Distributed query optimization

Dario Della Monica

These slides are a modified version of the slides provided with the book Özsu and Valduriez, *Principles of Distributed Database Systems* (3rd Ed.), 2011 The original version of the slides is available at: extras.springer.com

Distributed DBMS

© M. T. Özsu & P. Valduriez

Outline (distributed DB)

- Introduction (Ch. 1) *
- Distributed Database Design (Ch. 3) *
- Distributed Query Processing (Ch. 6-8) *
 - \rightarrow Overview (Ch. 6) *
 - → Query decomposition and data localization (Ch. 7) *
 - → Distributed query optimization (Ch. 8) *
- Distributed Transaction Management (Ch. 10-12) *

Distributed DBMS

^{*} Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

Outline (today)

Distributed query optimization (Ch. 8) *

- → Overview
- → Join Ordering in Localized Queries
- → Semijoin-based Algorithm
- → Distributed query optimization strategies
- → Hybrid approaches

^{*} Özsu and Valduriez, *Principles of Distributed Database Systems* (3rd Ed.), 2011

Distributed Query Optimization

- In previous chapter (Ch. 7) * -- 1st optimization phase:
 - → A distributed query is mapped into a query over fragments (decomposition and data localization)
 - → Reduction ("optimization") independent from relation (fragment) statistics (e.g., cardinality)
- In this chapter (Ch. 8) *:-- 2nd optimization phase:
 - → Optimization based on DB statistics (order of operations and operands, algorithm to perform simple operations) to produce a query execution plan (QEP)
 - In the distributed case a QEP is further extended with communication operations to support execution
 of queries over fragment sites
 - → Statement of the problem
 - Input: Fragment query
 - Output: the "best" global strategy
 - → Once again: the problem is NP-hard, so not looking for the optimal solution
 - → Additional problems specific to the distributed setting
 - Where to execute (partial) queries? Which relation to ship where?
 - Choose between data transfer methods : ship-whole vs. fetch-as-needed
 - Jecide on the use of semijoins (semijoins save on communication at the expense of more local processing)

^{*} Özsu and Valduriez, *Principles of Distributed Database Systems* (3rd Ed.), 2011

Elements of the Optimizer

- The element of the optimization process are similar in distributed and centralized cases
 - → Search space (aka solution space)
 - The set of equivalent QEP: algebra expressions enriched with implementation details and communication choices
 - \rightarrow Cost model
 - Cost function (in terms of time)
 - ✓ I/O cost + CPU cost + **communication cost**
 - In early approach only communication costs were considered; due to fast communication technology, communication and I/O costs become comparable
 - ✓ These might have different weights in different distributed environments (LAN vs WAN)
 - → Search algorithm (aka search strategy)
 - How do we move inside the solution space?
 - Exhaustive search, heuristic algorithms
 - Goal is searching the solution space to find a good strategy according to the cost model
- Difference between centralized and distributed settings: search space and cost model (*search strategy* remains basically the same)

Search Space

- Search space is large
 - → N relations → ((2(N-1))!)/((N-1)!) equivalent join trees (by join commutativity and associativity)
 - → Larger search space due to more options
- QEP are decorated with more information (on data exchange)
- Focus on join and semijoin order
- Different candidate solution in the search space
 - → A good heuristics for centralized context: left-deep trees
 - → In distributed context: non left-deep trees allow for **parallelization**

Cost model

- The focus is on communication costs (local CPU costs and I/O costs are less significant)
- Locally, every D-DBMS acts a centralized optimizer to devise best execution plan of part of the queries that are assigned at that site
 - → This is the 3rd optimization phase: exactly like in the centralized case, cost model focuses on I/O costs

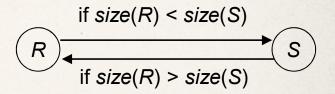
Join Ordering in the Distributed Context

- Join ordering is important in centralized query optimization
- It is even more in distributed query optimization (affect communication costs)
- Use of semijoins to reduce relation sizes (and thus communication costs) before performing join operations

Join Ordering – 2 relations

• We assume query to be already localized (i.e., on fragments)

- → Fragments are relations entirely stored at a single site
 - We often use "fragments" and "relations" indistinguishably (no technical reason to distinguish them)
- We first focus on ordering issues without using semijoins
 - → Consider 2-relation join: $R \bowtie S$ (where R and S are stored at different sites)
 - Move the smaller relation to the site of the larger one
 - If *size(R)* and *size(S)* are (more or less) the same (and not other factor comes into play), then moving outer relation *R* has benefits:
 - ✓ No need for storing *R* in *nested-loop* or *block nested-loop* join algorithms
 - *indexed nested-loop* join algorithm remains available as index on inner relation S is preserved (index is lost when transfering S)



