Distributed DB design

Dario Della Monica

These slides are a modified version of the slides provided with the book Özsu and Valduriez, *Principles of Distributed Database Systems* (3rd Ed.), 2011 The original version of the slides is available at: extras.springer.com

Distributed DBMS

© M. T. Özsu & P. Valduriez

Outline (distributed DB)

- Introduction (Ch. 1) *
- Distributed Database Design (Ch. 3) *
 - → Fragmentation
 - → Data distribution (allocation)
- Distributed Query Processing (Ch. 6-8) *
- Distributed Transaction Management (Ch. 10-12) *

^{*} Özsu and Valduriez, *Principles of Distributed Database Systems* (3rd Ed.), 2011

Outline (today)

- Distributed DB design (Ch. 3) *
 - → Introduction
 - → Top-down (vs. bottom-up) design
 - → Distribution design issues
 - Fragmentation
 - Allocation
 - → Fragmentation
 - Horizontal Fragmentation (HF)
 - Primary Horizontal Fragmentation (PHF)
 - Derived Horizontal Fragmentation (DHF)
 - Vertical Fragmentation (VF)
 - Hybrid Fragmentation (HyF)
 - → Allocation
 - → Data directory

^{*} Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

Design Problem

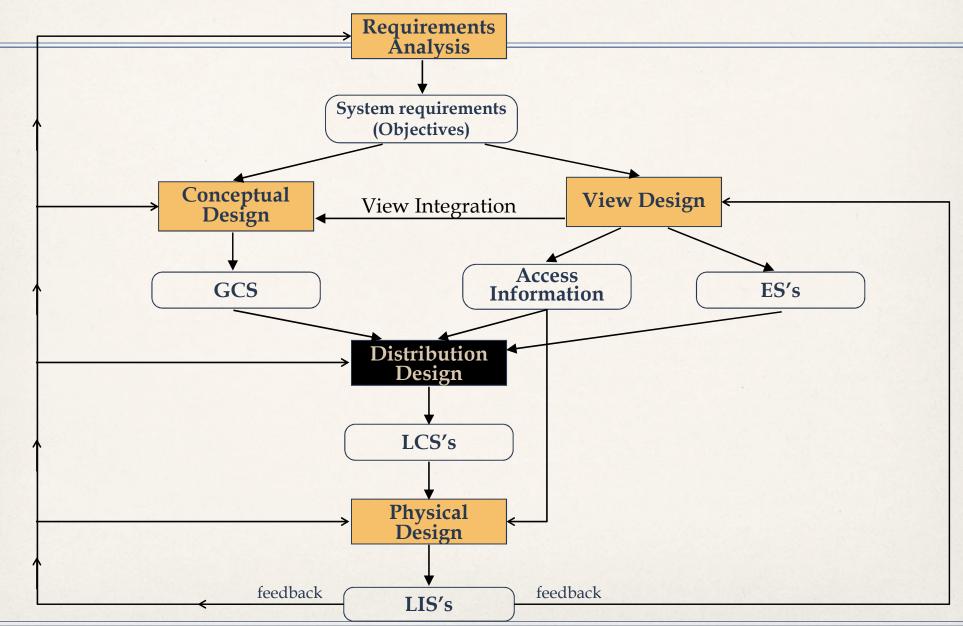
• In the general setting:

Making decisions about the placement of data across the sites of a computer network as well as possibly designing the network itself

Distribution Design

- Top-down
 - → mostly in designing systems from scratch
 - → mostly in homogeneous systems
 - → applies to fully distributed DBMS (a logical view of the whole DB exists)
- Bottom-up
 - → when the databases already exist at a number of sites
 - \rightarrow applies to MDBS (we will not treat them)

Top-Down Design



Distributed DBMS

Distribution Design Issues

- Distribution design activity boils down to *fragmentation* and *allocation*
- Why fragment at all?
- **2** How to fragment?
- **3** How much to fragment?
- 4 How to test correctness?
- **5** How to allocate?
- **6** Information requirements?

[reasons for fragmentation]

[fragmentation alternatives]

[degree of fragmentation]

[correctness rules of fragmentation]

[allocation alternatives]

[for both fragmentation and allocation]

1. Reasons for Fragmentation

- Can't we just distribute relations (no intrinsic reason to fragment)?
 - → distributed file systems are not fragmented (i.e., distr. unit is the file)
- What is a reasonable unit of distribution?
 - → advantages of fragmentation (why isn't relation the best choice?)
 - ◆ application views are subsets of relations → locality allows for finer accesses (applications only access to relevant subsets of relations)
 - 2 applications accessing different portion of a relation: without fragmentation, either unnecessary data replication or loss of locality (extra communication)
 - without fragmentation, no intra-query parallelism
 - → disadvantages of fragmentation
 - might cause queries to be executed on more than one fragment (performance degradation, especially when fragments are not disjoint)
 - semantic data control (especially integrity enforcement) more difficult and costly

2. Fragmentation Alternatives

	PNO	PNAME	BUDGET	LOC
roj	P1 P2 P3 P4	Instrumentation Database Develop. CAD/CAM Maintenance	150000 135000 250000 310000	Montreal New York New York Paris

Horizontal fragmentation

• PROJ₁: projects with budget < \$200,000

P

• PROJ₂: projects with budget \geq \$200,000

$PROJ_1$	PNO	PNAME	BUDGET	LOC
	P1	Instrumentation	150000	Montreal
	P2	Database Develop.	135000	New York
PROJ ₂	PNO	PNAME	BUDGET	LOC
	P3	CAD/CAM	250000	New York
	P4	Maintenance	310000	Paris

Vertical fragmentation

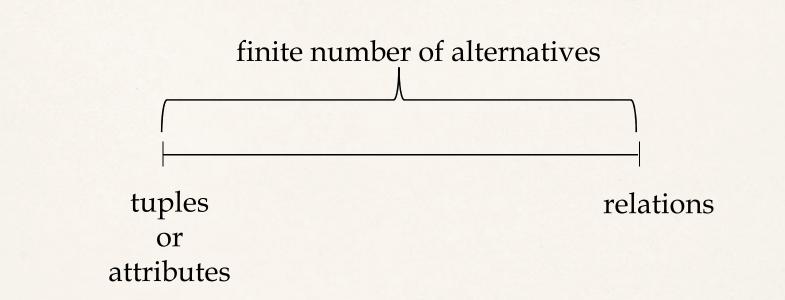
- PROJ1: information about project budgets
- PROJ2:information about project names and locations

