
DMIF, University of Udine

Introduction to
MongoDB 4

Paolo Gallo
paolo.gallo@uniud.it

May 31, 2021

1 Overview of MongoDB

2 MongoDB Data Structures

3 MongoDB Indexes

4 Replication

5 Sharding

6 Bibliography

Outline

2/72 Paolo Gallo Introduction to MongoDB 4

Overview of MongoDB

MongoDB is a radical departure from relational databases as
defined by Dr. Edgar F. Codd in his paper A Relational Model of
Data for Large Shared Data Banks, published in 1970.

The first version of MongoDB was introduced in 2009 by a
company named 10gen (now MongoDB Inc.)

Main goal was to address some needs about handling big data
and modelling objects that were not yet available in RDBMS.

MongoDB Origins

4/72 Paolo Gallo Introduction to MongoDB 4

MongoDB is probably one of the world’s most popular NoSQL
database, in particular it is a document oriented database

Most companies use MongoDB in different application
scenario, from IoT to Web:

MongoDB Today

5/72 Paolo Gallo Introduction to MongoDB 4

Mongo DB aims at facing challenges in Big Data management
like:

• Volume: scale of data

• Velocity: analyses of streaming data

• Variety: different forms of data

• ...

The V’s of Big Data

6/72 Paolo Gallo Introduction to MongoDB 4

RDBMS systems are designed to maximise storage, an
expensive resource 50 years ago.

RDBMS provide flexibility by creating relations between tables,
but normalisation may introduce overheads when handling big
data.

MongoDB addresses the needs of big data:
• avoiding a fixed data model
• parallel distributed processing algorithms such as

MapReduce
• sharding allows fragments of a database to be stored on

different servers

Handling big data

7/72 Paolo Gallo Introduction to MongoDB 4

IBM launched the first
5 Mb data storage in 1956.

Warning

Please note that RDBMS are still widely used today and they’re
the most preferable choice for many applications.

Even if newer technologies, conceptually far from RDBMS, are
available, a preliminary design process must find out out
which technology suits better for a specific application.

Features supported by any RDBMS are simply not supported in
MongoDB and vice versa

The newer the better ?

9/72 Paolo Gallo Introduction to MongoDB 4

MongoDB Data Structures

NoSQL databases use other modelling paradigms:
• Key/Value Data is stored as keys and values, like a

multidimensional array, values can be obtained by simply
referencing the key

• Document oriented Data is organised in documents,
eventually documents can contain other documents in a
XML fashion

• Column Oriented exploits the benefits from the physical
storage in columns rather than in records

• Graph A database where basic entities are represented as
nodes connected by edges, additional properties can be
associated to both above entities

What is NoSQL?

11/72 Paolo Gallo Introduction to MongoDB 4

JavaScript Object Notation (JSON) is an open, human and
machine-readable standard that, along with XML, facilitates
data interchange

MongoDB represents JSON documents in binary-encoded
format called BSON behind the scenes.

BSON extends the JSON model to provide additional data
types, ordered fields, and to be efficient for encoding and
decoding within different languages.

XML, JSON And BSON

12/72 Paolo Gallo Introduction to MongoDB 4

XML is Like JSON Because:

• both are "self describing" (human readable)
• both are hierarchical (values within values)
• both can be parsed and used by lots of programming

languages
• both can be fetched with an XMLHttpRequest

XML Is Like JSON

13/72 Paolo Gallo Introduction to MongoDB 4

JSON is Unlike XML Because:

• JSON doesn’t use end tag
• JSON is shorter (compact in size)
• JSON is quicker to read and write
• JSON can use arrays
• XML has to be parsed with an XML parser. JSON can be

parsed by a standard JavaScript function.