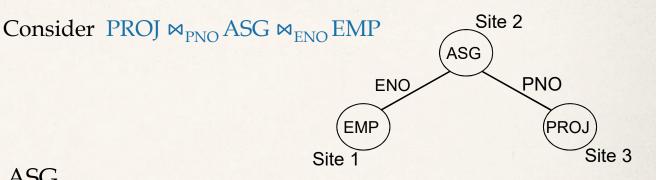
Join Ordering – Multiple Relations

- Multiple relations case: more difficult because too many alternatives
- Goal is still transmit small operands (relations)
 - → Compute the cost of all alternatives and select the best one
 - Necessary to compute the size of intermediate relations which is difficult
 - ✓ In distributed context it is even more because information may be not available on site

Join Ordering – Example

Execution alternatives:

- EMP→ Site 2
 Site 2 computes EMP'=EMP ⋈ ASG
 EMP'→ Site 3
 Site 3 computes EMP' ⋈ PROJ
- ASG → Site 1
 Site 1 computes EMP'=EMP ASG
 EMP' → Site 3
 Site 3 computes EMP'
 PROJ
- 3. ASG → Site 3
 Site 3 computes ASG'=ASG ⋈ PROJ
 ASG' → Site 1
 Site 1 computes ASG' ⋈ EMP



Join graph of distributed query

- 4. PROJ → Site 2
 Site 2 computes PROJ'=PROJ ⋈ ASG
 PROJ' → Site 1
 Site 1 computes PROJ' ⋈ EMP
- 5. EMP → Site 2
 PROJ → Site 2
 Site 2 computes EMP ⋈ PROJ ⋈ ASG

Semijoin Algorithms

- Semijoins can be used to reduce the sizes of operands to transfer (similar to what selections do)
 - → Reduced communication costs
- Consider the join of two relations:
 - $\rightarrow R$ (at site 1)
 - $\rightarrow S$ (at site 2)
- Alternatives:
 - 1. Do the join $R \bowtie_A S$
 - 2. Perform one of the semijoin-based equivalent options

$$\begin{array}{ll} R \bowtie_A S & \Leftrightarrow & (R \ltimes_A S) \bowtie_A S \\ & \Leftrightarrow & R \bowtie_A (S \ltimes_A R) \end{array}$$

 $\Leftrightarrow (R \ltimes_A S) \bowtie_A (S \ltimes_A R)$

Tradeoff between

- a) cost to compute and send semijoin to other site (and then perform the join there)
- b) Cost to send the whole relation to other site (and then perform the join there)

Semijoin Algorithms – Example

- Perform the join
 - \rightarrow Send *R* to Site 2
 - \rightarrow Site 2 computes $R \bowtie_A S$
- Consider semijoin ($R \ltimes_A S$) $\bowtie_A S$
 - $\rightarrow S' = \Pi_A(S)$
 - $\rightarrow S' \rightarrow \text{Site 1}$
 - \rightarrow Site 1 computes $R' = R \ltimes_A S'$
 - $\rightarrow R' \rightarrow \text{Site 2}$
 - \rightarrow Site 2 computes $R' \bowtie_A S$
- Semijoin is better if

 $size(\Pi_A(S)) + size(R \ltimes_A S)) < size(R)$

Only communication costs (time to transfer relations)

Semijoin Algorithms – Sum up

- Using semijoin is convenient if $R \ltimes_A S$ is much smaller in size (MB) than $R \Join_A S$ (i.e., it has high selectivity (few tuples are selected) and/or size of tuples of R is large)
- It is bad otherwise, due to the additional transfer of $\Pi_A(S)$ and cost of local computation
- Cost of transferring $\Pi_A(S)$ can be reduced by using bit arrays
- A disadvantage of using semijoin is the loss of indices

Semijoin Algorithms – Sum up

- Using semijoin is convenient if $R \ltimes_A S$ is much smaller in size (MB) than $R \Join_A S$ (i.e., it has high selectivity (few tuples are selected) and/or size of tuples of R is large)
- It is bad otherwise, due to the additional transfer of $\Pi_A(S)$ and cost of local computation
- Cost of transferring $\Pi_A(S)$ can be reduced by using bit arrays
- A disadvantage of using semijoin is the loss of indices

