ If i′ − i = 0, we select z′ = a
j′

n′such that j′ = j, [w, z′] is h-long,

and either n′ = m′ (if m′ ≤ fP(h) or m′ ≥ t − fP(h) + 1) or

fP(h) < n′ < t− fP(h) + 1 (if fP(h) < m′ < t− fP(h) + 1).

∗ If 0 < i′− i ≤ f(h), then, by the properties of fP , it is guaranteed the

existence of a point z′ = a
j′

n′ > z, with j′ = j + (i′ − i) and either

n′ = m′ (if m′ ≤ fP(h) or m′ ≥ t − fP(h) + 1) or fP(h) < n′ <

t− fP(h) + 1 (if fP(h) < m′ < t− fP(h) + 1). The interval [w, z′]
is such that [w, z]B̄[w, z′] and ([x, y′], [w, z′]) ∈ Zh.

∗ If i′ − i > f(h), then we distinguish four cases.

· If either i′ ≤ fP(h) or i′ ≥ t−fP(h)+1, and eitherm′ ≤ fP(h)
or m′ ≥ t− fP(h) + 1, then we select z′ = y′.

· If fP(h) < i′ < t − fP(h) + 1 and either m′ ≤ fP(h) or m′ ≥

t − fP(h) + 1, then we select z′ = a
j′

n′ such that n′ = m′ and

j′ = max{k, fP(h)}+ 1, where k is the index such that z ∈ Ak .
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· If either i′ ≤ fP(h) or i′ ≥ t − fP(h) + 1, and fP(h) < m′ <

t − fP(h) + 1, then we select z′ = a
j′

n′ such that j′ = i′ and

fP(h) < n′ < t− fP(h) + 1.

· If fP(h) < i′ < t− fP(h)+1 and fP(h) < m′ < t− fP(h)+1,

then we select z′ = a
j′

n′ such that fP(h) < n′ < t−fP(h)+1 and

j′ = max{k, fP(h)}+ 1, where k is the index such that z ∈ Ak .

In all the above cases [w, z′] is such that [w, z]B̄[w, z′] and

([x, y′], [w, z′]) ∈ Zh.

Lemma 5 (forward condition wrt 〈E〉) Let [x, y]Zh−1[w, z] for some 2 ≤ h ≤ N

and let [x, y]E[x′, y]. Then, there exists an interval [w′, z] such that [w, z]E[w′, z] and

[x′, y]Zh[w
′, z].

Proof. As we did above, we will assume [x, y] 6= [w, z]. We proceed by cases.

• If y = z, then it must be x 6= w. Thus, both [x, y] and [w, z] are (h − 1)-long.

As usual, we can assume x < x′ ≤ w because if it was x′ > w, then we would

select w′ = x′ and we are done. Moreover, [x′, y] is h-long, because it is not

shorter than [w, z], which, in turn, is (h − 1)-long, and thus also h-long. Now,

since x 6= w, either x,w ∈ Ph−1 or x,w ∈ A.

– If x,w ∈ Ph−1, then x′ ∈ Ph (because x < x′ ≤ w). Notice that, if

y(= z) ∈ A, then, by condition (c) of definition of Zh, and since x 6= w

and y = z hold, it must be |V(y)−x| > f(h− 1), |V(z)−w| > f(h− 1),
and V(y) > x iff V(z) > w. Now, if V(y) < x, then |V(y)−x′| > |V(y)−
x| > f(h − 1) > f(h); if V(y) > x, then |V(y) − x′| > |V(z) − w| >
f(h− 1) > f(h). Then, |V(y)− x′| > f(h) holds. We select w′ = w+1,

and [w′, z] is such that [w, z]E[w′, z] and ([x′, y], [w′, z]) ∈ Zh. Notice, in

particular, that, if y(= z) ∈ A, then |V(z)−w′| > f(h) and V(y) > x′ iff

V(z) > w′.

– if x,w ∈ A, then x′ ∈ A, too (due to x < x′ ≤ w). Let us denote x (resp.,

w, x′) by aim (resp., ajn, ai
′

m′). We distinguish the following cases.

∗ If i 6= j (notice that the only possibility is that i < j, because x < w),

then x,w ∈ Ah−1 (i.e., fP(h−1) < i < j < t−fP(h−1)+1). From

x < x′ ≤ w, it follows i ≤ i′ ≤ j, which implies x′ ∈ Ah. Moreover,

by the condition (d) of the definition of Zh, if y(= z) ∈ Ak, for some

k, then k− i > f(h−1) and k− j > f(h−1). We choosew′ in Aj+1

such that w′ − a
j+1
1 = x′ − ai

′

1 , and [w′, z] is such that [w, z]E[w′, z]
and ([x′, y], [w′, z]) ∈ Zh.

∗ If i = j, then it must bem < n (because x < w), and thus fP(h−1) <
m < n < t − fP(h − 1) + 1. Since x < x′ ≤ w, i′ = i and

m < m′ ≤ n hold. We select w′ = w + 1 and [w′, z] is such that

[w, z]E[w′, z] and ([x′, y], [w′, z]) ∈ Zh.

• If y 6= z, then either y, z ∈ Ph−1 or y, z ∈ A.

– If y, z ∈ Ph−1, then we distinguish the following cases.

28



∗ If x′ ≤ pfP(h) (i.e., x′ 6∈ Ph), then we select w′ = x′, and [w′, z] is

such that [w, z]E[w′, z] and ([x′, y], [w′, z]) ∈ Zh.

