Dario Della Monica

Chapter 16: Query Optimization

These slides are a modified version of the slides provided with the book:

> Database System Concepts, 6 ${ }^{\text {th }}$ Ed.
> ©Silberschatz, Korth and Sudarshan
> See www.dlb-book.com for conditions on re-use
> (however, chapter numeration refers to $7^{\text {th }}$ Ed.)

The original version of the slides is available at: https://www.db-book.com/

Chapter 16: Query Optimization

- Introduction
- Generating Equivalent Expressions
- Equivalence rules
- How to generate (all) equivalent expressions
- Estimating Statistics of Expression Results
- The Catalog
- Size estimation
- Selection
- Join
- Other operations (projection, aggregation, set operations, outer join)
- Estimation of number of distinct values
- Choice of Evaluation Plans
- Dynamic Programming for Choosing Evaluation Plans

Introduction

- Query optimization: finding the "best" query execution plan (QEP) among the many possible ones
- User is not expected to write queries efficiently (DBMS optimizer takes care of that)
- Alternative ways to execute a given query -2 levels
- Equivalent relational algebra expressions
- Different implementation choices for each relational algebra operation
- Algorithms, indices, coordination between successive operations, ...

Introduction

- Query optimization: finding the "best" query execution plan (QEP) among the many possible ones
- User is not expected to write queries efficiently (DBMS optimizer takes care of that)
- Alternative ways to execute a given query -2 levels
- Equivalent relational algebra expressions
- Different implementation choices for each relational algebra operation
- Algorithms, indices, coordination between successive operations, ...

```
INSTR(i id, name, dept_name, ...)
COURSE(c_id, title, ...)
TEACHES(i id, c id, ...)
```

The name of all instructors in the department of Music together with the titles of all courses they teach

Introduction

- Query optimization: finding the "best" query execution plan (QEP) among the many possible ones
- User is not expected to write queries efficiently (DBMS optimizer takes care of that)
- Alternative ways to execute a given query -2 levels
- Equivalent relational algebra expressions
- Different implementation choices for each relational algebra operation
- Algorithms, indices, coordination between successive operations, ...

```
INSTR(i id, name, dept_name, ...)
COURSE(c id, title, ...)
TEACHES(i id, c id, ...)
FROM INSTR I, COURSE C, TEACHES T
WHERE I.i_id = T.i_id
AND T.c_id = C.c_id
AND dept_name="Music"
```

The name of all instructors in the department of Music together with the titles of all courses they teach

Introduction

- Query optimization: finding the "best" query execution plan (QEP) among the many possible ones
- User is not expected to write queries efficiently (DBMS optimizer takes care of that)
- Alternative ways to execute a given query -2 levels
- Equivalent relational algebra expressions
- Different implementation choices for each relational algebra operation
- Algorithms, indices, coordination between successive operations, ...

```
INSTR(i id, name, dept_name, ...)
COURSE(c id, title, ...)
TEACHES(i id, c id, ...)
```

The name of all instructors in the department of Music together with the titles of all courses they teach

SELECT I.name, C.title
FROM INSTR I, COURSE C, TEACHES T
WHERE I.i_id = T.i_id
AND T.c_id = C.c_id
AND dept_name="Music"

П $(\sigma($ INSTR $\bowtie($ TEACHES $\bowtie \operatorname{COURSE)~}))$

$\prod(\sigma($ INSTR $) \bowtie($ TEACHES \bowtie COURSE $))$

Introduction (Cont.)

- A query evaluation plan (QEP) defines exactly what algorithm is used for each operation, and how the execution of the operations is coordinated

- Find out how to view query execution plans on your favorite database

Introduction (Cont.)

- Cost difference between query evaluation plans can be enormous
- E.g. seconds vs. days in some cases
- It is worth spending time in finding "best" QEP
- Steps in cost-based query optimization

1. Generate logically equivalent expressions using equivalence rules
2. Annotate in all possible ways resulting expressions to get alternative QEP
3. Evaluate/estimate the cost (execution time) of each QEP
4. Choose the cheapest QEP based on estimated cost

- Estimation of QEP cost based on:
- Statistical information about relations (stored in the Catalog)
- number of tuples, number of distinct values for an attribute
- Statistics estimation for intermediate results
- to compute cost of complex expressions
- Cost formulae for algorithms, computed using statistics

Generating Equivalent Expressions

- Equivalence rules
- How to generate (all) equivalent expressions

These slides are a modified version of the slides provided with the book:

> Database System Concepts, 6h Ed.
> ©Silberschatz, Korth and Sudarshan
> See www.db-book.com for conditions on re-use
> (however, chapter numeration refers to $7^{\text {th }}$ Ed.)