JSON Is Unlike XML

14/72 Paolo Gallo Introduction to MongoDB 4

XML & JSON Example

15/72 Paolo Gallo Introduction to MongoDB 4

JSON Value Structure

16/72 Paolo Gallo Introduction to MongoDB 4

• A BSON data structure is an ordered object, JSON objects
are not

• BSON does not require field names to be unique, JSON
fields are unique

• BSON supports additional data types such as binary data
(32-bit and 64-bit integers, floats, and Decimals), in JSON
type Number is a double floating point

• MongoDB has defined comparison and sort order rules for
BSON values

BSON vs. JSON

17/72 Paolo Gallo Introduction to MongoDB 4

• String UTF-8 (string)
• Integer 32-bit (int32)
• Integer 64-bit (int64)
• Floating point (double)
• Document (document)
• Array (document)
• Binary data (binary)
• Boolean false (\x00 or byte 0000 0000)
• Boolean true (\x01 or byte 0000 0001)
• UTC datetime (int64)—the int64 is UTC milliseconds since

the Unix epoch

BSON Data Types I

18/72 Paolo Gallo Introduction to MongoDB 4

• Timestamp (int64)—this is the special internal type used
by MongoDB replication and sharding; the first 4 bytes are
an increment, and the last 4 are a timestamp

• Null value ()
• Regular expression (cstring)
• JavaScript code (string)
• JavaScript code w/scope (code_w_s)
• Min key()—the special type that compares a lower value

than all other possible BSON element values
• Max key()—the special type that compares a higher value

than all other possible BSON element values
• ObjectId (byte*12)

BSON Data Types II

19/72 Paolo Gallo Introduction to MongoDB 4

In order to model data in MongoDB, some constraints must be
satisfied:

• Maximum length for a BSON document is 16 MB, for
bigger sizes a GridFS must be used

• The _id field is reserved for a primary key
• Besides default ObjectID _id, any value can be used as

long it is unique (except arrays)
• A name cannot start with the character $
• A name cannot have a null character, or (.)

Document Characteristics

20/72 Paolo Gallo Introduction to MongoDB 4

MongoDB RDBMS Example

Collection Table

Document Row

Field Column

Documents, collections, and database

21/72 Paolo Gallo Introduction to MongoDB 4

Normalisation is a fundamental process to help build relational
data models: from the basic 1NF (first normal form), onto the
2NF, 3NF, and BCNF

To minimise redundancy, we divide larger tables into smaller
ones and define relationships among them

Creating a reference in MongoDB is a way to "normalise" our
model and represent relationships between documents

Dealing With Redundancy

22/72 Paolo Gallo Introduction to MongoDB 4

Using references (DBRefs), it is possible to create a series of
related collections in order to establish a normalised data
model.

References

23/72 Paolo Gallo Introduction to MongoDB 4

Forcing a highly-normalized solution on a MongoDB dataset,
basically defeat the purpose of using a NoSQL database.

MongoDB does not support joins, while using references, you
must perform at least two queries to get the whole information

DBRefs are not like foreign keys in RDBMS

If your database driver didn’t provide support for DBRefs, you
are forced to write code to traverse the references manually.

This introduces the very overhead you wanted to avoid by
choosing MongoDB in the first place!

JOINS do exist in MongoDB ?

24/72 Paolo Gallo Introduction to MongoDB 4

A suitable NoSQL data-modelling solution would be simply to
collapse the normalised relationships and fold the related
information into embedded documents.

With respect to the previous example, the solution would
appear as follows:

Embedded documents

25/72 Paolo Gallo Introduction to MongoDB 4

Modeling application data for MongoDB should consider
various operational factors

Different data models can allow for more efficient queries,
increase the throughput of insert and update operations, or
distribute activity to a sharded cluster more effectively

Hint
When developing a data model, there is the need to analyze all
of application’s read and write operations in conjunction with
atomicity, sharding, indexing, large number of collections

Operational Factors and Data Models

26/72 Paolo Gallo Introduction to MongoDB 4

• RDBMS are guaranteeing ACID (Atomicity, Consistency,
Isolation, and Durability) properties

• In case of distibuted datasets it holds the CAP
(Consistency, Availability and Partition Tolerance) theorem

• BASE (Basically Available, Soft state, Eventual consistency)

Transactions

27/72 Paolo Gallo Introduction to MongoDB 4

A write operation is atomic on the level of a single document in
MongoDB, even if the operation involves embedded
documents within

If atomicity is required for updates to multiple documents (or
consistency between reads to multiple documents), MongoDB
provides multi-document transactions in an “all-or-nothing”
proposition from version 4.0

