
Data WareHouse – Logical

modeling

1

Prof. A. Peron

Slides from M. Golfarelli, S. Rizzi,

Datawarehouse Design, Modern Principles and

methodologies, McGrawHill.

(Slightly modified by Dario Della Monica)

MOLAP
Multidimensional On-Line Analytical Processing

� They store data using a multidimensional model (e.g. multidimensional

vectors); each element of the vector is associated with a set of coordinates

in the space of values.

� Criticism: Sparsity of data

� In a multidimensional DBMS all the cells of the cube should be

represented;

� Usually less than 20% of the cells in a cube has data.

� Criticism: lack of widely accepted standards

� The systems have common basics, such as multidimensional data

structures and handling of sparsity

� The implementations are often based on poorly documented proprietary

data structures

� The systems are hard to be replaced and accessed by third-party tools.

� No query standard playing the same role of SQL standard query language.

MOLAP: dealing with sparsity

� Partition cubes: A dimensional cube is split into various sub-cubes called

chunks.

� This strategy leads to small sized blocks of data that can be quickly

loaded into memory;

� Cube partitioning can also manage a sparse chunks and dense chunks in

different ways

� A chunk is dense if most of its cells include data otherwise a chunk is

sparse

Data Dense Chunk

MOLAP: sparsity

Handling sparsity

� Compress chunk: starting a sparse chunk directly to memory implies a

waste of a free space because of the representation of the cells with no

information

� An index that lists only the chunk cells containing information is normally

used to create a compressed representation of sparse chunks

HOLAP: Hybrid OLAP

� In HOLAP systems a crucial design factor is the definition of the
policies to apply to select which data should be stored in ROLAP
mode and which data should be stored in MOLAP mode.

�Possible strategies:

� Store dense chunks in MOLAP mode and the sparse chunks in

ROLAP mode

� Store primary cubes in ROLAP mode and secondary cubes in

MOLAP mode

� Store frequentely accessed data in MOLAP mode and remaining

data in ROLAP mode

ROLAP
Relational On-Line Analytical Processing

� ROLAP systems adopt the well known relational model to

represent multidimensional data

� It uses a model based on a bidimensional element: relations have

rows and columns for modeling multidimensional data.

�Pro

� The relational model is the standard de facto for DBMS.

� It has no problems of sparsity

� ROLAP systems are more scalable than MOLAP systems

ROLAP
� The multidimensional modeling on relational DBMS is based on the

idea of STAR SCHEMA and its variants.

� Star schema: The star schema consists of

� A set of relations ���…, ���, named dimension tables, in one-

to-one correspondence with the dimensions.

� Any relation ��� has primary key (usually surrogate) �� and a

set of attributes describing the dimension at different aggregation

level.

� A relation FT, called fact table, that

� Includes the primary keys of all the dimension tables �	 , …,

�
 (�	 , …, �
 is the primary key of FT)

� If features an attribute per each measure.

Star Schema
Star Schema for sales

Multidimensional view

Star schema

� We can relate many fact table to the same dimension tables

(dimensions shared by cubes)

� The dimension tables are not normalized (due to the functional

dependencies in the hierarchy of dimensional attributes).

� Redundancy: The redundancy due to denormalization is not a

problem (problems for insertion, deletion and update) since the

dimensions are typically static.

� The size of dimension tables is typically far lower than the fact

table (waste of space due to redundancy is negligible)

� Sparsity: it is not an issue since the fact table only records

occurrences of a fact (there is no placeholder for cells with empty

information).

Use of surrogate keys

� It is suggested to use surrogate keys in the dimension tables:

� Advantages:

� They are usually more compact than semantic keys and reduce the size

for the foreign keys in the fact table.

� They provide a quicker access to data because the query execution plans

can use a simple index based on a single numeric attribute

� They offer independence of any changes of identifier values applied to

operational sources

� They are able to represent many versions of an individual hierarchy in

the case of dynamic hierarchies

�DisAdvantages:

� In the population phase they force you to transcode the natural keys

included in the source schema.

� It causes and increase in size of dimension tables if the natural keys are

also included in dimension tables.

Snowflake Schema

� Introduces partial normalization in dimension tables.

� snowflake schema: It can be obtained from star schema by
decomposing one or more dimension table ��� into various
smaller tables DTi,1…DTi,m to remove some or all transitive
functional dependencies.

� Every dimension table consists of the following:

� One primary key (typically surrogate) di,j;

� A subset of ��� attributes functionally depending on di,j;

� Sone foreign keys, each referencing another ���,� table necessary

for any ��� to be properly reconstructed.

� Dimension tables whose keys are referenced in the fact tables are called

primary.