∗ If [x′, y] is h-long and x′ ∈ Ph, then we select w′ =
max{pfP(h), w} + 1. Notice that it holds w′ > pfP(h), which

implies w′ ∈ Ph. Thus, [w′, z] is such that [w, z]E[w′, z] and

([x′, y], [w′, z]) ∈ Zh.

∗ If [x′, y] is h-short (and thus, by properties of fP(h), x
′ ∈ Ph), then

we select w′ = z − (y − x′), and [w′, z] is such that [w, z]E[w′, z]
and ([x′, y], [w′, z]) ∈ Zh. Notice that, again by properties of fP(h),
w′ ∈ Ph, too.

– If y, z ∈ A, let us denote y (resp., z) by aim (resp., ajn). We distinguish the

following cases.

∗ If x′ 6∈ A ∪ P , then we select w′ = x′, and [w′, z] is such that

[w, z]E[w′, z] and ([x′, y], [w′, z]) ∈ Zh.

∗ If x′ ∈ P , then we distinguish the following cases.

· If m = n, then V(y) = V(z). Thus, we can assume x < x′ ≤ w

(indeed, if it was x′ > w, then we would select w′ = x′ and we

are done). Notice that x 6= w implies x,w ∈ Ph−1 or x,w ∈ A.

Since x′ ∈ P and x < x′, it must be x,w ∈ Ph−1. Moreover,

from x < x′ ≤ w, it follows x′ ∈ Ph−1 ⊆ Ph. We select w′ =
w+1 and [w′, z] is such that [w, z]E[w′, z] and ([x′, y], [w′, z]) ∈
Zh. Notice that, to guarantee condition (c) of the definition of

Zh, we can use the same argument used before (case y = z, with

x,w ∈ Ph−1, of this lemma).

· If m 6= n, then it must be fP(h − 1) < min{m,n} <

max{m,n} < t − fP(h − 1) + 1, and thus V(y),V(z) ∈ Ph−1.

We distinguish the following cases.

• If x′ ∈ P−
h ∪ P+

h , then we select w′ = x′, and [w′, z] is such

that [w, z]E[w′, z] and ([x′, y], [w′, z]) ∈ Zh. Notice that, from

V(y),V(z) ∈ Ph−1, condition (c) of the definition of Zh im-

mediately follows.

• If x′ ∈ Ph and V(y) − x′ > f(h), then V(y)− x > f(h) + 1
and V(z)−w > f(h)+1. We select w′ = max{w, pfP(h)}+1
and V(z) − w′ > f(h) holds. Thus, [w′, z] is such that

[w, z]E[w′, z] and ([x′, y], [w′, z]) ∈ Zh.

• If x′ ∈ Ph and |V(y) − x′| ≤ f(h), then we select w′ =
V(z)− (V(y)− x′), and [w′, z] is such that [w, z]E[w′, z] and

([x′, y], [w′, z]) ∈ Zh. Notice that, since |V(y) − x′| ≤ f(h)
and V(z) ∈ Ph−1, it follows w′ ∈ Ph.

• If x′ ∈ Ph and x′ − V(y) > f(h), then we select w′ =
max{w,V(z) + f(h)} + 1. The interval [w′, z] is such that

[w, z]E[w′, z] and ([x′, y], [w′, z]) ∈ Zh.

∗ If x′ ∈ A and [x′, y] is h-short, then we select w′ = z − (y − x′), and

[w′, z] is such that [w, z]E[w′, z] and ([x′, y], [w′, z]) ∈ Zh.

∗ If x′ ∈ A and [x′, y] is h-long, let us denote x′ by ai
′

m′ . We distinguish

the following cases.

· If i − i′ = 0, we select w′ = a
j′

n′ such that w′ > w, j′ = j,

[w′, z] is h-long, and either n′ = m′ (if m′ ≤ fP(h) or m′ ≥
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t− fP(h)+1) or fP(h) < n′ < t− fP(h)+1 (if fP(h) < m′ <

t− fP(h)+ 1). The interval [w′, z] is such that [w, z]E[w′, z] and

([x′, y], [w′, z]) ∈ Zh.

· If 0 < i−i′ ≤ f(h), then, by the properties of fP , it is guaranteed

the existence of a point w′ = a
j′

n′ > w, with j′ = j − (i− i′) and

either n′ = m′ (ifm′ ≤ fP(h) orm′ ≥ t−fP(h)+1) or fP(h) <
n′ < t−fP(h)+1 (if fP(h) < m′ < t−fP(h)+1). The interval

[w′, z] is such that [w, z]E[w′, z] and ([x′, y], [w′, z]) ∈ Zh.

· If i− i′ > f(h), then we distinguish four cases.

• If either i′ ≤ fP(h) or i′ ≥ t − fP(h) + 1, and either m′ ≤
fP(h) or m′ ≥ t− fP(h) + 1, then we select w′ = x′.

• If fP(h) < i′ < t − fP(h) + 1 and either m′ ≤ fP(h) or

m′ ≥ t−fP(h)+1, then we select w′ = a
j′

n′ such that n′ = m′

and j′ = max{k, fP(h)}+1, where k is 0 if w 6∈ A, otherwise

it is the index such that w ∈ Ak.

• If either i′ ≤ fP(h) or i′ ≥ t− fP(h) + 1, and fP(h) < m′ <

t− fP(h) + 1, then we select w′ = a
j′

n′ > w such that j′ = i′

and fP(h) < n′ < t− fP(h) + 1.

• If fP(h) < i′ < t−fP(h)+1 and fP(h) < m′ < t−fP(h)+1,

then we select w′ = a
j′

n′ such that fP(h) < n′ < t− fP(h)+ 1
and j′ = max{k, fP(h)}+1, where k is 0 if w 6∈ A, otherwise

it is the index such that w ∈ Ak.

