Distributed DBMS reliability

Dario Della Monica

These slides are a modified version of the slides provided with the book

Ozsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

The original version of the slides is available at: extras.springer.com

Distributed DBMS © M. T. Ozsu & P. Valduriez (@121l

Outline (distributed DB)

® Introduction (Ch. 1) *

® Distributed Database Design (Ch. 3) *

® Distributed Query Processing (Ch. 6-8) *
y &

® Distributed Transaction Management (Ch. 10-12) *
— Introduction to transaction management (Ch. 10) *
— Distributed Concurrency Control (Ch. 11)*
— Distributed DBMS Reliability (Ch. 12) *

* Bzsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/2

Outline (today)

® Distributed DBMS Reliability (Ch. 12) *

— Introduction and local reliability protocols

— Distributed reliability protocols

+ Two-phase commit (2PC) protocol

* Bzsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/3

Reliability

Problem:
How to maintain
atomicity
durability

properties of transactions

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.10/4

Fundamental Definitions

® Reliability

— A measure of success with which a system conforms to some authoritative
specification of its behavior

® Availability
— The fraction of the time that a system meets its specification
® Failure

— The deviation of a system from the behavior that is described in its
specification

Distributed DBMS © M. T. Ozsu & P. Valduriez (@ouil2)//5

Types of Failures

® Transaction failures
— Transaction aborts (unilaterally or due to deadlock)
¢ System (site) failures
— Failure of processor, main memory, power supply, ...
— Main memory contents are lost, but secondary storage contents are safe
— Partial (some sites) vs. total (all sites) failure
® Media failures
— Failure of secondary storage devices such that the stored data is lost
— Head crash/controller failure (?)
— Permanent data loss (secondary, resilient, stable memory - hard disk)
® Communication failures
— Lost/undeliverable messages
— Network partitioning

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/6

Update Strategies

® In-place update
— Each update causes a change in one or more data values in the database

— More efficient, more difficult to undo

® Out-of-place update

— Each update causes the new value(s) of data item(s) to be stored separately
from the old value(s)

— Less efficient, easy to undo

Distributed DBMS © M. T. Ozsu & P. Valduriez (@ou1l2)/7/

In-Place Update Recovery
Information

Database Log

Every action of a transaction must not only perform the action, but must also
write a log record to an append-only file.

Old New
stable database Upda’.ce e Stable database
state Operatlo state
Database
Log

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/8

Logging

The log contains information used by the recovery process to restore the
consistency of a system. This information may include

— transaction identifier

— type of operation (action)

— items accessed by the transaction to perform the action
— old value (state) of item (before image)

— new value (state) of item (after image)

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/9

Why Logging?

Upon recovery:

— all of T;'s etfects should be reflected in the database (REDO if necessary due to
a failure)

— none of T,'s effects should be reflected in the database (UNDO if necessary)

system
crash
Begin T End

Begin T,

0 t time

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/10

REDO Protocol

Old New
stable database g d stable database
state state

Database

Log

® REDO'ing an action means performing it again
® The REDO operation uses the log information

® REDO is needed when effects of a committed transaction were not stored yet in
secondary (stable, resilient) memory

— sometimes for efficiency reasons storying information to disk (secondary memory) is
done at a later time

Distributed DBMS © M. T. Ozsu & P. Valduriez Chil2/4ll

UNDO Protocol

New Old
stable database pEE— = stable database
state state
A

Database

Log

® UNDO'ing an action means to restore the object to its before image
® The UNDO operation uses the log information

® UNDO is needed when effects of a transaction are stored in secondary (stable,
resilient) memory and then an abort occurs

— sometimes to free main memory, information is stored to disk (secondary memory)
before commit

Distributed DBMS © M. T. Ozsu & P. Valduriez Chi12/412)

When to Write Log Records Into
Stable Store

Assume a transaction T updates a page P
® Fortunate case

— System writes P in stable database

— System updates stable log for this update

— SYSTEM FAILURE OCCURS!... (before T'commits)

We can recover (undo) by restoring P to its old state by using the log
® Unfortunate case

— System writes P in stable database

— SYSTEM FAILURE OCCURS!... (before stable log is updated)

We cannot recover from this failure because there is no log record to
restore the old value.

® Solution: Write-Ahead Log (WAL) protocol

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/13

Write—Ahead Log Protocol

® Notice:

— If a system crashes before a transaction is committed, then all the operations
must be undone. Only need the before images (undo portion of the log)

— Once a transaction is committed, some of its actions might have to be redone.
Need the after images (redo portion of the log)

®* WAL protocol :

O Before a stable database is updated, the undo portion of the log should be
written to the stable log

® When a transaction commits, the redo portion of the log must be written to
stable log prior to the updating of the stable database.

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/14

Execution of Commands

Commands to consider:

begin_transaction a7

read | Independent of execution
strategy for LRM

write
abort
commit

recover

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/15

Execution Strategies

® Dependent upon

— Can the buffer manager (BM) decide to write some of the buffer pages being accessed by
a transaction into stable storage or does it wait for LRM to instruct it?