� The remaining tables are called secondary dimension tables.

Snowflake

Star schema for sales Derived Snowflake.

Snowflake schema

� A snowflake is obtained by progressively deleting some transitive

functional dependency from the dimension table.

� Each normalization step is related to an arc in the DFM and marks a sub-

hierachy that should be stored separately.

� Consequences (+/-):

� (+) The disk space required for data storage decreases due to the removal

of duplicated data.

� (-) It is necessary to add new surrogate keys in order to express the

relationship between primary and secondary dimension tables.

� (+) Processing the queries that involve only fact table attributes and the

primary dimension table attributes is less costly because their joints involve

smaller tables.

� (-) The time needed for queries of secondary dimension table attributes is

longer because of a larger number of necessary joins

Materialized views.

� The huge amount of data stored in a data warehouse makes users analysis

difficult.

� Users tend to apply selection and aggregation to decrease the parts of

data they examine

� If one calculates in advance the most frequently used aggregate data this

can result in a significant increase in performance

� Views: The fact table containing aggregate data are called views.
(identified by their aggregation pattern).

� A view can be identified by its group-by set.

� Primary views: the fact table defined by the primary events (the most

detailed one)

� Secondary views: correspond to secondary group-by sets (aggregated).

� A relevant aspect of secondary views is that they can be populated from

other views in the datawarehouse (and not directly from operational data).

� If secondary views are populated from other views attention must be

payed to additivity of dimensions and distributivity of aggregation

operations.

Viste materializzate Primary view

Secondary views obtained by

aggregation

Receipts cannot be

calculated from the

secondary view

Secondary views (2)
Attention have to be paid in the usage of non distributive aggregation

operations.

Additional information required for

the correct computation of AVG

(algebraic operator)

Schemata with aggregate data

� If materialized views are present you can use different variants of the

standard star schema

� Single fact table: primary view data and secondary view data are stored

in the same fact table.

� The aggregation level of individual tuples in fact tables can be specified

by the corresponding tuples in dimension tables.

� The dimension table related to aggregated data will have NULL values in

all the attributes whose aggregation level is finer

Schemata with aggregate data

� Single fact table

� (+) the same fact table can be used to solve all the queries

� (-) performance becomes poorer because of the huge size of the one and

only fact table.

Schemata with aggregate data

� storing data related to two different group-by sets into separate factor

tables is another option.

� Having multiple fact tables available requires an additional decision on
dimension tables:

� costellation schema: dimension tables are merged and shared by all the

fact tables.

� NULL values are required for the attribute not suitable for a given

aggregation level (the same solution adopted in the single fact table).

� the solution optimizes only the access to the fact tables which contains
only data at a particular aggregation level.

� multiple star schemata: dimension tables are replicated and customized

to the aggregation level of the secondary views.

� Any dimension table includes only the attributes meaningful for the

aggregation level for which is used.

� The solution optimizes both the access to the fact table and the access
to the dimension tables.

Constellation schema

Fact tables. The fact table

� has a dimension which is

completely aggregated. It has

not a foreigh key referencing

that dimension.

Shared Dimension tables: in a constellation schema the dimension

tables are shared by the fact tables.

Multiple star schemata

Fact tables

Star schemata

Hybrid solution (snowfalking)

� The snowflaking on dimension is applied on dimension tables in

correspondence with the aggregation levels of the secondary fact views.

� It reduces the need of replication in the dimension tables.

Snowflaking

Handling dynamic hierachies

� Dimension tables can have values changing in time.

� Interesting temporal scenarios: Yesterday for today, today for

yesterday, today or yestarday, today and yesterday.

� In the design phase the designer has to choose the scenario to be

modelled.

� Handling the dynamic aspect of hierarchies implies extra cost in terms of

disk space and may have bad effects on performance.

Handling dynamic hierarchies: type 1
� It only supports the scenario today for yesterday

� The pure star schema sufficies

� When the value of a dimensional attribute changes it is simply required to

overwrite (update) the past value. All the events in the fact table previously

associate to the old value are now associate with the fresh.

Handling dynamic hierarchies: type 2

� It supports the scenario today or yesterday

� The standard star schema sufficies

� An event stored into a fact table has to be associated with the

hierarchy instance that it was valide when the event took place.

� The update of a hierachy implies the insertion of a new record for

the new attributes in the dimension table.

� New events are now associated only to the newly inserted

dimensional record.

� The type 2 allows to partition the events with respect to the

time of the change without using additional temporal marks.

� In case of high dynamicity the dimension table can increase its

size quickly.

