
Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/1

Distributed concurrency
control

Dario Della Monica

These slides are a modified version of the slides provided with the book

Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

The original version of the slides is available at: extras.springer.com

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/2

Outline (distributed DB)

• Introduction (Ch. 1) ⋆

• Distributed Database Design (Ch. 3) ⋆

• Distributed Query Processing (Ch. 6-8) ⋆

• Distributed Transaction Management (Ch. 10-12) ⋆

➡ Introduction to transaction management (Ch. 10) ⋆

➡ Distributed Concurrency Control (Ch. 11) ⋆

➡ Distributed DBMS Reliability (Ch. 12) ⋆

⋆ Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/3

Outline (today)

• Distributed Concurrency Control (Ch. 11) ⋆

➡ Serializability Theory

✦ Formalization/Abstraction of Transactions

✦ Formalization/Abstraction of Concurrent Transactions (Histories)

✦ Serial Histories

➡ Locking-based

✦ (strict) 2-phase Locking (2PL)

➡ Deadlock management

⋆ Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/4

• The problem of synchronizing concurrent transactions such that the consistency of the database
is maintained while, at the same time, maximum degree of concurrency is achieved

• This has to do with C(onsistency) and I(solation) from the ACID properties

• Consistency: assuming that each transaction is internally consistent (no integrity constraint
violations) it is obtained by guaranteeing the right level of isolation (serializability)

• Isolation: isolating transactions from one another in terms of their effects on the DB. More
precisely, in terms of the effect on the DB of intermediate operations (before commit)

• Tradeoff between isolation and parallel execution (concurrency)

• Assumptions

➡ System is fully reliable (no failures) – we deal with reliability in Ch. 12⋆

➡ No data replication – discussion on data replication is in Ch. 13⋆ (we do not cover this chapter)

• Possible anomalies

➡ Lost updates

✦ The effects of some transactions are not reflected on the database

➡ Inconsistent retrievals

✦ A transaction, if it reads the same data item more than once, should always read the same value

⋆ Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

Concurrency Control

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/5

POSET’s to Model Transactions

• We treat a transaction as a POSET (aka partially ordered set, partial order)

• POSET’s are pairs <  , ≺ > where

➡  is a set (domain)

➡ ≺ is a binary relation over  (≺ ⊆  x ) that is

✦ irreflexive (not a ≺ a, for all a)

✦ asymmetric (a ≺ b implies not b ≺ a, for all a,b)

✦ transitive (a ≺ b and b ≺ c implies a ≺ c, for all a,b,c)

• Operations are

➡ DB operations (read or write): R(x), W(x) (where x is a data entity, e.g., a
tuple) or

➡ termination conditions (abort or commit): A, C

• A transaction is modeled as a partially ordered set of operations containing
exactly one termination condition

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/6

Formalization/Abstraction of
Transactions
• A transition is a POSET T = <  , ≺ > where

➡  is finite: it is the set of operations of T
✦ O is the set of DB operations in  (operation that are not termination conditions)

✓ i.e., elements of O are of the kind R(x), W(x)where x is a data entity

✦ Thus,  = O ⋃ { N }, where N ∈ { A, C } (exactly 1 termination condition)

✦ 2 DB operations (elements of O) conflict iff they act on the same data entity x and one of
them is a write W operation
✓ W(x), R(x) are in conflict, W(x), W(x) are in conflict

✓ W(x), R(y) are NOT in conflict, W(x), W(y) are NOT in conflict, R(x), R(x) are NOT in conflict

✦ NOTICE: it is possible to have 2 distinct W(x) operations
✓ We assume implicit indices to make every operation unique

✦ Operations are atomic (indivisible units)

➡ ≺ is s.t.
✦ order of conflicting operation is specified

✓ for all o1, o2 ∈ O: if o1 and o2 conflict, then either o1 ≺ o2 or o2 ≺ o1

✦ all DB operations precede the unique termination condition
✓ for all o ∈ O: o ≺ N