Bit arrays

• Let *h* be a hash function that distributes possible values for *A* into *n* buckets:

 $h: Dom(A) \longrightarrow \{0, ..., n-1\}$

• Bit array *BA*[0 .. *n*-1] over relation *S* is defined as:

BA[i] = 1 iff \exists value v for attribute A in S s.t. h(v) = i

- Transfer *BA* (*n* bits) rather than $\Pi_A(S)$
- A tuple of *R* with value *v* for attribute *A* belongs to *R'* iff BA[h(v)] = 1
- *R'* is an (over-)approximation of $R \ltimes_A S$

Bit Arrays for Seminoins

R				S		
id _R	Α			id _s	А	
1 2 3 4 5 6 7 8	1 2 2 5 4 5 4 5 4 5			1 2 3 4 5	5 5 3 5 3	
	R'		⊋	R	$R \ltimes_A S$	
id _R A			ic	$d_{\rm S}$ A		
	1 4 6 8	1 5 5 5		(d _s A 4 5 6 5 8 5	
: R ⊳ wit	$A_A S $ h bi					

• Recall:

- BA[i] = 1 iff \exists value v for attribute A in S s.t. h(v) = i
- a tuple of *R* with value *v* for *A* belongs to *R'* iff BA[h(v)] = 1
- $h(x) = x \mod 4$
- *n* = 4
- h(1) = h(5) = 1
- BA[0] = 0
- *BA*[1] = 1
- BA[2] = 0
- *BA*[3] = 1

(4 buckets)

(no value v occurs in S.A s.t. h(v) = 0)

- (due to occurrence of 5 for attribute A in S)
- (no value *v* occurs in *S*.*A* s.t. h(v) = 2)

(due to occurrence of 3 for attribute A in S)

R' contains tuple <1,1> that does not belong to $R \ltimes_A S$

However, R' is a good approximation because h has only one conflict (h(1) = h(5)) among values for attribute A in Rand S

R

Semijoins for Joins among **Multiple Relations**

Semijoins to optimize joins among more than 2 operands $EMP \bowtie ASG \bowtie PROJ = EMP' \bowtie ASG' \bowtie PROJ$

where $EMP' = EMP \ltimes ASG$ and $ASG' = ASG \ltimes PROJ$

Each operand can be further reduced using more than one semijoin in cascade $EMP'' = EMP \ltimes (ASG \ltimes PROJ)$

We have Therefore

 $size(ASG \ltimes PROJ) <= size(ASG)$ $size(EMP'') \leq size(EMP')$

Semijoins for Joins among **Multiple Relations**

Semijoins to optimize joins among more than 2 operands $EMP \bowtie ASG \bowtie PROJ = EMP' \bowtie ASG' \bowtie PROJ$

where $EMP' = EMP \ltimes ASG$ and $ASG' = ASG \ltimes PROJ$

Each operand can be further reduced using more than one semijoin in cascade $EMP'' = EMP \ltimes (ASG \ltimes PROJ) \lt$

We have Therefore

 $size(EMP'') \leq size(EMP')$

 $size(ASG \ltimes PROJ) <= size(ASG)$

Semijoin program

Semijoins for Joins among Multiple Relations

Semijoins to optimize joins among more than 2 operands
 EMP ⋈ ASG ⋈ PROJ = EMP' ⋈ ASG' ⋈ PROJ

where $EMP' = EMP \ltimes ASG$ and $ASG' = ASG \ltimes PROJ$

 Each operand can be further reduced using more than one semijoin in cascade EMP'' = EMP × (ASG × PROJ)

We have	size(ASG ⊨ PROJ)	<=	size(ASG)	Semijoin
Therefore	size(EMP'')	<=	size(EMP')	program

- Full reducer for a relation is the semijoin program that reduces the relation the most
- Finding full reducer for a relation with exhaustive brute force approach
 - → For cyclic queries full reducer cannot be found
 - Solution: break the cycle
 - → With other queries: inefficient (NP-hard)
 - Solution: only use semijoin when problem is simple
 - e.g., for chained queries, where relations are in sequence and each one joins with the next one

Distributed Query Optimization

- We focus on optimization of joins
- The algorithm for optimizing a join is adapted from the one for the centralized case
- In distributed context
 - → There is a coordinator (master site) where query is initiated
 - → Coordinator chooses
 - 1. execution site and
 - 2. transfer method
 - → Apprentice sites (where fragments are stored and queries are executed)
 - Apprentices behave as in the case of centralized query optimization in optimizing partial localized queries (over fragments) assigned to them
 - Choose best join ordering, join algorithm, and access method for relations