The original version of the slides is available at: https://www.db-book.com/

Transformation of Relational Expressions

■ Two relational algebra expressions are said to be equivalent if the two expressions generate the same set of tuples on every legal database instance

- Note: order of tuples is irrelevant (and also order of attributes)
- We don't care if they generate different results on databases that violate integrity constraints (e.g., uniqueness of keys)
- In SQL, inputs and outputs are multisets of tuples
- Two expressions in the multiset version of the relational algebra are said to be equivalent if the two expressions generate the same multiset of tuples on every legal database instance
- We focus on relational algebra and treat relations as sets
- An equivalence rule states that expressions of two forms are equivalent
- One can replace an expression of first form by one of the second form, or vice versa

Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a sequence of individual selections.

$$
\sigma_{\theta_{1} \wedge \theta_{2}}(E)=\sigma_{\theta_{1}}\left(\sigma_{\theta_{2}}(E)\right)
$$

Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a sequence of individual selections.

$$
\sigma_{\theta_{1} \wedge \theta_{2}}(E)=\sigma_{\theta_{1}}\left(\sigma_{\theta_{2}}(E)\right)
$$

2. Selection operations are commutative.

$$
\sigma_{\theta_{1}}\left(\sigma_{\theta_{2}}(E)\right)=\sigma_{\theta_{2}}\left(\sigma_{\theta_{1}}(E)\right)
$$

Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a sequence of individual selections.

$$
\sigma_{\theta_{1} \wedge \theta_{2}}(E)=\sigma_{\theta_{1}}\left(\sigma_{\theta_{2}}(E)\right)
$$

2. Selection operations are commutative.

$$
\sigma_{\theta_{1}}\left(\sigma_{\theta_{2}}(E)\right)=\sigma_{\theta_{2}}\left(\sigma_{\theta_{1}}(E)\right)
$$

3. Only the last in a sequence of projection operations is needed, the others can be omitted

$$
\Pi_{L_{1}}\left(\Pi_{L_{2}}\left(\ldots\left(\Pi_{L_{n}}(E)\right) \ldots\right)\right)=\Pi_{L_{1}}(E)
$$

where $L_{1} \subseteq L_{2} \subseteq \ldots \subseteq L_{n}$

Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a sequence of individual selections.

$$
\sigma_{\theta_{1} \wedge \theta_{2}}(E)=\sigma_{\theta_{1}}\left(\sigma_{\theta_{2}}(E)\right)
$$

2. Selection operations are commutative.

$$
\sigma_{\theta_{1}}\left(\sigma_{\theta_{2}}(E)\right)=\sigma_{\theta_{2}}\left(\sigma_{\theta_{1}}(E)\right)
$$

3. Only the last in a sequence of projection operations is needed, the others can be omitted

$$
\Pi_{L_{1}}\left(\Pi_{L_{2}}\left(\ldots\left(\Pi_{L_{n}}(E)\right) \ldots\right)\right)=\Pi_{L_{1}}(E)
$$

where $L_{1} \subseteq L_{2} \subseteq \ldots \subseteq L_{n}$
4. Selections can be combined with Cartesian products and theta joins.
a. $\sigma_{\theta}\left(E_{1} \times E_{2}\right)=E_{1} \bowtie_{\theta} E_{2}$
b. $\sigma_{\theta 1}\left(E_{1} \bowtie_{\theta 2} E_{2}\right)=E_{1} \bowtie_{\theta 1 \wedge \theta 2} E_{2}$

Equivalence Rules (Cont.)

5. Theta-join (and thus natural joins) operations are commutative.

$$
E_{1} \bowtie_{\theta} E_{2}=E_{2} \bowtie_{\theta} E_{1}
$$

(but the order is important for efficiency)

Equivalence Rules (Cont.)

5. Theta-join (and thus natural joins) operations are commutative.

$$
E_{1} \bowtie_{\theta} E_{2}=E_{2} \bowtie_{\theta} E_{1}
$$

(but the order is important for efficiency)
6. (a) Natural join operations are associative:

$$
\left(E_{1} \bowtie E_{2}\right) \bowtie E_{3}=E_{1} \bowtie\left(E_{2} \bowtie E_{3}\right)
$$

(again, the order is important for efficiency)

Equivalence Rules (Cont.)

5. Theta-join (and thus natural joins) operations are commutative.

$$
E_{1} \bowtie_{\theta} E_{2}=E_{2} \bowtie_{\theta} E_{1}
$$

(but the order is important for efficiency)
6. (a) Natural join operations are associative:

$$
\left(E_{1} \bowtie E_{2}\right) \bowtie E_{3}=E_{1} \bowtie\left(E_{2} \bowtie E_{3}\right)
$$

(again, the order is important for efficiency)
(b) Theta joins are associative in the following manner:

$$
\left(E_{1} \bowtie_{\theta_{1}} E_{2}\right) \bowtie_{\theta_{2} \wedge \theta_{3}} E_{3}=E_{1} \bowtie_{\theta_{1} \wedge \theta_{3}}\left(E_{2} \bowtie_{\theta_{2}} E_{3}\right)
$$

where θ_{1} involves attributes from only E_{1} and E_{2} and $\quad \theta_{2}$ involves attributes from only E_{2} and E_{3}

Equivalence Rules (Cont.)

7. (a) Selection distributes over theta join in the following manner:

$$
\sigma_{\theta_{1}}\left(E_{1} \bowtie_{\theta} E_{2}\right)=\left(\sigma_{\theta_{1}}\left(E_{1}\right)\right) \bowtie_{\theta} E_{2}
$$

where θ_{1} involves attributes from only E_{1}
(b) Complex selection distributes over theta join in the following manner:

$$
\sigma_{\theta_{1} \wedge \theta_{2}}\left(E_{1} \bowtie_{\theta} E_{2}\right)=\left(\sigma_{\theta_{1}}\left(E_{1}\right)\right) \bowtie_{\theta}\left(\sigma_{\theta_{2}}\left(E_{2}\right)\right)
$$

where θ_{1} involves attributes from only E_{1} and $\quad \theta_{2}$ involves attributes from only E_{2}