Handling dynamic hierarchies: type 2

Sales for sale managers

Handling dynamic hierarchies: type 3

� It supports all the temporal scenarios

� dimension tables should include one or more attributes that track

previous version of attributes being changed and attributes modification

data.

� Requirements:

� A pair of time-stamps giving the time validity of a dimensional record;

� A master attribute reporting, for every changed record, the key value of

the dimensional record from which each previous version record stems. (If a

dimensional record has been changed many times the refence is to the first

original record)

� It is a modification of the pure star schema.

� For each modification of the hierarchy, a new record in the dimensional

table is added and the values of the end time-stamp and the master
attribute are updaded.

Handling dynamic hierarchies: type 3

Handling dynamic hierarchies: type 3

By grouping by the master attribute it is possible to obtain all the

dimensional records obtained by updating a particular record.

� Implementation of temporal scenarios:

� Today for yesterday: 1) find the tuples of the currently valid records in
dimension table (NULL value in the field To); 2) find the records from which

the current are derived (using the master attribute); 3) make access to the

fact table.

� Yesterday for today: 1) fixed a date, find the records valid at that date

(using timestamps); proceed as in the previous case.

� Today or yesterday: it sufficies to consider each dimensional record

without considering timestamps o master attribute (exactly as in type 2).

� Today and yesterday: one has to consider only the records which have

not been modified during the interval of time of interest (using the

timestamp pairs).

Logical modelling

Logical modelling

In the logical modelling step one has to design the structure of the

datamarts using the chosen logical model. The design adopt

suitable optimization choices.

� Activities:

� The dimension fact model are encoded into logical schemata: star

schemata, snowflake schemata, constellation schemata, etc

� Design of the materialization strategy.

� Design of the fragmentation strategy.

From the conceptual design to the logical design

A design specified by a Dimensional Fact Model can be easily

translated into a ROLAP model.

� The basic aspects (fact, dimensions, hierarchies) can be easily modelled

by a STAR schema:

� The fact table includes the measures and the descriptive attributes

directly associated with the facts.

� There is a dimension table for each hierarchy including all the

dimensional and descriptive attributes.

� Specific encodings can be used for the advanced features of the

DFM

Descriptive Attributes

The descriptive attributes are not used for aggregation.

� A descriptive attribute associated with a dimensional attribute is

included in the dimensional table where the dimensional attribute

occurs.

� A descriptive attribute associated with a fact is included in the

fact table.

� A descriptive attribute associated with a fact does not occur in

the secondary fact tables obtain by aggregating the fact table.

Cross-dimensional attributes

They conceptually define a many-to many association between two

or more dimensional attributes

The translation at the logical level requires a bridge table including

the involved dimensional attributes and the cross-dimensional

attributes.

Shared hierarchies

Case 1: two hierarchies have exactly the same

attributes which are used with different meanings

The two hierarchies are modelled by the same

dimension table.

Caso 2: Two hierarchies share only a subset of

the attributes. Implementation options:

� Two separate tables with duplication of

attributes.

�Snowflaking

Multipli arcs (1)

Multiple arcs conceptually represent many-to-many associations

�Solution 1. (it is not neither a star nor a snowflake schema)

� Use a bridge table as in the standard relational setting for encoding the

association.

� Include a normalized weighting attribute in the bridge table to allow a

weighted aggregation (the sum of the weights of elements in the same

association is 1)

Multiple arcs (2)

Weighted queries.

SELECT A.author, SUM(S.Receipts*B.weight)
FROM Author A, Bridge_Author BA, Book B, Sales S
WHERE S.keyB = B.keyB AND A.keyA = BA.keyA AND

B.keyB=BA.KeyB
GROUP BY A.author

Impact queries (do not use the weight)

SELECT A.author, SUM(S.number)
FROM Author A, Bridge_Author BA, Book B, Sales S
WHERE S.keyB = B.keyB AND A.keyA = BA.keyA AND

B.keyB=BA.KeyB
GROUP BY A.author

Multiple arcs (3)

A way to avoid the bridge table and respect the star

schema is to make the granularity finer. The association is

modelled directly in the fact table (pushdown).

� Add to the fact table a new dimension for the attribute

A in the many to many association (multiple arc).

� Possible descendents of A will be included in the

hierarchy for A and the relative dimension table.

� Some measures can be weighted.

Pushdown of

author on the fact

table

Number of sold

copies normalized

Bridge vs pushdown

� The two techniques convey the same information.

�Pushdown

� The pushdown approach introduces redundancy in the fact table

� The records in the fact table are replicated a number of times

corresponding to the multiplicity of the arc.

� Naturally supports weighted queries and less naturally impact queries.