Multi-document transactions are available for replica sets only,
while for sharded clusters are scheduled for MongoDB 4.2

Atomicity

28/72 Paolo Gallo Introduction to MongoDB 4

Designing a schema for managing data using a document must
be aware of:

• Whether consistency is the priority

• Whether read is the priority

• Whether write is the priority

• What update queries we will make

• Document growth

Common Design Patterns

29/72 Paolo Gallo Introduction to MongoDB 4

customer
{

" _id " : 5478329 cb9617c750245893b
" username " : " John Clay " ,
" email " : " johnclay@crgv . com " ,
" password " : " bf383e8469e98b44895d61b821748ae1 "

}
customerDetai ls
{

" customer_id " : "5478329 cb9617c750245893b " ,
" firstName " : " John " ,
" lastName " : " Clay " ,
" gender " : " male " ,
" age " : 25

}

One To One - Referenced Data

30/72 Paolo Gallo Introduction to MongoDB 4

customer
{

_id : 1
" username " : " John Clay " ,
" email " : " johnclay@crgv . com " ,
" password " : " bf383e8469e98b44895d61b821748ae1 "
" d e t a i l s " : {

" firstName " : " John " ,
" lastName " : " Clay " ,
" gender " : " male " ,
" age " : 25

}
}

One To One - Embedded Data

31/72 Paolo Gallo Introduction to MongoDB 4

customer
{ _id : 1

" username " : " John Clay " ,
" email " : " johnclay@crgv . com " ,
" password " : " bf383e8469e98b44895d61b821748ae1 "
" d e t a i l s " : {

" firstName " : " John " ,
" lastName " : " Clay " ,
" age " : 25 }

}
address
{

_id : 1 ,
" s t r e e t " : " Address 1 , 1 11 " ,
" c i t y " : " City One " ,
" type " : " b i l l i n g " ,
" customer_id " : 1

}
{

_id : 2 ,
" s t r e e t " : " Address 2 , 2 22 " ,
" c i t y " : " City Two" ,
" type " : " shipping " ,
" customer_id " : 1

}
{

_id : 3 ,
" s t r e e t " : " Address 3 , 3 33 " ,
" c i t y " : " City Three " ,
" type " : " shipping " ,
" customer_id " : 1

}

One To Many - Referenced Data

32/72 Paolo Gallo Introduction to MongoDB 4

customer
{

_id : 1
" username " : " John Clay " ,
" email " : " johnclay@crgv . com " ,
" password " : " bf383e8469e98b44895d61b821748ae1 "
" d e t a i l s " : {

" firstName " : " John " ,
" lastName " : " Clay " ,
" gender " : " male " ,
" age " : 25

}
" b i l l ingAddress " : [{

" s t r e e t " : " Address 1 , 1 11 " ,
" c i t y " : " City One " ,
" type " : " b i l l i n g " ,

}] ,
" shippingAddress " : [{

" s t r e e t " : " Address 2 , 2 22 " ,
" c i t y " : " City Two" ,
" type " : " shipping "

} , {
" s t r e e t " : " Address 3 , 3 33 " ,
" c i t y " : " City Three " ,
" type " : " shipping "

}]
}

One To Many - Embedded Data

33/72 Paolo Gallo Introduction to MongoDB 4

In the relational model, this kind of relationship is often
represented as a join table while, in the non-relational one, it
can be represented in many different ways
user
{

_id : "5477 fdea8ed5881af6541bf1 " ,
" username " : " user_1 " ,
" password " : "3 f49044c1469c6990a665f46ec6c0a41 "

}

{
_id : "54781 c7708917e552d794c59 " ,
" username " : " user_2 " ,
" password " : "15 e1576abc700ddfd9438e6ad1c86100 "

}

group
{

_id : "54781 cae13a6c93f67bdcc0a " ,
"name " : " group_1 "

}

{
_id : "54781 d4378573ed5c2ce6100 " ,
"name " : " group_2 "

}

Many To Many

34/72 Paolo Gallo Introduction to MongoDB 4

user
{

(unchanged)
}
group
{

_id : "54781 cae13a6c93f67bdcc0a " ,
"name " : " group_1 " ,
" users " : [{

_id : "54781 c7708917e552d794c59 " ,
" username " : " user_2 " ,
" password " : "15 e1576abc700ddfd9438e6ad1c86100 "