More equivalences at Ch. 16.2 of the book *

[^0]
Pictorial Depiction of Equivalence Rules

Exercise

- Disprove the equivalence

Exercise

- Disprove the equivalence

$$
(R D \bowtie S) \unrhd T=R D(S D T)
$$

Definition (left outer join): the result of a left outer join $T=R \beth \triangle$ is a super-set of the result of the join $T^{\prime}=R 內 S$ in that all tuples in T^{\prime} appear in T. In addition, T preserve those tuples that are lost in the join, by creating tuples in T that are filled with null values

Exercise

- Disprove the equivalence

$$
(R D \bowtie S) \unrhd T=R D(S D T)
$$

Definition (left outer join): the result of a left outer join $T=R \beth \triangle$ is a super-set of the result of the join $T^{\prime}=R 凶 S$ in that all tuples in T^{\prime} appear in T. In addition, T preserve those tuples that are lost in the join, by creating tuples in T that are filled with null values

STUD	stud_id	name gino	surname bianchi	stud_id	name gino	surname course		grade
	2	filippo	neri					
	3	mario	rossi			bianchi	Math	30
TAKES				2	filippo	neri	DB	22
TAKES	1	Math	$\begin{aligned} & \text { gra } \\ & 30 \end{aligned}$	2	filippo	neri	Logic	30
	2	DB	22					
	2	Logic	30					

Exercise

- Disprove the equivalence

Definition (left outer join): the result of a left outer join $T=R \beth \triangle$ is a super-set of the result of the join $T^{\prime}=R 凶 S$ in that all tuples in T^{\prime} appear in T. In addition, T preserve those tuples that are lost in the join, by creating tuples in T that are filled with null values

STUD	stud_id	name	surname
	1	gino	bianchi
	2	filippo	neri
	3	mario	rossi
TAKES	stud_id	course	grade
	1	Math	30
	2	DB	22
	2	Logic	30

STUD D TAKES				
stud_id	name	surname course	grade	
1	gino	bianchi	Math	30
2	filippo	neri	DB	22
2	filippo	neri	Logic	30
3	mario	rossi	null	null

Exercise

- Disprove the equivalence

Definition (left outer join): the result of a left outer join $T=R \beth \triangle$ is a super-set of the result of the join $T^{\prime}=R 凶 S$ in that all tuples in T^{\prime} appear in T. In addition, T preserve those tuples that are lost in the join, by creating tuples in T that are filled with null values

STUD	stud_id	name	surname					
	1	gino	bianchi		STUD			
	2	filippo	neri		stud_id	name		surname course

Exercise

- Disprove the equivalence

$$
(R \triangle \bowtie) \unrhd \bowtie T=R \beth \bowtie(S \perp \bowtie T)
$$

Definition (left outer join): the result of a left outer join $T=R \beth \triangle S$ is a super-set of the result of the join $T^{\prime}=R \bowtie S$ in that all tuples in T^{\prime} appear in T. In addition, T preserve those tuples that are lost in the join, by creating tuples in T that are filled with null values

STUD	stud_id	name	surname
	1	gino	bianchi
	2	filippo	neri
	3	mario	rossi
TAKES	stud_id	course	grade
	1	Math	30
	2	DB	22
	2	Logic	30

Solution

Solution

R

A	A_{R}
1	1

S

A	A_{S}
2	1

T

A	A_{T}
1	1

Solution

R

A	A_{R}
1	1

S

A	A_{S}
2	1

T

A	A_{T}
1	1

$R \beth \bowtie S$

A	A_{R}	A_{S}
1	1	null

Solution

R

A	A_{R}
1	1

S

A	A_{S}
2	1

T

A	A_{T}
1	1

$R \geqq \bowtie S$

A	A_{R}	A_{S}
1	1	null

Solution

R

A	A_{R}
1	1

$R \beth ~$

A	A_{R}	A_{S}
1	1	null

S

A	A_{S}
2	1

T

A	A_{T}
1	1

$S \perp$ T

A	A_{S}	A_{T}
2	1	null

$(R D ゆ S) \unrhd$ T

A	A_{R}	A_{S}	A_{T}
1	1	null	1

Solution

R

A	A_{R}
1	1

$R \beth S$

A	A_{R}	A_{S}
1	1	null

S

A	A_{S}
2	1

T

A	A_{T}
1	1

$S \beth$ T

A	A_{S}	A_{T}
2	1	null

$(R D \bowtie S) \unrhd$ T

A	A_{R}	A_{S}	A_{T}
1	1	null	1

$R \beth(S D C T)$

A	A_{R}	A_{S}	A_{T}
1	1	null	null

Equivalence derivability and minimality

- Some equivalence can be derived from others
- example: 2 can be obtained from 1 (exploiting commutativity of conjunction) 7 b can be obtained from 1 and 7 a
- Optimizers use minimal sets of equivalence rules

Enumeration of Equivalent Expressions

- Query optimizers use equivalence rules to systematically generate expressions equivalent to the given one
- Can generate all equivalent expressions as follows:
- Repeat (starting from the set containing only the given expression)
- apply all applicable equivalence rules on every sub-expression of every equivalent expression found so far
- add newly generated expressions to the set of equivalent expressions
Until no new equivalent expressions are generated
- The above approach is very expensive in space and time
- Space: efficient expression-representation techniques
- 1 copy is stored for shared sub-expressions
- Time: partial generation
- Dynamic programming
- Greedy techniques (select best choices at each step)
- Heuristics, e.g., single-relation operations
 (selections, projections) are pushed inside (performed earlier)

Estimating Statistics of Expression Results

- The Catalog
- Size estimation
- Selection
- Join
- Other operations (projection, aggregation, set operations, outer join)
- Estimation of number of distinct values

These slides are a modified version of the slides provided with the book:

Database System Concepts, $6^{\text {th }}$ Ed.
©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use
(however, chapter numeration refers to $7^{\text {th }}$ Ed.)