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/7

Formalization/Abstraction of
Transactions – cont’d
• POSET’s are DAG (directed acyclic graphs)

• We represent a transaction either way (as a POSET or as a DAG)

• The order of 2 conflicting operations is important and MUST be specified
➡ it specify the execution order between the 2 operations

• Operations that are not related can be executed in parallel

• A transaction might force other precedence order relations besides the ones
between conflicting operations

• These depend on application semantics

POSET representation of T:

• = {R(x), R(y), W(x), C}

• ≺ = { (R(x) , W(x)),
(R(y) , W(x)),
(W(x) , C),
(R(x) , C),
(R(y) , C) }

Transaction T: Read(x)
Read(y)
x x + y
Write(x)
Commit

POSET representation abstracts away application (non-DB) operations (e.g., x x + y)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/8

DAG Representation

R(x)

C

R(y)

W(x)

Transactions are DAG’s (directed acyclic graphs)

Let T = { R(x) ≺W(x) , R(y) ≺W(x) , W(x) ≺ C , R(x) ≺ C , R(y) ≺ C }
(compact representation of a POSET)

Corresponding DAG representation:

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/9

DAG Representation

R(x)

C

R(y)

W(x)

Transactions are DAG’s (directed acyclic graphs)

Let T = { R(x) ≺W(x) , R(y) ≺W(x) , W(x) ≺ C , R(x) ≺ C , R(y) ≺ C }
(compact representation of a POSET)

Corresponding DAG representation:

R(x)

C

R(y)

W(x)

Let T = { R(x) ≺W(x) , R(y) ≺W(x) , W(x) ≺ C , R(x) ≺ C , R(y) ≺ C }

Order of R(y) and W(x) is irrelevant
(order of 2 read operations is always irrelevant)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/10

Transactions as Executions

• There is at least one (possibly several), at least one, linear orders (aka total orders)
compatible with (i.e., extending) any given partial order

• Each of them is a possible execution of the transaction

• Therefore, a transaction that is a linear order is a transaction execution

R(x)

C

R(y)

W(x)
R(x) ≺ R(y) ≺W(x) ≺ C

R(y) ≺ R(x) ≺W(x) ≺ C

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/11

From Transactions to Histories

• Informal definition: A history is defined over a set of transactions and specifies possible interleaved
executions of transactions in such set

• The formalization of transaction as POSET’s can be extended to sets of transactions to define histories

• Formal definition:

➡ Extend the notion of conflicting operations to pairs of operations Oi , Oj belonging to different transactions

➡ Given a set T = { T1 , …, Tn } of transactions

✦ (where Ti = < i , ≺i > for all i – we assume i ∩ j = Ø for all i ≠ j)

A history H over T is a pair H = <  , ≺ > where

✦  = ⋃Ti ∈ T I is a finite set of read/write operations plus one termination condition (C or A) for each transaction)

✦ ≺ ⊇ ⋃Ti ∈ T
≺i is a partial order that extends ≺i by including precedence constraints for conflicting operations

belonging to different transactions (and, possibly, more precedence constraints for pairs of operations)

✦ Still, the order of 2 conflicting operations is important and MUST be specified. Therefore

✓ for all oi ∈ i and all oj ∈ j (i ≠ j): if oi and oj conflict, then either oi ≺ oj or oj ≺ oi

• A history that is a linear order is a concurrent transaction execution

• In the book ⋆ the term complete history is used for what we call here history

➡ because they use histories to refer to prefixes of histories (partial histories)

⋆ Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/12

History – Example

T1: R(x) T2: R(x)
x  x + 1 x  x + 1
W (x) W(x)
C C

A history over T = { T1 , T2 } is the partial order:
H = { R1(x) ≺ R2(x) ≺W1(x) ≺ C1 ≺W2(x) ≺ C2 }

H is actually a linear order,
so it is a concurrent execution
of transactions T1 and T2

