
Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/1

Distributed DBMS reliability

Dario Della Monica

These slides are a modified version of the slides provided with the book

Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

The original version of the slides is available at: extras.springer.com

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/2

Outline (distributed DB)

• Introduction (Ch. 1) ⋆

• Distributed Database Design (Ch. 3) ⋆

• Distributed Query Processing (Ch. 6-8) ⋆

• Distributed Transaction Management (Ch. 10-12) ⋆
➡ Introduction to transaction management (Ch. 10) ⋆

➡ Distributed Concurrency Control (Ch. 11) ⋆

➡ Distributed DBMS Reliability (Ch. 12) ⋆

⋆ Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/3

Outline (today)

• Distributed DBMS Reliability (Ch. 12) ⋆
➡ Introduction and local reliability protocols

➡ Distributed reliability protocols

✦ Two-phase commit (2PC) protocol

⋆ Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/4

Reliability

Problem:

How to maintain

atomicity

durability

properties of transactions

Ch.10/4

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/5

Fundamental Definitions

• Reliability
➡ A measure of success: how much a system conforms to some authoritative
specification of its behavior

• Availability
➡ The fraction of the time that a system meets its specification

• Failure
➡ The deviation of a system from the behavior that is described in its
specification

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/6

Types of Failures

(sorted by seriousness – how critical they are)
• Transaction failures

➡ Transaction aborts (e.g., some execution flow ends in abort, unresponsive
participant or coordinating node, deadlock)

• System (site) failures
➡ Failure of processor, main memory, power supply, …
➡Main memory contents are lost, but secondary storage contents are safe
➡ Partial (some sites) vs. total (all sites) failure

• Media failures
➡ Failure of secondary storage devices such that the stored data is lost
➡ Head crash/controller failure (?)
➡ Permanent data loss (secondary, resilient, stable memory – hard disk)

• Communication failures
➡ Lost/undeliverable messages
➡ Network partitioning

• Implementation errors, malicious behaviors (unreliable nodes)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/7

Update Strategies

• In-place update

➡ Each update causes a change in one or more data values in the database

➡More efficient, more difficult to undo/redo

• Out-of-place update

➡ Each update causes the new value(s) of data item(s) to be stored separately
from the old value(s)

➡ Less efficient, easy to undo/redo

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/8

In-Place Update Recovery
Information
Database Log

Every action of a transaction must not only perform the action, but must also
write a log record to an append-only file.

New
database
state

Database
Log

Update
Operation

Old
database
state

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/9

Logging

The log contains information used by the recovery process to restore the
consistency of a system. This information may include

➡ transaction identifier

➡ type of operation (action)

➡ items accessed by the transaction to perform the action

➡ old value (state) of item (before image)

➡ new value (state) of item (after image)

…

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/10

UNDO Protocol

• UNDO'ing an action means to restore the object to its before image
• The UNDO operation uses the log information
• UNDO is needed when effects of a transaction are stored in secondary (stable,
resilient) memory and then an abort occurs
➡ sometimes to free main memory, information is stored to disk (secondary memory)
before commit

New
database
state

Database
Log

UNDO
Old

database
state

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/11

REDO Protocol

• REDO'ing an action means performing it again
• The REDO operation uses the log information
• REDO is needed when effects of a committed transaction were not stored yet in
secondary (stable, resilient) memory

➡ sometimes for efficiency reasons storying information to disk (secondary memory) is
done at a later time

Database
Log

REDO
Old

database
state

New
database
state

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/12

When to Write Log Records Into
Stable Store
Assume a transaction T updates a page P
• Fortunate case

➡ System writes P in database
➡ System updates log for this update
➡ SYSTEM FAILURE OCCURS!... (before T commits)
We can recover (undo) by restoring P to its old state by using the log

• Unfortunate case
➡ System writes P in database
➡ SYSTEM FAILURE OCCURS!... (before log is updated)
We cannot recover from this failure because there is no log record to
restore the old value.