The original version of the slides is available at: https://www.db-book.com/

Statistical Information for Cost Estimation

- Statistics information is maintained in the Catalog
- The catalog is itself stored in the database as relation(s)
- It contains:
- n_{r} : number of tuples in a relation r
- b_{r} : number of blocks containing tuples of r
- I_{r} : size of a tuple of r (in bytes)
- f_{r} : blocking factor of r-i.e., the number of tuples of r that fit into one block
- $V(A, r)$: number of distinct values that appear in r for set of attributes A
- $V(A, r)=$ the size of $\Pi_{A}(r)-$ if A is a key, then $V(A, r)=n_{r}$
- $\quad \min (A, r)$: smallest value appearing in relation r for set of attribute A;
- $\quad \max (A, r)$: largest value appearing in relation r for set of attribute A;
- statistics about indices (height of B^{+}-trees, number of blocks for leaves, ...)
- We assume tuples of r are stored together physically in a file; then: $b_{r}=\left\lceil n_{r} / f_{r}\right\rceil$
- Information not always up-to-date
- Catalog is not updated to every DB change (done during periods of light system load)

Cost Estimation

■ Cost of each operator computed as described in Chapter 15 *

- Need statistics of input relations
- E.g. number of tuples, number of blocks
- Statistics are collected in the Catalog
- Inputs can be results of sub-expressions
- Need to estimate statistics of expression results
- Estimation of size of intermediate results
- \# of tuple in input to successive operations
- Estimation of number of distinct values in intermediate results
- selectivity rate of successive selection operations
- Statistics are not totally accurate
- Information in the catalog might be not always up-to-date (delay)
- A precise estimate for intermediate results might be impossible to compute

[^1]
Histograms

- Histogram on attribute age of relation person

- For each range
- Number of records (tuples) with value in the range
- Also, number of distinct values in the range (red numbers in the picture)
- Without histogram information, uniform distribution is assumed
- Little space occupation
- Histograms for many attributes on many relations can be stored

Selection Size Estimation

■ \# of records that will satisfy the selection predicate (aka selection condition)

- $\sigma_{A=v}(r)$

Selection Size Estimation

■ \# of records that will satisfy the selection predicate (aka selection condition)

- $\sigma_{A=v}(r)$
- $n_{r} / V(A, r) \quad$ (no histogram, uniform distribution)
- 1 if A is key

Selection Size Estimation

■ \# of records that will satisfy the selection predicate (aka selection condition)

- $\sigma_{A=v}(r)$
- $n_{r} / V(A, r) \quad$ (no histogram, uniform distribution)
- 1 if A is key
- $\sigma_{A \leq v}(r)$
- 0
(case $\sigma_{A \geq V}(r)$ is symmetric)
if $v<\min (A, r)$
- n_{r}
if $v>=\max (A, r)$

Selection Size Estimation

■ \# of records that will satisfy the selection predicate (aka selection condition)

- $\sigma_{A=v}(r)$
- $n_{r} / V(A, r) \quad$ (no histogram, uniform distribution)
- 1 if A is key
- $\sigma_{A \leq v}(r)$
- 0
(case $\sigma_{A \geq V}(r)$ is symmetric)
if $v<\min (A, r)$
- n_{r}
if $v>=\max (A, r)$
- $n_{r} * \frac{v-\min (A, r)}{\max (A, r)-\min (A, r)} \quad$ otherwise
(no histogram, uniform distribution)
- In absence of statistical information or when v is unknown at time of cost estimation (e.g., v is computed at run-time by the application using the DB), the we assume
- $n_{r} / 2$

Selection Size Estimation

■ \# of records that will satisfy the selection predicate (aka selection condition)

- $\sigma_{A=v}(r)$
- $n_{r} / V(A, r) \quad$ (no histogram, uniform distribution)
- 1 if A is key
- $\sigma_{A \leq v}(r)$
- 0
(case $\sigma_{A \geq V}(r)$ is symmetric)
if $v<\min (A, r)$
- n_{r}
if $v>=\max (A, r)$
- $n_{r} * \frac{v-\min (A, r)}{\max (A, r)-\min (A, r)} \quad$ otherwise (no histogram, uniform distribution)
- In absence of statistical information or when v is unknown at time of cost estimation (e.g., v is computed at run-time by the application using the DB), the we assume
- $n_{r} / 2$
- If histograms are available, we can do more precise estimates
- use values for restricted ranges instead of $n_{r}, V(A, r), \min (A, r), \max (A, r)$

Complex Selection Size Estimation

- Conjunction $E=\sigma_{\theta_{1} \wedge \theta_{2} \wedge \ldots \wedge \theta_{n}}(r)$
- we compute $s_{i}=$ size selection for θ_{i}

$$
(i=1, \ldots, n)
$$

- selectivity rate (SR) of $\sigma_{\theta_{i}}(r): \quad S R\left(\sigma_{\theta_{i}}(r)\right)=s_{i} / n_{r}$

$$
(i=1, \ldots, n)
$$

- $\operatorname{SR}(E)=\Pi_{i}\left(S R\left(\sigma_{\theta_{i}}(r)\right)\right)=s_{1} / n_{r}{ }^{*} \ldots{ }^{*} s_{n} / n_{r}$
Π_{i} is multiplication with $i=1, \ldots, n$
- \# of record for $E=n_{r}{ }^{*} \operatorname{SR}(E)=n_{r}^{*} \frac{s_{1}{ }^{*} S_{2}{ }^{*} \ldots S_{n}}{\left(n_{r}\right)^{n}}$