+ fix/no-fix decision (fix means BM cannot store the data into disk before commit)
(no-fix means BM can store data to disk before commit)

— Does the LRM force the buffer manager to write certain buffer pages into stable
database at the end of a transaction's execution?

+ flush/no-flush decision (flush means BM cannot wait; it must store data into disk at commit)
(no-flush means BM can wait; it can store data into disk at a later time)
® Possible execution strategies:
— no-fix/no-flush
— no-fix/flush
— fix/no-flush

— fix/flush

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/16

No-Fix/No-Flush

® Abort

— Buffer manager may have written some of the updated pages into stable
database (second memory, disk)

— LRM performs transaction undo

¢ Commit
— LRM writes an “end_of_transaction” record into the log
— Data not necessarily written into disk

® Recover

— For those transactions that have both a “begin_transaction” and an
“end_of_transaction” record in the log, a redo is initiated by LRM

— For those transactions that only have a “begin_transaction” in the log, an
undo is executed by LRM

Distributed DBMS © M. T. Ozsu & P. Valduriez (@0vil2/117

No-Fix/Flush

® Abort

— Buffer manager may have written some of the updated pages into stable
database (second memory, disk)

— LRM performs transaction undo
¢ Commit
— LRM issues a f1ush command to the buffer manager for all updated pages
4+ 1.e., data is stored into disk at time of commit
— LRM writes an “end_of_transaction” record into the log
® Recover
— No need to perform redo

— Perform undo

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/18

Fix/No-Flush

® Abort

— None of the updated pages have been written into stable database
— Release the f1xed pages
¢ Commit
— LRM writes an “end_of_transaction” record into the log
— Data not necessarily written into disk

— LRM sends an unfix command to the buffer manager for all pages that were
previously fixed

® Recover
— Perform redo

— No need to perform undo

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/19

Fix/Flush

® Abort
— None of the updated pages have been written into stable database
— Release the f1xed pages

® Commit (the following have to be done atomically)

— LRM issues a T1ush command to the buffer manager for all updated pages
4+ 1.e., data is stored into disk at time of commit

— LRM sends an unfix command to the buffer manager for all pages that were
previously fixed

— LRM writes an “end_of_transaction” record into the log
® Recover

— No need to do anything

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/20

Checkpoints

¢ Simplifies the task of determining actions (of transactions) that need to be
undone or redone when a failure occurs

— Avoid scanning the whole log

® A checkpoint identify a consistent state of the DB

® Steps to create a checkpoint:
© Write a begin_checkpoint record into the log
® Collect the checkpoint data into the stable storage (log and actual DB data)

® During this phase stop accepting new transactions, complete all currently active
ones

® Write an end_checkpoint record into the log

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/21

Media Failures — Full Architecture

Secondary
storage

Main memory

Local Recovery
Manager S

>
l Fetch, < x&

Flush \Q&
Read [Database Buffer) Read
—>

Write b IR Write

Write Write

S O

Archive Archive
database log

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/22

Distributed Reliability Protocols

¢ Commit protocols

— How to execute commit command for distributed transactions
— Issue: how to ensure atomicity and durability?

Termination protocols

— If a failure occurs, how the remaining operational sites behave

— Non-blocking : the occurrence of failures should not force the sites to wait until
the failure is repaired to terminate the transaction

Recovery protocols

— When a failure occurs, how the sites where the failure occurred behave after
they are back on

— Independent : a failed site can determine the outcome of a transaction without
having to obtain remote information.

Independent recovery = non-blocking termination

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/23

Two-Phase Commit (2PC)

— Coordinator :The process at the site where the transaction originates and
which controls the execution

— Participant :The process at the other sites that participate in executing the
transaction

Phase 1 : The coordinator gets the participants ready to commit or abort and
collects their reply

Phase 2 : The coordinator decides global-abort/ global-commit depending on
participants’ replies, communicate the decision to them, and waits for ack’s

Global Commit Rule:
® The coordinator aborts a transaction if and only if at least one participant
votes to abort it

® Equivalently: The coordinator commits a transaction if and only if all of the
participants vote to commit it

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/24

2PC Protocol Actions

Coordinator

write

begin_commit

in log

Participant

write abort
in log

VOTE-COMMIT

INITIAL

write commit

in log

N\

write abort

write ready
in log

GLOBAL-ABORT

L &

in log

IT

GLOBAL’COMMH

l Commit

write

end_of transaction

in log

&
e
(o]
s
o)
s
ACK 5 l
write abort
in 1
ACK mos

write commit
in log

ABORT

Distributed DBMS

© M. T. Ozsu & P. Valduriez

v

Ch.12/25

Centralized 2PC

l
SRS - SN
ol

e R l B
vote-commit/
prepare

global-commit/
| . vote-abort global-abort lcommlted/ aborted
! 1

Phase 1 Phase 2

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/26

Linear 2PC

Phase 1

Prepare VC/VA VC/VA VC/VA VC/VA

v v v v v
1 2 3 4 5 N

; t t 1 Sl e
ECENGEE/EANERCE (AL cd/c S S e qlien

Phase 2

VC: Vote-Commit, VA: Vote-Abort, GC: Global-commit, GA: Global-abort

Distributed DBMS © M. T. Ozsu & P. Valduriez Chi12/o7

Distributed 2PC

Coordinator Participants Participants

global-commit/

lobal-abort
vote-abort/ ecision made

prepare vote-commit mde‘pendently

Phase 1 Phase 2

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/28

Variations of 2PC

® Presumed abort 2PPC and presumed commit 2PC

® Coordinator and participant may assume global-abort or global-commit if they
do not get communication

