/%" UNIVERSITA

=

? DEGLI STUDI DI TRIESTE

Data WareHouse - Logical
modeling

Prof. A. Peron

Slides from M. Golfarelli, S. Rizzi,
Datawarehouse Design, Modern Principles and
methodologies, McGrawHill.

(Slightly modified by Dario Della Monica)

MOLAP

Multidimensional On-Line Analytical Processing

» They store data using a multidimensional model (e.g. multidimensional
vectors); each element of the vector is associated with a set of coordinates
in the space of values.

» Criticism: Sparsity of data

» In a multidimensional DBMS all the cells of the cube should be
represented;

» Usually less than 20% of the cells in a cube has data.
» Criticism: lack of widely accepted standards

» The systems have common basics, such as multidimensional data
structures and handling of sparsity

» The implementations are often based on poorly documented proprietary
data structures

» The systems are hard to be replaced and accessed by third-party tools.

» No query standard playing the same role of SQL standard query language.

MOLAP: dealing with sparsity

» Partition cubes: A dimensional cube is split into various sub-cubes called
chunks.

» This strategy leads to small sized blocks of data that can be quickly
loaded into memory;

» Cube partitioning can also manage a sparse chunks and dense chunks in
different ways

» A chunk is dense if most of its cells include data otherwise a chunk is
sparse

> : : >

Data Dense Chunk

MOLAP: sparsity

Handling sparsity

» Compress chunk: starting a sparse chunk directly to memory implies a
waste of a free space because of the representation of the cells with no
information

» An index that lists only the chunk cells containing information is normally
used to create a compressed representation of sparse chunks

HOLAP: Hybrid OLAP

» In HOLAP systems a crucial design factor is the definition of the
policies to apply to select which data should be stored in ROLAP
mode and which data should be stored in MOLAP mode.

»Possible strategies:

» Store dense chunks in MOLAP mode and the sparse chunks in
ROLAP mode

» Store primary cubes in ROLAP mode and secondary cubes in
MOLAP mode

» Store frequentely accessed data in MOLAP mode and remaining
data in ROLAP mode

ROLAP

Relational On-Line Analytical Processing

» ROLAP systems adopt the well known relational model to
represent multidimensional data

» It uses a model based on a bidimensional element: relations have
rows and columns for modeling multidimensional data.

»Pro
» The relational model is the standard de facto for DBMS.
» It has no problems of sparsity

» ROLAP systems are more scalable than MOLAP systems

ROLAP

» The multidimensional modeling on relational DBMS is based on the
idea of STAR SCHEMA and its variants.

» Star schema: The star schema consists of

» A set of relations DT,..., DT,,, named dimension tables, in one-
to-one correspondence with the dimensions.

» Any relation DT; has primary key (usually surrogate) k; and a
set of attributes describing the dimension at different aggregation
level.

» A relation FT, called fact table, that

» Includes the primary keys of all the dimension tables k., ...,
k, (ki, ..., k, is the primary key of FT)

» If features an attribute per each measure.

Star Schema

Star Schema for sales

DATE

keyD

date
month
quarter
year
day
weaek
holicay

SALES

Multidimensional view

country
salesManager
salesDistrict

keys

keyD

keyP

PRODUCT

SELECT

WHERE
AND
ANT

SALES AS FT,
TORE AS DT2,
FT.kayF = DTL
FT.keyS - DT2
Fl.keyD = DT]

PRODDCT AS DT1,

= .] =

—SATA DT3a

. R&YP
. R&YS
. keyD

quantity
receipts
unitPrice

number0fCustomers

keyP

product
type
category
department
marketingGroup
brand
brandCity

Star schema

» We can relate many fact table to the same dimension tables
(dimensions shared by cubes)

» The dimension tables are not normalized (due to the functional
dependencies in the hierarchy of dimensional attributes).

» Redundancy: The redundancy due to denormalization is not a
problem (problems for insertion, deletion and update) since the
dimensions are typically static.

» The size of dimension tables is typically far lower than the fact
table (waste of space due to redundancy is negligible)

» Sparsity: it is not an issue since the fact table only records
occurrences of a fact (there is no placeholder for cells with empty
information).