Complex Selection Size Estimation

- Conjunction $E=\sigma_{\theta_{1} \wedge \theta_{2} \wedge \ldots \wedge \theta_{n}}(r)$
- we compute $s_{i}=$ size selection for θ_{i}

$$
(i=1, \ldots, n)
$$

- selectivity rate (SR) of $\sigma_{\theta_{i}}(r): \quad \operatorname{SR}\left(\sigma_{\theta_{i}}(r)\right)=s_{i} / n_{r}$

$$
(i=1, \ldots, n)
$$

- $\operatorname{SR}(E)=\Pi_{i}\left(S R\left(\sigma_{\theta_{i}}(r)\right)\right)=s_{1} / n_{r}{ }^{*} \ldots{ }^{*} s_{n} / n_{r}$
Π_{i} is multiplication with $i=1, \ldots, n$
- \# of record for $E=n_{r} * \operatorname{SR}(E)=n_{r} * \frac{s_{1}{ }^{*} S_{2} * \ldots * S_{n}}{\left(n_{r}\right)^{n}}$
- Disjunction $E=\sigma_{\theta_{1} \vee \theta_{2} \vee \ldots \vee \theta_{n}}(r)=\sigma_{\neg\left(\sim \theta_{1} \wedge \neg \theta_{2} \wedge \ldots \wedge \neg \theta_{n}\right)}(r)$
- $S R(E)=1-S R\left(\sigma_{\neg \theta_{1} \wedge \neg \theta_{2} \wedge \ldots \wedge \neg \theta_{n}}(r)\right)$
- $\operatorname{SR}\left(\sigma_{\neg \theta_{1} \wedge \neg \theta_{2} \wedge \ldots \wedge \neg \theta_{n}}(r)\right)=\left(1-s_{1} / n_{r}\right)^{*} \ldots{ }^{*}\left(1-s_{n} / n_{r}\right)$
- \# of record for $E=n_{r} * \operatorname{SR}(E)=n_{r}^{*} *\left[1-\left(1-\frac{s_{1}}{n_{r}}\right) *\left(1-\frac{s_{2}}{n_{r}}\right) * \ldots *\left(1-\frac{s_{n}}{n_{r}}\right)\right]$

Complex Selection Size Estimation

- Conjunction $E=\sigma_{\theta_{1} \wedge \theta_{2} \wedge \ldots \wedge \theta_{n}}(r)$
- we compute $s_{i}=$ size selection for θ_{i}

$$
(i=1, \ldots, n)
$$

- selectivity rate (SR) of $\sigma_{\theta_{i}}(r): \quad \operatorname{SR}\left(\sigma_{\theta_{i}}(r)\right)=s_{i} / n_{r}$

$$
(i=1, \ldots, n)
$$

- $\operatorname{SR}(E)=\Pi_{i}\left(S R\left(\sigma_{\theta_{i}}(r)\right)\right)=s_{1} / n_{r}{ }^{*} \ldots{ }^{*} s_{n} / n_{r}$
Π_{i} is multiplication with $i=1, \ldots, n$
- \# of record for $E=n_{r} * \operatorname{SR}(E)=n_{r}^{*} \frac{s_{1}{ }^{*} s_{2} * \ldots * S_{n}}{\left(n_{r}\right)^{n}}$
- Disjunction $E=\sigma_{\theta_{1} \vee \theta_{2} \vee \ldots \vee \theta_{n}}(r)=\sigma_{\neg\left(\neg \theta_{1} \wedge \neg \theta_{2} \wedge \ldots \wedge \neg \theta_{n}\right)}(r)$
- $S R(E)=1-S R\left(\sigma_{\neg \theta_{1} \wedge \neg \theta_{2} \wedge \ldots \wedge \neg \theta_{n}}(r)\right)$
- $\operatorname{SR}\left(\sigma_{\neg \theta_{1} \wedge \neg \theta_{2} \wedge \ldots \wedge \neg \theta_{n}}(r)\right)=\left(1-s_{1} / n_{r}\right)^{*} \ldots *\left(1-s_{n} / n_{r}\right)$
- \# of record for $E=n_{r}^{*} \operatorname{SR}(E)=n_{r}^{*} *\left[1-\left(1-\frac{s_{1}}{n_{r}}\right) *\left(1-\frac{s_{2}}{n_{r}}\right) * \ldots *\left(1-\frac{s_{n}}{n_{r}}\right)\right]$
- Negation $E=\sigma_{\neg \theta}(r)$
- \# of record for $E=n_{r}$ - \# of record for $\sigma_{\theta}(r)$

Join Size Estimation

■ of records that will be included in the result

Join Size Estimation

■ \# of records that will be included in the result

- (cartesian product) rxs:

$$
\text { \# of records }=n_{r}{ }^{*} n_{s}
$$

Join Size Estimation

■ \# of records that will be included in the result

- (cartesian product) rxs:
\# of records $=n_{r}{ }^{*} n_{s}$
- (natural join on attribute A) $r \bowtie s$:

Join Size Estimation

■ \# of records that will be included in the result

- (cartesian product) rxs

$$
\# \text { of records }=n_{r}{ }^{*} n_{s}
$$

- (natural join on attribute A) $r \bowtie s$:
- for each tuple t_{r} of r there are in average $n_{s} / V(A, s)$ many tuples of s selected