PROJ ₁ PROJ ₂				
PNO	BUDGET	PNO	PNAME	LOC
P1 P2 P3 P4	150000 135000 250000 310000	P1 P2 P3 P4	Instrumentation Database Develop. CAD/CAM Maintenance	Montreal New York New York Paris

Hybrid fragmentation: obtained by nesting horizontal and vertical fragmentation

Distributed DBMS

3. Degree of Fragmentation



- Finding the suitable level of partitioning within this range
- It depends especially on the applications that will use the DB
- This is the real difficulty of fragmentation

4. Correctness of Fragmentation

- Completeness
 - → Decomposition of relation *R* into fragments R_1 , R_2 , ..., R_n is complete if and only if each data item in *R* can also be found in some R_i
- Reconstruction
 - → If relation *R* is decomposed into fragments $R_1, R_2, ..., R_n$, then there should exist some relational operator ∇ such that

$$R = \nabla_{1 \le i \le n} R_i$$

Disjointness

→ If relation *R* is decomposed into fragments R_1 , R_2 , ..., R_n , and data item d_i is in R_i , then d_i should not be in any other fragment R_k ($k \neq j$).

5. Allocation Alternatives

- Assigning fragments to sites and deciding whether or not to replicate a fragment
 - *partitioned* (aka *non-replicated*): each fragment resides at only one site
 - → *fully replicated*: each fragment at each site
 - → *partially replicated*: each fragment at some of the sites
- Rule of thumb:

If <u>read-only queries</u> >> 1, replication is advantageous, otherwise replication may cause problems

• In case of partially replicated DDBS, the number of copies of replicated fragments can either be an input to the allocation algorithm or a decision variable to be computed by the algorithm

6. Information Requirements

- The difficulty of the distributed DB design problem is that too many factor affect the choices towards an optimal design
 - → Logical organization of the DB
 - → Location of DBMS applications
 - → Characteristics of user applications (how they access the DB)
 - → Properties of (computers at) network nodes
 - → ...
- Those can be grouped into four categories:
 - Database information
 - → Application information
 - Communication network information
 - Computer system information

quantitative information, mostly used for allocation, we will not treat them

Fragmentation

- Horizontal Fragmentation (HF)
 - → Primary Horizontal Fragmentation (PHF)
 - → Derived Horizontal Fragmentation (DHF)
- Vertical Fragmentation (VF)
- Hybrid Fragmentation (HyF)

PHF – Information Requirements

- application information needed for horizontal fragmentation
- → Predicates used in queries
 - ◆ 80/20 rule: the most active 20% of user applications account for 80% of accesses
 - * simple predicates: Given $R[A_1, A_2, ..., A_n]$, a simple predicate p_i over R is

 $A_i \quad \theta \quad Value$

where $\theta \in \{=, <, \leq, >, \geq, \neq\}$, *Value* $\in D_i$ and D_i is the domain of A_i .

Example:

PNAME = "Maintenance"

BUDGET $\leq 200\ 000$

minterms: Given a set Pr = {p₁, p₂, ..., p_m} of simple predicates over a relation R, a minterm (induced by Pr) is a conjunction

$$\bigwedge_{p_j \in Pr} p_j^*$$

where $p_j^* \in \{ p_j, \neg p_j \}$, for all $p_j \in Pr$

We let $M_{Pr} = \{m_1, m_2, ..., m_r\}$ be the set of all minterms induced by a set of simple predicates Pr

PHF – Information Requirements Example

Example

Pr = { PNAME="Maintenance" , BUDGET < 200000 }

 $M_{Pr} = \{ m_1, m_2, m_3, m_4 \}$

Where

- m_1 : PNAME="Maintenance" \land BUDGET < 200000
- m_2 : ¬(PNAME="Maintenance") \land BUDGET < 200000
- m_3 : PNAME = "Maintenance" $\land \neg$ (BUDGET < 20000)
- m_4 : ¬(PNAME="Maintenance") \land ¬(BUDGET < 200000)

PHF – Extra Information Requirements

Application Information

 access frequency of queries

(quantitative)

Primary Horizontal Fragmentation

- Primary horizontal fragmentation (PHF) is induced by a set of minterms.
- **Definition:** A set *M* = { *m*₁, *m*₂, ..., *m*_n } of minterm induces the fragmentation

 $F = \{ R_i \mid R_i = \sigma_{m_i}(R), m_i \in M \text{, and } R_i \neq \emptyset \}$

 Therefore, a horizontal fragment R_i of relation R consists of all the tuples of R which satisfy a minterm predicate m_i

Given a set of minterm predicates *M*, there are as many horizontal fragments of relation *R* as there are minterm predicates (some fragments might be empty)

- Assume there is only 1 application **Q: find projects with budget less than 200 000** $\in \sigma_{budget < 200 000}$ (*PROJ*)
- Then, it makes sense to consider the set of simple predicates $S = \{BUDGET < 200000\}$ which induces the set of minterms $M_S = \{BUDGET < 200000, \neg (BUDGET < 200000)\}$ which, in turn, induces fragmentation $F = \{PROJ_1, PROJ_2\}$
- PROJ₁ and PROJ₂ are the **fragments induced by** *S*

DDOI	PNO	PNAME	BUDGET	LOC
PROJ	P1	Instrumentation	150000	Montreal
	P2	Database Develop.	135000	New York
	P3	CAD/CAM	250000	New York
	P4	Maintenance	310000	Paris

PROJ ₁	PNO	PNAME	BUDGET	LOC
	P1	Instrumentation	150000	Montreal
	P2	Database Develop.	135000	New York
PROJ ₂	PNO	PNAME	BUDGET	LOC
	P3 P4	CAD/CAM Maintenance	250000 310000	New York Paris

Consider now another applicationQ': find projects at a given location $\sigma_{loc = x}$ (PROJ)Then, it makes sense to consider the set of simple predicates

S' = { LOC = "Montreal", LOC = "New York", LOC = "Paris" }

which induces the set of minterms (use abbreviations L_M : LOC = "Montreal", L_N : LOC = "New York", L_P : LOC = "Paris")