� The weighted query does not need a join with the bridge table (+) but

works with a bigger fact table (-).

� Bridge table

� La bridge table stores the weights without any redundancy.

� The weight can be easily and efficiently modified (if needed).

� Supports both impact and weighted queries.

�The weighted query does need a join with the bridge table (-) but works

with a smaller fact table (+).

Opzional arcs

� The feature does not affect the logical structure and can be handled
by suitably assigning NULL or special values to the attributes.

� The absence of a value for an attribute can be witnessed either by the
NULL value o by a special value.

Optional hierachy:

� it cannot be handled by inserting a NULL value in the corresponding

foreign key in the fact table

� it requires the insertion of a special record in the dimensional table

witnessing the lack of values.

� the fact record references the special record.

Incomplete hierarchies
� The feature does not affect the logical structure and can be handled
by suitably assigning special values (placeholders) to the attributes.

� The possible solutions differ for the choice of the placeholder:

� Balancing by esclusion:

� all the missing attribute values are associated with a same generic

placeholder.

� it is a good option if many records have missing attribute values.

� it breaks regular roll-up semantics (using the same value, different

hierarchial levels can be aggregated)

� Downward Balancing:

� the missing value in the dimensional record is filled with the value of
the attribute immediately preceeding in the hierarchy.

� It does not break the roll-up semantics.

� Upward Balancing:

� the missing value in the dimensional record is filled with the value of
the attribute immediately following in the hierarchy.

Incomplete hierarchies

Degenerate Dimensions
A dimension is said degenerate if it consists of only one attribute (the
hierarchy is missing). Options:

� Define a dimension table (in the standard way)

� (a good solution when the length of the attribute is much more than the

length of the surrogate key)

� Include the dimensional attribute directly in the fact table.

� Create a unique dimension table for all (or a subset) of the degenerate
dimensions.

Degenerate

dimensions

Materialized views

� View Materialization is the selection of a set of secondary views obtained

from the data stored in the primary view.

� The choice of the set of views to be materialized it depends on project

goals. Possible goals:

� Minimization of a cost function

� Meeting a system-oriented constraint.

� Meeting a user-oriented constraint.

� Minimization of a cost-function:

� Some selection techniques consider the workload the datamart has to

cope with.

� The total cost of the workload is given by the weighted sum of the cost of

the query to be performed.

� The weight of each query is related to the frequency of the query or the

importance of the query for the user.

Materialized views
� View maintenance cost

� The materialized views need a periodic update to replicate

changes in the operational data.

� The maintenance cost is the cost of the queries necessary to

transmit those updates from operational sources to views.

� The cost calculation is quite complex because of the many

different solutions that can be adopted:

� A simple way is to issue update queries directly accessing the

operational database.

� Other techniques are based on incremental view updates

from already updated views.

� Other technique replicate operational data source tables in

that amount to reduce the number of remote queries.

Materialized views: systems constraints

� Limitations on available resources.

� Disk space:

� Space made available to a Data Mart is normally the main constraint on view

materialization

� The available disk space must be shared with other optimization

structures (e.g. indexes).

� Normally indexes uses a very high percentage of the available disk space.

� The choice of how to distribute free disk space becomes a major design

decision.

� Update time

� A data mart is normally updated when the data warehouse system is

offline.

� The time for maintenance is limited and it is shared with other regular

operations like backup, synchronization, and so on.

� It is not possible to materialize more views than the number of views that

can be updated in the available time.

Materialized views: user constraints

� Query response time:

� The greatest admitted time in between issuing a query and the response time.

� User may specify that limit for each query, thus showing how urgently each

query should be answered.

� Data freshness.

� Maximum limit on time since the last update overview used to execute a

query.

� For each query it is possible to define the “freshness” of data that can be

used to answer the query.

� The goals are clear in conflict with one another. If constraints are too

restrictive the problem of view materialization may not offer any solution.

View materialization problem

� The view materialization problem is a problem with minimizing workload

response time and complying with the system constraints (disk space and

update time)

� The search of solutions exponentially grows with the number of dimension

attributes which determine the aggregations patterns.

� Each combination of dimension attributes (one for each dimension)

determine a possible pattern of data aggregation.

� Even neglecting hierarchies, a fact related with N dimensions has 2
N

possible aggregation patterns.

� The approaches to solve the problem usually act in two steps:

� Select among the possible materializable views, the subset of those which

can effectively be useful for a given workload;

� by using euristic algorithms determine the subset of useful queries that

minimizes the cost function fulfilling all the system and user constraints.

Materialization of views: the multimensional lattice

� A view is uniquely determined by its aggregation pattern (the list of
dimensional attributes)

� The patter include a dimensional attribute for each dimension.

