
Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/1

Distributed DB design

Dario Della Monica

These slides are a modified version of the slides provided with the book

Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

The original version of the slides is available at: extras.springer.com

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/2

Outline (distributed DB)

• Introduction (Ch. 1) ⋆

• Distributed Database Design (Ch. 3) ⋆

➡ Fragmentation

➡ Data distribution (allocation)

• Distributed Query Processing (Ch. 6-8) ⋆

• Distributed Transaction Management (Ch. 10-12) ⋆

⋆ Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/3

Outline (today)

• Distributed DB design (Ch. 3) ⋆

➡ Introduction

➡ Top-down (vs. bottom-up) design

➡ Distribution design issues

✦ Fragmentation

✦ Allocation

➡ Fragmentation

✦ Horizontal Fragmentation (HF)

✓ Primary Horizontal Fragmentation (PHF)

✓ Derived Horizontal Fragmentation (DHF)

✦ Vertical Fragmentation (VF)

✦ Hybrid Fragmentation (HyF)

➡ Allocation

➡ Data directory

⋆ Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/4

Design Problem

• In the general setting:

Making decisions about the placement of data across the sites of a computer
network as well as possibly designing the network itself

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/5

Distribution Design

• Top-down

➡ mostly in designing systems from scratch

➡ mostly in homogeneous systems

➡ applies to fully distributed DBMS (a logical view of the whole DB exists)

• Bottom-up

➡ when the databases already exist at a number of sites

➡ applies to MDBS (we will not treat them)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/6

Top-Down Design

View Integration

Requirements
Analysis

System requirements
(Objectives)

Conceptual
Design

View Design

Access
Information ES’sGCS

Distribution
Design

Physical
Design

LCS’s

LIS’s
feedback feedback

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/7

Distribution Design Issues

Distribution design activity boils down to fragmentation and allocation

Why fragment at all? [reasons for fragmentation]

How to fragment? [fragmentation alternatives]

How much to fragment? [degree of fragmentation]

How to test correctness? [correctness rules of fragmentation]

How to allocate? [allocation alternatives]

 Information requirements? [for both fragmentation and allocation]

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/8

1. Reasons for Fragmentation

• Can't we just distribute relations (no intrinsic reason to fragment)?

➡ distributed file systems are not fragmented (i.e., distr. unit is the file)

• What is a reasonable unit of distribution?

➡ advantages of fragmentation (why isn’t relation the best choice?)

✦ application views are subsets of relations locality allows for finer accesses
(applications only access to relevant subsets of relations)

✓ 2 applications accessing different portion of a relation: without fragmentation, either
unnecessary data replication or loss of locality (extra communication)

✦ without fragmentation, no intra-query parallelism

➡ disadvantages of fragmentation

✦ might cause queries to be executed on more than one fragment (performance
degradation, especially when fragments are not disjoint)

✦ semantic data control (especially integrity enforcement) more difficult and costly

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/9

2. Fragmentation Alternatives

PROJ1 PNO PNAME LOC

P1 Instrumentation 150000 Montreal
P2 Database Develop. 135000 New York

BUDGET

PNO PNAME BUDGET LOC

P3 CAD/CAM 250000 New York
P4 Maintenance 310000 Paris

PROJ2

PROJ

New York
New York

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris

Horizontal fragmentation
• PROJ1: projects with budget < $200,000

• PROJ2: projects with budget ≥ $200,000

PNO PNAME LOC

P1 Instrumentation Montreal

P3 CAD/CAM New York
P2 Database Develop. New York

P4 Maintenance Paris

PNO BUDGET

P1 150000

P3 250000
P2 135000

P4 310000

PROJ1 PROJ2

Vertical fragmentation
• PROJ1: information about project budgets

• PROJ2:information about project names and
locations

Hybrid fragmentation: obtained by nesting horizontal and vertical fragmentation

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/10

3. Degree of Fragmentation

tuples
or

attributes

relations

finite number of alternatives

• Finding the suitable level of partitioning within this range

• It depends especially on the applications that will use the DB

• This is the real difficulty of fragmentation

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/11

4. Correctness of Fragmentation

• Completeness

➡ Decomposition of relation R into fragments R1, R2, ..., Rn is complete if and
only if each data item in R can also be found in some Ri

• Reconstruction

➡ If relation R is decomposed into fragments R1, R2, ..., Rn, then there should
exist some relational operator ∇ such that

R = ∇1≤i≤nRi

• Disjointness

➡ If relation R is decomposed into fragments R1, R2, ..., Rn, and data item di is in
Rj, then di should not be in any other fragment Rk (k ≠ j).

