
Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/1

Introduction to transaction
management

Dario Della Monica

These slides are a modified version of the slides provided with the book

Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

The original version of the slides is available at: extras.springer.com

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/2

Outline (distributed DB)

• Introduction (Ch. 1) ⋆

• Distributed Database Design (Ch. 3) ⋆

• Distributed Query Processing (Ch. 6-8) ⋆

• Distributed Transaction Management (Ch. 10-12) ⋆
➡ Introduction to transaction management (Ch. 10) ⋆

➡ Distributed Concurrency Control (Ch. 11) ⋆

➡ Distributed DBMS Reliability (Ch. 12) ⋆

⋆ Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/3

Outline (today)

• Introduction to transaction management (Ch. 10) ⋆
➡ Definitions of transaction

➡ Properties of Transactions (ACID)

✦ Atomicity

✦ Consistency

✦ Isolation

✦ Durability

➡Workflow of transaction management

⋆ Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/4

Transactions

A transaction is a collection of actions that make transformations of system states
while preserving system consistency (from consistent state to another consistent
state)
➡ concurrency: expected behavior when 2 queries modify the DB simultaneously
➡ Integrity: integrity constraints (e.g., primary/foreign keys), replicated copies have same
values

➡ failure: restart or abort on failure while updating

Database in a
consistent
state

Database may be
temporarily in an
inconsistent state
during execution

Begin
Transaction

End
Transaction

Execution of
Transaction

Database in a
consistent
state

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/5

Alternative definitions

• One way to see transactions: we often treat a transaction as a program, that is, a
sequence of DB operations, Write (W) and Read (R), interleaved with
computation steps (e.g., x := x+1) and flow control instructions (if.then-else
instructions), and delimited by Begin (B) and Commit (C)/Abort (A)

• Another way to see then: a transaction is just a single execution the program
with no selection insturctions and conputation steps

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/6

Transaction Example –
A Simple SQL Query

Transaction BUDGET_UPDATE

begin

EXEC SQL UPDATE PROJ
SET BUDGET = BUDGET*1.1
WHERE PNAME = “CAD/CAM”

end.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/7

Example Database

Consider an airline reservation example with the relations:

FLIGHT(FNO, DATE, SRC, DEST, STSOLD, CAP)

CUST(CNAME, ADDR)

FC(FNO, DATE, CNAME,SPECIAL)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/8

Example Transaction – A Simple
Program

Begin_transaction Reservation
begin

input(flight_no, date, customer_name);

EXEC SQL UPDATE FLIGHT
SET STSOLD = STSOLD + 1
WHERE FNO = flight_no AND DATE = date;

EXEC SQL INSERT
INTO FC(FNO, DATE, CNAME, SPECIAL);
VALUES (flight_no, date, customer_name, null);

output(“reservation completed”)
end . {Reservation}

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/9

Termination condition

• Commit (C) vs. Abort (A)
• Commit (C) denotes success

➡ DB goes into a new state, visible to everybody

➡ Cannot be undone

• Abort (A) happens on failure
➡ Application logic reach a failure state (Abort keyword in the program)

✦ Bad input, unfulfilled condition

✦ Controlled through the program flow control (e.g., if-then-else)

✦ E.g., a seat is reserved but payment does not go through

➡ Deadlock (Abort command is sent by DBMS or OS)

➡ Node/hardware failure

➡ Abort causes rollback (restore the state before transaction started)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/10

Termination of Transactions
Begin_transaction Reservation
begin

input(flight_no, date, customer_name);
EXEC SQL SELECT STSOLD,CAP

INTO temp1,temp2
FROM FLIGHT
WHERE FNO = flight_no AND DATE = date;

if temp1 = temp2 then
output(“no free seats”);
Abort

else
EXEC SQL UPDATE FLIGHT

SET STSOLD = STSOLD + 1
WHERE FNO = flight_no AND DATE = date;

EXEC SQL INSERT
INTO FC(FNO, DATE, CNAME, SPECIAL);
VALUES (flight_no, date, customer_name, null);

Commit
output(“reservation completed”)

endif
end . {Reservation}

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/11

Properties of Transactions

ATOMICITY (Ch. 12)
⋆

➡ unit of operation, all or nothing/Abort or Commit

CONSISTENCY (Ch. 11)
⋆

➡ ensures correctness (if DB is in a consistent state, so is after transaction
execution, independently from failures or other issues)
✦ no violation of integrity constraints

✦ expected behavior in presence of concurrency

ISOLATION (Ch. 11)
⋆

➡ changes visible only after commit

➡ Intermediate changes invisible to other transactions  serializability

DURABILITY (Ch. 12)
⋆

➡ committed updates persist (permanent, cannot be undone)

⋆ Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/12

Atomicity

• Either all or none of the transaction's operations are performed
• Atomicity requires that if a transaction is interrupted by a failure, its
partial results must be undone

• The activity of preserving the transaction's atomicity in presence of
transaction aborts due to input errors, system overloads, or deadlocks is
called transaction recovery

• The activity of ensuring atomicity in the presence of system crashes is
called crash recovery

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/13

Consistency

• Internal consistency
➡ A transaction which executes alone against a consistent database leaves it in a
consistent state.