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/13

Serial History

• A serial history (or serial execution of concurrent transactions or serial execution) is a
concurrent transaction execution where operations of different transaction do not
interleave

• A serial history defines a linear order over transactions, too (serialization order)

T1: Read(x) T2: Write(x) T3: Read(x)
Write(x) Write(y) Read(y)
Commit Read(z) Read(z)

Commit Commit

A history H over T = { T1 , T2 , T3 }

A serial history over T = { T1 , T2 } compatible with H is the
linear order (we omit the termination conditions Ci):

H’ = {W2(x) ≺W2(y) ≺ R2(z) ≺ R1(x) ≺W1(x) ≺ R3(x) ≺ R3(y) ≺ R3(z) }

T2 T1 T3≺ ≺

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/14

Serial History

• A serial history (or serial execution of concurrent transactions or serial execution) is a
concurrent transaction execution where operations of different transaction do not
interleave

• A serial history defines a linear order over transactions, too (serialization order)

T1: Read(x) T2: Write(x) T3: Read(x)
Write(x) Write(y) Read(y)
Commit Read(z) Read(z)

Commit Commit

A history H over T = { T1 , T2 , T3 }

A serial history over T = { T1 , T2 } compatible with H is the
linear order (we omit the termination conditions Ci):

H’ = {W2(x) ≺W2(y) ≺ R2(z) ≺ R1(x) ≺W1(x) ≺ R3(x) ≺ R3(y) ≺ R3(z) }

T2 T1 T3≺ ≺

A serial history preserves DB consistency (as transactions, when executed singularly, brings
DB from a consistent state to another consistent state)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/15

Conflict equivalence

• Definition. Two histories over the same set of transactions are conflict equivalent (or,
simply equivalent) iff they agree on the execution order of the conflicting operations

➡ H1 = < 1 , ≺1 > and H2 = < 2 , ≺2 > with O and O’ conflicting operations

✦ then O ≺1 O’ if and only if O ≺2 O’

(we are ignoring abort transaction to keep definition simpler)

• H’ = { W2(x) ≺H’W2(y) ≺H’ R2(z) ≺H’ R1(x) ≺H’W1(x) ≺H’ R3(x) ≺H’ R3(y) ≺H’ R3(z) }

➡ is NOT equivalent to H1 = { W2(x) ≺H1
R1(x) ≺H1

R3(x) ≺H1
W1(x) ≺H1

R3(y) ≺H1
R3(z) ≺H1

W2(y) ≺H1
R2(z) }

✦ because W1(x) ≺H’ R3(x) in H’ but R3(x) ≺H1
W1(x) in H1

➡ is equivalent to H2 = { W2(x) ≺H2
R1(x) ≺H2

W1(x) ≺H2
R3(x) ≺H2

W2(y) ≺H2
R3(y) ≺H2

R2(z) ≺H2
R3(z) }

(actually H’, H1, H2 are all concurrent transaction executions)

• Definition. A history is serializable iff it is equivalent to a serial execution

➡ Therefore, H2 is serializable (because H2 is equivalent to H’, which is a serial history)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/16

Conflict equivalence

• Definition. Two histories over the same set of transactions are conflict equivalent (or,
simply equivalent) iff they agree on the execution order of the conflicting operations

➡ H1 = < 1 , ≺1 > and H2 = < 2 , ≺2 > with O and O’ conflicting operations

✦ then O ≺1 O’ if and only if O ≺2 O’

(we are ignoring abort transaction to keep definition simpler)

• H’ = { W2(x) ≺H’W2(y) ≺H’ R2(z) ≺H’ R1(x) ≺H’W1(x) ≺H’ R3(x) ≺H’ R3(y) ≺H’ R3(z) }