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/12

5. Allocation Alternatives

• Assigning fragments to sites and deciding whether or not to replicate a
fragment

➡ partitioned (aka non-replicated): each fragment resides at only one site

➡ fully replicated: each fragment at each site

➡ partially replicated: each fragment at some of the sites

• Rule of thumb:

• In case of partially replicated DDBS, the number of copies of replicated
fragments can either be an input to the allocation algorithm or a decision
variable to be computed by the algorithm

problems causemay nreplicatio otherwise

us,advantageo is nreplicatio 1, If
queries update
queriesonly -read

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/13

6. Information Requirements

• The difficulty of the distributed DB design problem is that too many factor
affect the choices towards an optimal design

➡ Logical organization of the DB

➡ Location of DBMS applications

➡ Characteristics of user applications (how they access the DB)

➡ Properties of (computers at) network nodes

➡ …

• Those can be grouped into four categories:

➡ Database information

➡ Application information

➡ Communication network information

➡ Computer system information
quantitative information, mostly used
for allocation, we will not treat them

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/14

Fragmentation

• Horizontal Fragmentation (HF)

➡ Primary Horizontal Fragmentation (PHF)

➡ Derived Horizontal Fragmentation (DHF)

• Vertical Fragmentation (VF)

• Hybrid Fragmentation (HyF)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/15

PHF – Information Requirements

• application information needed for horizontal fragmentation

➡ Predicates used in queries

✦ 80/20 rule: the most active 20% of user applications account for 80% of accesses

✦ simple predicates: Given R[A1, A2, …, An], a simple predicate pj over R is

Ai θ Value

where θ {=,<,≤,>,≥,≠}, Value Di and Di is the domain of Ai.

Example:

PNAME = "Maintenance"

BUDGET ≤ 200 000

✦ minterms: Given a set Pr = {p1, p2, …,pm} of simple predicates over a relation R, a minterm
(induced by Pr) is a conjunction

pjPr
pj*

where pj* { pj , ¬ pj } , for all pj Pr

We let MPr = {m1,m2,…,mr} be the set of all minterms induced by a set of simple predicates Pr

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/16

PHF – Information Requirements
Example

Example

Pr = { PNAME="Maintenance" , BUDGET < 200000 }

MPr = { m1 , m2 , m3 , m4 }

Where

• m1: PNAME="Maintenance" BUDGET < 200000

• m2: ¬(PNAME="Maintenance") BUDGET < 200000

• m3: PNAME= "Maintenance" ¬(BUDGET < 200000)

• m4: ¬(PNAME="Maintenance") ¬(BUDGET < 200000)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/17

PHF – Extra Information
Requirements

• Application Information
➡ access frequency of queries (quantitative)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/18

Primary Horizontal Fragmentation

• Primary horizontal fragmentation (PHF) is induced by a set of minterms.

• Definition: A set M = { m1, m2, …, mn } of minterm induces the
fragmentation

F = { Ri | Ri = mi
(R), mi M , and Ri ≠ ∅ }

• Therefore, a horizontal fragment Ri of relation R consists of all the tuples of
R which satisfy a minterm predicate mi

Given a set of minterm predicates M, there are as many horizontal fragments of
relation R as there are minterm predicates (some fragments might be empty)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/19

PHF – Example (1)

• Assume there is only 1 application Q: find projects with budget less than 200 000 €
budget < 200 000 (PROJ)

• Then, it makes sense to consider the set of simple predicates S = { BUDGET < 200000 }

which induces the set of minterms MS = { BUDGET < 200000, ¬(BUDGET < 200000) }

which, in turn, induces fragmentation F = { PROJ1 , PROJ2 }

• PROJ1 and PROJ2 are the fragments induced by S

PROJ

New York
New York

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris

PROJ1 PNO PNAME LOC

P1 Instrumentation 150000 Montreal
P2 Database Develop. 135000 New York

BUDGET

PNO PNAME BUDGET LOC

P3 CAD/CAM 250000 New York
P4 Maintenance 310000 Paris

PROJ2

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/20

PHF – Example (2)

PROJ

New York
New York

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris

• Consider now another application Q’: find projects at a given location loc = x (PROJ)
Then, it makes sense to consider the set of simple predicates

S’ = { LOC = “Montreal”, LOC = “New York”, LOC = “Paris” }

which induces the set of minterms (use abbreviations LM: LOC = “Montreal”, LN: LOC = “New York”, LP: LOC = “Paris”)

MS’ = { LM LN LP , LM LN ¬LP , LM ¬LN LP , LM ¬LN ¬LP ,

¬LM LN LP , ¬LM LN ¬LP , ¬LM ¬LN LP , ¬LM ¬LN ¬LP }

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/21

PHF – Example (2)