In all the above cases [w′, z] is such that [w, z]E[w′, z] and

([x′, y], [w′, z]) ∈ Zh.

Lemma 6 (forward condition wrt 〈E〉) Let [x, y]Zh−1[w, z] for some 2 ≤ h ≤ N

and let [x, y]Ē[x′, y]. Then, there exists an interval [w′, z] such that [w, z]Ē[w′, z] and

[x′, y]Zh[w
′, z].

Proof. As we did above, we will assume [x, y] 6= [w, z]. We proceed by cases.

• If y = z, then it must be x 6= w. Thus, both [x, y] and [w, z] are (h − 1)-long.

As usual, we can assume w ≤ x′ < x because if it was x′ < w, then we would

select w′ = x′ and we are done. Moreover, [x′, y] is h-long, because it is longer

than [x, y], which, in turn, is (h − 1)-long, and thus also h-long. Now, since

x 6= w, either x,w ∈ Ph−1 or x,w ∈ A.

– If x,w ∈ Ph−1, then x′ ∈ Ph (because w ≤ x′ < x). Notice that, if

y(= z) ∈ A, then, by condition (c) of definition of Zh, and since x 6= w

and y = z hold, it must be |V(y)−x| > f(h− 1), |V(z)−w| > f(h− 1),
and V(y) > x iff V(z) > w. Now, if V(y) < x, then |V(y)−x′| > |V(z)−
w| > f(h − 1) > f(h); if V(y) > x, then |V(y) − x′| > |V(y) − x| >
f(h− 1) > f(h). Then, |V(y)− x′| > f(h) holds. We select w′ = w− 1,

and [w′, z] is such that [w, z]Ē[w′, z] and ([x′, y], [w′, z]) ∈ Zh. Notice, in

particular, that, if y(= z) ∈ A, then |V(z)−w′| > f(h) and V(y) > x′ iff

V(z) > w′.

30



– if x,w ∈ A, then x′ ∈ A, too (due to w ≤ x′ < x). Let us denote x (resp.,

w, x′) by aim (resp., ajn, ai
′

m′). We distinguish the following cases.

∗ If i 6= j (notice that the only possibility is that j < i, because w < x),

then x,w ∈ Ah−1 (i.e., fP(h−1) < j < i < t−fP(h−1)+1). From

w ≤ x′ < x, it follows j ≤ i′ ≤ i, which implies x′ ∈ Ah. Moreover,

by the condition (d) of the definition of Zh, if y(= z) ∈ Ak, for some

k, then k− i > f(h−1) and k−j > f(h−1). We choosew′ in Aj−1

such that w′ − a
j−1
1 = x′ − ai

′

1 , and [w′, z] is such that [w, z]Ē[w′, z]
and ([x′, y], [w′, z]) ∈ Zh.

∗ If i = j, then it must be n < m (becausew < x), and thus fP(h−1) <
n < m < t − fP(h − 1) + 1. Since w ≤ x′ < x, i′ = i and

n ≤ m′ < m hold. We select w′ = w − 1 and [w′, z] is such that

[w, z]Ē[w′, z] and ([x′, y], [w′, z]) ∈ Zh.

• If y 6= z, then either y, z ∈ Ph−1 or y, z ∈ A.

– If y, z ∈ Ph−1, then we distinguish the following cases.

∗ If x′ ≤ pfP(h) (i.e., x′ 6∈ Ph), then we select w′ = x′, and [w′, z] is

such that [w, z]Ē[w′, z] and ([x′, y], [w′, z]) ∈ Zh.

∗ If [x′, y] is h-long and x′ ∈ Ph, then it must be pfP(h) < x′ < x,

which, by x ≡h w, impliesw > pfP(h)
+1. Then, we select w′ = w−

1. Notice that w′ is such that w′ < w, w′ ∈ Ph, and [w′, z] is h-long.

Thus, [w′, z] is such that [w, z]Ē[w′, z] and ([x′, y], [w′, z]) ∈ Zh.

∗ If [x′, y] is h-short (and thus, by properties of fP(h), x
′ ∈ Ph), then

we select w′ = z − (y − x′), and [w′, z] is such that [w, z]Ē[w′, z]
and ([x′, y], [w′, z]) ∈ Zh. Notice that, again by properties of fP(h),
w′ ∈ Ph, too.

– If y, z ∈ A, let us denote y (resp., z) by aim (resp., ajn). We distinguish the

following cases.

∗ If x′ 6∈ A ∪ P , then we select w′ = x′, and [w′, z] is such that

[w, z]Ē[w′, z] and ([x′, y], [w′, z]) ∈ Zh.

∗ If x′ ∈ P , then we distinguish the following cases.

· If m = n, then V(y) = V(z). Thus, we can assume w ≤ x′ < x

(indeed, if it was x′ < w, then we would select w′ = x′ and we

are done). Notice that x 6= w implies x,w ∈ Ph−1 or x,w ∈ A.

Since x′ ∈ P and w ≤ x′, it must be x,w ∈ Ph−1. Moreover,

from w ≤ x′ < x, it follows x′ ∈ Ph−1 ⊆ Ph. We select w′ =
w− 1 and [w′, z] is such that [w, z]Ē[w′, z] and ([x′, y], [w′, z]) ∈
Zh. Notice that, to guarantee condition (c) of the definition of

Zh, we can use the same argument used before (case y = z, with

x,w ∈ Ph−1, of this lemma).

· If m 6= n, then it must be fP(h − 1) < min{m,n} <

max{m,n} < t − fP(h − 1) + 1, and thus V(y),V(z) ∈ Ph−1.