➡ is NOT equivalent to H1 = { W2(x) ≺H1
R1(x) ≺H1

R3(x) ≺H1
W1(x) ≺H1

R3(y) ≺H1
R3(z) ≺H1

W2(y) ≺H1
R2(z) }

✦ because W1(x) ≺H’ R3(x) in H’ but R3(x) ≺H1
W1(x) in H1

➡ is equivalent to H2 = { W2(x) ≺H2
R1(x) ≺H2

W1(x) ≺H2
R3(x) ≺H2

W2(y) ≺H2
R3(y) ≺H2

R2(z) ≺H2
R3(z) }

(actually H’, H1, H2 are all concurrent transaction executions)

• Definition. A history is serializable iff it is equivalent to a serial execution

➡ Therefore, H2 is serializable (because H2 is equivalent to H’, which is a serial history)

Primary function of a concurrency controller is to produce a serializable history over the set
of pending transactions

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/17

Serializability in Distributed
DBMS
• Somewhat more involved. Two histories have to be considered:

➡ local histories: histories over sets of transactions at the same site

➡ global history: union of local histories

• For global transactions (i.e., global history) to be serializable, two
conditions are necessary:

➡ Each local history should be serializable

➡ Identical local serialization order

⋆ Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/18

Example

• T1 transfers 100 € from bank account x to y

• T2 reads balance of x and y

• x is stored at site s1

• y is stored at site s2

• site s1: T1,s1
= { R1(x) ≺W1(x) } T2, s1

= { R2(x) }

site s2: T1, s2
= { R1(y) ≺W1(y) } T2, s2

= { R2(y) }

• Local history at site s1 : Hs1 = { R1(x) ≺W1(x) ≺ R2(x) }

➡ Hs1 is serial with serialization order T1 ≺≺≺≺ T2

• Local history at site s2 : Hs2 = { R1(y) ≺W1(y) , R2(y) ≺W1(y) }

➡ Hs2 is locally serializable: R2(y) ≺ R1(y) ≺W1(y)

➡ but not globally (serialization order T2 ≺≺≺≺ T1)

⋆ Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

T1: Read(x)
x←x-100
Write(x)
Read(y)
y←y+100
Write(y)
Commit

T2: Read(x)
Read(y)
Commit

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/19

Taxonomy of concurrency control
mechanism
Classification

• based on synchronization primitives

➡ locking vs. timestamp vs. hybrid

• pessimistic vs. optimistic

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/20

Taxonomy of concurrency control
mechanism
Classification

• based on synchronization primitives

➡ locking vs. timestamp vs. hybrid

• pessimistic vs. optimistic

We consider locking-based
algorithm in the pessimistic
scenario

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/21

Locking-Based Algorithms

• Goal: to generate serializable histories

• Transactions indicate their intentions to read/write data item x by
requesting suitable locks from the scheduler (called lock manager)

• Locks are either read lock (rl) [also called shared lock] or write lock (wl)
[also called exclusive lock]

• Read locks and write locks conflict (because so do Read and Write
operations)

rl wl

rl no yes

wl yes yes

• Locking works nicely to allow concurrent processing of transactions

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/22

Locking-Based Mechanism

• TM handles R/W requests coming
from applications and passes them
to SC (op. type R/W, transaction id.,
data unit)

• SC decides when to grant the lock
according to compatibility access
rules

• When SC grants lock, the DP
executes the operation (R/W)

• SC is asked to release the lock

• TM is informed of successful
operation

• Locking mechanism does not
guarantee serializability
(serial/serializable histories)

➡ 2-phase locking (2PL) is the solution

Scheduling/
Descheduling

Requests

Transaction Manager

(TM)

Distributed
Execution Monitor

With other

SCs

With other

TMs

Begin_transaction,
Read, Write,

Commit, Abort

To data

processor (DP)

Results

Scheduler

(SC)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/23

Locking-Based Mechanism -
Example

T1: R1(x)
x←x+1
W1(x)
R1(y)
y←y-1
W1(y)
C1

T1 = { R1(x) ≺W1(x),
R1(y) ≺W1(y) }

T2: R2(x)
x←x*2
W2(x)
R2(y)
y←y*2
W2(y)
C2

T1 = { R2(x) ≺W2(x),
R2(y) ≺W2(y) }

H = { R1(x) ≺W1(x) ≺ R2(x) ≺W2(x) ≺ R2(y) ≺W2(y) ≺ R1(y) ≺W1(y) }

wl1(x) wl2(x) wl2(y) wl1(y)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/24