PROJ

New York
New York

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris

• Consider now another application Q’: find projects at a given location loc = x (PROJ)
Then, it makes sense to consider the set of simple predicates

S’ = { LOC = “Montreal”, LOC = “New York”, LOC = “Paris” }

which induces the set of minterms (use abbreviations LM: LOC = “Montreal”, LN: LOC = “New York”, LP: LOC = “Paris”)

MS’ = { LM LN LP , LM LN ¬LP , LM ¬LN LP , LM ¬LN ¬LP ,

¬LM LN LP , ¬LM LN ¬LP , ¬LM ¬LN LP , ¬LM ¬LN ¬LP }

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/22

PHF – Example (2)

PROJ

New York
New York

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris

• Consider now another application Q’: find projects at a given location loc = x (PROJ)
Then, it makes sense to consider the set of simple predicates

S’ = { LOC = “Montreal”, LOC = “New York”, LOC = “Paris” }

which induces the set of minterms (use abbreviations LM: LOC = “Montreal”, LN: LOC = “New York”, LP: LOC = “Paris”)

MS’ = { LM LN LP , LM LN ¬LP , LM ¬LN LP , LM ¬LN ¬LP ,

¬LM LN LP , ¬LM LN ¬LP , ¬LM ¬LN LP , ¬LM ¬LN ¬LP }

which reduces to { LM ¬LN ¬LP , ¬LM LN ¬LP , ¬LM ¬LN LP }

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/23

PHF – Example (2)

PROJ

New York
New York

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris

• Consider now another application Q’: find projects at a given location loc = x (PROJ)
Then, it makes sense to consider the set of simple predicates

S’ = { LOC = “Montreal”, LOC = “New York”, LOC = “Paris” }

which induces the set of minterms (use abbreviations LM: LOC = “Montreal”, LN: LOC = “New York”, LP: LOC = “Paris”)

MS’ = { LM LN LP , LM LN ¬LP , LM ¬LN LP , LM ¬LN ¬LP ,

¬LM LN LP , ¬LM LN ¬LP , ¬LM ¬LN LP , ¬LM ¬LN ¬LP }

which reduces to { LM ¬LN ¬LP , ¬LM LN ¬LP , ¬LM ¬LN LP }

or, even more succinctly, { LM , LN , LP }

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/24

PHF – Example (2)

PROJ’1 PNO PNAME LOC

P1 Instrumentation 150000 Montreal

BUDGET

P2 Database Develop. 135000 New York

PNO PNAME BUDGET LOC

P3 CAD/CAM 250000 New York

PROJ’2
PROJ

New York
New York

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris

• Consider now another application Q’: find projects at a given location loc = x (PROJ)
Then, it makes sense to consider the set of simple predicates

S’ = { LOC = “Montreal”, LOC = “New York”, LOC = “Paris” }

which induces the set of minterms (use abbreviations LM: LOC = “Montreal”, LN: LOC = “New York”, LP: LOC = “Paris”)

MS’ = { LM LN LP , LM LN ¬LP , LM ¬LN LP , LM ¬LN ¬LP ,

¬LM LN LP , ¬LM LN ¬LP , ¬LM ¬LN LP , ¬LM ¬LN ¬LP }

which reduces to { LM ¬LN ¬LP , ¬LM LN ¬LP , ¬LM ¬LN LP }

or, even more succinctly, { LM , LN , LP }

which, in turn, induces fragmentation F’ = { PROJ’1 , PROJ’2 , PROJ’3 }

P4 Maintenance 310000 Paris

PNO PNAME LOCBUDGET
PROJ’3

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/25

Completeness of the Set of
Simple Predicates
• Sets of simple predicates (and thus sets of minterms) should be complete

and minimal

• Intuitively, complete means that all applications (queries) are taken into
account

• Definition: a set of simple predicates Pr is said to be complete if and only if
any two tuples in a fragment induced by Pr have the same probability of
being accessed by any application

Informal definition (completeness): in other words, we have that

every application Q access either all or none of the tuples of a fragment F

(for every fragment F induced by Pr)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/26

Completeness – Examples

Informal definition (completeness): Q and Q’ access either all or none of the tuples in each fragment

• Only 2 applications Q and Q’

• Q: find projects with budget less than 200 000 €

• Q’: find projects based in New York

• Is S’ = { LOC = “New York” } complete wrt. appl. Q and Q’ ?