Join Size Estimation

■ \# of records that will be included in the result

- (cartesian product) rxs
$\#$ of records $=n_{r}{ }^{*} n_{s}$
- (natural join on attribute A) $r \bowtie s$:
- for each tuple t_{r} of r there are in average $n_{s} / V(A, s)$ many tuples of s selected
- thus,
\# of records $=n_{r}{ }^{*} n_{s} / V(A, s)$

Join Size Estimation

■ \# of records that will be included in the result

- (cartesian product) rxs:
$\#$ of records $=n_{r}{ }^{*} n_{s}$
- (natural join on attribute A) $r \bowtie s$:
- for each tuple t_{r} of r there are in average $n_{s} / V(A, s)$ many tuples of s selected
- thus,
\# of records $=n_{r}{ }^{*} n_{s} / V(A, s)$
- by switching the role of r and s we get $\#$ of records $=n_{r}{ }^{*} n_{s} / V(A, r)$

Join Size Estimation

■ \# of records that will be included in the result

- (cartesian product) rxs:
\# of records $=n_{r}{ }^{*} n_{s}$
- (natural join on attribute A) $r \bowtie s$:
- for each tuple t_{r} of r there are in average $n_{s} / V(A, s)$ many tuples of s selected
- thus,
\# of records $=n_{r}{ }^{*} n_{s} / V(A, s)$
- by switching the role of r and s we get
\# of records $=n_{r}{ }^{*} n_{s} / V(A, r)$
- lowest is more accurate estimation $\#$ of records $=n_{r}{ }^{*} n_{s} / \max \{V(A, r), V(A, s)\}$

Join Size Estimation

■ \# of records that will be included in the result

- (cartesian product) rxs:

$$
\text { \# of records }=n_{r}{ }^{*} n_{s}
$$

- (natural join on attribute A) $r \bowtie s$:
- for each tuple t_{r} of r there are in average $n_{s} / V(A, s)$ many tuples of s selected
- thus,
\# of records $=n_{r}{ }^{*} n_{s} / V(A, s)$
- by switching the role of r and s we get $\#$ of records $=n_{r}{ }^{*} n_{s} / V(A, r)$
- lowest is more accurate estimation \# of records $=n_{r}{ }^{*} n_{s} / \max \{V(A, r), V(A, s)\}$
- histograms can be used for more accurate estimations
- histograms must be on join attributes, for both relations, and with same ranges
- use values for each range of the histogram, instead of $n_{r}, n_{s}, V(A, r), V(A, s)$, and then sum estimations obtained for all ranges

Join Size Estimation

■ \# of records that will be included in the result

- (cartesian product) rxs:

$$
\text { \# of records }=n_{r}{ }^{*} n_{s}
$$

- (natural join on attribute A) $r \bowtie s$:
- for each tuple t_{r} of r there are in average $n_{s} / V(A, s)$ many tuples of s selected
- thus
\# of records $=n_{r}{ }^{*} n_{s} / V(A, s)$
- by switching the role of r and s we get
\# of records $=n_{r}{ }^{*} n_{s} / V(A, r)$
- lowest is more accurate estimation
\# of records $=n_{r}{ }^{*} n_{s} / \max \{V(A, r), V(A, s)\}$
- histograms can be used for more accurate estimations
- histograms must be on join attributes, for both relations, and with same ranges
- use values for each range of the histogram, instead of $n_{r}, n_{s}, V(A, r), V(A, s)$, and then sum estimations obtained for all ranges
- if A is key for r, then
- in addition, if A in s is NOT NULL FK, then

Join Size Estimation

■ \# of records that will be included in the result

- (cartesian product) $r \times s$ s: \# of records $=n_{r}{ }^{*} n_{s}$
- (natural join on attribute A) $r \bowtie s$:
- for each tuple t_{r} of r there are in average $n_{s} / V(A, s)$ many tuples of s selected
- thus,
\# of records $=n_{r}{ }^{*} n_{s} / V(A, s)$
- by switching the role of r and s we get \# of records $=n_{r}{ }^{*} n_{s} / V(A, r)$
- lowest is more accurate estimation \# of records $=n_{r}{ }^{*} n_{s} / \max \{V(A, r), V(A, s)\}$
- histograms can be used for more accurate estimations
- histograms must be on join attributes, for both relations, and with same ranges
- use values for each range of the histogram, instead of $n_{r}, n_{s}, V(A, r), V(A, s)$, and then sum estimations obtained for all ranges
- if A is key for r, then
- in addition, if A in s is NOT NULL FK, then

```
# of records <= ns (and vice versa)
# of records = ns (and vice versa)
```

- (theta join) $r \bowtie_{\theta} s$

Join Size Estimation

■ \# of records that will be included in the result

- (cartesian product) $r \times s$ s: \# of records $=n_{r}{ }^{*} n_{s}$
- (natural join on attribute A) $r \bowtie s$:
- for each tuple t_{r} of r there are in average $n_{s} / V(A, s)$ many tuples of s selected
- thus,
\# of records $=n_{r}{ }^{*} n_{s} / V(A, s)$
- by switching the role of r and s we get \# of records $=n_{r}{ }^{*} n_{s} / V(A, r)$
- lowest is more accurate estimation \# of records $=n_{r}{ }^{*} n_{s} / \max \{V(A, r), V(A, s)\}$
- histograms can be used for more accurate estimations
- histograms must be on join attributes, for both relations, and with same ranges
- use values for each range of the histogram, instead of $n_{r}, n_{s}, V(A, r), V(A, s)$, and then sum estimations obtained for all ranges
- if A is key for r, then
- in addition, if A in s is NOT NULL FK, then \# of records $=n_{s} \quad$ (and vice versa)
- (theta join) $r \bowtie_{\theta} s$
- $r \bowtie_{\theta} s=\sigma_{\theta}(r \times s) \quad$ use formulas for cartesian product and selection