}]
}
{

_id : "54781 d4378573ed5c2ce6100 " ,
"name " : " group_2 " ,
" users " : [{

_id : "5477 fdea8ed5881af6541bf1 " ,
" username " : " user_1 " ,
" password " : "3 f49044c1469c6990a665f46ec6c0a41 "

} , {
_id : "54781 c7708917e552d794c59 " ,
" username " : " user_2 " ,
" password " : "15 e1576abc700ddfd9438e6ad1c86100 "

}]
}

Many To Many - Embed Data (1)

35/72 Paolo Gallo Introduction to MongoDB 4

user
{

_id : "5477 fdea8ed5881af6541bf1 " ,
" username " : " user_1 " ,
" password " : "3 f49044c1469c6990a665f46ec6c0a41 " ,
" groups " : [

{
_id : "54781 cae13a6c93f67bdcc0a " ,
"name " : " group_1 "

} ,
{

_id : "54781 d4378573ed5c2ce6100 " ,
"name " : " group_2 "

}
]

}
{

_id : "54781 c7708917e552d794c59 " ,
" username " : " user_2 " ,
" password " : "15 e1576abc700ddfd9438e6ad1c86100 " ,
" groups " : [

{
_id : "54781 d4378573ed5c2ce6100 " ,
"name " : " group_2 "

}
]

}
group
{

(unchanged)
}

Many To Many - Embed Data (2)

36/72 Paolo Gallo Introduction to MongoDB 4

user
{

_id : "5477 fdea8ed5881af6541bf1 " ,
" username " : " user_1 " ,
" password " : "3 f49044c1469c6990a665f46ec6c0a41 " ,
" groups " : ["54781 cae13a6c93f67bdcc0a " , "54781 d4378573ed5c2ce6100 "]

}
{

_id : "54781 c7708917e552d794c59 " ,
" username " : " user_2 " ,
" password " : "15 e1576abc700ddfd9438e6ad1c86100 " ,
" groups " : ["54781 d4378573ed5c2ce6100 "]

}

group
{

_id : "54781 cae13a6c93f67bdcc0a " ,
"name " : " group_1 " ,
" users " : [" 5 4 7 7 fdea8ed5881af6541bf1 "]

}
{

_id : "54781 d4378573ed5c2ce6100 " ,
"name " : " group_2 " ,
" users " : [" 5 4 7 7 fdea8ed5881af6541bf1 " , "54781 c7708917e552d794c59 "]

}

Many To Many - Embed Data (3)

37/72 Paolo Gallo Introduction to MongoDB 4

MongoDB Indexes

Indexes improve MongoDB performance at the collection level
avoiding full scan

Indexes in MongoDB are similar to indexes in other database
systems and are defined at the collection level objects

There are thee types of indexes in MongoDB: single filed,
compound, multi-key, each can be ascending or descending

Indexes

39/72 Paolo Gallo Introduction to MongoDB 4

Single field indexes speed up operations that involve a
particular (single) field

Tip

For single-field index and sort operations, the sort order (i.e.
ascending or descending) does not matter because MongoDB
can traverse the index in either direction

Single Field Indexes

40/72 Paolo Gallo Introduction to MongoDB 4

Compound indexes are useful to index more than one field

Warning

For compound indexes and sort operations, the sort order (i.e.
ascending or descending) of the index keys can determine
whether the index can support a sort operation.

Compound Indexes

41/72 Paolo Gallo Introduction to MongoDB 4

Multikey indexes are for content stored in array, separate index
entries are created for every element of the array

Multi-key Indexes

42/72 Paolo Gallo Introduction to MongoDB 4

• A text index of a string or an array of string fields can be
created in a collection

• Only one text index per collection can exist
• It is possible to create a compound text index
• Index build process can be split it into three phases:

• Tokenization
• Removal of suffix and/or prefix, or stemming
• Removal of stop words

Text Indexing

43/72 Paolo Gallo Introduction to MongoDB 4

The wildcard specifier ($**) creates a text index on multiple
fields, MongoDB indexes every field that contains string data
for each document in the collection