PROJ

New York
New York

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/27

Completeness – Examples

Informal definition (completeness): Q and Q’ access either all or none of the tuples in each fragment

P2 Database Develop. 135000 New York

PNO PNAME BUDGET LOC

P3 CAD/CAM 250000 New York

PROJ1

PROJ2

PNO PNAME LOC

P1 Instrumentation 150000 Montreal
P4 Maintenance 310000 Paris

BUDGET

• Only 2 applications Q and Q’

• Q: find projects with budget less than 200 000 €

• Q’: find projects based in New York

• Is S’ = { LOC = “New York” } complete wrt. appl. Q and Q’ ?

 it produces F = { PROJ1 , PROJ2 }

 Q only accesses project P2 in fragment PROJ1

PROJ

New York
New York

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/28

Completeness – Examples

Informal definition (completeness): Q and Q’ access either all or none of the tuples in each fragment

P2 Database Develop. 135000 New York

PNO PNAME BUDGET LOC

P3 CAD/CAM 250000 New York

PROJ1

PROJ2

PNO PNAME LOC

P1 Instrumentation 150000 Montreal
P4 Maintenance 310000 Paris

BUDGET

• Only 2 applications Q and Q’

• Q: find projects with budget less than 200 000 €

• Q’: find projects based in New York

• Is S’ = { LOC = “New York” } complete wrt. appl. Q and Q’ ?

o NO!

 it produces F = { PROJ1 , PROJ2 }

 Q only accesses project P2 in fragment PROJ1

PROJ

New York
New York

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/29

Completeness – Examples

Informal definition (completeness): Q and Q’ access either all or none of the tuples in each fragment

P2 Database Develop. 135000 New York

PNO PNAME BUDGET LOC

P3 CAD/CAM 250000 New York

PROJ1

PROJ2

PNO PNAME LOC

P1 Instrumentation 150000 Montreal
P4 Maintenance 310000 Paris

BUDGET

• Only 2 applications Q and Q’

• Q: find projects with budget less than 200 000 €

• Q’: find projects based in New York

• Is S’ = { LOC = “New York” } complete wrt. appl. Q and Q’ ?

o NO!

 it produces F = { PROJ1 , PROJ2 }

 Q only accesses project P2 in fragment PROJ1

• S’’ = {BUDGET < 200000 , LOC = “New York” } is complete wrt.
appl. Q and Q’

o it produces the minterm set (LN stands for LOC = “New York”)

MS’’ = { BUDGET < 200000 ¬ LN , BUDGET ≥ 200000 ¬ LN ,
BUDGET < 200000 LN , BUDGET ≥ 200000 LN , }

PROJ

New York
New York

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/30

Completeness – Examples

Informal definition (completeness): Q and Q’ access either all or none of the tuples in each fragment

P2 Database Develop. 135000 New York

PNO PNAME BUDGET LOC

P3 CAD/CAM 250000 New York

PROJ1

PROJ2

PNO PNAME LOC

P1 Instrumentation 150000 Montreal
P4 Maintenance 310000 Paris

BUDGET

• Only 2 applications Q and Q’

• Q: find projects with budget less than 200 000 €

• Q’: find projects based in New York

• Is S’ = { LOC = “New York” } complete wrt. appl. Q and Q’ ?

o NO!

 it produces F = { PROJ1 , PROJ2 }

 Q only accesses project P2 in fragment PROJ1

• S’’ = {BUDGET < 200000 , LOC = “New York” } is complete wrt.
appl. Q and Q’

o it produces the minterm set (LN stands for LOC = “New York”)

MS’’ = { BUDGET < 200000 ¬ LN , BUDGET ≥ 200000 ¬ LN ,
BUDGET < 200000 LN , BUDGET ≥ 200000 LN , }

PROJ

New York
New York

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/31

Minimality of the Set of Simple
Predicates

• Set of simple predicates (and thus sets of minterms) should be complete and minimal

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/32

Minimality of the Set of Simple
Predicates

• Set of simple predicates (and thus sets of minterms) should be complete and minimal

• Intuitively, minimal means that all predicates should be relevant in the set:

o relevant wrt. to final fragmentation (every predicate produces some fragments not produced by
other predicates in Pr)

o relevant wrt. to applications (there is at least one application that benefits from the predicate):
guaranteed if the choice of the set of simple predicates is driven by applications

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/33

Minimality of the Set of Simple
Predicates

• Set of simple predicates (and thus sets of minterms) should be complete and minimal

• Intuitively, minimal means that all predicates should be relevant in the set:

o relevant wrt. to final fragmentation (every predicate produces some fragments not produced by
other predicates in Pr)

o relevant wrt. to applications (there is at least one application that benefits from the predicate):
guaranteed if the choice of the set of simple predicates is driven by applications

• Definition: a set of simple predicates Pr is said to be minimal if and only if every
predicates p Pr creates a new fragment (i.e., p divides fragment F into F1 and F2) and
F1 and F2 are accessed differently by at least one application