Choices of the Master Site

- 1. Choice of the execution sites
 - \rightarrow E.g., $R \bowtie S$ can be executed:
 - ✤ at the site where *R* is stored
 - ✤ at the site where S is stored
 - at a third site (e.g., where a 3rd relation waits to be joined allows for parallel transfer)

2. Transfer method

- → *ship-whole*: relation is transferred to the join execution site entirely
 - In some cases (e.g., for outer relations of in case of block nested-loop join) there is no need to store the
 relation: join as it arrives, in pipelined mode
- → *fetch-as-needed* (only needed tuples are transferred, i.e., tuples that join with at least one tuple):
 - do semijoin of one relation with the other one (to reduce size of the former) before doing the join
 - e.g., semi-join of inner relation wrt outer one (only needed tuples of inner relation are transferred)
 - v tuples of the outer relation are sent (only the join attribute) to the site of the inner relation
 - matching tuples of the inner relation are sent to the site of the external relation to execute the join

Not all combinations are worth being considered (we consider 4 strategies)

Strategy 1 – ship-whole/inner site

ship-whole / site of *inner* relation: move outer relation (*R*) to the site of the inner relation (*S*)

(a) Retrieve all tuples of outer relation *R*

(b) Send them to the inner relation site

(c) Join them as they arrive

- *CT*(*x*): communication time to transfer *x* bytes
- *LT*(*x*): local processing time to perform op. *x*
- *s* = *card*(*S* ⋈_{*A*} *R*)/*card*(*R*): average number of tuples of *S* that match a tuple of *R*

Total Cost = LT (retrieve card(R) tuples from R)

+ CT(size(R))

+ *LT* (retrieve *s* tuples from *S*) * *card*(*R*)

Join is done as *R* comes because *R* is the outer relation

Strategy 2 – ship-whole/outer site

2. *ship-whole*/site of *outer* relation: move inner relation (*S*) to the site of outer relation (*R*)

Cannot join as *S* arrives; it needs to be stored. And index over *S* is lost

Total cost = *LT* (retrieve *card*(*S*) tuples from *S*)

- + CT(size(S))
- + *LT* (store *card*(*S*) tuples in temporary relation *T*)
- + *LT* (retrieve *card*(*R*) tuples from *R*)
- + *LT* (retrieve *card*(*S*) tuples from *T*) * *card*(*R*) [*no index over T*]
 - *CT*(*x*): communication time to transfer *x* bytes
 - *LT*(*x*): local processing time to perform op. *x*
 - $s = card(S \ltimes_A R)/card(R)$: average number of tuples of *S* that match a tuple of *R*

Strategy 3 – fetch-asneeded/outer site

- 3. *fetch-as-needed*/site of *outer* relation
 - (a) Retrieve tuples at outer relation (*R*) site
 - (b) For each tuple of *R*, send join attribute values to inner relation (*S*) site
 - (c) Retrieve matching inner tuples at inner relation site
 - (d) Send the matching inner tuples to outer relation site
 - (e) Join as they arrive (use *R* as inner relation since it is already in memory)
 - Total Cost = LT (retrieve card(R) tuples from R)
 - + CT(length(A))*card(R)
 - + *LT* (retrieve *s* tuples from *S*) * *card* (*R*)
 - + CT(s*length(S))*card(R)

• *CT*(*x*): communication time to transfer *x* bytes

- *LT*(*x*): local processing time to perform op. *x*
- *s* = *card*(*S* ⋉_{*A*} *R*)/*card*(*R*): average number of tuples of *S* that match a tuple of *R*

Strategy 4 – Move Both Relation at Third Site

4. move both inner (*S*) and outer (*R*) relations to another site

Total cost = *LT* (retrieve *card* (*S*) tuples from *S*)

+ CT(size(S))

- + *LT* (store *card*(*S*) tuples in temporary relation *T*)
- + *LT* (retrieve *card* (*R*) tuples from *R*)
- + CT(size(R))
- + *LT* (retrieve *card*(*S*) tuples from *T*) * *card*(*R*) [*no index over T*]

• *CT*(*x*): communication time to transfer *x* bytes

- *LT*(*x*): local processing time to perform op. *x*
- $s = card(S \ltimes_A R)/card(R)$: average number of tuples of *S* that match a tuple of *R*

Moving inner relation S first is better so we can then join as outer relation R arrives