— Reduced communication

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/29

State Transitions in 2PC

Commit command

Prepare Prepare
Vote-abort

Prepare
Vote-commit

Global—aboi/ !Global—commit

Vote-abort
Global-abort

Vote-commit
Global-commit

Ack Ack

Coordinator Participants

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/30

Site Failures - 2PC Termination

® Timeout in WAIT
— Cannot unilaterally commit
— Can unilaterally abort
¢ Timeout in ABORT or COMMIT
— Stay blocked and wait for the acks

— Repeatedly send “global-commit” or
“global-abort” to unresponsive
participants

COORDINATOR

Commit command

Prepare

Vote-commit
Global-commit

Vote-abort
Global-abort

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/31

Site Failures - 2PC Termination

® Timeout in INITIAL PARTICIPANTS

— Coordinator must have failed in
INITIAL state

— Unilaterally abort
® Timeout in READY v Fre%aret
ote-abor
— Stay blocked

— Repeatedly send “vote-commit”to
coordinator

Prepare
Vote-commit

® If participants can communicate, they
can resolve blocked situations. Assume
P; timed out in READY and it asks to P,

— P;in INITIAL: P; abort
— P;in READY: nothing can be done

— P;in ABORT/COMMIT: P; send “vote-
commit” /”vote-abort to P;

Global-commit
Ack

Global—abort/

Ack /

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch:i12//82)

Re-election of the coordinator

® If participants can communicate ...
® ... and all of them know that the coordinator site is the only failing one
® then another coordinator is elected and the protocol is re-started
— FElection by ordering participants or by any voting procedure
® Does not work if a participant site fails besides the coordinator. Indeed:
— Participant receive communication from coordinator
— Participant terminate transaction accordingly
— Participant and coordinator sites both fail

— A new execution of the protocol among the remaining participants through re-
election of coordinator might lead to a different decision

® 2PC s a blocking protocol

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/33

Site Failures - 2PC Recovery

: : COORDINATOR
® Failure in INITTAL
— Start the commit process upon recovery
® Failure in WAIT
— Restart the commit process upon recovery . . 4
® Failure in ABORT/COMMIT BT
— Nothing special if all the acks have been
received
— Otherwise invoke the termination N] Vote-commit
protocol for timeout in ABORT/COMMIT Global-abort Global-commit

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/34

Site Failures - 2PC Recovery

® Failure in INITTAL
— Unilaterally abort upon recovery
® Failure in READY

— The coordinator has been informed
about the local decision

— Treat as timeout in READY state and
invoke the termination protocol

® Failure in ABORT or COMMIT

— Nothing special needs to be done

PARTICIPANTS

Prepare
Vote-commit

Prepare
Vote-abort @
Global-abor Global-commit

Distributed DBMS © M. T. Ozsu & P. Valduriez

Ch.12/35

2PC Recovery Protocols —
Additional Cases

Arise due to non-atomicity of log and message send actions
® Coordinator site fails after writing “begin_commit” log and before sending
“prepare” command

— treat it as a failure in WAIT state; invoke recovery protocol from WAIT (send
“prepare” command)

® Participant site fails after writing “ready” record in log but before “vote-
commit” is sent
— treat it as failure in READY state
— invoke recovery protocol from READY

® Participant site fails after writing “abort” record in log but before “vote-
abort” is sent
— no need to do anything upon recovery

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/36

2PC Recovery Protocols —
Additional Cases (cont'd)

® Coordinator site fails after logging its final decision record but before
sending its decision to the participants

— coordinator treats it as a failure in COMMIT or ABORT state

— participants treat it as timeout in the READY state

® Participant site fails after writing “abort” or “commit” record in log but
before acknowledgement is sent

— participants treat it as failure in COMMIT or ABORT state

+ send ACK message upon request
— coordinator will handle it by timeout in COMMIT or ABORT state

Distributed DBMS © M. T. Ozsu & P. Valduriez Chil2Ver

Problem With 2PC

® Blocking
— “Ready” state implies that the participant waits for the coordinator
— If coordinator fails, site is blocked until recovery
— Blocking reduces availability

® Independent recovery is not possible

® However, itis known that:

— Independent recovery protocols exist only for single site failures; no
independent recovery protocol exists which is resilient to multiple-site
failures.

¢ 3PC is non-blocking (for (single) site failures)
¢ Communication line failures (network partitioning) are more problematic

— No non-blocking protocol exists

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/38

More Problematic Failure Types

® We only considered failures of omission
— A message is not received, a site is unresponsive

® Failures of commissions
— Implementation errors (system does not work as expected): incorrect messages
— Malicious behaviors: a participant pretends to be the coordinator

— Addressed using byzantine agreement

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/39