In other words: we look for a set of simple predicates Pr that is complete and such that
every subset of Pr is not complete (minimality)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/34

PHF – Algorithm (Intuition)

Input: a relation R

Output: a fragmentation schema for R

obtain set S of simple predicates over attributes of R contained in queries

compute set M of minterms induced by S

eliminate contradictory minterms from M // i.e., minterms that

// produce empty fragments

return fragmentation F = { Rm = σm(R)| m M }

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/35

DHF – Information Requirements

• qualitative Database Information
➡ relationship

TITLE, SAL

PAY

ENO, ENAME, TITLE PNO, PNAME, BUDGET, LOC

ENO, PNO, RESP, DUR

EMP PROJ

ASG

L1

L2 L3

member

owner

owner(L3) = PROJ
member (L3) = ASG

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/36

Derived Horizontal Fragmentation

• Derived Horizontal Fragmentation (DHF) is defined on a member relation
of a link according to a selection operation specified on its owner
(propagated from owner to member)

TITLE, SAL

PAY

ENO, ENAME, TITLE PNO, PNAME, BUDGET, LOC

ENO, PNO, RESP, DUR

EMP PROJ

ASG

L1

L2 L3

owner(L1) = PAY
member (L1) = EMP

owner(L2) = EMP
member (L2) = ASG

owner(L3) = PROJ
member (L3) = ASG

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/37

Derived Horizontal Fragmentation

• Derived Horizontal Fragmentation (DHF) is defined on a member relation
of a link according to a selection operation specified on its owner
(propagated from owner to member)

TITLE, SAL

PAY

ENO, ENAME, TITLE PNO, PNAME, BUDGET, LOC

ENO, PNO, RESP, DUR

EMP PROJ

ASG

L1

L2 L3

owner(L1) = PAY
member (L1) = EMP

owner(L2) = EMP
member (L2) = ASG

owner(L3) = PROJ
member (L3) = ASG

ASG could be fragmented by propagating
either fragmentation on EMP

or fragmentation on PROJ

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/38

DHF – Definition
Given
• a relation S fragmented into FS = { S1, S2, …, Sw } and
• a link L where owner(L)=S and member(L)=R,
the derived horizontal fragments of R are defined as Ri = R ⋉ Si (Si FS)

TITLE SAL

Elect. Eng. 40000

Mech. Eng. 27000
Syst. Anal. 34000

Programmer 24000

PAY

TITLE, SAL

PAY

ENO, ENAME, TITLE

EMP L1

E3 A. Lee Mech. Eng.
E4 J. Miller Programmer

E7 R. Davis Mech. Eng.

ENO ENAME TITLE

E1 J. Doe Elect. Eng.
E2 M. Smith Syst. Anal.

E5 B. Casey Syst. Anal.
E6 L. Chu Elect. Eng.

E8 J. Jones Syst. Anal.

EMP

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/39

DHF – Definition
Given
• a relation S fragmented into FS = { S1, S2, …, Sw } and
• a link L where owner(L)=S and member(L)=R,
the derived horizontal fragments of R are defined as Ri = R ⋉ Si (Si FS)

TITLE SAL

Elect. Eng. 40000

Mech. Eng. 27000
Syst. Anal. 34000

Programmer 24000

PAY

TITLE SAL

Elect. Eng. 40000
Syst. Anal. 34000

PAY1

TITLE SAL

Mech. Eng. 27000
Programmer 24000

PAY2

TITLE, SAL

PAY

ENO, ENAME, TITLE

EMP L1

E3 A. Lee Mech. Eng.
E4 J. Miller Programmer

E7 R. Davis Mech. Eng.

ENO ENAME TITLE

E1 J. Doe Elect. Eng.
E2 M. Smith Syst. Anal.

E5 B. Casey Syst. Anal.
E6 L. Chu Elect. Eng.

E8 J. Jones Syst. Anal.

EMP

PAY1 = SAL ≥ 30000(PAY)
PAY2 = SAL < 30000(PAY)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/40

DHF – Definition
Given
• a relation S fragmented into FS = { S1, S2, …, Sw } and
• a link L where owner(L)=S and member(L)=R,
the derived horizontal fragments of R are defined as Ri = R ⋉ Si (Si FS)

TITLE SAL

Elect. Eng. 40000

Mech. Eng. 27000
Syst. Anal. 34000

Programmer 24000

PAY

TITLE SAL

Elect. Eng. 40000
Syst. Anal. 34000

PAY1

TITLE SAL

Mech. Eng. 27000
Programmer 24000

PAY2

TITLE, SAL

PAY

ENO, ENAME, TITLE

EMP L1

E3 A. Lee Mech. Eng.
E4 J. Miller Programmer

E7 R. Davis Mech. Eng.