We distinguish the following cases.

• If x′ ∈ P−
h ∪ P+

h , then we select w′ = x′, and [w′, z] is such

that [w, z]Ē[w′, z] and ([x′, y], [w′, z]) ∈ Zh. Notice that, from

V(y),V(z) ∈ Ph−1, condition (c) of the definition of Zh im-

mediately follows.
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• If x′ ∈ Ph and x′−V(y) > f(h), then x−V(y) > f(h)+1 and

w−V(z) > f(h)+1. We selectw′ = min{w, pt−fP(h)+1}−1
and w′ − V(z) > f(h) holds. Thus, [w′, z] is such that

[w, z]Ē[w′, z] and ([x′, y], [w′, z]) ∈ Zh.

• If x′ ∈ Ph and |V(y) − x′| ≤ f(h), then we select w′ =
V(z)− (V(y)− x′), and [w′, z] is such that [w, z]Ē[w′, z] and

([x′, y], [w′, z]) ∈ Zh. Notice that, since |V(y) − x′| ≤ f(h)
and V(z) ∈ Ph−1, it follows w′ ∈ Ph.

• If x′ ∈ Ph and V(y) − x′ > f(h), then we select w′ =
min{w,V(z) − f(h)} − 1. The interval [w′, z] is such that

[w, z]Ē[w′, z] and ([x′, y], [w′, z]) ∈ Zh.

∗ If x′ ∈ A and [x′, y] is h-short, then we select w′ = z − (y − x′), and

[w′, z] is such that [w, z]Ē[w′, z] and ([x′, y], [w′, z]) ∈ Zh.

∗ If x′ ∈ A and [x′, y] is h-long, then x ∈ A, which impliesw ∈ A, too.

Let us denote x′ (resp., x, w) by ai
′

m′ (resp., akℓ , ak
′

ℓ′ ). We distinguish

the following cases.

· If i − i′ = 0, we select w′ = a
j′

n′ such that w′ < w, j′ = j,

[w′, z] is h-long, and either n′ = m′ (if m′ ≤ fP(h) or m′ ≥
t− fP(h)+1) or fP(h) < n′ < t− fP(h)+1 (if fP(h) < m′ <

t− fP(h)+ 1). The interval [w′, z] is such that [w, z]Ē[w′, z] and

([x′, y], [w′, z]) ∈ Zh.

· If 0 < i−i′ ≤ f(h), then, by the properties of fP , it is guaranteed

the existence of a point w′ = a
j′

n′ < w, with j′ = j − (i− i′) and

either n′ = m′ (ifm′ ≤ fP(h) orm′ ≥ t−fP(h)+1) or fP(h) <
n′ < t−fP(h)+1 (if fP(h) < m′ < t−fP(h)+1). The interval

[w′, z] is such that [w, z]Ē[w′, z] and ([x′, y], [w′, z]) ∈ Zh.

· If i− i′ > f(h), then we distinguish four cases.

• If either i′ ≤ fP(h) or i′ ≥ t − fP(h) + 1, and either m′ ≤
fP(h) or m′ ≥ t− fP(h) + 1, then we select w′ = x′.

• If fP(h) < i′ < t − fP(h) + 1 and either m′ ≤ fP(h) or

m′ ≥ t−fP(h)+1, then we select w′ = a
j′

n′ such that n′ = m′

and j′ = min{k − 1, fP(h) + 1}.

• If either i′ ≤ fP(h) or i′ ≥ t− fP(h) + 1, and fP(h) < m′ <

t− fP(h) + 1, then we select w′ = a
j′

n′ < w such that j′ = i′

and fP(h) < n′ < t− fP(h) + 1.

• If fP(h) < i′ < t−fP(h)+1 and fP(h) < m′ < t−fP(h)+1,

then we select w′ = a
j′

n′ such that fP(h) < n′ < t− fP(h)+ 1
and j′ = min{k − 1, fP(h) + 1}.

In all the above cases [w′, z] is such that [w, z]Ē[w′, z] and

([x′, y], [w′, z]) ∈ Zh.

Lemma 7 Let [x, y]Zh[w, z] for some 1 ≤ h < N and let [x, y]X [x′, y′] for some

X ∈ {A,L,B,E,D,O, Ā, L̄, B̄, Ē, D̄, Ō}. Then, there exists an interval [w′, z′] such

that [w, z]X [w′, z′] and ([x′, y′], [w′, z′]) ∈ Zh+1 ∪ Zh+2 ∪ Zh+3 ∪ Zh+4.
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Proof. If X = B (resp., X = E, X = B̄, X = Ē), then the thesis immediately

follows from Lemma 3 (resp., Lemma 5, Lemma 4, Lemma 6).

As for the other modalities, we use the known inter-definabilities as follows.

Consider the case X = D. Let [x, y]Zh[w, z] for some 1 ≤ h < N − 1
and let [x, y]D[x′, y′]. We show that there exists an interval [w′, z′] such that

[w, z]D[w′, z′] and ([x′, y′], [w′, z′]) ∈ Zh+2. Consider the interval [x′, y]: it holds

[x, y]E[x′, y]. By Lemma 5, there exists [w′′, z′′] such that ([x′, y], [w′′, z′′]) ∈ Zh+1,

with [w, z]E[w′′, z′′]. By Lemma 3 (on ([x′, y], [w′′, z′′])), since [x′, y]B[x′, y′], there

exists [w′, z′] such that ([x′, y′], [w′, z′]) ∈ Zh+2, with [w′′, z′′]B[w′, z′]. It is easy to

see that [w, z]D[w′, z′], hence the thesis.