$M_{S'} = \{$	$L_M \wedge L_N \wedge L_P$,	$L_M \wedge L_N \wedge \neg L_P$,	$L_M \wedge \neg L_N \wedge L_P$,	$L_{\rm M} \wedge \neg L_{\rm N} \wedge \neg L_{\rm P}$,
	$\neg L_M \wedge L_N \wedge L_P$,	$\neg L_{M} \wedge L_{N} \wedge \neg L_{P}$,	$\neg L_{M} \wedge \neg L_{N} \wedge L_{P}$,	$\neg L_M \land \neg L_N \land \neg L_P \qquad \}$

DDOI	PNO	PNAME	BUDGET	LOC
PROJ	P2 P3	Instrumentation Database Develop. CAD/CAM Maintenance	150000 135000 250000 310000	Montreal New York New York Paris

^P Consider now another application **Q': find projects at a given location** $\sigma_{loc = x}$ (*PROJ*) Then, it makes sense to consider the set of simple predicates

S' = { LOC = "Montreal", LOC = "New York", LOC = "Paris" }

which induces the set of minterms (use abbreviations L_M : LOC = "Montreal", L_N : LOC = "New York", L_P : LOC = "Paris")

	PNO	PNAME	BUDGET	LOC
ROJ	P2 P3	Instrumentation Database Develop. CAD/CAM Maintenance	150000 135000 250000 310000	Montreal New York New York Paris

P

^P Consider now another application **Q': find projects at a given location** $\sigma_{loc = x}$ (*PROJ*) Then, it makes sense to consider the set of simple predicates

S' = { LOC = "Montreal", LOC = "New York", LOC = "Paris" }

which induces the set of minterms (use abbreviations L_M : LOC = "Montreal", L_N : LOC = "New York", L_P : LOC = "Paris")

which reduces to

 $\{ L_M \wedge \neg L_N \wedge \neg L_P, \neg L_M \wedge L_N \wedge \neg L_P, \neg L_M \wedge \neg L_N \wedge L_P \}$

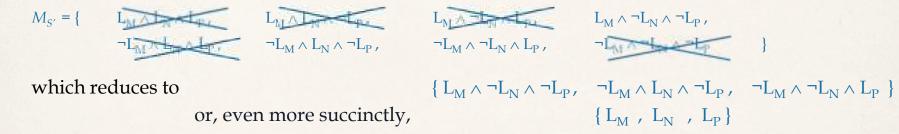
	PNO	PNAME	BUDGET	LOC
ROJ	P2 P3	Instrumentation Database Develop. CAD/CAM Maintenance	150000 135000 250000 310000	Montreal New York New York Paris

P

Consider now another application **Q': find projects at a given location** $\sigma_{loc = x}$ (*PROJ*) Then, it makes sense to consider the set of simple predicates

S' = { LOC = "Montreal", LOC = "New York", LOC = "Paris" }

which induces the set of minterms (use abbreviations L_M : LOC = "Montreal", L_N : LOC = "New York", L_P : LOC = "Paris")



DOI	PNO	PNAME	BUDGET	LOC
ROJ	P2 P3	Instrumentation Database Develop. CAD/CAM Maintenance	150000 135000 250000 310000	Montreal New York New York Paris

P

Consider now another application Q': find projects at a given location $\sigma_{loc} = r (PROJ)$ Then, it makes sense to consider the set of simple predicates

 $S' = \{ LOC = "Montreal", LOC = "New York", LOC = "Paris" \}$

which induces the set of minterms (use abbreviations L_M : LOC = "Montreal", L_N : LOC = "New York", L_P : LOC = "Paris")

which reduces to

or, even more succinctly,

 $\{L_M \land \neg L_N \land \neg L_P, \neg L_M \land L_N \land \neg L_P, \neg L_M \land \neg L_N \land L_P\}$ $\{L_M, L_N, L_P\}$ which, in turn, induces fragmentation $F' = \{ PROJ'_1, PROJ'_2, PROJ'_3 \}$

	PNO	PNAME	BUDGET	LOC
PROJ	P2 P3	Instrumentation Database Develop. CAD/CAM Maintenance	150000 135000 250000 310000	Montreal New York New York Paris

PROJ′ ₁	PNO	PNAME	BUDGET	LOC
	P1	Instrumentation	150000	Montreal
PROJ′ ₂	PNO	PNAME	BUDGET	LOC
	P2 P3	Database Develop. CAD/CAM	135000 250000	New York New York
PROJ' ₃	PNO	PNAME	BUDGET	LOC
	P4	Maintenance	310000	Paris

Completeness of the Set of Simple Predicates

- Sets of simple predicates (and thus sets of minterms) should be complete and minimal
- Intuitively, complete means that all applications (queries) are taken into account
- Definition: a set of simple predicates *Pr* is said to be complete if and only if any two tuples in a fragment induced by *Pr* have the same probability of being accessed by any application

Informal definition (completeness): in other words, we have that every application Q access either all or none of the tuples of a fragment *F* (for every fragment *F* induced by *Pr*)

Informal definition (completeness): *Q* and *Q*' access either **all** or **none** of the tuples in each fragment

- Only 2 applications *Q* and *Q*'
- *Q*: find projects with budget less than $200\ 000 \in$
- Q': find projects based in New York
- Is *S*' = { LOC = "New York" } complete wrt. appl. *Q* and *Q*'?

PROJ		_	
PNO	PNAME	BUDGET	LOC
P1 P2	Instrumentation Database Develop.	150000 135000	Montreal New York
P3	CAD/CAM	250000	New York
P4	Maintenance	310000	Paris

Informal definition (completeness): *Q* and *Q*' access either **all** or **none** of the tuples in each fragment

- Only 2 applications *Q* and *Q*'
- Q: find projects with budget less than $200\ 000 \in$
- Q': find projects based in New York
- Is *S*' = { LOC = "New York" } complete wrt. appl. *Q* and *Q*'?
 - > it produces $F = \{ PROJ_1, PROJ_2 \}$
 - > Q only accesses project P2 in fragment PROJ₁

PROJ ₁						
PNO	PNAME	BUDGET	LOC			
P2	Database Develop.	135000	New York			
P3	CAD/CAM	250000	New York			

PROL	
$I \Lambda O J_2$	

PNO	PNAME	BUDGET	LOC
P1	Instrumentation	150000	Montreal
P4	Maintenance	310000	Paris