Locking-Based Mechanism -
Example

T1: R1(x)
x←x+1
W1(x)
R1(y)
y←y-1
W1(y)
C1

T1 = { R1(x) ≺W1(x),
R1(y) ≺W1(y) }

T2: R2(x)
x←x*2
W2(x)
R2(y)
y←y*2
W2(y)
C2

T1 = { R2(x) ≺W2(x),
R2(y) ≺W2(y) }

H = { R1(x) ≺W1(x) ≺ R2(x) ≺W2(x) ≺ R2(y) ≺W2(y) ≺ R1(y) ≺W1(y) }

wl1(x) wl2(x) wl2(y) wl1(y)

Expected results (starting with x=50, y = 20)
• x=102 and y = 38 (T1 before T2)
• x=101 and y = 39 (T2 before T1)

Actual results
• x=102 and y = 39 (T1 and T2 interleave)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/25

Locking-Based Mechanism -
Example

T1: R1(x)
x←x+1
W1(x)
R1(y)
y←y-1
W1(y)
C1

T1 = { R1(x) ≺W1(x),
R1(y) ≺W1(y) }

T2: R2(x)
x←x*2
W2(x)
R2(y)
y←y*2
W2(y)
C2

T1 = { R2(x) ≺W2(x),
R2(y) ≺W2(y) }

H = { R1(x) ≺W1(x) ≺ R2(x) ≺W2(x) ≺ R2(y) ≺W2(y) ≺ R1(y) ≺W1(y) }

wl1(x) wl2(x) wl2(y) wl1(y)

(simple) locking grants exclusive
access to data item…

… but it does not grant isolation
(T1 and T2 interleave)

Expected results (starting with x=50, y = 20)
• x=102 and y = 38 (T1 before T2)
• x=101 and y = 39 (T2 before T1)

Actual results
• x=102 and y = 39 (T1 and T2 interleave)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/26

Two-Phase Locking (2PL)

 A Transaction locks an object before using it

 When an object is locked by another transaction, the requesting
transaction must wait (if conflicting)

 When a transaction releases a lock, it may not request another lock.

Obtain lock

Release lock

Lock point

Phase 1 Phase 2

BEGIN END

N
o.

 o
f

lo
ck

s

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/27

Two-Phase Locking (2PL)

 A Transaction locks an object before using it

 When an object is locked by another transaction, the requesting
transaction must wait (if conflicting)

 When a transaction releases a lock, it may not request another lock.

Obtain lock

Release lock

Lock point

Phase 1 Phase 2

BEGIN END

N
o.

 o
f

lo
ck

s

• 2PL guarantees serializable histories

• Implementation issues

• TM must know not only when data
item xwill not be used anymore…

• … also when no more locks will be
requested

• Moreover, during descending phase
other transactions get lock (dirty
read)

• Possibility of cascade aborts

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/28

Strict 2PL

Hold locks until the end.

Obtain lock

Release lock

BEGIN END
Transaction

duration

period of
data item

use

N
o.

 o
f

lo
ck

s

• Strict 2PL: all locks are released together
after commit

• Higher degree of isolation

• Easier to implement

• Less concurrency

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/29

Strict 2PL

Hold locks until the end.