A very similar argument can be used to proof that if [x, y]Zh[w, z] for some 1 ≤
h < N−1 and if [x, y]X [x′, y′] for someX ∈ {D̄, O, Ō}, then there exists an interval

[w′, z′] such that [w, z]X [w′, z′] and ([x′, y′], [w′, z′]) ∈ Zh+2.

The cases where X = A and X = Ā hinge on the same argument but they are a

bit more involved. We give the details only the former case (X = A); the other case is

symmetric. Let [x, y]Zh[w, z] for some 1 ≤ h < N−1 and let [x, y]A[x′, y′]. We show

that there exists an interval [w′, z′] such that [w, z]A[w′, z′] and ([x′, y′], [w′, z′]) ∈
Zh+4. Consider the interval [y − 1, y + 1]: it is such that either [x, y]B̄[x′, y] (if x =
y−1) or [x, y]O[x′, y] (if x < y−1). In the former case we have ([y−1, y+1], [z−1, z+
1]) ∈ Zh+1 by Lemma 4; in the latter one we have ([y−1, y+1], [z−1, z+1]) ∈ Zh+2

by the case X = O above. If ([y− 1, y+1], [z− 1, z+1]) ∈ Zh+1 (resp., ([y− 1, y+
1], [z − 1, z+ 1]) ∈ Zh+2), then, by Lemma 5, we have ([y, y+1], [z, z+1]) ∈ Zh+2

(resp., ([y, y+1], [z, z+1]) ∈ Zh+3). Now, if it was the case that [x′, y′] = [y, y+1],
then we are done as we [z, z+1] is the interval we were looking for. If that was not the

case, then it would be [y, y + 1]B̄[x′, y′] and, by Lemma 4, there would exist [w′, z′]
such that [z, z + 1]b̄[w′, z′] and ([y, y + 1], [z, z + 1]) ∈ Zh+3 (if x = y − 1) or

([y, y + 1], [z, z + 1]) ∈ Zh+4 (if x < y − 1). It is easy to see that [w, z]A[w′, z′],
hence the thesis.

Finally, the cases where X = L and X = L̄ can be dealt with by using the same

argument and the inter-definabilities of 〈L〉 and 〈L〉 in terms of 〈A〉 and 〈A〉, respec-

tively.

Let us recall that by aim we denote the mth element of the set Ai, for each i and m,

and by pm we denote the mth element of the set P , for each m. Now, let a = aim, with

i = m = t
2 , that is, a is the t

2 th point in the t
2 sub-group A

t
2 of A. Roughly speaking,

a is the central point in the central sub-group in A. Consequently, V(a) = pm = p t
2

is

the central point in P .

Now, we define the sequence of relationsZE
h = {([V(a)−h, a], [V(a)−h+1, a])},

for h ∈ {1, . . . , N}. It is worth pointing out that ([V(a)−h, a], [V(a)−h+1, a]) 6∈ Zh,

for any h. This is because condition (c) of the definition of Zh is not fulfilled by

pairs in ZE
h (on the other hand, conditions (a), (b), and (d) are verified). Notice also

that, unlike Zh, relations ZE
h (1 ≤ h ≤ N ) are not symmetric. It is easy to see

that ([V(a) − 1, a], [V(a), a]) ∈ ZE
1 is such that M, [V(a) − 1, a]  〈E〉p, while

M, [V(a), a]  ¬〈E〉p. In the following lemma, we use x as an abbreviation for

V(a)− (h− 1).

Lemma 8 Let X ∈ {A,B,D,O, Ā, B̄, Ē} and ([x, a], [x + 1, a]) ∈ ZE
h−1 for some

h ∈ {2, . . . , N}. If [x, a]X [x′, y′] for some interval [x′, y′], then there exists an interval

[w′, z′] such that [x + 1, a]X [w′, z′] and [x′, y′]Zh ∪ ZE
h [w′, z′] (forward condition).

Moreover, if [x + 1, a]X [w′, z′] for some interval [w′, z′], then there exists an interval

[x′, y′] such that [x, a]X [x′, y′] and [x′, y′]Zh ∪ ZE
h [w′, z′] (backward condition).
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Proof. We first prove the forward condition and then the backward one.

Forward condition. Let X ∈ {A,B,D,O, Ā, B̄, Ē} and ([x, a], [x + 1, a]) ∈ ZE
h−1,

for some h ∈ {2, . . . , N}. We assume that [x, a]X [x′, y′] holds, and we show the

existence of an interval [w′, z′] such that [x+1, a]X [w′, z′] and [x′, y′]Zh∪ZE
h [w′, z′].

First, notice that both x and x+ 1 belong to Ph−1 (and thus to Ph as well). The proof

proceeds by cases, depending on the value of X .

• If X = A, then we select z′ = y′, and [a, z′] is such that [x + 1, a]A[a, z′] and

[a, y′]Zh[a, z
′].

• If X = B, then the proof proceeds exactly as the one for the case of x 6= w

and x,w ∈ Ph−1 in Lemma 3 (condition (c) of the definition of Zh, which

discriminates against pairs in ZE
h , is not used there).

• If X = D, then we distinguish two cases. If x′ > x+ 1, then we select w′ = x′

and z′ = y′, and [w′, z′] is such that [x+1, a]D[w′, z′] and [x′, y′]Zh[w
′, z′]. If,

on the other hand, x′ = x+ 1, then the proof proceeds exactly as the one for the

case of x 6= w and x,w ∈ Ph−1 in Lemma 3, with x + 1 in x’s stead, x + 2 in

w’s stead, and a in both y’s and z’s stead (again, condition (c) of the definition

of Zh is not used there).