Use of surrogate keys

» It is suggested to use surrogate keys in the dimension tables:

» Advantages:

» They are usually more compact than semantic keys and reduce the size
for the foreign keys in the fact table.

» They provide a quicker access to data because the query execution plans
can use a simple index based on a single numeric attribute

» They offer independence of any changes of identifier values applied to
operational sources

» They are able to represent many versions of an individual hierarchy in
the case of dynamic hierarchies

»DisAdvantages:

» In the population phase they force you to transcode the natural keys
included in the source schema.

» It causes and increase in size of dimension tables if the natural keys are
also included in dimension tables.

Snowflake Schema

» Introduces partial normalization in dimension tables.

» snowflake schema: It can be obtained from star schema by
decomposing one or more dimension table DT; into various
smaller tables DT, ;...DT; ,, to remove some or all transitive
functional dependencies.

» Every dimension table consists of the following:

» One primary key (typically surrogate) d

ij

» A subset of DT; attributes functionally depending on d, ;
» Sone foreign keys, each referencing another DT, table necessary
for any DT; to be properly reconstructed.

» Dimension tables whose keys are referenced in the fact tables are called
primary.

» The remaining tables are called secondary dimension tables.

Snowflake

Star schema for sales Derived Snowflake.

ETONE DATE CITY

keyd)} " .-.'kgjgee'g-'z-_ﬂ_-

musheritTeatoners

date _
month storeCity
Flee state
aArver RE
qi;-ear councry STO
Bay _ keys
week

noliday

CATEGORY

store
gzlesManager
salesDistrict

keyC —

- T =y e
- . - g T4
- s e =

category
department

geanticy
receipts
unitPrics

numbarofCustomars

TYPE

PRODUCT

P e = 2 W
i '
i A

product

C L ey T ST
.=‘:.‘ T ——
. L ko

type
xeyCa
marketingGroup

keyT
brand
cicyBrand

Snowflake schema

» A snowflake is obtained by progressively deleting some transitive
functional dependency from the dimension table.

» Each normalization step is related to an arc in the DFM and marks a sub-
hierachy that should be stored separately.

» Consequences (+/-):

» (+) The disk space required for data storage decreases due to the removal
of duplicated data.

» (-) It is necessary to add new surrogate keys in order to express the
relationship between primary and secondary dimension tables.

» (+) Processing the queries that involve only fact table attributes and the
primary dimension table attributes is less costly because their joints involve
smaller tables.

» (-) The time needed for queries of secondary dimension table attributes is
longer because of a larger number of necessary joins

Materialized views.

» The huge amount of data stored in a data warehouse makes users analysis
difficult.

» Users tend to apply selection and aggregation to decrease the parts of
data they examine

» If one calculates in advance the most frequently used aggregate data this
can result in a significant increase in performance

» Views: The fact table containing aggregate data are called views.
(identified by their aggregation pattern).

» A view can be identified by its group-by set.

» Primary views: the fact table defined by the primary events (the most
detailed one)

» Secondary views: correspond to secondary group-by sets (aggregated).

» A relevant aspect of secondary views is that they can be populated from
other views in the datawarehouse (and not directly from operational data).

» If secondary views are populated from other views attention must be
payed to additivity of dimensions and distributivity of aggregation
operations.

Viste materializzate Primary view

I — Secondary views obtained by

A-’:}pe. dace, storeCity aggregation
ve = |(type, monch, 3:5::_.'.\ v, = {Category, month, storellty)

‘. vy = [guarter, state)

product | quasvicy |unitPrice | receipts
Jairy product | Slurp Milk 5 1.0 5.0
Dairy product Fresh Milk 7 15 10.5 .
T : Receipts cannot be
Drinks Coky 9 0.8 72

T e calculated from the
B P secondary view

ype guantity unitPrice | quantit unicPrice
Dairy product 12 125 5.0
Drinks 9 08 72
Towal 222

Fieunz 8-8 Caiculating aggregate values can result in errors If you do not carefully take operator
features into account

Secondary views (2)

Attention have to be paid in the usage of non distributive aggregation

operations.