PROJ			
PNO	PNAME	BUDGET	LOC
P1 P2 P3 P4	Instrumentation Database Develop. CAD/CAM Maintenance	150000 135000 250000 310000	Montreal New York New York Paris

Informal definition (completeness): *Q* and *Q*' access either **all** or **none** of the tuples in each fragment

- Only 2 applications *Q* and *Q*'
- Q: find projects with budget less than $200\ 000 \in$
- *Q*': find projects based in New York
- Is $S' = \{ LOC = "New York" \}$ complete wrt. appl. Q and Q'?
 - **NO!**
 - > it produces $F = \{ PROJ_1, PROJ_2 \}$
 - > Q only accesses project P2 in fragment PROJ₁

PRO	PROJ ₁						
PN	10	PNAME	BUDGET	LOC			
P	2	Database Develop.	135000	New York			
P	3	CAD/CAM	250000	New York			

1)	DA	1	
Γ.	N	וע	2
	P.	PR(PROJ

PNO	PNAME	BUDGET	LOC
P1	Instrumentation	150000	Montreal
P4	Maintenance	310000	Paris

PROJ			
PNO	PNAME	BUDGET	LOC
P1 P2 P3 P4	Instrumentation Database Develop. CAD/CAM Maintenance	150000 135000 250000 310000	Montreal New York New York Paris

Informal definition (completeness): *Q* and *Q*' access either **all** or **none** of the tuples in each fragment

- Only 2 applications *Q* and *Q*'
- Q: find projects with budget less than $200\ 000 \in$
- *Q*': find projects based in New York
- Is *S*' = { LOC = "New York" } complete wrt. appl. *Q* and *Q*'?
 - **NO!**
 - > it produces $F = \{ PROJ_1, PROJ_2 \}$
 - > Q only accesses project P2 in fragment PROJ₁
- *S*'' = {BUDGET < 200000, LOC = "New York" } is complete wrt. appl. *Q* and *Q*'
 - it produces the minterm set (L_N stands for LOC = "New York")

 $M_{S''} = \{ BUDGET < 200000 \land \neg L_N, BUDGET \ge 200000 \land \neg L_N, BUDGET < 200000 \land L_N, BUDGET \ge 200000 \land L_N, \}$

PROJ ₁			
PNO	PNAME	BUDGET	LOC
P2	Database Develop.	135000	New York
P3	CAD/CAM	250000	New York

PROJ ₂	

PNO	PNAME	BUDGET	LOC
P1	Instrumentation	150000	Montreal
P4	Maintenance	310000	Paris

PROJ				
PNO	PNAME	BUDGET	LOC	
P1 P2 P3 P4	Instrumentation Database Develop. CAD/CAM Maintenance	150000 135000 250000 310000	Montreal New York New York Paris	

Informal definition (completeness): *Q* and *Q*' access either **all** or **none** of the tuples in each fragment

- Only 2 applications *Q* and *Q*'
- Q: find projects with budget less than $200\ 000 \in$
- *Q*': find projects based in New York
- Is *S*' = { LOC = "New York" } complete wrt. appl. *Q* and *Q*'?
 - **NO!**
 - > it produces $F = \{ PROJ_1, PROJ_2 \}$
 - > Q only accesses project P2 in fragment PROJ₁
- *S''* = {BUDGET < 200000, LOC = "New York" } is **complete** wrt. appl. *Q* and *Q'*
 - it produces the minterm set (L_N stands for LOC = "New York")

 $M_{S''} = \{ \begin{array}{c} \text{BUDGET} < 200000 \land \neg L_N, \\ \text{BUDGET} < 200000 \land L_N, \\ \text{BUDGET} \geq 200000 \land L_N, \\ \end{array} \right.$

PROJ ₁			
PNO	PNAME	BUDGET	LOC
P2	Database Develop.	135000	New York
P3	CAD/CAM	250000	New York

PROJ ₂	

PNO	PNAME	BUDGET	LOC
P1	Instrumentation	150000	Montreal
P4	Maintenance	310000	Paris

PROJ				
PNO	PNAME	BUDGET	LOC	
P1	Instrumentation		Montreal	
P2	Database Develop.		New York	
P3	CAD/CAM	250000	New York	
P4	Maintenance	310000	Paris	

Minimality of the Set of Simple Predicates

Set of simple predicates (and thus sets of minterms) should be complete and minimal

Minimality of the Set of Simple Predicates

- Set of simple predicates (and thus sets of minterms) should be complete and minimal
- Intuitively, *minimal* means that all predicates should be relevant in the set:
 - relevant wrt. to final fragmentation (every predicate produces some fragments *not produced by other predicates in Pr*)
 - relevant wrt. to applications (there is at least one application that benefits from the predicate): guaranteed if the choice of the set of simple predicates is driven by applications

Minimality of the Set of Simple Predicates

- Set of simple predicates (and thus sets of minterms) should be complete and minimal
- Intuitively, *minimal* means that all predicates should be relevant in the set:
 - relevant wrt. to final fragmentation (every predicate produces some fragments *not produced by other predicates in Pr*)
 - relevant wrt. to applications (there is at least one application that benefits from the predicate): guaranteed if the choice of the set of simple predicates is driven by applications
- **Definition**: a set of simple predicates Pr is said to be minimal if and only if every predicates $p \in Pr$ creates a new fragment (i.e., p divides fragment F into F_1 and F_2) and F_1 and F_2 are accessed differently by at least one application

In other words: we look for a set of simple predicates *Pr* that is complete and such that every subset of *Pr* is not complete (minimality)

PHF – Algorithm (Intuition)

Input: a relation *R*

Output: a fragmentation schema for *R*

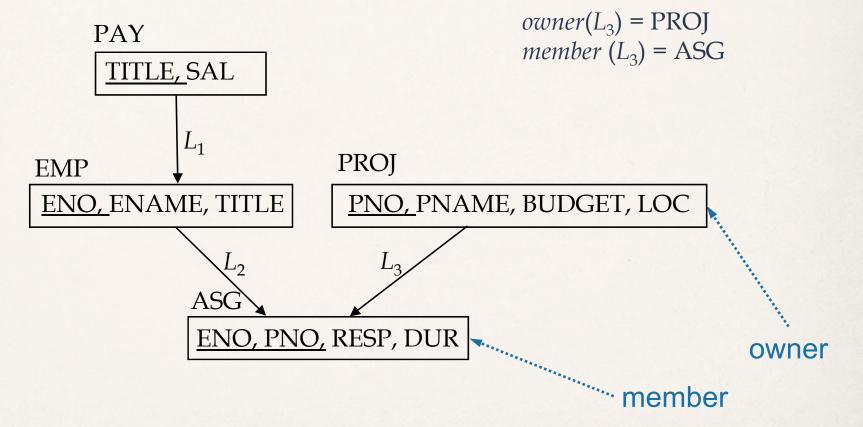
obtain set S of simple predicates over attributes of R contained in queries compute set M of minterms induced by S eliminate contradictory minterms from M // i.e., minterms that