• If X = O, then we distinguish two cases. If x′ > x+ 1, then we select w′ = x′

and z′ = y′, and [w′, z′] is such that [x+ 1, a]O[w′, z′] and [x′, y′]Zh[w
′, z′]. If,

on the other hand, x′ = x+ 1, then the proof proceeds exactly as the one for the

case of x 6= w and x,w ∈ Ph−1 in Lemma 4, with x + 1 in x’s stead, x + 2 in

w’s stead, and a in both y’s and z’s stead (again, condition (c) of the definition

of Zh is not used there — notice also that only the first and fourth sub-cases play

a role here).

• If X = Ā, then we distinguish two cases. If [x′, x] is h-long, then we select

w′ = x′, and [w′, x+1] is such that [x+1, a]Ā[w′, x+1] and [x′, x]Zh[w
′, x+1].

Otherwise, if [x′, x] is h-short, then we select w′ = (x + 1) − (x − x′), and

[w′, x+ 1] is such that [x+ 1, a]Ā[w′, x+ 1] and [x′, x]Zh[w
′, x+ 1].

• If X = B̄, then the proof proceeds exactly as the one for the case of x 6= w and

x,w ∈ Ph−1 in Lemma 4, (again, condition (c) of the definition of Zh is not

used there — notice also that only the first and fourth sub-cases play a role here).

• If X = Ē, then we select w′ = x′, and [w′, a] is such that [x+1, a]Ē[w′, a] and

[x′, a]Zh[w
′, a].

Backward condition. LetX ∈ {A,B,D,O, Ā, B̄, Ē} and ([x, a], [x+1, a]) ∈ ZE
h−1,

for some h ∈ {2, . . . , N}. We assume that [x + 1, a]X [w′, z′] holds, and we show the

existence of an interval [x′, y′] such that [x, a]X [x′, y′] and [x′, y′]Zh ∪Z
E
h [w′, z′]. As

we did above, we notice that both x and x+1 belong to Ph−1 (and thus to Ph as well).

The proof proceeds by cases, depending on the value of X .

• If X = A, then we select y′ = z′, and [a, y′] is such that [x, a]A[a, y′] and

[a, y′]Zh[a, z
′].

• If X = B, then the proof proceeds exactly as the one for the case of x 6= w and

x,w ∈ Ph−1 in Lemma 3 (again, condition (c) of the definition of Zh is not used

there).
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• If X = D, then we select x′ = w′ and y′ = z′, and [x′, y′] is such that

[x, a]D[x′, y′] and [x′, y′]Zh[w
′, z′].

• If X = O, then we select x′ = w′ and y′ = z′, and [x′, y′] is such that

[x, a]O[x′, y′] and [x′, y′]Zh[w
′, z′].

• IfX = Ā, then we distinguish two cases. If w′ is such that [w′, x] is h-long, then

we select x′ = w′, and [x′, x] is such that [x, a]Ā[x′, x] and [x′, x]Zh[w
′, x+1].

Otherwise, if w′ is such that [w′, x] is h-short, then we select x′ = x − ((x +
1)− w′), and [x′, x] is such that [x, a]Ā[x′, x] and [x′, x]Zh[w

′, x+ 1].

• If X = B̄, then the proof proceeds exactly as the one for the case of x 6= w and

x,w ∈ Ph−1 in Lemma 4, (again, condition (c) of the definition of Zh is not

used there — notice also that only the first and fourth sub-cases play a role here).

• If X = Ē, then we distinguish two cases. If w′ < x, then we select x′ = w′,

and [x′, a] is such that [x, a]Ē[x′, a] and [x′, a]Zh[w
′, a]. If, on the other hand,

w′ = x, then we select x′ = w′ − 1, and [x′, a] is such that [x, a]Ē[x′, a] and

[x′, a]ZE
h [w′, a].

Lemma 9 For each N ∈ N, the sequence of relations ZE
h ∪ Zh, for h ∈ {1, . . . , N},

define a N -bisimulation for ABDOĀB̄Ē.

Proof. First, we prove the local condition, then the forward and backward ones.

Local condition. First, we consider the pairs ([V(a)− h, a], [V(a)− h+ 1, a]) ∈ ZE
h ,

with h ∈ {1, . . . , N}. It is immediate to verify that, for every h ∈ {1, . . . , N}, both

M, [V(a)− h, a]  p and M, [V(a)− h+ 1, a]  p hold, so the condition is respected

with respect to the sets ZE
h (h ∈ {1, . . . , N}). Consider now the pair ([x, y], [w, z]) ∈

Zh, for some h ∈ {1, . . . , N}. If y 6∈ A, then, by definition of ≡h, z 6∈ A, either.

Thus, both [x, y] and [w, z] satisfy p. If y ∈ A, then, by definition of ≡h, z ∈ A, too.

Moreover, by condition (c) of the definition of Zh, either x ≤ V(y) and w ≤ V(z),
that is, both [x, y] and [w, z] satisfy p, or x > V(y) and w > V(z), that is, both [x, y]
and [w, z] satisfy ¬p.

Forward condition. It immediately follows from Lemmas 3, 5, 4, 6, and 7 if no

interval pairs of the kind ([V(a)−h, a], [V(a)−h+1, a]) ∈ ZE
h are involved; otherwise,

it follows from Lemma 8.

Backward condition. Let X ∈ {A,B,D,O, Ā, B̄, Ē} and ([x, y], [w, z]) ∈ ZE
h−1 ∪

Zh−1, for some h ∈ {2, . . . , N}. We assume that [w, z]X [w′, z′] holds for some

interval [w′, z′] and we show that there exists an interval [x′, y′] such that [x, y]X [x′, y′]
and ([x′, y′], [w′, z′]) ∈ ZE

h ∪ Zh hold. In Lemma 8, we have already shown that

this is the case if ([x, y], [w, z]) ∈ ZE
h−1. We have to consider now the case when

([x, y], [w, z]) ∈ Zh−1. To this end, we use the symmetry of Zh (see Proposition 3).