4-MonthPeriod date stockLevel
1'o9 | 2009 100
1'09 21012009 00
' 109 473172009 60
e | &/S2009 85
no9 | THNB2009 125
Tmre | 12312009 o
Average: 113.33
AVG
8
4 -MonthPeriod stockLevel count
ros B 120
me . 105 I
o9 1o 1
Average: 111.66 Weighred Avg:

Fiount 8-9 Caiculating aggregate values can resull in errors if you 00 not carefuily take operator

features inta account.

Additional information required for
the correct computation of AVG
(algebraic operator)

Schemata with aggregate data

» If materialized views are present you can use different variants of the

standard star schema

» Single fact table: primary view data and secondary view data are stored

in the same fact table.

» The aggregation level of individual tuples in fact tables can be specified

by the corresponding tuples in dimension tables.

» The dimension table related to aggregated data will have NULL values in

all the attributes whose aggregation level is finer

SALES kevs kavD kavE quantity | receipts | ...
1 - - [1-_ | 170__ N gS I
.] 1 200 150
3 r 1700 | 850 | .-
STORE key§ | store | s:.cr-::':_:'rf | state
1 COOFP1 Columbus Ohio
2 | - | Awtin | Texas
= | = | Texas

Schemata with aggregate data

» Single fact table

» (+) the same fact table can be used to solve all the queries

» (-) performance becomes poorer because of the huge size of the one and
only fact table.

SALES kevs kavD kevP | quantity | receipts
I 1 1 | 10 | 8 |
i, V| 1] 0 [1s0 |-
] T e | w0 T
STORE kev store store :T'.; state
1 COOFP1 Columbus Ohio
2 Austin Texas
| _3 ____— __ : = __T_cus__ sl

Schemata with aggregate data

» storing data related to two different group-by sets into separate factor
tables is another option.

» Having multiple fact tables available requires an additional decision on
dimension tables:

» costellation schema: dimension tables are merged and shared by all the
fact tables.

» NULL values are required for the attribute not suitable for a given
aggregation level (the same solution adopted in the single fact table).

» the solution optimizes only the access to the fact tables which contains
only data at a particular aggregation level.

» multiple star schemata: dimension tables are replicated and customized
to the aggregation level of the secondary views.

» Any dimension table includes only the attributes meaningful for the
aggregation level for which is used.

» The solution optimizes both the access to the fact table and the access
to the dimension tables.

Constellation schema

Fact tables. The fact table

A / V, has a dimension which is
R LT completely aggregated. It has

not a foreigh key referencing
RE that dimension.

y

I

store
storeCity
state
country
salesManager
szlesDistrice

PRODUCT

vi
DATE _ keys
dare '
month B
quarter guantity
year receipts
day unitPrice
wesk numberOfCustomers
holiday

product _
type
cAtegory
department
market lngGroup
brand
brandCity

Shared Dimension tables: in a constellation schema the dimension
tables are shared by the fact tables.

Multiple star schemata

receipts
unictPrice
numberUfCustomers

Star schemata

e

calesManager
salesDistrict

FPRODUCT

-’_') - :"‘_'_ e
i

receipts
unitPrice
numkbarOfCustomars

department
market inaGroup
brand
brandCicy

Fact tables

Hybrid solution (snowfalking)

» The snowflaking on dimension is applied on dimension tables in
correspondence with the aggregation levels of the secondary fact views.

» It reduces the need of replication in the dimension tables.

Snowflaking

STATE
QUARTER Vi TR
— e e i i
— — -
keyQ = - state
Qquarter e i country
year :
quantitcy
receipts SZK}RET///'
unicPrics e T
DATE numberOfCustomers "'E‘:E'/?‘m e |
= store
storeCicy
. salesManager
' | salesDisrricr
: = | keySt
e
L e
= E ==t PRODUCT
quantity =5 Tkeyp e
receipts | i
unicPrice | product
numberOfCustomers J type
category

department

marketingGroup
brand

brandCicy

Handling dynamic hierachies

» Dimension tables can have values changing in time.

» Interesting temporal scenarios: Yesterday for today, today for
yesterday, today or yestarday, today and yesterday.

» In the design phase the designer has to choose the scenario to be
modelled.

» Handling the dynamic aspect of hierarchies implies extra cost in terms of
disk space and may have bad effects on performance.