• Solution: Write-Ahead Log (WAL) protocol

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/13

Write–Ahead Log Protocol

• Notice:
➡ If a system crashes before a transaction is committed, then all the operations
must be undone. Only need the before images (undo portion of the log)

➡ Once a transaction is committed, some of its actions might have to be redone.
Need the after images (redo portion of the log)

• WAL protocol :
 Before a database is updated, the undo portion of the log should be updated

 When a transaction commits, the redo portion of the log must be updated
prior to the updating of the database

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/14

Why Logging?

Upon recovery:

➡ all of T1's effects should be reflected in the database (REDO if necessary due to
a failure)

➡ none of T2's effects should be reflected in the database (UNDO if necessary)

0 t time

system
crash

T1Begin End

Begin T2

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/15

Execution of Commands

Commands to consider:

begin_transaction

read

write

abort

commit

recover

Independent of execution
strategy for LRM

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/16

Execution Strategies

• Dependent upon
➡ Can the buffer manager (BM) decide to write some of the buffer pages being accessed by
a transaction into stable storage or does it wait for LRM to instruct it?

✦ fix/no-fix decision (fix means BM cannot store the data into disk before commit)

(no-fix means BM can store data to disk before commit)

➡ Does the LRM force the buffer manager to write certain buffer pages into stable
database at the end of a transaction's execution?

✦ flush/no-flush decision (flush means BM cannot wait; it must store data into disk at commit)

(no-flush means BM can wait; it can store data into disk at a later time)

• Possible execution strategies:
➡ no-fix/no-flush

➡ no-fix/flush

➡ fix/no-flush

➡ fix/flush

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/17

No-Fix/No-Flush

• Abort
➡ Buffer manager may have written some of the updated pages into stable
database (second memory, disk)

➡ LRM performs transaction undo

• Commit
➡ LRM writes an “end_of_transaction” record into the log

➡ Data not necessarily written into disk

• Recover
➡ For those transactions that have both a “begin_transaction” and an
“end_of_transaction” record in the log, a redo is initiated by LRM

➡ For those transactions that only have a “begin_transaction” in the log, an
undo is executed by LRM

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/18

No-Fix/Flush

• Abort
➡ Buffer manager may have written some of the updated pages into stable
database (second memory, disk)

➡ LRM performs transaction undo

• Commit
➡ LRM issues a flush command to the buffer manager for all updated pages

✦ i.e., data is stored into disk at time of commit

➡ LRM writes an “end_of_transaction” record into the log

• Recover
➡ No need to perform redo

➡ Perform undo

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/19

Fix/No-Flush

• Abort
➡ None of the updated pages have been written into stable database

➡ Release the fixed pages

• Commit
➡ LRM writes an “end_of_transaction” record into the log

➡ Data not necessarily written into disk

➡ LRM sends an unfix command to the buffer manager for all pages that were
previously fixed

• Recover
➡ Perform redo

➡ No need to perform undo

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/20

Fix/Flush

• Abort
➡ None of the updated pages have been written into stable database

➡ Release the fixed pages

• Commit (the following have to be done atomically)
➡ LRM issues a flush command to the buffer manager for all updated pages

✦ i.e., data is stored into disk at time of commit

➡ LRM sends an unfix command to the buffer manager for all pages that were
previously fixed

➡ LRM writes an “end_of_transaction” record into the log

• Recover
➡ No need to do anything

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/21

Checkpoints

• Simplifies the task of determining actions (of transactions) that need to be
undone or redone when a failure occurs

➡ Avoid scanning the whole log

• A checkpoint identify a consistent state of the DB
• Steps to create a checkpoint:

 Write a begin_checkpoint record into the log

 Collect the checkpoint data into the stable storage (log and actual DB data)

• During this phase stop accepting new transactions, complete all currently active
ones

 Write an end_checkpoint record into the log

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/22

Distributed Reliability Protocols

• Commit protocols
➡ How to execute commit command for distributed transactions
➡ Issue: how to ensure atomicity and durability?