// i.e., minterms that
// produce empty fragments

return fragmentation $F = \{ R_m = \sigma_m(R) \mid m \in M \}$

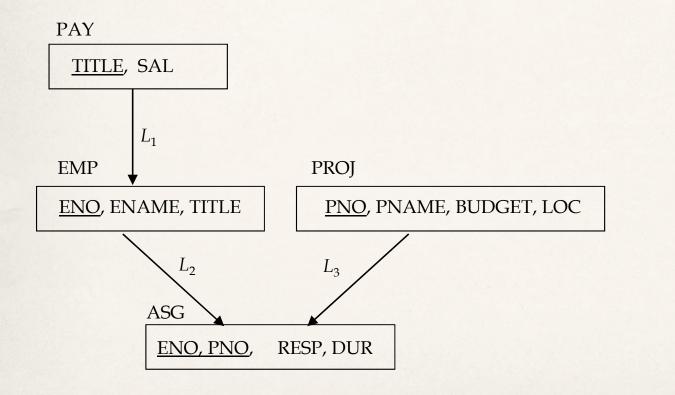
DHF – Information Requirements

- qualitative Database Information
 - → relationship



Derived Horizontal Fragmentation

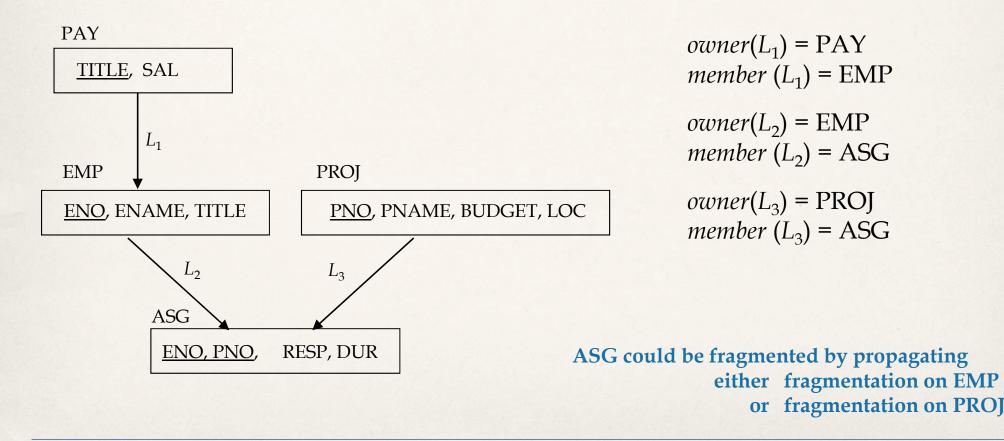
 Derived Horizontal Fragmentation (DHF) is defined on a member relation of a link according to a selection operation specified on its owner (propagated from owner to member)



 $owner(L_1) = PAY$ $member (L_1) = EMP$ $owner(L_2) = EMP$ $member (L_2) = ASG$ $owner(L_3) = PROJ$ $member (L_3) = ASG$

Derived Horizontal Fragmentation

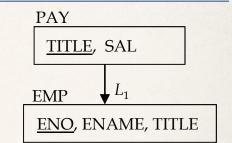
 Derived Horizontal Fragmentation (DHF) is defined on a member relation of a link according to a selection operation specified on its owner (propagated from owner to member)



Given

• a relation *S* fragmented into $F_S = \{S_1, S_2, ..., S_w\}$ and

• a link *L* where *owner*(*L*)=*S* and *member*(*L*)=*R*, the derived horizontal fragments of *R* are defined as $R_i = R \ltimes S_i$ ($S_i \in F_S$)



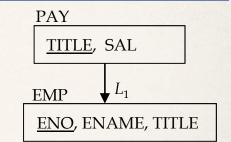
PAY	TITLE	SAL
	Elect. Eng.	40000
	Syst. Anal.	34000
	Mech. Eng.	27000
	Programmer	24000

EMP	ENO	ENAME	TITLE
	E1	J. Doe	Elect. Eng.
	E2	M. Smith	Syst. Anal.
	E3	A. Lee	Mech. Eng.
et alt	E4	J. Miller	Programmer
	E5	B. Casey	Syst. Anal.
	E6	L. Chu	Elect. Eng.
	E7	R. Davis	Mech. Eng.
	E8	J. Jones	Syst. Anal.

Given

• a relation *S* fragmented into $F_S = \{S_1, S_2, ..., S_w\}$ and

• a link *L* where *owner*(*L*)=*S* and *member*(*L*)=*R*, the derived horizontal fragments of *R* are defined as $R_i = R \ltimes S_i$ ($S_i \in F_S$)



PAY ₁	TITLE	SAL
	Elect. Eng. Syst. Anal.	40000 34000
PAY ₂	TITLE	SAL
	Mech. Eng. Programmer	27000 24000

$PAY_1 =$	$\sigma_{SAL \ge 30000}(PAY)$
	$\sigma_{SAL < 30000}(PAY)$

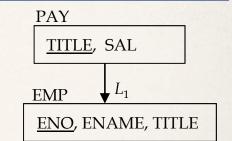
PAY	TITLE	SAL
	Elect. Eng.	40000
	Syst. Anal.	34000
	Mech. Eng.	27000
	Programmer	24000
EMP	ENIO ENIA	ME

EMP	ENO	ENAME	TITLE
	E1 J. Doe		Elect. Eng.
	E2	M. Smith	Syst. Anal.
	E3	A. Lee	Mech. Eng.
16-24	E4	J. Miller	Programmer
	E5	B. Casey	Syst. Anal.
	E6	L. Chu	Elect. Eng.
	E7	R. Davis	Mech. Eng.
	E8	J. Jones	Syst. Anal.