By symmetry of Zh−1, we have that ([w, z], [x, y]) ∈ Zh−1; by forward condition,

there exists an interval [x′, y′] such that [x, y]X [x′, y′] and ([w′, z′], [x′, y′]) ∈ Zh; by

symmetry of Zh, ([x′, y′], [w′, z′]) ∈ Zh.

Corollary 1 There are no inter-definabilities for 〈E〉 in any class of discrete linear

orders.
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Proof. It immediately follows from Lemma 9 and from the following facts: ([V(a) −
1, a], [V(a), a]) ∈ ZE

1 , M, [V(a)− 1, a]  〈E〉p, and M, [V(a), a]  ¬〈E〉p.

Now, analogously to what we have done before to disprove the existence of

inter-definabilities for 〈E〉, we define the sequence of relations ZĒ
h = {([V(a) +

h, a], [V(a)+h+1, a])}, for h ∈ {1, . . . , N}. The following properties, similar to the

ones stated for the above-defined sequence of relations ZE
h (1 ≤ h ≤ N ), hold for the

newly defined sequenceZĒ
h (1 ≤ h ≤ N ). First, ([V(a)+h, a], [V(a)+h+1, a]) 6∈ Zh,

for any h, because condition (c) of the definition of Zh is not fulfilled by pairs in ZĒ
h

(the other conditions (a), (b), and (d) are verified). Second, relations ZĒ
h (1 ≤ h ≤ N )

are not symmetric. Third, the pair ([V(a) + 1, a], [V(a) + 2, a]) ∈ ZĒ
1 is such that

M, [V(a) + 1, a]  ¬〈E〉¬p, while M, [V(a) + 2, a]  〈E〉¬p. In the following

lemma, we use x as an abbreviation for V(a) + (h− 1).

Lemma 10 Let X ∈ {A,B,E, Ā, B̄, D̄, Ō} and ([x, a], [x + 1, a]) ∈ ZĒ
h−1 for some

h ∈ {2, . . . , N}. If [x, a]X [x′, y′] for some interval [x′, y′], then there exists an interval

[w′, z′] such that [x + 1, a]X [w′, z′] and [x′, y′]Zh ∪ ZĒ
h [w′, z′] (forward condition).

Moreover, if [x + 1, a]X [w′, z′] for some interval [w′, z′], then there exists an interval

[x′, y′] such that [x, a]X [x′, y′] and [x′, y′]Zh ∪ ZĒ
h [w′, z′] (backward condition).

Proof. The proof of this lemma proceeds likewise to the one of Lemma 8.

Forward condition. Let X ∈ {A,B,E, Ā, B̄, D̄, Ō} and ([x, a], [x + 1, a]) ∈ ZĒ
h−1,

for some h ∈ {2, . . . , N}. We assume that [x, a]X [x′, y′] holds, and we show the

existence of an interval [w′, z′] such that [x+1, a]X [w′, z′] and [x′, y′]Zh∪ZĒ
h [w′, z′].

First, notice that both x and x+ 1 belong to Ph−1 (and thus to Ph as well). The proof

proceeds by cases, depending on the value of X .

• If X = A, then we select z′ = y′, and [a, z′] is such that [x + 1, a]A[a, z′] and

[a, y′]Zh[a, z
′].

• If X = B, then the proof proceeds exactly as the one for the case of x 6= w

and x,w ∈ Ph−1 in Lemma 3 (condition (c) of the definition of Zh, which

discriminates against pairs in ZĒ
h , is not used there).

• If X = E, then we distinguish two cases. If x′ > x + 1, then we select w′ =
x′, and [w′, a] is such that [x + 1, a]E[w′, a] and [x′, a]Zh[w

′, a]. If, on the

other hand, x′ = x + 1, then we select w′ = x′ + 1, and [w′, a] is such that

[x+ 1, a]E[w′, a] and [x′, a]ZĒ
h [w′, a].

• If X = Ā, then we distinguish two cases. If [x′, x] is h-long, then we select

w′ = x′, and [w′, x+1] is such that [x+1, a]Ā[w′, x+1] and [x′, x]Zh[w
′, x+1].

Otherwise, if [x′, x] is h-short, then we select w′ = (x + 1) − (x − x′), and

[w′, x+ 1] is such that [x+ 1, a]Ā[w′, x+ 1] and [x′, x]Zh[w
′, x+ 1].

• If X = B̄, then the proof proceeds exactly as the one for the case of x 6= w and

x,w ∈ Ph−1 in Lemma 4, (again, condition (c) of the definition of Zh is not

used there — notice also that only the first and fourth sub-cases play a role here).

• If X = D̄, then we select w′ = x′ and z′ = y′, and [w′, z′] is such that [x +
1, a]D̄[w′, z′] and [x′, y′]Zh[w

′, z′].

• If X = Ō, then we distinguish two cases. If y′ > x+ 1, then we select w′ = x′

and z′ = y′, and [w′, z′] is such that [x+ 1, a]Ō[w′, z′] and [x′, y′]Zh[w
′, z′]. If,

on the other hand, y′ = x+ 1, then we distinguish two cases.
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– If [x′, y′] is h-long, then we select z′ = y′ + 1 and w′ = x′, and [w′, z′] is

such that [x+ 1, a]Ō[w′, z′] and [x′, y′]Zh[w
′, z′].