ENO ENAME TITLE

E1 J. Doe Elect. Eng.
E2 M. Smith Syst. Anal.

E5 B. Casey Syst. Anal.
E6 L. Chu Elect. Eng.

E8 J. Jones Syst. Anal.

EMP

EMP1 = EMP ⋉ PAY1

EMP2 = EMP ⋉ PAY2

PAY1 = SAL ≥ 30000(PAY)
PAY2 = SAL < 30000(PAY)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/41

DHF – Definition
Given
• a relation S fragmented into FS = { S1, S2, …, Sw } and
• a link L where owner(L)=S and member(L)=R,
the derived horizontal fragments of R are defined as Ri = R ⋉ Si (Si FS)

TITLE SAL

Elect. Eng. 40000

Mech. Eng. 27000
Syst. Anal. 34000

Programmer 24000

PAY

TITLE SAL

Elect. Eng. 40000
Syst. Anal. 34000

PAY1

TITLE SAL

Mech. Eng. 27000
Programmer 24000

PAY2

TITLE, SAL

PAY

ENO, ENAME, TITLE

EMP L1

ENO ENAME TITLE

E3 A. Lee Mech. Eng.
E4 J. Miller Programmer
E7 R. Davis Mech. Eng.

EMP1

EMP2

ENO ENAME TITLE

E1 J. Doe Elect. Eng.

E2 M. Smith Syst. Anal.

E5 B. Casey Syst. Anal.
E6 L. Chu Elect. Eng.
E8 J. Jones Syst. Anal.

E3 A. Lee Mech. Eng.
E4 J. Miller Programmer

E7 R. Davis Mech. Eng.

ENO ENAME TITLE

E1 J. Doe Elect. Eng.
E2 M. Smith Syst. Anal.

E5 B. Casey Syst. Anal.
E6 L. Chu Elect. Eng.

E8 J. Jones Syst. Anal.

EMP

EMP1 = EMP ⋉ PAY1

EMP2 = EMP ⋉ PAY2

PAY1 = SAL ≥ 30000(PAY)
PAY2 = SAL < 30000(PAY)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/42

• Completeness (info is entirely preserved) for primary horizontal fragmentation

➡ PHF: completeness follows from the way minterms are built (exhaustively)

✦ NOTICE: The textbook says something slightly different

HF – Correctness

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/43

• Completeness (info is entirely preserved) for primary horizontal fragmentation

➡ PHF: completeness follows from the way minterms are built (exhaustively)

✦ NOTICE: The textbook says something slightly different

• Reconstruction for both primary and derived horizontal fragmentation

➡ Assume R is fragmented into F = {R1,R2,…,Rr }

HF – Correctness

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/44

• Completeness (info is entirely preserved) for primary horizontal fragmentation

➡ PHF: completeness follows from the way minterms are built (exhaustively)

✦ NOTICE: The textbook says something slightly different

• Reconstruction for both primary and derived horizontal fragmentation

➡ Assume R is fragmented into F = {R1,R2,…,Rr }

R = Ri FRi

HF – Correctness

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/45

• Completeness (info is entirely preserved) for primary horizontal fragmentation

➡ PHF: completeness follows from the way minterms are built (exhaustively)

✦ NOTICE: The textbook says something slightly different

• Reconstruction for both primary and derived horizontal fragmentation

➡ Assume R is fragmented into F = {R1,R2,…,Rr }

R = Ri FRi

• Disjointness for primary horizontal fragmentation

➡ PHF: minterms are mutually exclusive by construction

HF – Correctness

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/46

• Completeness (info is entirely preserved) for primary horizontal fragmentation

➡ PHF: completeness follows from the way minterms are built (exhaustively)

✦ NOTICE: The textbook says something slightly different

• Reconstruction for both primary and derived horizontal fragmentation

➡ Assume R is fragmented into F = {R1,R2,…,Rr }

R = Ri FRi

• Disjointness for primary horizontal fragmentation

➡ PHF: minterms are mutually exclusive by construction

• Completeness and disjointness for derived horizontal fragmentation

HF – Correctness

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/47

• Completeness (info is entirely preserved) for primary horizontal fragmentation

➡ PHF: completeness follows from the way minterms are built (exhaustively)

✦ NOTICE: The textbook says something slightly different

• Reconstruction for both primary and derived horizontal fragmentation

➡ Assume R is fragmented into F = {R1,R2,…,Rr }

R = Ri FRi

• Disjointness for primary horizontal fragmentation

➡ PHF: minterms are mutually exclusive by construction

• Completeness and disjointness for derived horizontal fragmentation

➡ Both come from integrity constraints of foreign keys and from
completeness/disjointness of PHF