Status on 1/1/72008
sLoe sa.esManager
EverMore Smath i Seles Bvanes
R = store date gquantity
ProFitsOnly Johnson e — e
_— EverMore 82008 100
SmartMart Johnson ———— —— - —_—
= ' F, . ProFitsOnly 10v1872008 1M
SmartMan 1 2/25/2008 100
Status on 1/1 ':1”‘-")) EverMore YR2009 100
- salestanager AllEvenMore 752000 100
sr % ore) [=1
EverMore | Johnson ProFusOnly 107182009 100
D | e} SmartMart | 1272572009 100
ProFusOmnly Johnson z
SmarthMar Johnson
fauntg 8-14 Evolution of the store hierarchy and sales events from 2008 to 2009

Handling dynamic hierarchies: type 1

» It only supports the scenario today for yesterday

» The pure star schema sufficies

» When the value of a dimensional attribute changes it is simply required to
overwrite (update) the past value. All the events in the fact table previously
associate to the old value are now associate with the fresh.

Status on 1/1/72008

store salesManager)
EverMore Smith li""'" Drow e
2 or ¢ Qquantit)
ProFitsOnly Johnson e . - Y
EverMore /842008 100
SmanMan Johnson -
ProFitsOnly | 10/18/2008 100
SmartMan 1272572008 100
Status on 1/1/2009 [T Esbites: 2872009 100
store | salesManager T sppvenMore | 7/5/2009 100
| EverMore | Johnson ProFusOnly 1071872009 100
| AllEvenhore | Smnh | SmantMart | 122572009 100
ProFitsOnly Johnson PP : o
SmanMar Johnson

STORE | keys store salesManager | ----
Statas on 1 EverMore " Smith =
11172008 2 ProFitsOnly Johmson | ..o
E SmartMart Johnson
STORE | kevs store salesManager
Sutson | | | EverMore | Johmson | - |
17172009 2 | ProFusOnly Johnson
| 3 [smenMam | Johmson | - |
4 AllEvenMore Smith

Handling dynamic hierarchies: type 2

» It supports the scenario today or yesterday
» The standard star schema sufficies

» An event stored into a fact table has to be associated with the
hierarchy instance that it was valide when the event took place.

» The update of a hierachy implies the insertion of a new record for
the new attributes in the dimension table.

» New events are now associated only to the newly inserted
dimensional record.

» The type 2 allows to partition the events with respect to the
time of the change without using additional temporal marks.

» In case of high dynamicity the dimension table can increase its
size quickly.

Handling dynamic hierarchies: type 2

STORE store salesManager | ----
Sitiiiic | 1 E\-I:r.\{r?EC_ SI‘HJEI_ | =]
1/172008 2 ProFitsOnly Johnson
3 SmartMan Johnson -
TORE | kevs store salesManager
Syatus on 1 EverMore i Smith
12009 2 ProFisOnly Johnson
3 SmanMan Johnson i
< AllEvenMore Smith
5 EverMore Johnson
brvea 20 1 il
Sales for sale managers
year | 2008 ear | 2008 | 2009 |
salesManager salesMasager
Johnson 200 | Johnson 200 300
Smith 100 Smith 100

100

Handling dynamic hierarchies: type 3

» It supports all the temporal scenarios

» dimension tables should include one or more attributes that track
previous version of attributes being changed and attributes modification
data.

» Requirements:
» A pair of time-stamps giving the time validity of a dimensional record;

» A master attribute reporting, for every changed record, the key value of
the dimensional record from which each previous version record stems. (If a
dimensional record has been changed many times the refence is to the first
original record)

» It is a modification of the pure star schema.

» For each modification of the hierarchy, a new record in the dimensional
table is added and the values of the end time-stamp and the master
attribute are updaded.

Handling dynamic hierarchies: type 3

STORE @ kevs store | salesManager v from | Lo | master |
: 1 EwverMore Smith e | Jum008 | = | 1|
fns
s |2 ProFitsOnly Johnson | 1/1/2008 - | 2
3 SmantMart | Johason @ | ---- 17172008 - 3 3
..... | J
STORE | keyS | store salesManager | '~ from] to master
1 | EverMore Smith V172008 | 123172008 | 1
Status 08 T o Oty Johnson 17172008 1 2 |
1172009 = 3 2 | 2 |
| 3 | SmartMant | Johnson | - | 1712008 | 63072008 _ 3 |
| 4 BigMart Johnson | .- | 008 10812008 3
5| HyperMan Johnson 117172008 - 3
| 6 | AllEvenMore Smith Ees ieee | - 6
7 EvertMore Johnson /12009 - |

Handling dynamic hierarchies: type 3

By grouping by the master attribute it is possible to obtain all the
dimensional records obtained by updating a particular record.