Given

• a relation *S* fragmented into $F_S = \{S_1, S_2, ..., S_w\}$ and

• a link *L* where *owner*(*L*)=*S* and *member*(*L*)=*R*, the derived horizontal fragments of *R* are defined as $R_i = R \ltimes S_i$ ($S_i \in F_S$)



PAY ₁	TITLE	SAL
	Elect. Eng. Syst. Anal.	40000 34000
PAY ₂	TITLE	SAL
	Mech. Eng. Programmer	27000 24000

PAY	TITLE	SAL
	Elect. Eng. Syst. Anal. Mech. Eng. Programmer	40000 34000 27000 24000

EMP	ENO	ENAME	TITLE
	E1	J. Doe	Elect. Eng.
	E2	M. Smith	Syst. Anal.
	E3	A. Lee	Mech. Eng.
1.400	E4	J. Miller	Programmer
	E5	B. Casey	Syst. Anal.
	E6	L. Chu	Elect. Eng.
	E7	R. Davis	Mech. Eng.
	E8	J. Jones	Syst. Anal.

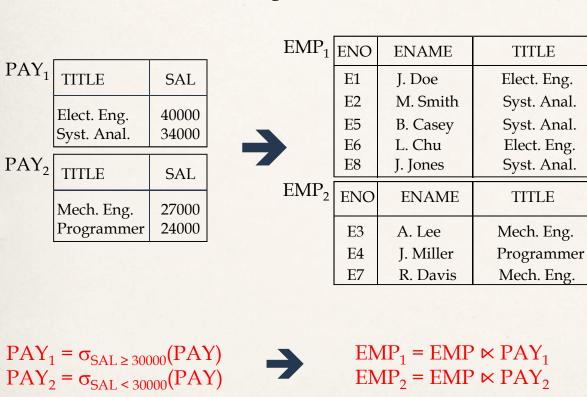
 $PAY_{1} = \sigma_{SAL \ge 30000}(PAY)$ $PAY_{2} = \sigma_{SAL < 30000}(PAY)$

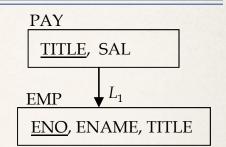
 $EMP_1 = EMP \ltimes PAY_1$ $EMP_2 = EMP \ltimes PAY_2$

Given

• a relation *S* fragmented into $F_S = \{S_1, S_2, ..., S_w\}$ and

• a link *L* where *owner*(*L*)=*S* and *member*(*L*)=*R*, the derived horizontal fragments of *R* are defined as $R_i = R \ltimes S_i$ ($S_i \in F_S$)





PAY	TITLE		SAL		
	Elect. Eng. Syst. Anal. Mech. Eng. Programmer		4000 3400 2700 2400	0	
EMP	ENO	ENA	ME		TITLE
	E1	J. Do	e		Elect. Eng.
	E2	M. Sr	nith		Syst. Anal.
	E3	A. Le	e		Mech. Eng.
1.1	E4	J. Mil	ler		Programmer
	E5	B. Ca	sey		Syst. Anal.
	E6	L. Ch	u		Elect. Eng.
	E7	R. Da	vis		Mech. Eng.
	E8	J. Jor	nes		Syst. Anal.

- **Completeness** (info is entirely preserved) for **primary** horizontal fragmentation
 - → PHF: completeness follows from the way minterms are built (exhaustively)
 - NOTICE: The textbook says something slightly different

• **Completeness** (info is entirely preserved) for **primary** horizontal fragmentation

- → PHF: completeness follows from the way minterms are built (exhaustively)
 - NOTICE: The textbook says something slightly different
- **Reconstruction** for both **primary** and **derived** horizontal fragmentation

→ Assume *R* is fragmented into $F = \{R_1, R_2, ..., R_r\}$

• **Completeness** (info is entirely preserved) for **primary** horizontal fragmentation

- → PHF: completeness follows from the way minterms are built (exhaustively)
 - NOTICE: The textbook says something slightly different
- **Reconstruction** for both **primary** and **derived** horizontal fragmentation

→ Assume *R* is fragmented into $F = \{R_1, R_2, ..., R_r\}$

$$R = \bigcup_{\forall Ri \in F} R_i$$

• **Completeness** (info is entirely preserved) for **primary** horizontal fragmentation

- → PHF: completeness follows from the way minterms are built (exhaustively)
 - NOTICE: The textbook says something slightly different
- **Reconstruction** for both **primary** and **derived** horizontal fragmentation
 - → Assume *R* is fragmented into $F = \{R_1, R_2, ..., R_r\}$

 $R = \bigcup_{\forall Ri \in F} R_i$

- **Disjointness** for **primary** horizontal fragmentation
 - → PHF: minterms are **mutually exclusive** by construction

- **Completeness** (info is entirely preserved) for **primary** horizontal fragmentation
 - → PHF: completeness follows from the way minterms are built (exhaustively)
 - NOTICE: The textbook says something slightly different
- **Reconstruction** for both **primary** and **derived** horizontal fragmentation
 - → Assume *R* is fragmented into $F = \{R_1, R_2, ..., R_r\}$

 $R = \bigcup_{\forall Ri \in F} R_i$

- **Disjointness** for **primary** horizontal fragmentation
 - → PHF: minterms are **mutually exclusive** by construction
- **Completeness** and **disjointness** for **derived** horizontal fragmentation

- **Completeness** (info is entirely preserved) for **primary** horizontal fragmentation
 - → PHF: completeness follows from the way minterms are built (exhaustively)
 - NOTICE: The textbook says something slightly different
- **Reconstruction** for both **primary** and **derived** horizontal fragmentation
 - → Assume *R* is fragmented into $F = \{R_1, R_2, ..., R_r\}$

 $R = \bigcup_{\forall Ri \in F} R_i$

- **Disjointness** for **primary** horizontal fragmentation
 - → PHF: minterms are **mutually exclusive** by construction
- **Completeness** and **disjointness** for **derived** horizontal fragmentation
 - → Both come from **integrity constraints** of foreign keys and from completeness/disjointness of PHF
 - fragmentation propagates from *owner* to *member* following one-to-many associations; thus, each tuple of *member* is associated with exactly 1 tuple of *owner* (collect NULLvalued tuples into a separated fragment); by disjointness and completeness of PHF, such tuple of owner appears in exactly 1 fragment of owner