➡ Transactions do not violate database integrity constraints

• Transactions are correct programs

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/14

Consistency Degrees

• Degree 0
➡ Transaction T does not overwrite dirty data of other transactions

➡ Dirty data refers to data values that have been updated by a transaction prior
to its commitment

• Degree 1
➡ T does not overwrite dirty data of other transactions

➡ T does not commit any writes before EOT

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/15

Consistency Degrees (cont’d)

• Degree 2
➡ T does not overwrite dirty data of other transactions

➡ T does not commit any writes before EOT

➡ T does not read dirty data from other transactions

• Degree 3
➡ T does not overwrite dirty data of other transactions

➡ T does not commit any writes before EOT

➡ T does not read dirty data from other transactions

➡ Other transactions do not dirty any data read by T before T completes.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/16

Isolation

• Serializability
➡ If several transactions are executed concurrently, the results must be the same
as if they were executed serially in some order

• Incomplete results
➡ An incomplete transaction cannot reveal its results to other transactions
before its commitment

➡ Necessary to avoid cascading aborts

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/17

Isolation Example

• Consider the following two transactions:
T1: Read(x) T2: Read(x)

xx+1 x x+1
Write(x) Write(x)
Commit Commit

T1: Read(x) T1: Read(x)
T1: x x+1 T1: x x+1
T1: Write(x) T2: Read(x)
T1: Commit T1: Write(x)
T2: Read(x) T2: x x+1
T2: x x+1 T2: Write(x)
T2: Write(x) T1: Commit
T2: Commit T2: Commit

• Possible execution sequences:

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/18

SQL-92 Isolation Levels

Phenomena:

• Dirty read
➡ T1modifies xwhich is then read by T2 before T1 terminates; T1 aborts

✦ T2 has read value which never exists in the database

• Non-repeatable (fuzzy) read
➡ T1 reads x; T2 then modifies or deletes x and commits. T1 tries to read x again
but reads a different value or can’t find it

• Phantom
➡ T1 searches the database according to a predicate while T2 inserts new tuples
that satisfy the predicate

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/19

SQL-92 Isolation Levels (cont’d)

• Read Uncommitted
➡ For transactions operating at this level, all three phenomena are possible

• Read Committed
➡ Fuzzy reads and phantoms are possible, but dirty reads are not

• Repeatable Read
➡ Only phantoms possible

• Anomaly Serializable
➡ None of the phenomena are possible

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/20

Durability

• Once a transaction commits, the system must guarantee that the results of
its operations will never be lost, in spite of subsequent failures

• Database recovery

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/21

Architecture

Scheduling/
Descheduling
Requests

Transaction Manager
(TM)

Distributed
Execution Monitor

With other
SCs

With other
TMs

Begin_transaction,
Read, Write,
Commit, Abort

To data
processor (DP)

Results

Scheduler
(SC)

TM: coordinates requests
(OP) of transaction
operations by applications,
sends requests to SC’s at
same and different sites

SC:manages concurrent
accesses to resources (DB
entities)

DP: local DBMS module for
data manipulation

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/22

Transaction management
protocol
• Transactions originate at one site

• TM of that site will be the coordinator for that transaction

• Transaction operations (interface between TM and user/application)

➡ { B, R, W, C, A }

➡ B (Begin): TM does some bookkeeping (record transaction name, originating site, originating
application, …)

➡ R (Read)/W (Write) – these have to do with concurrent access control (Consistency and Isolation) –
Ch. 11⋆:

✦ TM asks local/remote DP to read/update after concurrent access controls is granted by local/remote
SC that guarantees mutual exclusion in accessing data and serializability (isolation and thus consistency)

➡ C (Commit) – this has to do with reliability (Atomicity and Durability) – Ch. 12⋆:

✦ TM coordinates all sites involved to make data permanently available

➡ A (Abort) – this has to do with reliability (Atomicity and Durability) – Ch. 12⋆:

✦ TM coordinates rollback; no effect of transaction is visible to other transactions

• We ignore data replication. To extend our discussion see Ch. 13 (we do not cover that chapter)

⋆ Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/23

Centralized Transaction
Execution

Begin_Transaction,
Read, Write, Abort,

Commit

Results &
User Notifications

Scheduled
Operations

Results

Results

…

Read, Write,
Abort,
Commit

User
Application

User
Application

Transaction
Manager
(TM)

Scheduler
(SC)

Data
Processor
(DP)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/24

Distributed Transaction Execution

Begin_transaction,
Read, Write,
Commit, Abort

User application

Results &
User notifications

Read, Write,
Commit, Abort

TM

SC

DP

SC

DP

TM

Local
Recovery
Protocol

Distributed
Concurrency Control

Protocol

Replica Control
Protocol

Distributed
Transaction Execution

Model