• Termination protocols
➡ If a failure occurs, how the remaining operational sites behave
➡ Non-blocking : the occurrence of failures should not force the sites to wait until
the failure is repaired to terminate the transaction

• Recovery protocols
➡When a failure occurs, how the sites where the failure occurred behave after
they are back on

➡ Independent : a failed site can determine the outcome of a transaction without
having to obtain remote information.

• Independent recovery non-blocking termination

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/23

Two-Phase Commit (2PC)

➡ Coordinator: The process at the site where the transaction originates and
which controls the execution

➡ Participant: The process at the other sites that participate in executing the
transaction

Phase 1: The coordinator gets the participants ready to commit and collects
their reply

Phase 2: The coordinator decides global-abort/global-commit depending on
participants’ replies, communicate the decision to them, and waits for ack’s

Global Commit Rule:
• The coordinator aborts a transaction if and only if at least one participant
votes to abort it
• Equivalently: The coordinator commits a transaction if and only if all of the
participants vote to commit it

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/24

Centralized 2PC

prepare
vote-commit/
vote-abort

global-commit/
global-abort commited/aborted

Phase 1 Phase 2

C C C

P

P

P

P

P

P

P

P

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/25

Linear 2PC

Prepare VC/VA

Phase 1

Phase 2

GC/GA

VC/VA VC/VA VC/VA

VC: Vote-Commit, VA: Vote-Abort, GC: Global-commit, GA: Global-abort

1 2 3 4 5 N

GC/GA GC/GA GC/GA GC/GA

≈
≈

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/26

Distributed 2PC

prepare
vote-abort/
vote-commit

global-commit/
global-abort
decision made
independently

Phase 1

Coordinator Participants Participants

Phase 2

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/27

Variations of 2PC

• Presumed abort 2PC and presumed commit 2PC
• Coordinator and participant may assume global-abort or global-commit if they
do not get communication

➡ Reduced communication

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/28

2PC Protocol Actions
Participant Coordinator

No

Yes

VOTE-COMMIT

Yes GLOBAL-ABORT

No

write abort
in log

Abort

Commit
ACK

ACK

INITIAL

write abort
in log

write ready
in log

write commit
in log

Type of
msg

WAIT

Ready to
Commit?

write commit
in log

Any No?
write abort

in log

ABORTCOMMIT

COMMIT
ABORT

write
begin_commit

in log

write
end_of_transaction

in log

READY

INITIAL

U
n
il
at
er
al
 a
bo
rt

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/29

State Transitions in 2PC

INITIAL

WAIT

Commit command
Prepare

Vote-commit
Global-commit

INITIAL

READY

Prepare
Vote-commit

Global-commit
Ack

Prepare
Vote-abort

Global-abort
Ack

Coordinator Participants

Vote-abort
Global-abort

ABORT COMMIT COMMITABORT

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/30

Site Failures - 2PC Termination

• Timeout in WAIT
➡ Cannot unilaterally commit

➡ Can unilaterally abort

• Timeout in ABORT or COMMIT
➡ Stay blocked and wait for the acks

➡ Repeatedly send “global-commit” or
“global-abort” to unresponsive
participants

COORDINATOR

INITIAL

WAIT

Commit command
Prepare

Vote-commit
Global-commit

ABORT COMMIT

Vote-abort
Global-abort

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/31

Site Failures - 2PC Termination
• Timeout in INITIAL

➡ Coordinator must have failed in
INITIAL state

➡ Unilaterally abort

• Timeout in READY
➡ Stay blocked

➡ Repeatedly send “vote-commit”to
coordinator

• If participants can communicate, they
can resolve blocked situations. Assume
Pi timed out in READY and it asks to Pj