Vertical Fragmentation

- Has been studied within the centralized context
 - → design methodology
 - → physical clustering
- Choose a partition $P = \{ P_1, P_2, ..., P_n \}$ of the set of attribute of relation. Then,

 $F = \{ R_i \mid R_i = \prod_{P_i \cup key}(R) \text{ and } P_i \in P \}$

where key is the (set of) key attribute(s): they are replicated in each fragment

- The problem boils down to finding the best partition
 - → Number of elements of the partition
 - → Distribution of attributes among elements of the partition
- More difficult than horizontal, because more alternatives exist
 - \rightarrow Number of possible partitions of a set of size *n* is the Bell's number B_n (its growth rate is more than exponential)
- Two approaches :
 - → Grouping (bottom-up) from single attributes to fragments
 - → Splitting (top-down) from relation to fragments
 - preferable for 2 reasons
 - ✓ close to the design approach
 - optimal solution is more likely to be close to the full relation than to the fully fragmented situation

VF – The General Idea

- Partition is guided by a measure of affinity ("togetherness")
- Affinity measures how much attributes that are accessed together by queries

VF – Information Requirements (Qualitative Application Info)

- The matrix *use(q, A)* for attribute usage values
 - \rightarrow *R* relation over attributes A_1, A_2, \dots, A_n
 - → $Q = \{q_1, q_2, ..., q_q\}$: set of queries that will run on R
 - (the 80/20 rule can be used here, too: select the most active 20% of queries only)

 $use(q_i, A_j) = \begin{cases} 1 \text{ if attribute } A_j \text{ is referenced by query } q_i \\ 0 \text{ otherwise} \end{cases}$

VF – Example of $use(q_i, A_j)$

Consider the following 4 queries for relation PROJ

q_1 :	SELECT	BUDGET	q_2 :	SELECT	PNAME, BUDGET
	FROM	PROJ		FROM	PROJ
	WHERE	PNO=Value			

q_3 :	SELECT	PNAME	q_4 :	SELECT	SUM(BUDGET)
	FROM	PROJ		FROM	PROJ
	WHERE	LOC=Value		WHERE	LOC=Value

PNO PNAME BUDGET LOC *use(q, A)* 1 1 0 0 q_1 1 1 0 0 q_2 1 0 0 q_3 0 1 1 0 q_4

VF – Information Requirements (Quantitative Application Info)

• matrix *acc(q)* for the frequency of *q*

attribute affinity measure aff(A_i, A_j) between any two attributes A_i and A_j of a relation R with respect to a set of applications Q

$$aff(A_i, A_j) = \sum_{\text{all queries } q} use(q, A_i) * use(q, A_j) * acc(q)$$

$$use(q, A) \quad PNO \quad PNAME \quad BUDGET \quad LOC$$

$$q_1 \quad 1 \quad 0 \quad 1 \quad 0 \quad -$$

$$q_1 \quad 1 \quad 0 \quad 1 \quad 0 \quad -$$

$$q_1 \quad 1 \quad 0 \quad 1 \quad 0 \quad -$$

$$q_1 \quad 1 \quad 0 \quad 1 \quad 0 \quad -$$

$$q_1 \quad 1 \quad 0 \quad 1 \quad 0 \quad -$$

$$q_1 \quad 1 \quad 0 \quad 1 \quad 0 \quad -$$

$$q_1 \quad 0 \quad 1 \quad 0 \quad -$$

$$q_1 \quad 0 \quad 1 \quad 0 \quad -$$

$$q_1 \quad 0 \quad 1 \quad 0 \quad -$$

$$q_1 \quad 0 \quad 1 \quad 0 \quad -$$

$$q_1 \quad 0 \quad 1 \quad 0 \quad -$$

$$q_1 \quad 0 \quad 1 \quad 0 \quad -$$

$$q_1 \quad 0 \quad 1 \quad 0 \quad -$$

$$q_1 \quad 0 \quad 1 \quad 0 \quad -$$

$$q_1 \quad 0 \quad 1 \quad 0 \quad -$$

$$q_1 \quad 0 \quad 1 \quad 0 \quad -$$

$$q_1 \quad 0 \quad 1 \quad 0 \quad -$$

$$q_1 \quad 0 \quad 1 \quad 0 \quad -$$

$$q_1 \quad 0 \quad 1 \quad 0 \quad -$$

$$q_1 \quad 0 \quad 1 \quad 0 \quad -$$

$$q_1 \quad 0 \quad 1 \quad 0 \quad -$$

$$q_1 \quad 0 \quad 1 \quad 0 \quad -$$

$$q_1 \quad 0 \quad 1 \quad 0 \quad -$$

$$q_1 \quad 0 \quad 1 \quad 0 \quad -$$

$$q_1 \quad 0 \quad 1 \quad 0 \quad -$$

$$q_1 \quad 0 \quad 1 \quad 0 \quad -$$

$$q_1 \quad -$$

М

$$aff(A_i, A_j) = \sum use(q, A_i) * use(q, A_j) * acc(q)$$

all queries q

$$aff(A_i, A_j) = \sum use(q, A_i) * use(q, A_j) * acc(q)$$

all queries q

• Example: affinity between PNO and BUDGET

$$aff(A_i, A_j) = \sum use(q, A_i) * use(q, A_j) * acc(q)$$

all queries q

use(q, A)	PNO	PNAME	BUDGET	LOC	
q_1	1	0	1	0	
q ₂	0	1	1	0	
<i>q</i> ₃	0	1	0	1	
q4 L	0	0	1	1	

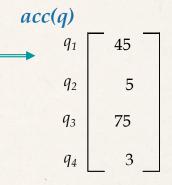
- Example: affinity between *PNO* and *BUDGET*
- q_1 is the only query that access both *PNO* and *BUDGET*

$$aff(A_i, A_j) = \sum use(q, A_i) * use(q, A_j) * acc(q)$$

all queries q

use(q, A)	PNO	PNAME	BUDGET	LOC	
q_1	1	0	1	0	
q ₂	0	1	1	0	
<i>q</i> ₃	0	1	0	1	
q_4	0	0	1	1	

- Example: affinity between *PNO* and *BUDGET*
- q_1 is the only query that access both *PNO* and *BUDGET*
- Also consider the access frequencies: *acc*(*q*)