» Implementation of temporal scenarios:

» Today for yesterday: 1) find the tuples of the currently valid records in
dimension table (NULL value in the field To); 2) find the records from which
the current are derived (using the master attribute); 3) make access to the
fact table.

» Yesterday for today: 1) fixed a date, find the records valid at that date
(using timestamps); proceed as in the previous case.

» Today or yesterday: it sufficies to consider each dimensional record
without considering timestamps o master attribute (exactly as in type 2).

» Today and yesterday: one has to consider only the records which have
not been modified during the interval of time of interest (using the
timestamp pairs).

Logical modelling

Logical modelling

In the logical modelling step one has to design the structure of the
datamarts using the chosen logical model. The designh adopt
suitable optimization choices.

» Activities:

» The dimension fact model are encoded into logical schemata: star
schemata, snowflake schemata, constellation schemata, etc

» Design of the materialization strategy.

» Design of the fragmentation strategy.

From the conceptual design to the logical design

A design specified by a Dimensional Fact Model can be easily
translated into a ROLAP model.

» The basic aspects (fact, dimensions, hierarchies) can be easily modelled
by a STAR schema:

» The fact table includes the measures and the descriptive attributes
directly associated with the facts.

» There is a dimension table for each hierarchy including all the
dimensional and descriptive attributes.

» Specific encodings can be used for the advanced features of the
DFM

Descriptive Attributes

The descriptive attributes are not used for aggregation.

» A descriptive attribute associated with a dimensional attribute is

included in the dimensional table where the dimensional attribute
occurs.

» A descriptive attribute associated with a fact is included in the
fact table.

» A descriptive attribute associated with a fact does not occur in
the secondary fact tables obtain by aggregating the fact table.

Cross-dimensional attributes

They conceptually define a many-to many association between two
or more dimensional attributes

The translation at the logical level requires a bridge table including
the involved dimensional attributes and the cross-dimensional
attributes.

STORE
A rKeys
store
storeCity
/ state
country
salesManager e
SALES. / | diceeress \ VAT
e keys : : country
‘1 keyD category
T _ PRODUCT
e Key® - '
quantity : !
receipts product
unitPrice type |
numberOfCustomers category
department
marketingGroup
brand

Shared hierarchies

Case 1: two hierarchies have exactly the same
attributes which are used with different meanings

The two hierarchies are modelled by the same
dimension table.

Caso 2: Two hierarchies share only a subset of
the attributes. Implementation options:

» Two separate tables with duplication of
attributes.

»Snowflaking

shipmentlost

L

customer
keyC

CALLS B
NUMBER
keyCalled
== keyN
: keyCalling
b telNumbar
; xeyDate o
4 keyHour districec
number
duration
WAREHOUSE
SHIPMENTS / - key®
warehouse CITY
m kl'_.'.'.' i al
keyo ! . keyC.
s \ ORDER cdey
BLate
key? keyO COURTTY
* |shippedQuantity .

Multipli arcs (1)

Multiple arcs conceptually represent many-to-many associations
»Solution 1. (it is not neither a star nor a snowflake schema)

» Use a bridge table as in the standard relational setting for encoding the
association.

» Include a normalized weighting attribute in the bridge table to allow a
weighted aggregation (the sum of the weights of elements in the same
association is 1)

BOOK

SALES / S keyB

keyBT ! al?;::ﬂﬁ;f;

keyD : = BERIDGE AUTHOR

number S lokeyB

recelipts AUTEOR / §

keyR weight
author

Multiple arcs (2)

Weighted queries.