Strategy comparison

PROJ \bowtie_{PNO} ASG

- PROJ (outer rel.) and ASG (inner rel.) are stored at different sites
- Index on PNO for relation ASG
- 1. Ship whole PROJ at site of ASG
- 2. Ship whole ASG at site of PROJ
- 3. Fetch tuples of ASG as needed at site of PROJ
- 4. Move both ASG and PROJ to a third site

```
CT (size(PROJ))

CT (size(ASG))

CT (length (A)) * card (PROJ)

+ CT (s * length (ASG)) * card (PROJ)

CT (size (ASG)) + CT (size (PROJ))
```

- If there is no upper level operation then **4** is a bad choice
- If *size* (*PROJ*) >> *size* (*ASG*), then 2 is a good choice (if local processing time is not too bad compared with 1 and 3, which can exploit index on ASG in their local processing)
- If *PROJ* is large/few tuples of *ASG* match, then **3** is better than **1**
- Otherwise, **1** is better than **3**

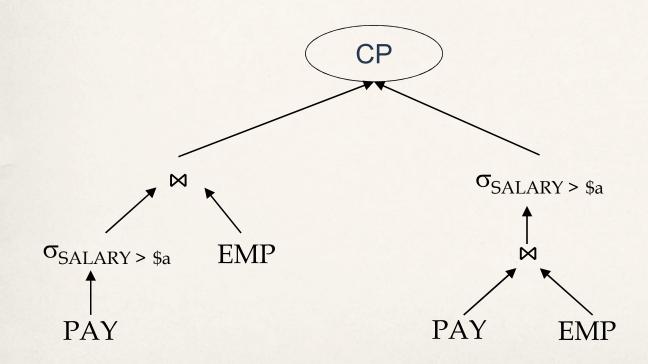
Hybrid approach

- Optimization can be *static* or *dynamic*
 - → *static*: strategies (QEP) are evaluated and compared not at run-time (i.e., not when query is requested but, e.g., in low-workload periods of the system)
 - advantages: query optimization is done once and used for several query executions
 - disadvantages: cost evaluation is less accurate because statistic and estimations for computing the costs are not available or less accurate (e.g., some parameters of a query might be known only at runtime)
 - → *dynamic*: strategies (QEP) are evaluated and compared at run-time (i.e., when query is requested)
 - advantages: cost evaluation is not that accurate
 - + disadvantages: optimization is costly and doing it at runtime slow the running time of queries
 - \checkmark less accurate exploration of the search space
- Problems of static query optimization are much more severe in the distributed context: more infomation variability at runtime
 - → Sites may become unavailable or overloaded
 - Selection of site and fragment copy should be done at runtime to increase availability and load balancing
- hybrid solutions (some decisions are taken at runtime)
 - CP (choose-plan) operator, which is resolved at runtime, when an exact plan comparison can be done
 - → 2-step optimization: operation order and algorithm are chosen statically, site where to execute operations and transfer method are chosen at runtime

The CP (choose-plan) Operator

SELECT * FROM EMP, PAY WHERE SALARY > \$a

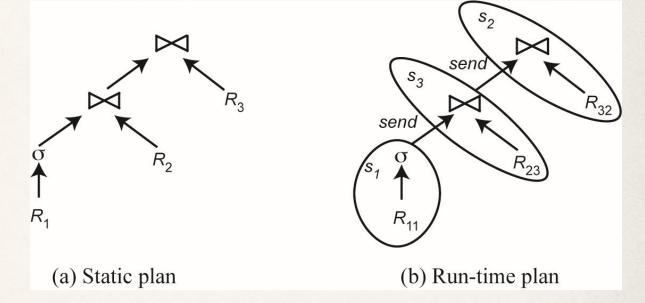
where \$a is a variable whose value is specified by the user at runtime



Normally, pushing σ inside \bowtie is a good heuristics, but it can be bad if selection rate of \bowtie is higher than the one of σ

2-Step Optimization

- 2-Step optimization: a simpler approach (more efficient, less exhaustive) than the one based on CP operator; it reduces workload at runtime (no CP operator)
 - → At runtime labels are added about site and fragment copy selection only
- 1. At compile time, generate a static plan with operation ordering and access methods only
- 2. At startup time, select site and fragment to use and allocate operations to sites



- Site (and copy) selection is done in a greedy fashion
 - → best load balancing,
 - → best benefit (# of queries already executed at the site, possible saving of communication costs as the site might have already data available)