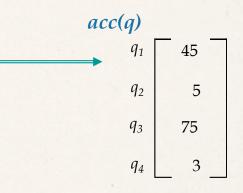


$$aff(A_i, A_j) = \sum use(q, A_i) * use(q, A_j) * acc(q)$$

all queries q

use(q,	, A)	PNO	PNAME	BUDGET	LOC	
	<i>q</i> ₁	1	0	1	0	
*	<i>q</i> ₂	0	1	1	0	
	<i>q</i> ₃	0	1	0	1	
	q_4	0	0	1	1	

- Example: affinity between *PNO* and *BUDGET*
- q_1 is the only query that access both *PNO* and *BUDGET*
- Also consider the access frequencies: *acc*(*q*)
- Then, *aff(PNO, BUDGET)* = 45



$$aff(A_i, A_j) = \sum use(q, A_i) * use(q, A_j) * acc(q)$$

all queries q

 $\begin{array}{c|c} use(q, A) & PNO \ PNAME \ BUDGET \ LOC \\ \hline q_1 & 1 & 0 & 1 & 0 \\ q_2 & 0 & 1 & 1 & 0 \\ q_3 & 0 & 1 & 0 & 1 \\ q_4 & 0 & 0 & 1 & 1 \end{array}$

45

5

75

3

0

80

5

75

45

5

53

3

0

75

3

78

acc(q)

 q_2

 q_3

 q_4

45

0

45

0

PNO

PNAME

BUDGET

LOC

 $aff(A_i, A_i)$ PNO PNAME BUDGET LOC

- Example: affinity between *PNO* and *BUDGET*
- q_1 is the only query that access both *PNO* and *BUDGET*
- Also consider the access frequencies: *acc*(*q*)
- Then, *aff(PNO, BUDGET)* = 45
- *aff*(.,.) is stored in the **attribute affinity matrix** *AA*

$$aff(A_i, A_j) = \sum use(q, A_i) * use(q, A_j) * acc(q)$$

all queries q

 use(q, A)
 PNO
 PNAME
 BUDGET
 LOC

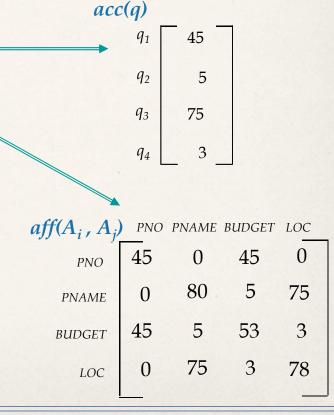
 q_1 1
 0
 1
 0

 q_2 0
 1
 1
 0

 q_3 0
 1
 0
 1

 q_4 0
 0
 1
 1

- Example: affinity between *PNO* and *BUDGET*
- q_1 is the only query that access both *PNO* and *BUDGET*
- Also consider the access frequencies: *acc*(*q*)
- Then, *aff(PNO, BUDGET)* = 45
- *aff*(.,.) is stored in the **attribute affinity matrix** *AA*
- Any clustering algorithm based on the attribute affinity values
 - → Bond energy algorithm
 - → Neural network
 - → Machine learning



• Completeness and disjointness follow from properties (completeness and disjointness) intrinsic of a partition (returned by the clustering algorithm)

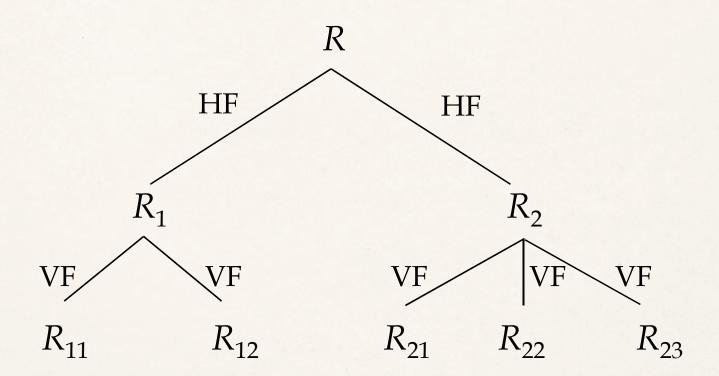
- Completeness and disjointness follow from properties (completeness and disjointness) intrinsic of a partition (returned by the clustering algorithm)
- Reconstruction
 - → Let $F_R = \{R_1, R_2, ..., R_n\}$ be the vertical fragmentation obtained for *R*

- Completeness and disjointness follow from properties (completeness and disjointness) intrinsic of a partition (returned by the clustering algorithm)
- Reconstruction
 - → Let $F_R = \{R_1, R_2, ..., R_n\}$ be the vertical fragmentation obtained for *R*
 - \rightarrow *R* is recovered by joining the fragments

 $R = R_1 \bowtie R_2 \bowtie \ldots \bowtie R_n$

Hybrid Fragmentation

Hybrid fragmentation, aka *mixed* or *nested* fragmentation



To reconstruct *R*: start from the leaves and move upward applying fragmentation reconstruction methods depending on fragmentation types

Distributed DBMS

Fragment Allocation

- Fragment allocation concerns distribution of resources across network nodes
 - → Assignment (possibly with replications) of fragments to sites
- Problem formalization
 - → Given

 $F = \{F_1, F_2, ..., F_n\}$ fragments

 $S = \{S_1, S_2, \dots, S_m\}$ network sites

Qualitative and quantitative information about DB, applications, network, and computer system Find the best ("optimal") distribution of fragments in *F* among sites in *S* according to information

Optimality factors

→ Minimal cost

- Communication, Storage (of F_i at site s_j), Querying (F_i at site s_j, from site s_k), Updating (F_i at all sites where it is replicated, from site s_k)
- → Performance
 - Response time and/or total time
- → Can be formulated as an operations research problem
 - one of the above optimality factors is the cost function to minimize, the others are constraint to satisfy)

min (cost function) e.g., response/total time
s.t. constraints e.g., storage/communication capacity

techniques and heuristics from the field of operations research apply (no optimal solution, NP-hard)

Data directory

- Data directory (aka. data dictionary or catalog)
- Both in classic (centralized) and distributed DB, it stores metadata about DB
 - → Centralized context
 - Schema (relation metadata) definitions
 - Usage statistics
 - Memory usage
 - **+** ...

+ ...

- → Distributed context
 - Info to reconstruct global view of whole DB
 - What relation/fragment is stored at which site
- It is itself part of the DB, so considerations about fragmentation and allocation issues apply