Size Estimation for Other Operations

- projection (no duplications):
- aggregation ${ }_{G} \mathrm{Y}_{\mathrm{F}}(r)$
- set operations
- between selections on same relation
, es.: $\sigma_{\theta_{1}}(r) \cup \sigma_{\theta_{2}}(r)=\sigma_{\theta_{1} \vee \theta_{2}}(r)$
-rus
- $r \cap s$
- $r-s$
- outer join
- left outer join
- right outer join
- full outer join

$$
\begin{aligned}
\# \text { of records } & =V(A, r) \\
\# \text { of records } & =V(G, r)
\end{aligned}
$$

use formulas for selection

```
# of records = nr + ns
# of records = min {n, n, ns}
# of records = nr
```

\# of records = \# of records for inner join $+n_{r}$
\# of records $=$ \# of records for inner join $+n_{s}$
\# of records $=\#$ of records for inner join $+n_{r}+n_{s}$

Estimation for Number of Distinct Values

■ \# distinct values in the result for expression E and attribute (or set of attributes) $A: V(A, E)$

- Selection $E=\sigma_{\theta}(r)$
- $V(A, E)$ is a specific value for some conditions
- e.g., if condition θ is $\boldsymbol{A}=\mathbf{3}$, then $V(A, E)=1$
- e.g., if condition θ is $\mathbf{3}<\boldsymbol{A}<=\boldsymbol{6}$, then $V(A, E)=3$ (assuming domain of A is the integers)
- condition $A<v($ or $A>v, A>=v, \ldots) \quad V(A, E)=V(A, r)$ * selectivity rate of the selection
- otherwise $V(A, E)=\min \left\{n_{E}, V(A, r)\right\}$
- Join $E=r \bowtie s$
- A only contains attributes from $r \quad V(A, E)=\min \left\{n_{E}, V(A, r)\right\}$
- A only contains attributes from $s \quad V(A, E)=\min \left\{n_{E}, V(A, s)\right\}$
- A contains attributes $A 1$ from r and attributes $A 2$ from s

$$
V(A, E)=\min \left\{n_{E}, V(A 1, r)^{*} V(A 2-A 1, s), V(A 2, s) * V(A 1-A 2, r)\right\}
$$

Choice of Evaluation Plans

- Dynamic Programming for Choosing Evaluation Plans

These slides are a modified version of the slides provided with the book:

$$
\begin{aligned}
& \text { Database System Concepts, 6 }{ }^{\text {th }} \text { Ed. } \\
& \text { ©Silberschatz, Korth and Sudarshan } \\
& \text { See www.dlb-book.com for conditions on re-use } \\
& \text { (however, chapter numeration refers to } 7^{\text {th }} \text { Ed.) }
\end{aligned}
$$

The original version of the slides is available at: https://www.db-book.com/

Choice of Evaluation Plans

- Must consider the interaction of evaluation techniques when choosing evaluation plans
- choosing the cheapest algorithm for each operation independently may not yield best overall algorithm. E.g.
- merge-join may be costlier than hash-join, but may provide a sorted output which reduces the cost for an outer level aggregation
- nested-loop join may provide opportunity for pipelining

■ Practical query optimizers incorporate elements of the following two broad approaches:

1. Search all the plans and choose the best plan in a cost-based fashion
2. Uses heuristics to choose a plan

Cost-Based Optimization

- A big part of a cost-based optimizer (based on equivalence rules) is choosing the "best" order for join operations
- Consider finding the best join-order for $r_{1} \bowtie r_{2} \bowtie \ldots \bowtie r_{n}$.
- There are $(2(n-1))!/(n-1)!$ different join orders for above expression. With $n=7$, the number is 665280 , with $n=10$, the number is greater than 17.6 billion!
- No need to generate all the join orders. Exploiting some monotonicity (optimal substructure property), the least-cost join order for any subset of $\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ is computed only once.

Cost-Based Optimization: An example

- Consider finding the best join-order for $r_{1} \bowtie r_{2} \bowtie r_{3} \bowtie r_{4} \bowtie r_{5}$
- Number of possible different join orderings: $\frac{(2(n-1))!}{(n-1)!}=\frac{8!}{4!}=1680$
- The least-cost join order for any subset of $\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}\right\}$ is computed only once
- Assume we want to compute $\boldsymbol{N}_{123 / 45}$: number of possible different join orderings where r_{1}, r_{2}, r_{3} sare grouped together, e.g.,
$\left(r_{1} \bowtie r_{2} \bowtie r_{3}\right) \bowtie r_{4} \bowtie r_{5} \quad\left(r_{2} \bowtie r_{3} \bowtie r_{1}\right) \bowtie\left(r_{5} \bowtie r_{4}\right) \quad r_{4} \bowtie\left(r_{5} \bowtie\left(r_{1} \bowtie\left(r_{2} \bowtie r_{3}\right)\right)\right) \quad \ldots$
- The naïve approach
- $N_{123 / 45}=N_{123}{ }^{*} N_{45}$
- $\boldsymbol{N}_{123}=\frac{4!}{2!}=12 \quad\left(\boldsymbol{N}_{123}\right.$: \# ways of arranging r_{1}, r_{2}, and $\left.r_{3}\right)$
- $\boldsymbol{N}_{45}=\boldsymbol{N}_{123}=12 \quad\left(\boldsymbol{N}_{45}\right.$: \# ways of arranging r_{4} and r_{5} wrt. block of r_{1}, r_{2}, and $\left.r_{3}\right)$
- $N_{123 / 45}=12 * 12=144$
- Exploiting optimal substructure property:
- compute only once best ordering for $r_{1} \bowtie r_{2} \bowtie r_{3}: 12$ possibilities $\left(\boldsymbol{N}_{123}\right)$
- compute best ordering for $R_{123} \bowtie r_{4} \bowtie r_{5}: 12$ possibilities (\boldsymbol{N}_{45})
- Therefore, $\quad N_{123 / 45}=12+12=24$