SELECT A.author, SUM(S.Receipts*B.weight)

FROM Author A, Bridge_Author BA, Book B, Sales S

WHERE S.keyB = B.keyB AND A.keyA = BA.keyA AND
B.keyB=BA.KeyB

GROUP BY A.author

Impact queries (do not use the weight)

SELECT A.author, SUM(S.number)

FROM Author A, Bridge_Author BA, Book B, Sales S

WHERE S.keyB = B.keyB AND A.keyA = BA.keyA AND
B.keyB=BA.KeyB

GROUP BY A.author

Multiple arcs (3)

A way to avoid the bridge table and respect the star
schema is to make the granularity finer. The association is
modelled directly in the fact table (pushdown).

» Add to the fact table a new dimension for the attribute
A in the many to many association (multiple arc).

» Possible descendents of A will be included in the
hierarchy for A and the relative dimension table.

» Some measures can be weighted.

Pushdown of
author on the fact

BOOK | kevi boak genre
1 Facts & Cnimes Techmgl 1
" 2| Soundslogical | Techmical
[3 | TheRightMesswre | Curremt affairs |
| 4 | Facts; How and Why Current affairs
5 The 4* Dimension Science Ez;un-—
AUTHOR kevh u::_cr_ _ B
1| MamcoGoMareln
'_ | 3_ 1 Stefano Rizzi 1
SALES kevB kevD T number receipts
1 1 i 150
: | 1 s | 2%

Number of sold
copies normalized

table
SALES | kevE | keva keyD | number | receipts
1 ' 1 1 1.5 75
1 2 1 L5 75
=2 L ¥ N & [& I &
3 2 1 10 300
4 1 1 2 40
4 2 1 2 40
5 1 1 8 400

Bridge vs pushdown

» The two techniques convey the same information.
»Pushdown
» The pushdown approach introduces redundancy in the fact table

» The records in the fact table are replicated a number of times
corresponding to the multiplicity of the arc.

» Naturally supports weighted queries and less naturally impact queries.

» The weighted query does not need a join with the bridge table (+) but
works with a bigger fact table (-).

» Bridge table

» La bridge table stores the weights without any redundancy.

» The weight can be easily and efficiently modified (if needed).
» Supports both impact and weighted queries.

» The weighted query does need a join with the bridge table (-) but works
with a smaller fact table (+).

Opzional arcs

» The feature does not affect the logical structure and can be handled
by suitably assigning NULL or special values to the attributes.

» The absence of a value for an attribute can be witnessed either by the
NULL value o by a special value.

Optional hierachy:

» it cannot be handled by inserting a NULL value in the corresponding
foreign key in the fact table

» it requires the insertion of a special record in the dimensional table
witnessing the lack of values.

» the fact record references the special record.

Incomplete hierarchies

» The feature does not affect the logical structure and can be handled
by suitably assigning special values (placeholders) to the attributes.

» The possible solutions differ for the choice of the placeholder:
» Balancing by esclusion:

» all the missing attribute values are associated with a same generic
placeholder.

» it is a good option if many records have missing attribute values.

» it breaks regular roll-up semantics (using the same value, different
hierarchial levels can be aggregated)

» Downward Balancing:

» the missing value in the dimensional record is filled with the value of
the attribute immediately preceeding in the hierarchy.

» It does not break the roll-up semantics.
» Upward Balancing:

» the missing value in the dimensional record is filled with the value of
the attribute immediately following in the hierarchy.

Incomplete hierarchies

country U.5.A. C.E
/\
BLAle California Colorado
F "R
county Orange Monterey Baca Norfelk
elty Santa & SIII:(I\ v:{l\ NQWA

Anaheim terey Springtield

vacican City

Sheringham

Rotl-up from
ELATe 0. SOuUnTEYy

USA Vatican City | UK | UK
California Other Other | Other
Orange | Othee | Norfolk Essex
SamtaAng | Other | Norwich Epping
USA Vatican Ciry UK
| California | Other

Fisurt 9-8 Balancing by exclusion for the incomplete hierarchy of Figure 518

Holl-up from
stateto country

| Usa VaticanCity | UK UK
| California | Vatican City Norfolk | Essex
Orange Vatican Ciry Norfolk Essex
Santa Ana Vatican City Norwich | Epping
| USA | VaticanCity | UK
| Califoria | VaticanCity | Norfolk Essex