✦ fragmentation propagates from owner to member following one-to-many associations;
thus, each tuple of member is associated with exactly 1 tuple of owner (collect NULL-
valued tuples into a separated fragment); by disjointness and completeness of PHF, such
tuple of owner appears in exactly 1 fragment of owner

HF – Correctness

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/48

• Has been studied within the centralized context

➡ design methodology

➡ physical clustering

• Choose a partition P = { P1, P2, …, Pn } of the set of attribute of relation. Then,

F = { Ri | Ri = ПPi ∪ key(R) and Pi P }

where key is the (set of) key attribute(s): they are replicated in each fragment

• The problem boils down to finding the best partition

➡ Number of elements of the partition

➡ Distribution of attributes among elements of the partition

• More difficult than horizontal, because more alternatives exist

➡ Number of possible partitions of a set of size n is the Bell’s number Bn (its growth rate is more than exponential)

• Two approaches :

➡ Grouping (bottom-up) – from single attributes to fragments

➡ Splitting (top-down) – from relation to fragments

✦ preferable for 2 reasons

✓ close to the design approach

✓ optimal solution is more likely to be close to the full relation than to the fully fragmented situation

Vertical Fragmentation

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/49

• Partition is guided by a measure of affinity (“togetherness”)

• Affinity measures how much attributes that are accessed together by queries

VF – The General Idea

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/50

VF – Information Requirements
(Qualitative Application Info)
• The matrix use(q, A) for attribute usage values

➡ R relation over attributes A1 , A2 ,…, An

➡ Q = {q1, q2,…, qq}: set of queries that will run on R

✦ (the 80/20 rule can be used here, too: select the most active 20% of queries only)

use(qi , Aj) =
1 if attribute Aj is referenced by query qi
0 otherwise

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/51

VF – Example of use(qi,Aj)

Consider the following 4 queries for relation PROJ

q1: SELECT BUDGET q2: SELECT PNAME,BUDGET
FROM PROJ FROM PROJ

WHERE PNO=Value

q3: SELECT PNAME q4: SELECT SUM(BUDGET)
FROM PROJ FROM PROJ

WHERE LOC=Value WHERE LOC=Value

q1

q2

q3

q4

PNO

1 0 1 0

0 01 1

0 01 1

0 0 1 1

PNAME BUDGET LOCuse(q, A)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/52

VF – Information Requirements
(Quantitative Application Info)
• matrix acc(q) for the frequency of q

• attribute affinity measure aff(Ai , Aj) between any two attributes Ai and Aj of a
relation R with respect to a set of applications Q

aff (Ai , Aj)
all queries q

use(q , Ai) * use(q, Aj) * acc(q)

we are considering frequencies only of
queries q that access both Ai and Aj ,

i.e., use(q , Ai) = use(q, Aj) = 1

q1

q2

q3

q4

PNO

1 0 1 0

0 01 1

0 01 1

0 0 1 1

PNAME BUDGET LOCuse(q, A)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/53

VF – Computation of aff(Ai, Aj)

aff (Ai , Aj)

all queries q

use(q , Ai) * use(q, Aj) * acc(q)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/54

• Example: affinity between PNO and BUDGET

VF – Computation of aff(Ai, Aj)

aff (Ai , Aj)

all queries q

use(q , Ai) * use(q, Aj) * acc(q)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/55

• Example: affinity between PNO and BUDGET

• q1 is the only query that access both PNO and BUDGET

VF – Computation of aff(Ai, Aj)

aff (Ai , Aj)

all queries q

use(q , Ai) * use(q, Aj) * acc(q)
q1

q2

q3

q4

PNO

1 0 1 0

0 01 1

0 01 1

0 0 1 1

PNAME BUDGET LOCuse(q, A)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/56

• Example: affinity between PNO and BUDGET

• q1 is the only query that access both PNO and BUDGET

• Also consider the access frequencies: acc(q)
q1

q2

q3

q4

45

5

75

3

VF – Computation of aff(Ai, Aj)

aff (Ai , Aj)

all queries q

use(q , Ai) * use(q, Aj) * acc(q)
q1

q2

q3

q4

PNO

1 0 1 0

0 01 1

0 01 1

0 0 1 1

PNAME BUDGET LOCuse(q, A)

acc(q)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/57

• Example: affinity between PNO and BUDGET

• q1 is the only query that access both PNO and BUDGET

• Also consider the access frequencies: acc(q)