Dynamic Programming in Optimization

- To find best join tree (equivalently, best join order) for a set of n relations:
- Consider all possible plans of the form:
$S^{\prime} \bowtie\left(S \backslash S^{\prime}\right)$
for every non-empty subset S^{\prime} of S
- Recursively compute (and store) costs of best join orders for subsets S ' and $S \backslash S^{\prime}$. Choose the cheapest of the $2^{n}-2$ alternatives
- Base case for recursion: find best algorithm for scanning relation
- When a plan for a subset is computed, store it and reuse it when it is required again, instead of re-computing it
- Dynamic programming

Join Order Optimization Algorithm

procedure findbestplan(S)
if (bestplan[S].cost $\neq \infty$)
return bestplan[S]
// else bestplan[S] has not been computed earlier, compute it now
if (S contains only 1 relation)
set bestplan[S].plan and bestplan[S].cost based on the best way of accessing S /* Using selections on S and indices on S */
else for each non-empty subset $S 1$ of S such that $S 1 \neq S$
P1 = findbestplan(S1)
P2= findbestplan(S - S1)
A = best algorithm for joining results of $P 1$ and $P 2$
cost $=P 1 . \operatorname{cost}+P 2 . \operatorname{cost}+\operatorname{cost}$ of A
if cost < bestplan[S].cost
bestplan[S].cost = cost
bestplan[S].plan = "execute P1.plan; execute P2.plan; join results of $P 1$ and $P 2$ using $A "$
return bestplan[S]

This is the algorithm shown in the $6^{\text {th }}$ edition of the textbook.
It is slightly different from the algorithm we presented during our class, especially the way the base case is handled.

Cost of Optimization

- With dynamic programming time complexity of optimization exponential
- function $(2(n-1))!/(n-1)$! grows faster than exponential function 2^{n}
- With $n=10$, exponential function equals to 1024 instead of 17.6 billion!
- Space complexity is $O\left(2^{n}\right)$
- Better time performance when considering only left-deep join tree $O\left(\mathrm{n} 2^{n}\right)$ Space complexity remains at $O\left(2^{n}\right)$ (heuristic approach)

(a) Left-deep join tree

(b) Non-left-deep ioin tree
- Cost-based optimization is expensive, but worthwhile for queries on large datasets (typical queries have small n, generally < 10)

Cost Based Optimization with Equivalence Rules

- Physical equivalence rules equates logical operations (e.g., join) to physical ones (i.e., implementations - e.g., nested-loop join, merge join)
- Relational algebra expression are converted into QEP with implementation details
- Efficient optimizer based on equivalence rules depends on
- A space efficient representation of expressions which avoids making multiple copies of sub-expressions
- Efficient techniques for detecting duplicate derivations of expressions
- Dynamic programming or memoization techniques, which store the "best" plan for a sub-expression the first time it is computed, and reuses in on repeated optimization calls on same sub-expression
- Cost-based pruning techniques that avoid generating all plans (greedy, heuristics)

Heuristic Optimization

- Cost-based optimization is expensive, even with dynamic programming
- Systems may use heuristics to reduce the number of possibilities choices that must be considered
- Heuristic optimization transforms the query-tree by using a set of rules that typically (but not in all cases) improve execution performance:
- Perform selection early (reduces the number of tuples)
- Perform projection early (reduces the number of attributes)
- Perform most restrictive selection and join operations (i.e. with smallest result size) before other similar operations
- Only consider left-deep join orders (particularly suited for pipelining as only one input has to be pipelined, the other is a relation)

Structure of Query Optimizers

- Some systems use only heuristics, others combine heuristics with partial cost-based optimization.
- Many optimizers considers only left-deep join orders.
- Plus heuristics to push selections and projections down the query tree
- Reduces optimization complexity and generates plans amenable to pipelined evaluation.
- Heuristic optimization used in some versions of Oracle:
- Repeatedly pick "best" relation to join next
- it obtains and compares n plans (each starting with one relation) In each plan, pick the best next relation for the join

End of Chapter

These slides are a modified version of the slides provided with the book:

Database System Concepts, $6^{\text {th }}$ Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use
(however, chapter numeration refers to $7^{\text {th }}$ Ed.)

The original version of the slides is available at: https://www.db-book.com/

[^0]: * Silberschatz, Korth, and Sudarshan, Database System Concepts, 7° ed.

[^1]: ${ }^{\star}$ Silberschatz, Korth, and Sudarshan, Database System Concepts, 7° ed.