Fisure 9-10 Top-down balancing for the incompiete hierarchy of Figure 5-18

Rall-up from
state |0 country

UsA Vatican City | UK | UK
California | VaticanCity | UK UK
Orange Vatean City | Norfolk Essex
Santa Ana Vatican City Norwich Epping

| usa | VaicanCuy | UK
| California | Vaican City | UK

Fioure 8-11 Bottom-up balancing for the incompiete hierarchy of Figure 5-18

Degenerate Dimensions

A dimension is said degenerate if it consists of only one attribute (the
hierarchy is missing). Options:

» Define a dimension table (in the standard way)

» (a good solution when the length of the attribute is much more than the
length of the surrogate key)

» Include the dimensional attribute directly in the fact table.

» Create a unique dimension table for all (or a subset) of the degenerate
dimensions.

Degenerate
dimensions

e
e returnCods
|

ORDER LINE

guantity i e

ot ¥

:ms:cmerc/ price '
= " BOlpmentMode

lineScatus ~
e

Materialized views

» View Materialization is the selection of a set of secondary views obtained
from the data stored in the primary view.

» The choice of the set of views to be materialized it depends on project
goals. Possible goals:

» Minimization of a cost function
» Meeting a system-oriented constraint.
» Meeting a user-oriented constraint.

» Minimization of a cost-function:

» Some selection techniques consider the workload the datamart has to
cope with.

» The total cost of the workload is given by the weighted sum of the cost of
the query to be performed.

» The weight of each query is related to the frequency of the query or the
importance of the query for the user.

Materialized views
» View maintenance cost

» The materialized views need a periodic update to replicate
changes in the operational data.

» The maintenance cost is the cost of the queries necessary to
transmit those updates from operational sources to views.

» The cost calculation is quite complex because of the many
different solutions that can be adopted:

» A simple way is to issue update queries directly accessing the
operational database.

» Other techniques are based on incremental view updates
from already updated views.

» Other technique replicate operational data source tables in
that amount to reduce the number of remote queries.

Materialized views: systems constraints

» Limitations on available resources.
» Disk space:

» Space made available to a Data Mart is normally the main constraint on view
materialization

» The available disk space must be shared with other optimization
structures (e.g. indexes).

» Normally indexes uses a very high percentage of the available disk space.

» The choice of how to distribute free disk space becomes a major design
decision.

» Update time

» A data mart is normally updated when the data warehouse system is
offline.

» The time for maintenance is limited and it is shared with other regular
operations like backup, synchronization, and so on.

» It is not possible to materialize more views than the number of views that
can be updated in the available time.

Materialized views: user constraints

» Query response time:
» The greatest admitted time in between issuing a query and the response time.

» User may specify that limit for each query, thus showing how urgently each
query should be answered.

» Data freshness.

» Maximum limit on time since the last update overview used to execute a
query.

» For each query it is possible to define the “freshness” of data that can be
used to answer the query.

» The goals are clear in conflict with one another. If constraints are too
restrictive the problem of view materialization may not offer any solution.

View materialization problem

» The view materialization problem is a problem with minimizing workload
response time and complying with the system constraints (disk space and
update time)

» The search of solutions exponentially grows with the number of dimension
attributes which determine the aggregations patterns.

» Each combination of dimension attributes (one for each dimension)
determine a possible pattern of data aggregation.

» Even neglecting hierarchies, a fact related with N dimensions has 2"
possible aggregation patterns.

» The approaches to solve the problem usually act in two steps:

» Select among the possible materializable views, the subset of those which
can effectively be useful for a given workload;

» by using euristic algorithms determine the subset of useful queries that
minimizes the cost function fulfilling all the system and user constraints.

Materialization of views: the multimensional lattice

» A view is uniquely determined by its aggregation pattern (the list of
dimensional attributes)

» The patter include a dimensional attribute for each dimension.

» The pattern does not fix explicitly the measures and the support
information needed by algebraic operators to calculate measures from
aggregate data.

» A multidimensional lattice can be used to model the partial order of roll-
up of patterns.

» The oriented edges represents the partial ordering

» Intuitive meaning: if P; < P; data in P, allows to compute those in P;

Materialization of views: the multimensional lattice

» The dimension of the multidimensional lattice exponentially grows with
respect to the number of attributes.

