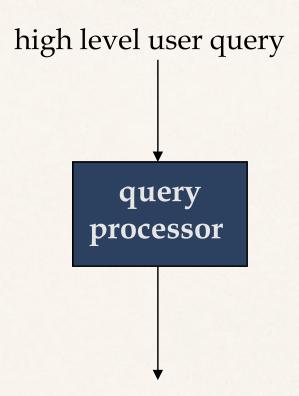
Overview of distributed query processing

Dario Della Monica

These slides are a modified version of the slides provided with the book Özsu and Valduriez, *Principles of Distributed Database Systems* (3rd Ed.), 2011


The original version of the slides is available at: extras.springer.com

Outline (distributed DB)

- Introduction (Ch. 1) *
- Distributed Database Design (Ch. 3) *
- Distributed Query Processing (Ch. 6-8) *
 - → Overview (Ch. 6) *
 - → Query decomposition and data localization (Ch. 7) *
 - → Distributed query optimization (Ch. 8) *
- Distributed Transaction Management (Ch. 10-12) *

^{*} Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

Query Processing in a D-DBMS

Low-level data manipulation commands for D-DBMS

Selecting Alternatives

SELECT *

FROM EMP, ASG

WHERE EMP.ENO = ASG.ENO

AND RESP = "Manager"

 $EMP \bowtie_{ENO} (\sigma_{RESP="Manager"}(ASG))$

 $\sigma_{RESP="Manager"}\left(EMP\bowtie_{ENO}(ASG)\right)$

What are the Additional Problems?

- More parameters
 - Replication of fragments
 - Data exchange alternatives/multiple sites
- To transform a **global query on relations** of a distributed DB (seen as a single DB by the user) into **local queries on fragments** stored on several local DB's (**data localization**)
- QEP must include information on communications (data transfers among sites) and on which sites operations are performed
- Use of semijoins to reduce the amount of data transferred among sites
 - → Focus of the optimizer is selecting optimal order for join and semijoin operations
- Centralized vs. distributed optimization
- Cost to minimize
 - → Centralized DB: CPU and I/O cost only (actually, only I/O)
 - → Distributed DB: also communication costs
 - → Communication costs are the dominating ones (even though this might not be the case with increased network speed, especially within Local Area Network)

- Global query: $EMP \bowtie_{ENO} (\sigma_{RESP="Manager"}(ASG))$
- Fragmentation and allocation

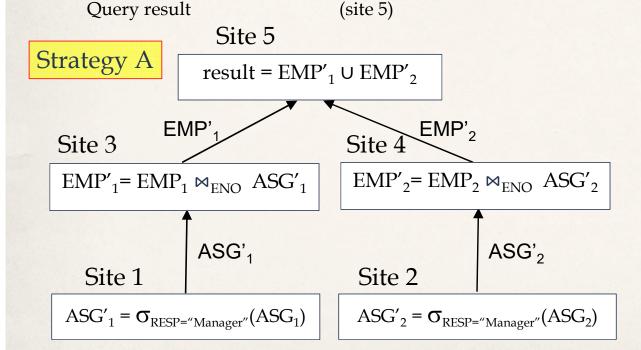
```
ASG_1 = \sigma_{ENO \le "E3"}(ASG) \qquad (site 1)
ASG_2 = \sigma_{ENO \ge "E3"}(ASG) \qquad (site 2)
EMP_1 = \sigma_{ENO \le "E3"}(EMP) \qquad (site 3)
EMP_2 = \sigma_{ENO \ge "E3"}(EMP) \qquad (site 4)
Query result \qquad (site 5)
```

- Global query: $EMP \bowtie_{ENO} (\sigma_{RESP="Manager"}(ASG))$
- Fragmentation and allocation

$ASG_1 = \sigma_{ENO \le "E3"}(ASG)$	(site 1)
$ASG_2 = \sigma_{ENO > "E3"}(ASG)$	(site 2)
$EMP_1 = \sigma_{ENO \le "E3"}(EMP)$	(site 3)
$EMP_2 = \sigma_{ENO > "E3"}(EMP)$	(site 4)
Query result	(site 5)

Relational algebra must be extended to model exchanging data between sites

- Global query: $EMP \bowtie_{ENO} (\sigma_{RESP="Manager"}(ASG))$
- Fragmentation and allocation


$$ASG_1 = \sigma_{ENO \le "E3"}(ASG) \qquad (site 1)$$

$$ASG_2 = \sigma_{ENO \ge "E3"}(ASG) \qquad (site 2)$$

$$EMP_1 = \sigma_{ENO \le "E3"}(EMP) \qquad (site 3)$$

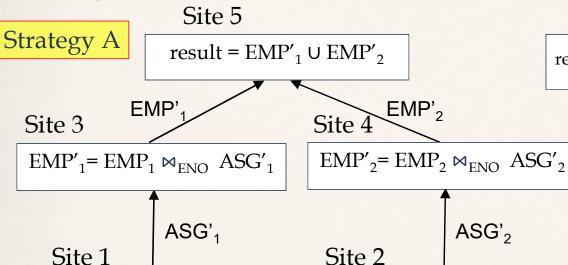
$$EMP_2 = \sigma_{ENO \ge "E3"}(EMP) \qquad (site 4)$$

Relational algebra must be extended to model exchanging data between sites

- Global query: $EMP \bowtie_{ENO} (\sigma_{RESP="Manager"}(ASG))$
- Fragmentation and allocation