Obtain lock

Release lock

BEGIN END
Transaction

duration

period of
data item

use

N
o.

 o
f

lo
ck

s

• Strict 2PL: all locks are released together
after commit

• Higher degree of isolation

• Easier to implement

• Less concurrency

Locking-based mechanisms can
cause deadlocks

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/30

2PL: Implementation Alternatives

Two possible implementation for (strict) 2PL in the distributed context

• centralized: 1 SC

• distributed: many SC

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/31

Centralized 2PL

• There is only one 2PL scheduler in the distributed system

• Lock requests are issued to the central scheduler

• Coordinating TM is where the query is initiated

Data Processors at
participating sites Coordinating TM Central Site LM

Issues with centralized 2PL

• Bottleneck at central LM for
high workload at central LM

• Low reliability in case of
failure of central LM

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/32

Distributed 2PL

• 2PL schedulers (LM’s) are placed at each site

➡ each scheduler handles lock requests for data at that site

Coordinating TM Participating LMs Participating DPs

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/33

Deadlock

• T1 has write lock on x
T2 has write lock on y
T1 asks for write access to y
T2 asks for write access to x

• Deadlock!!!

• Deadlock are modeled through wait-for graph (WFG)

➡ If transaction Ti waits for another transaction Tj to release a lock on an entity, then Ti → Tj in WFG

➡ In distributed context the WFG is distributed across nodes

✦ LWFG: a local graph at each site

✦ GWFG: union of all LWFG

Ti Tj

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/34

Deadlock Management

• Prevention (deadlock is avoided before transaction is started)

➡ Guaranteeing that deadlocks can never occur in the first place

✦ do not allow for risky transactions

✦ e.g., a transaction starts if none of data is going to use is locked

• Avoidance (deadlock is avoided when a locked resource is requested)

➡ Detecting potential deadlocks in advance and taking action to ensure that deadlock will not occur
Requires run time support

✦ Timestamps to prioritize transactions

✦ Ordered resources

• Detection and Recovery

➡ Allowing deadlocks to form and then finding and breaking them. As in the avoidance scheme, this
requires run time support

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/35

Local versus Global WFG

Assume T1 and T2 run at site 1, T3 and T4 run at site 2. Also assume T3 waits
for a lock held by T4 which waits for a lock held by T1 which waits for a lock
held by T2 which, in turn, waits for a lock held by T3.

Local WFG

Global WFG

T1

Site 1 Site 2

T2

T4

T3

T1

T2

T4

T3

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/36

Deadlock Detection

• Transactions are allowed to wait freely

• Wait-for graphs and cycles

• Topologies for deadlock detection algorithms

➡ Centralized

➡ Distributed

➡ Hierarchical

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/37

Centralized Deadlock Detection

• One site is designated as the deadlock detector for the system. Each
scheduler periodically sends its local WFG to the central site which merges
them to a global WFG to determine cycles.

• How often to transmit?

➡ Too often ⇒ higher communication cost but lower delays due to undetected
deadlocks

➡ Too late ⇒ higher delays due to deadlocks, but lower communication cost

• Would be a reasonable choice if the concurrency control algorithm is also
centralized (centralized 2PL)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/38

Hierarchical Deadlock Detection

Site 1 Site 2 Site 3 Site 4

DD21 DD22 DD23 DD24

DD11 DD12

DD0

• Each site has a DD

• DD are arranged in a hierarchy
(e.g., tree shaped)

• Each DD search for cycle in its
and lower-level LWFG

• Each DD sends its LWFG to
upper levels

• PRO: less dependence from
central DD

➡ less communication costs

• CONTRO: implementation issues

Site 5 Site 6

Site 7

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/39

Distributed Deadlock Detection

• Each site has a DD that maintain an LWFG
• Sites cooperate in detection of global deadlocks
• One example:

➡ The local WFGs are formed at each site and passed on to other sites. Each
local WFG is modified as follows:
 As soon as a site receives the potential deadlock cycles from other sites, these

edges are added to the local WFGs
 The edges in the local WFG which show that local transactions are waiting

for transactions at other sites are joined with edges in the local WFGs which
show that remote transactions are waiting for local ones

➡ Each local deadlock detector:
✦ looks for a cycle that does not involve the external edge. If it exists, there is a

local deadlock which can be handled locally
✦ looks for a cycle involving the external edge. If it exists, it indicates a

potential global deadlock. Pass on the information to the next site