➡ Pj in INITIAL: Pj abort

➡ Pj in READY: nothing can be done

➡ Pj in ABORT/COMMIT: Pj send “vote-
commit”/”vote-abort to Pi

INITIAL

READY

Prepare
Vote-commit

Global-commit
Ack

Prepare
Vote-abort

Global-abort
Ack

ABORT COMMIT

PARTICIPANTS

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/32

Re-election of the coordinator

• If participants can communicate …
• … and all of them know that the coordinator site is the only failing one
• then another coordinator is elected and the protocol is re-started

➡ Election by ordering participants or by any voting procedure

• Does not work if a participant site fails besides the coordinator. Indeed:
➡ Participant receive communication from coordinator

➡ Participant terminate transaction accordingly

➡ Participant and coordinator sites both fail

➡ A new execution of the protocol among the remaining participants through re-
election of coordinator might lead to a different decision

• 2PC is a blocking protocol

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/33

Site Failures - 2PC Recovery

• Failure in INITIAL
➡ Start the commit process upon recovery

• Failure in WAIT
➡ Restart the commit process upon recovery

• Failure in ABORT/COMMIT
➡ Nothing special if all the acks have been
received

➡ Otherwise invoke the termination
protocol for timeout in ABORT/COMMIT

COORDINATOR

INITIAL

WAIT

Commit command
Prepare

Vote-commit
Global-commit

ABORT COMMIT

Vote-abort
Global-abort

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/34

Site Failures - 2PC Recovery

• Failure in INITIAL
➡ Unilaterally abort upon recovery

• Failure in READY
➡ The coordinator has been informed
about the local decision

➡ Treat as timeout in READY state and
invoke the termination protocol

• Failure in ABORT or COMMIT
➡ Nothing special needs to be done

INITIAL

READY

Prepare
Vote-commit

Global-commit
Ack

Prepare
Vote-abort

Global-abort
Ack

ABORT COMMIT

PARTICIPANTS

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/35

2PC Recovery Protocols –
Additional Cases
Arise due to non-atomicity of log and message send actions

• Coordinator site fails after writing “begin_commit” log and before sending
“prepare” command
➡ treat it as a failure in WAIT state; invoke recovery protocol from WAIT (send
“prepare” command)

• Participant site fails after writing “ready” record in log but before “vote-
commit” is sent
➡ treat it as failure in READY state

➡ invoke recovery protocol from READY

• Participant site fails after writing “abort” record in log but before “vote-
abort” is sent
➡ no need to do anything upon recovery

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/36

2PC Recovery Protocols –
Additional Cases (cont’d)
• Coordinator site fails after logging its final decision record but before
sending its decision to the participants

➡ coordinator treats it as a failure in COMMIT or ABORT state

➡ participants treat it as timeout in the READY state

• Participant site fails after writing “abort” or “commit” record in log but
before acknowledgement is sent

➡ participants treat it as failure in COMMIT or ABORT state

✦ send ACK message upon request

➡ coordinator will handle it by timeout in COMMIT or ABORT state

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/37

Problem With 2PC

• Blocking
➡ “Ready” state implies that the participant waits for the coordinator

➡ If coordinator fails, site is blocked until recovery

➡ Blocking reduces availability

• Independent recovery is not possible
• However, it is known that:

➡ Independent recovery protocols exist only for single site failures; no
independent recovery protocol exists which is resilient to multiple-site
failures.

• 3PC is non-blocking (for (single) site failures)
• Communication line failures (network partitioning) are more problematic

➡ No non-blocking protocol exists

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/38

Media Failures – Full Architecture

Read

WriteWrite

Read

Main memory

Local Recovery
Manager

Database Buffer
Manager

Fetch,

Flush

Archive
log

Archive
database

Secondary
storage

Stable
log

Stable
database

Database
buffers
(Volatile
database)

Log
buffers

Write Write

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/39

More Problematic Failure Types

• We only considered failures of omission

➡ A message is not received, a site is unresponsive

• Failures of commissions

➡ Implementation errors (system does not work as expected): incorrect messages

➡ Malicious behaviors: a participant pretends to be the coordinator

➡ Addressed using byzantine agreement