Wildcard text indexes are text indexes on multiple fields, it is
possible to assign weights to specific fields during index
creation to control the ranking of the results

Hint
This index allows for text search on all fields with string
content, it can be useful with highly unstructured data if it is
unclear which fields to include in the text index or for ad-hoc
querying

Wildcard Text Indexes

44/72 Paolo Gallo Introduction to MongoDB 4

• The time to live (TTL) index is an index based on lifetime
• They cannot be compound and they will be automatically

removed from the document after a given period of time
• MongoDB is responsible for controlling the documents’

expiration through a background task at intervals of 60
seconds

Hint
Useful for applications that use machine-generated events, logs
and session information, which need to be persistent only
during a given period of time

Time To Live Indexes

45/72 Paolo Gallo Introduction to MongoDB 4

To support efficient queries of geospatial coordinate data,
MongoDB provides two special indexes:

• 2d indexes that uses planar geometry when returning
results

• 2d sphere indexes that use spherical geometry to return
results

Geospatial Indexes

46/72 Paolo Gallo Introduction to MongoDB 4

In the RDBMS, it is a good practice to define one or more
columns as the primary key in order to identify a given row
uniquely.

In MongoDB a unique identifying field _id is automatically
inserting a document into a collection.

This field comprises an ObjectId instance and uses a
combination of factors to guarantee uniqueness.

Unique Indexes

47/72 Paolo Gallo Introduction to MongoDB 4

ObjectId are likely unique, fast to generate, and ordered.

ObjectId values consist of 12 bytes, where the first four bytes
are a timestamp that reflect the ObjectId’s creation:

• a 4-byte value representing the seconds since the Unix
epoch

• a 5-byte random value
• a 3-byte counter, starting with a random value

Unique Indexes - Default ObjectId

48/72 Paolo Gallo Introduction to MongoDB 4

In MongoDB the default identifying field _id is an ObjectId:

_id as ObjectId

{ "_id": ObjectId("570c04a4ad233577f97dc459"),
"temperature": [22, 12, 30] }

Anyway, it is possible to set a custom default index:

_id as integer

{ "_id": 20180106,
"temperature": [22, 12, 30] }

Unique Indexes - Custom Default Index

49/72 Paolo Gallo Introduction to MongoDB 4

Replication

Replication is needed to provide immediate redundancy to
avoid loss of services in case of failure

A replica set is one or more MongoDB daemon instances (or
nodes), with the same data.

One of the nodes is elected to intercept all reads and writes. This
node is referred to as the primary

Replication

51/72 Paolo Gallo Introduction to MongoDB 4

Replication Example - 1

52/72 Paolo Gallo Introduction to MongoDB 4

Replication Example - 2

53/72 Paolo Gallo Introduction to MongoDB 4

Replication Example - 3

54/72 Paolo Gallo Introduction to MongoDB 4

Sharding

Replication provides redundancy of data while sharding
provides horizontal scaling

Instead of a single, very powerful, server (vertical scaling), data
is spread across a cluster made with multiple servers (cloud
environment)

Each server is then able to handle its own database tasks, in this
way it is possible to handle massive amounts of data

Sharding

56/72 Paolo Gallo Introduction to MongoDB 4

Sharding Example

57/72 Paolo Gallo Introduction to MongoDB 4

Sharding in MongoDB operates at the collection level by
partitioning it into several chunks of configurable size (up to 64
Mb)

Chunks are distributed across the shards on the basis of the
Shard Key

A database can have a mixture of sharded and unsharded
collections

Sharding Technique

58/72 Paolo Gallo Introduction to MongoDB 4

MongoDB balancer is a (trasparent) process monitoring the
number of chunks on each shard

If the number of chunks on a given shard reaches a thresholds,
chunks are automatically migrated between shards to reach an
equal number of chunks per shard.