� The pattern does not fix explicitly the measures and the support

information needed by algebraic operators to calculate measures from

aggregate data.

�A multidimensional lattice can be used to model the partial order of roll-

up of patterns.

� The oriented edges represents the partial ordering

� Intuitive meaning: if Pi < Pj data in Pi allows to compute those in Pj

Materialization of views: the multimensional lattice

� The dimension of the multidimensional lattice exponentially grows with

respect to the number of attributes.

� It is impractical the materialization of all the possible views.

� It is reasonable to consider only the patterns (views) which effectively

optimize the execution cost of a specific workload (candidate views)

� The candidate views:

� Give the exact result of a frequent query

� Can be used to solve more than one query

� The data required by two or more queries can obtained by aggregating

from the data in a candidate view

� Given a relevant frequently required queries, the materialization of all

the queries optimizes the query performance but usually violates

� space constraints

� time for updating constraints

Materialization of views

� Rules for materialization

� One should consider the opportunity of materializing a view
when

� It solves a very frequent query

� It can be used to solve many querries.

� A view should not be materialized when

� the pattern of the view is very similar to that of an already

materialized view.

� the pattern is very fine (close to that of the fact table)

� the materialization does not reduce the workload by a relevant

rate.

Partitioning
� Is the operation of fragmenting a table in parts called fragments in order

to increase the performance of the system.

� Partitioning is a technique used both by centralized and distributed

systems

� Specific data warehouse properties such as major data redundancy and

existing multiple multidimensional cubes correlated by drill-across queries

add new interest to fragmentation techniques

� The advantages of fragmentation are visible if the DW is implemented in

a distributed architetcture.

Partitioning Tecniques:

� Horizontal partitioning:

� A relation is fragmented in parts each of them contains a subset of the

records of the relation (each record has all the attributes of the original

relation).

Vertical Partitioning:

� a table is partitioned in fragments containing a projection of a subset of

all the records.

� the projection includes all the attributes in the primary key.

Vertical fragmentation

� The term vertical fragmentation or multi cubing stands for a set of views

created to contain a subset of the measures defined in one or more fact

schemata.

�The result of vertical fragmentation process must enjoy the following

properties:

� Consistency

� Fragmented group by sets must be chosen among candidate view group by

sets.

�Completeness.

� Every measure must be included in a primary fragment (a fragment of the

primary view).

�Non redundancy

� A measure cannot be inserted in two or more fragments having the same

aggregation pattern.

Vertical fragmentation: motivations
�Ottimized workload cost.

� Useful whenever only a subset of the measures in a cube are required by

queries.

� Merging can be cost-effective if the number of drill across queries is

large.

� Saved space.

� all the measures of the fact schemata must be included in the primary

fragments in order to avoid information loss.

� Since the previous requirement is not necessary in the secondary

fragments, some measures can be neglected in the secondary fragments

resulting in a space saving.

� Reduced key replication

� The fragments are usually created for aggregated pattern, where one or

more dimensions are completely aggregated (the foreign keys for the

collapsed dimensions are note reported).

Frammentazione verticale (2)

� The vertical fragmentation can be seen as a generalization of the view
materialization.

� The elements that make you select specific fragments are the measures

requested by queries at different aggregation level

�To the terminal those sets you must evaluate:

� the number of times that two measures are required at the same

time

� the number of times those measures are requested separately

� The non-fragmented solution should be preferred when almost all the

measures are simultaneously required by the fixed workload.

Horizontal fragmentation
� The term horizontal fragmentation refers to a set of views created to

contain all the measures of a specific factor schema but only the subset of

tuples that meet specific boolean predicates

� The result of horizontal fragmentation process must enjoy the following

properties:

� Consistency.

� The pattern of the fragments must be chosen among those of the

candidate views (meaningful fragmentation).

� Completeness.

� Every record of the primary view must be included in a primary fragment

(lossless fragmentation).

� Non-redundancy.

� A record cannot be included in two or more fragments having the same

aggregation pattern.

� Time is an attribute often used for horizontal fragmentation because it
is often used in queries.

� Time based fragmentation follows insertion orders. When the fact table

updates new records can be appended to the most recent fragment.

Horizontal fragmentation

• In contrast to vertical fragmentation the horizontal

fragmentation does not lead to any additional cost in terms of

disk memory space used.

• The horizontal fermentation can also be used as a starting point

for the parallel execution of queries.

• The reasons for using horizontal fragmentation are similar to

those for using vertical fragmentation.

• In particular a reduction in query execution time is the result of

the opportunity to access smaller fact tables that are free from

those records that do not satisfy specific conditions.