 $ASG'_1 = \sigma_{RESP="Manager"}(ASG_1)$

$$ASG_1 = \sigma_{ENO \le "E3"}(ASG) \qquad (site 1)$$


$$ASG_2 = \sigma_{ENO \ge "E3"}(ASG) \qquad (site 2)$$

$$EMP_1 = \sigma_{ENO \le "E3"}(EMP) \qquad (site 3)$$

$$EMP_2 = \sigma_{ENO \ge "E3"}(EMP) \qquad (site 4)$$

$$Query result \qquad (site 5)$$

Relational algebra must be extended to model exchanging data between sites

result= $(EMP_1 \cup EMP_2) \bowtie_{ENO} (\sigma_{RESP="Manager"}(ASG_1 \cup ASG_2))$ $ASG_1 \qquad ASG_2 \qquad EMP_1 \qquad EMP_2$

Strategy B

Site 3

 $ASG'_2 = \sigma_{RESP="Manager"}(ASG_2)$

Site 5

Site 1 Site 2

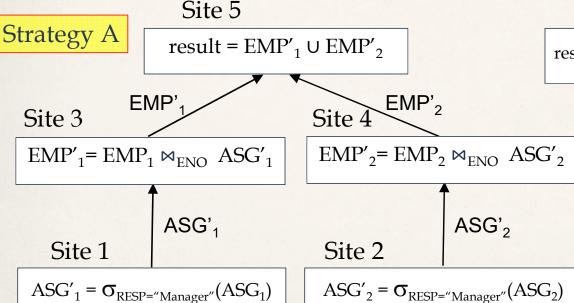
Site 4

- Global query: $EMP \bowtie_{ENO} (\sigma_{RESP="Manager"}(ASG))$
- Fragmentation and allocation

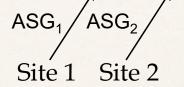
$$ASG_1 = \sigma_{ENO \le "E3"}(ASG) \qquad (site 1)$$

$$ASG_2 = \sigma_{ENO \ge "E3"}(ASG) \qquad (site 2)$$

$$EMP_1 = \sigma_{ENO \le "E3"}(EMP) \qquad (site 3)$$


 $EMP_2 = \sigma_{ENO} > "E3" (EMP)$ (site 4)

Query result (site 5)


Relational algebra must be extended to model exchanging data between sites

Site 5

Strategy B

result= $(EMP_1 \cup EMP_2) \bowtie_{ENO} (\sigma_{RESP="Manager"}(ASG_1 \cup ASG_2))$

 EMP_1 EMP_2 Site 3 Site 4

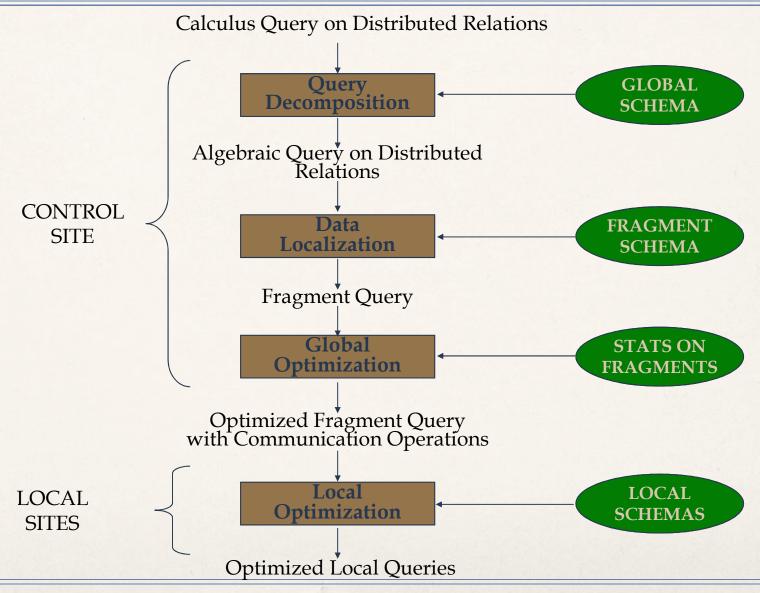
Assume

- \rightarrow card(EMP) = 400
- \rightarrow card(ASG) = 1000
- → 20 managers in ASG
- → indexes on ASG.RESP and EMP.ENO
- → access cost per tuple = 1 unit
- → network transfer cost per tuple = 10 units

Cost of Alternatives

Assume

- \rightarrow card (EMP) = 400, card(ASG) = 1000, 20 managers in ASG
- → indexes on ASG.RESP and EMP.ENO
- → tuple access cost = 1 unit; tuple transfer cost = 10 units


Strategy A

→ produce ASG': (10+10) * tuple access cost	20
→ transfer ASG' to the sites of EMP: (10+10) * tuple transfer cost	200
→ produce EMP': (10+10) * 2 * tuple access cost	40
→ transfer EMP' to result site: (10+10) * tuple transfer cost	200
Total Cost	460

Strategy B

→ transfer EMP to site 5: 400 * tuple transfer cost	4,000
→ transfer ASG to site 5: 1000 * tuple transfer cost	10,000
→ produce ASG': 1000 * tuple access cost	1,000
→ join EMP and ASG': 400 * 20 * tuple access cost	8,000
Total Cost	23,000

Distributed Query Processing Methodology