» It is impractical the materialization of all the possible views.

» It is reasonable to consider only the patterns (views) which effectively
optimize the execution cost of a specific workload (candidate views)

» The candidate views:
» Give the exact result of a frequent query
» Can be used to solve more than one query

» The data required by two or more queries can obtained by aggregating
from the data in a candidate view

» Given a relevant frequently required queries, the materialization of all
the queries optimizes the query performance but usually violates

» space constraints

» time for updating constraints

Materialization of views
» Rules for materialization

» One should consider the opportunity of materializing a view
when

» It solves a very frequent query
» It can be used to solve many querries.
» A view should not be materialized when

» the pattern of the view is very similar to that of an already
materialized view.

» the pattern is very fine (close to that of the fact table)

» the materialization does not reduce the workload by a relevant
rate.

Partitioning
» Is the operation of fragmenting a table in parts called fragments in order
to increase the performance of the system.

» Partitioning is a technique used both by centralized and distributed
systems

» Specific data warehouse properties such as major data redundancy and
existing multiple multidimensional cubes correlated by drill-across queries
add new interest to fragmentation techniques

» The advantages of fragmentation are visible if the DW is implemented in
a distributed architetcture.

Partitioning Tecniques:
» Horizontal partitioning:

» A relation is fragmented in parts each of them contains a subset of the
records of the relation (each record has all the attributes of the original
relation).

Vertical Partitioning:

» a table is partitioned in fragments containing a projection of a subset of
all the records.

» the projection includes all the attributes in the primary key.

Vertical fragmentation

» The term vertical fragmentation or multi cubing stands for a set of views
created to contain a subset of the measures defined in one or more fact
schemata.

» The result of vertical fragmentation process must enjoy the following
properties:

» Consistency

» Fragmented group by sets must be chosen among candidate view group by
sets.

»Completeness.

» Every measure must be included in a primary fragment (a fragment of the
primary view).

»Non redundancy

» A measure cannot be inserted in two or more fragments having the same
aggregation pattern.

Vertical fragmentation: motivations
»Ottimized workload cost.

» Useful whenever only a subset of the measures in a cube are required by
queries.

» Merging can be cost-effective if the number of drill across queries is
large.

» Saved space.

» all the measures of the fact schemata must be included in the primary
fragments in order to avoid information loss.

» Since the previous requirement is not necessary in the secondary
fragments, some measures can be neglected in the secondary fragments
resulting in a space saving.

» Reduced key replication

» The fragments are usually created for aggregated pattern, where one or
more dimensions are completely aggregated (the foreign keys for the
collapsed dimensions are note reported).

Frammentazione verticale (2)

» The vertical fragmentation can be seen as a generalization of the view
materialization.

» The elements that make you select specific fragments are the measures
requested by queries at different aggregation level

»To the terminal those sets you must evaluate:

» the number of times that two measures are required at the same
time

» the number of times those measures are requested separately

» The non-fragmented solution should be preferred when almost all the
measures are simultaneously required by the fixed workload.

Horizontal fragmentation

» The term horizontal fragmentation refers to a set of views created to
contain all the measures of a specific factor schema but only the subset of
tuples that meet specific boolean predicates

» The result of horizontal fragmentation process must enjoy the following
properties:

» Consistency.

» The pattern of the fragments must be chosen among those of the
candidate views (meaningful fragmentation).

» Completeness.

» Every record of the primary view must be included in a primary fragment
(lossless fragmentation).

» Non-redundancy.

» A record cannot be included in two or more fragments having the same
aggregation pattern.

» Time is an attribute often used for horizontal fragmentation because it
is often used in queries.

» Time based fragmentation follows insertion orders. When the fact table
updates new records can be appended to the most recent fragment.

Horizontal fragmentation

In contrast to vertical fragmentation the horizontal
fragmentation does not lead to any additional cost in terms of
disk memory space used.

The horizontal fermentation can also be used as a starting point
for the parallel execution of queries.

The reasons for using horizontal fragmentation are similar to
those for using vertical fragmentation.

In particular a reduction in query execution time is the result of
the opportunity to access smaller fact tables that are free from
those records that do not satisfy specific conditions.