• Then, aff(PNO, BUDGET) = 45

q1

q2

q3

q4

45

5

75

3

VF – Computation of aff(Ai, Aj)

aff (Ai , Aj)

all queries q

use(q , Ai) * use(q, Aj) * acc(q)
q1

q2

q3

q4

PNO

1 0 1 0

0 01 1

0 01 1

0 0 1 1

PNAME BUDGET LOCuse(q, A)

acc(q)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/58

• Example: affinity between PNO and BUDGET

• q1 is the only query that access both PNO and BUDGET

• Also consider the access frequencies: acc(q)

• Then, aff(PNO, BUDGET) = 45

• aff(. , .) is stored in the attribute affinity matrix AA

q1

q2

q3

q4

45

5

75

3

VF – Computation of aff(Ai, Aj)

aff (Ai , Aj)

all queries q

use(q , Ai) * use(q, Aj) * acc(q)
q1

q2

q3

q4

PNO

1 0 1 0

0 01 1

0 01 1

0 0 1 1

PNAME BUDGET LOCuse(q, A)

acc(q)

aff(Ai , Aj)

45 0 45 0

0 80 5 75

45 5 53 3

0 75 3 78

PNO PNAME BUDGET LOC

PNO

PNAME

BUDGET

LOC

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/59

• Example: affinity between PNO and BUDGET

• q1 is the only query that access both PNO and BUDGET

• Also consider the access frequencies: acc(q)

• Then, aff(PNO, BUDGET) = 45

• aff(. , .) is stored in the attribute affinity matrix AA

• Any clustering algorithm based on the attribute affinity
values
➡ Bond energy algorithm

➡ Neural network

➡ Machine learning

➡ (some details later in the course)

q1

q2

q3

q4

45

5

75

3

VF – Computation of aff(Ai, Aj)

aff (Ai , Aj)

all queries q

use(q , Ai) * use(q, Aj) * acc(q)
q1

q2

q3

q4

PNO

1 0 1 0

0 01 1

0 01 1

0 0 1 1

PNAME BUDGET LOCuse(q, A)

acc(q)

aff(Ai , Aj)

45 0 45 0

0 80 5 75

45 5 53 3

0 75 3 78

PNO PNAME BUDGET LOC

PNO

PNAME

BUDGET

LOC

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/60

VF – Correctness

• Completeness and disjointness follow from properties (completeness and
disjointness) intrinsic of a partition (returned by the clustering algorithm)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/61

VF – Correctness

• Completeness and disjointness follow from properties (completeness and
disjointness) intrinsic of a partition (returned by the clustering algorithm)

• Reconstruction

➡ Let FR = {R1, R2, …, Rn } be the vertical fragmentation obtained for R

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/62

VF – Correctness

• Completeness and disjointness follow from properties (completeness and
disjointness) intrinsic of a partition (returned by the clustering algorithm)

• Reconstruction

➡ Let FR = {R1, R2, …, Rn } be the vertical fragmentation obtained for R

➡R is recovered by joining the fragments

R = R1 ⋈ R2 ⋈ … ⋈ Rn

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/63

Hybrid Fragmentation

R

HFHF

R1

VF VFVFVFVF

R11 R12 R21 R22 R23

R2

Hybrid fragmentation, aka mixed or nested fragmentation

start from the leaves and move upward applying fragmentation
reconstruction methods depending on fragmentation types

To reconstruct R:

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/64

Fragment Allocation

• Fragment allocation concerns distribution of resources across network nodes
➡ Assignment (possibly with replications) of fragments to sites

• Problem formalization
➡ Given

F = {F1, F2, …, Fn} fragments
S ={S1, S2, …, Sm} network sites
Qualitative and quantitative information about DB, applications, network, and computer system

Find the best (“optimal”) distribution of fragments in F among sites in S according to information

• Optimality factors
➡ Minimal cost

✦ Communication, Storage (of Fi at site sj), Querying (Fi at site sj , from site sk), Updating (Fi at all sites where
it is replicated, from site sk)

➡ Performance
✦ Response time and/or total time

➡ Can be formulated as an operations research problem
✦ one of the above optimality factors is the cost function to minimize, the others are constraint to satisfy)

min (cost function) e.g., response/total time
s.t. constraints e.g., storage/communication capacity

✦ techniques and heuristics from the field of operations research apply (no optimal solution, NP-hard)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/65

Data directory

• Data directory (aka. data dictionary or catalog)

• Both in classic (centralized) and distributed DB, it stores metadata about
DB

➡ Centralized context

✦ Schema (relation metadata) definitions

✦ Usage statistics

✦ Memory usage

✦ ...

➡ Distributed context

✦ Info to reconstruct global view of whole DB

✦ What relation/fragment is stored at which site

✦ ...

• It is itself part of the DB, so considerations about fragmentation and
allocation issues apply