– If [x′, y′] is h-short, then we select z′ = y′ + 1 and w′ = z′ − (y′ − x′),
and [w′, z′] is such that [x+ 1, a]Ō[w′, z′] and [x′, y′]Zh[w

′, z′].

Backward condition. LetX ∈ {A,B,E, Ā, B̄, D̄, Ō} and ([x, a], [x+1, a]) ∈ ZĒ
h−1,

for some h ∈ {2, . . . , N}. We assume that [x + 1, a]X [w′, z′] holds, and we show the

existence of an interval [x′, y′] such that [x, a]X [x′, y′] and [x′, y′]Zh ∪ZĒ
h [w′, z′]. As

we did above, we notice that both x and x+1 belong to Ph−1 (and thus to Ph as well).

The proof proceeds by cases, depending on the value of X .

• If X = A, then we select y′ = z′, and [a, y′] is such that [x, a]A[a, y′] and

[a, y′]Zh[a, z
′].

• If X = B, then the proof proceeds exactly as the one for the case of x 6= w and

x,w ∈ Ph−1 in Lemma 3 (again, condition (c) of the definition of Zh is not used

there).

• If X = E, then we select x′ = w′, and [x′, a] is such that [x, a]E[x′, a] and

[x′, a]Zh[w
′, a].

• IfX = Ā, then we distinguish two cases. If w′ is such that [w′, x] is h-long, then

we select x′ = w′, and [x′, x] is such that [x, a]Ā[x′, x] and [x′, x]Zh[w
′, x+1].

Otherwise, if w′ is such that [w′, x] is h-short, then we select x′ = x − ((x +
1)− w′), and [x′, x] is such that [x, a]Ā[x′, x] and [x′, x]Zh[w

′, x+ 1].

• If X = B̄, then the proof proceeds exactly as the one for the case of x 6= w and

x,w ∈ Ph−1 in Lemma 4, (again, condition (c) of the definition of Zh is not

used there — notice also that only the first and fourth sub-cases play a role here).

• If X = D̄, then we distinguish two cases. If w′ < x, then we select x′ = w′

and y′ = z′, and [x′, y′] is such that [x, a]D̄[x′, y′] and [x′, y′]Zh[w
′, z′]. If, on

the other hand, w′ = x, then the proof proceeds exactly as the one for the case

of x 6= w and x,w ∈ Ph−1 in Lemma 4, with x− 1 in x’s stead, x in w’s stead,

and a in both y’s and z’s stead (again, condition (c) of the definition of Zh is not

used there — notice also that only the first and fourth sub-cases play a role here).

• If X = Ō, then we distinguish two cases. If w′ < x, then we select x′ = w′

and y′ = z′, and [x′, y′] is such that [x, a]Ō[x′, y′] and [x′, y′]Zh[w
′, z′]. If, on

the other hand, w′ = x, then the proof proceeds exactly as the one for the case

of x 6= w and x,w ∈ Ph−1 in Lemma 3, with x− 1 in x’s stead, x in w’s stead,

and a in both y’s and z’s stead (again, condition (c) of the definition of Zh is not

used there).

Lemma 11 For eachN ∈ N, the sequence of relations ZĒ
h ∪Zh, for h ∈ {1, . . . , N},

define a N -bisimulation for ABEĀB̄D̄Ō.

Proof. First, we prove the local condition, then the forward and backward ones.

Local condition. We have already showed in Lemma 9 that the local condition is

fulfilled as far as relations Zh (1 ≤ h ≤ N ) are concerned. Let us consider now pairs
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([V(a)+h, a], [V(a)+h+1, a]) ∈ ZĒ
h , with 1 ≤ h ≤ N . It is immediate to verify that,

for every h ∈ {1, . . . , N}, bothM, [V(a)+h, a]  ¬p andM, [V(a)+h+1, a]  ¬p
hold, hence the thesis.

Forward condition. It immediately follows from Lemmas 3, 5, 4, 6, and 7 if no

interval pairs of the kind ([V(a)+h, a], [V(a)+h+1, a]) ∈ ZĒ
h are involved; otherwise,

it follows from Lemma 10.

Backward condition. Let X ∈ {A,B,E, Ā, B̄, D̄, Ō} and ([x, y], [w, z]) ∈ ZĒ
h−1 ∪

Zh−1, for some h ∈ {2, . . . , N}. We assume that [w, z]X [w′, z′] holds for some

interval [w′, z′] and we show that there exists an interval [x′, y′] such that [x, y]X [x′, y′]
and ([x′, y′], [w′, z′]) ∈ ZĒ

h ∪ Zh hold. In Lemma 10, we have already shown that this

is the case if ([x, y], [w, z]) ∈ ZĒ
h−1. The same argument based on the symmetry

of Zh (1 ≤ h ≤ N ) that we used in the proof of Lemma 9 applies here to show

that, for each pair ([x, y], [w, z]) ∈ Zh−1 (2 ≤ h ≤ N ) and each [w′, z′] such that

[w, z]X [w′, z′] for some X ∈ {A,B,E, Ā, B̄, D̄, Ō}, there exists an interval [x′, y′]
such that [x, y]X [x′, y′] and ([x′, y′], [w′, z′]) ∈ Zh.

Corollary 2 There are no inter-definabilities for 〈E〉 in any class of discrete linear

orders.

Proof. It immediately follows from Lemma 11 and from the following facts: ([V(a) +
1, a], [V(a)+2, a]) ∈ ZĒ

1 ,M, [V(a)+1, a]  ¬〈E〉¬p, andM, [V(a)+2, a]  〈E〉¬p.
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