Sharded Cluster Balancer

59/72 Paolo Gallo Introduction to MongoDB 4

Shard Example (Ranged)

60/72 Paolo Gallo Introduction to MongoDB 4

The shard key is a document field(s) used by MongoDB to
distribute documents between the shards

The chosen field must be:
• immutable (cannot be updated once written)
• must exist in every single document
• unique within a collection (one and only)
• once selected it cannot be substitute by another field

Important

A sharded collection can grow to any size after successful
sharding

Choosing a Shard Key

61/72 Paolo Gallo Introduction to MongoDB 4

Shard keys are chosen based on the following criteria:

• Cardinality: Number of elements in a set (maximum
number of chunks)

• Frequency: How often a given value occurs in the data (low
frequency equals low distribution)

• Monotonically Changing : How the elements in the set are
added to or removed from this set (avoid outermost-only
operations)

Hint
It is possible to create a new field which could be a combination
of some other field and use it as shard key.

Shard Key Criteria

62/72 Paolo Gallo Introduction to MongoDB 4

Basically MongoDB offers three sharding strategies:

• Ranged sharding
• Hashed sharding
• Zoned Sharding

The choice of strategy depends heavily on the shard key chosen
and it will allow MongoDB to distribute documents evenly
throughout the sharded cluster

Sharding Strategies

63/72 Paolo Gallo Introduction to MongoDB 4

Ranged sharding strategy, the default, distributes documents
into chunks based on the value of the shard key. The chunks
are then automatically distributed across the sharded cluster by
the balancer.

Ranged sharding is recommended if the shard key has the
following characteristics:

• High cardinality
• Low Frequency
• Low Monotonically Changing

Ranged Sharding

64/72 Paolo Gallo Introduction to MongoDB 4

A range of shard keys whose values are “close” are more likely
to reside on the same chunk.

Tip

This allows for targeted operations as MongoDB can route the
operations to only the shards that contain the required data.

Ranged Sharding Example

65/72 Paolo Gallo Introduction to MongoDB 4

Hashed Sharding ensures an even distribution of data across
shards, but by loosing the ability to target specific shards
knowing the contents of the shard key field.

Use hashed sharding if your shard key has either of the
following characteristics:

• Low Cardinality
• High Monotonically Changing

Hashed Sharding

66/72 Paolo Gallo Introduction to MongoDB 4

Hashed sharding uses a hashed index to partition data across
shared cluster, documents with “close” shard key values are
unlikely to be on the same chunk or shard

Tip

MongoDB automatically computes the hashes when resolving
queries using hashed indexes

Hashed Sharding Example

67/72 Paolo Gallo Introduction to MongoDB 4

In sharded clusters zones of sharded data based on the shard
key can be created.

A zone can be associated with one or more shards in the cluster,
and shard can associate with any number of zones.

Applications:
• isolate a specific subset of data on a specific set of shards.
• ensure that the most relevant data reside on shards that are

geographically closest to the application servers.
• route data to shards based on the hardware/performance

of the shard hardware.

Zoned Sharding

68/72 Paolo Gallo Introduction to MongoDB 4

Example use cases for segmenting data by geographic area:
• An application requires segmenting user data based on

geographic country
• A database requires resource allocation based on

geographic country

Zones: Segmenting Data by Location

69/72 Paolo Gallo Introduction to MongoDB 4

Examples of use cases for segmenting data based on Service
Level Agreement (SLA) or Service Level Objective (SLO):

• providing low-latency access to recently inserted /
updated documents

• providing low-latency access to recently inserted /
updated documents

• ensuring specific ranges or subsets of data are stored on
servers with hardware that suits the SLA’s for accessing
that data

Zones: Tiered HW for Varying SLA or SLO

70/72 Paolo Gallo Introduction to MongoDB 4

An example of photo sharing application requiring fast access
to photos uploaded within the last 6 months

Zones for SLA Example

71/72 Paolo Gallo Introduction to MongoDB 4

Doug Bierer (2018). MongoDB 4 Quick Start Guide. Packt
Publishing Ltd.

Alex Giamas (2017). Mastering MongoDB 3.x. Apress.
MongoDB Architecture Guide (2018). MongoDB, Inc.
Wilson da Rocha França (2015). MongoDB Data Modeling. Packt

Publishing Ltd.
The MongoDB 4.0 Manual (2018). MongoDB, Inc.

Bibliography

72/72 Paolo Gallo Introduction to MongoDB 4

	Overview of MongoDB
	MongoDB Data Structures
	MongoDB Indexes
	Replication
	Sharding
	Bibliography
	References

