
DMIF University of Udine

Managing Time Series
with MongoDB

Paolo Gallo
paolo.gallo@uniud.it

May 31, 2021

1 Introduction

2 Schema design(s)

3 Impact on requirements and performances

Outline

2/29 Paolo Gallo Managing Time Series with MongoDB

The United States is beginning to make its transition to
self-driving cars.

For this reason United States Department of Transportation is
setting up central service to monitor traffic conditions
nationwide

Sensors over the interstate system monitor traffic conditions
like: car speeds, pavement and weather conditions, etc.

Case Study

3/29 Paolo Gallo Managing Time Series with MongoDB

Interstate Highway System

4/29 Paolo Gallo Managing Time Series with MongoDB

• 16.000 sensors
• Measure

• Speed
• Travel Time
• Weather, pavement, and traffic condition

• Support desktop, mobile, and car navigation systems

Traffic Sensors

5/29 Paolo Gallo Managing Time Series with MongoDB

• Need to keep 3 years of history
• Three data centres

• New York
• Chicago
• Los Angeles

• Need to support 5 millions simultaneous users
• Peak volume (rush hour)
• Every minute, each request the 10 minute average speed for

50 sensors

Other Requirements

6/29 Paolo Gallo Managing Time Series with MongoDB

A time series is a sequence of data points, measured typically at
successive points in time spaced at uniform time intervals.

Time Series

7/29 Paolo Gallo Managing Time Series with MongoDB

Time Series Everywhere

8/29 Paolo Gallo Managing Time Series with MongoDB

• Horizontal Scalability
• Store event data
• Support analytical queries
• Find best compromise between:

• Memory utilisation
• Write performance
• Read/Analytical query performance
• Accomplish with a realistic amount of hardware

Schema Design Consideration

9/29 Paolo Gallo Managing Time Series with MongoDB

• Document per event

• Document per minute (average)

• Document per minute (second)

• Document per hour

Designing for reading, writing, ...

10/29 Paolo Gallo Managing Time Series with MongoDB

{
segID : " I80_mile34 " ,
speed : 63 ,
t s : ISODate (" 2016 -11 -10T22 : 5 6 : 0 0 . 0 0 - 0 5 0 0 ")

}

• Relational centric approach
• Insert driven workload

Document per event

11/29 Paolo Gallo Managing Time Series with MongoDB

{
segID : " I80_mile34 " ,
speed_num : 18 ,
speed_sum : 1256 ,
t s : ISODate (" 2016 -11 -10T22 : 5 6 : 0 0 . 0 0 - 0 5 0 0 ")

}

• Pre-aggregate to compute average per minute easily
• Update driven workload
• Resolution at the minute level

Document per minute (average)

12/29 Paolo Gallo Managing Time Series with MongoDB

{
segID : " I80_mile34 " ,
speed : {0 :63 , 1 : 2 3 , 2 : 4 5 , . . . , 59 :65} ,
t s : ISODate (" 2016 -11 -10T22 : 5 6 : 0 0 . 0 0 - 0 5 0 0 ")

}

• Store per-second data at minute level
• Update driven workload
• Pre allocate structure to avoid document move

Document per minute (second)

13/29 Paolo Gallo Managing Time Series with MongoDB

{
segID : " I80_mile34 " ,
speed : {0 :63 , 1 : 2 3 , 2 : 4 5 , . . . , 3599 :65} ,
t s : ISODate (" 2016 -11 -10T22 : 0 0 : 0 0 . 0 0 - 0 5 0 0 ")

}

• Store per-second data at hourly level
• Update driven workload
• Pre allocate structure to avoid document move
• Updating last second requires 3599 steps

Document per hour

14/29 Paolo Gallo Managing Time Series with MongoDB

{
segID : " I80_mile34 " ,
speed : { 0 : {0 :63 , . . . , 59 :45} ,

. . . ,
5 9 : { 0 : 6 5 , . . . , 59 :65}

}
t s : ISODate (" 2016 -11 -10T22 : 0 0 : 0 0 . 0 0 - 0 5 0 0 ")

}

• Store per-second data at hourly level with nesting
• Update driven workload
• Pre allocate structure to avoid document move
• Updating last second requires 59 + 59 steps

Document per hour (by second)

15/29 Paolo Gallo Managing Time Series with MongoDB

• Example: data generated every second
• For one minute:

• Document Per Event −→ 60 Writes
• Document Per Minute −→1 Write, 59 updates

• Transition from write driven to update driven
• individual writes are smaller
• performance and concurrency benefits

Characterizing write differences

16/29 Paolo Gallo Managing Time Series with MongoDB

• Example: data generated every second
• Reading data for a single hour requires:

• Document Per Event−→ 3600 reads
• Document Per Minute −→ 60 reads

• Read performance is greatly improved:
• optimal with tuned block and read ahead
• fewer disks seeks

Characterizing read differences

17/29 Paolo Gallo Managing Time Series with MongoDB

• _id index for 1 billion events:
• Document Per Event−→ 32 Gb
• Document Per Minute−→ 0.5 Gb

• _id index plus segId and ts index:
• Document Per Event−→ 100Gb
• Document Per Minute−→ 2 Gb

• memory requirements significantly reduced:
• fewer shards
• lower capacity servers

Characterizing memory differences

18/29 Paolo Gallo Managing Time Series with MongoDB

• Writes:
• 16.000 sensors, 1 update per minute
• 16.000 / 60 = 267 updates per second

• Reads:
• 5 millions simultaneous users
• Each request data for 50 sensors per minute

Quick analysis

19/29 Paolo Gallo Managing Time Series with MongoDB

Reads: impacts of alternative schemas

20/29 Paolo Gallo Managing Time Series with MongoDB

Writes: impacts of alternative schemas

21/29 Paolo Gallo Managing Time Series with MongoDB

Query: two indexes required

22/29 Paolo Gallo Managing Time Series with MongoDB

Memory: impacts of alternative schemas

23/29 Paolo Gallo Managing Time Series with MongoDB

Document structure (one doc for hour)

24/29 Paolo Gallo Managing Time Series with MongoDB

Document structure (Sample Index)

25/29 Paolo Gallo Managing Time Series with MongoDB

Sample index: range query

26/29 Paolo Gallo Managing Time Series with MongoDB

Preallocate data

27/29 Paolo Gallo Managing Time Series with MongoDB

Chart

28/29 Paolo Gallo Managing Time Series with MongoDB

Rollup

29/29 Paolo Gallo Managing Time Series with MongoDB

	Introduction
	Schema design(s)
	Impact on requirements and performances

