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These slides are a modified version of the slides provided with the book

Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

The original version of the slides is available at: extras.springer.com
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Outline (distributed DB)

• Introduction (Ch. 1) ⋆

•Distributed Database Design (Ch. 3) ⋆

•Distributed Query Processing (Ch. 6-8) ⋆

➡ Overview (Ch. 6) ⋆

➡ Query decomposition and data localization (Ch. 7) ⋆

➡ Distributed query optimization (Ch. 8) ⋆

•Distributed Transaction Management (Ch. 10-12) ⋆

⋆ Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011
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Outline (today)

•Distributed query optimization (Ch. 8) ⋆

➡ Overview

➡ Join Ordering in Localized Queries

➡ Semijoin-based Algorithm

➡ Distributed query optimization strategies

➡ Hybrid approaches

⋆ Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011
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Distributed Query Optimization

• In previous chapter (Ch. 7) ⋆:
➡ A distributed query is mapped into a query over fragments (decomposition and data localization)

➡ Simplification (“optimization”) independent from relation (fragment) statistics (e.g., cardinality)

• In this chapter (Ch. 8) ⋆:

➡ Optimization based on DB statistics (order of operations and operands, algorithm to perform simple 
operations) to produce a query execution plan (QEP)

✦ In the distributed case a QEP is further extended with communication operations to support execution 
of queries over fragment sites

➡ Once again: the problem is NP-hard, so not looking for the optimal solution

➡ Statement of the problem

✦ Input: Fragment query

✦ Output: the best (not necessarily optimal) global schedule

➡ Additional problems specific to the distributed setting

✦ Where to execute (partial) queries? Which relation to ship where?

✦ Choose between data transfer methods : ship-whole vs. fetch-as-needed

✦ Decide on the use of semijoins (semijoins save on communication at the expense of more local 
processing)

⋆ Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011
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Structure of the Optimizer

• Similar to the centralized case

➡ Solution space (aka search space)

✦ The set of equivalent QEP: algebra expressions enriched with implementation details and 
communication choices

➡ Cost model

✦ Cost prediction for local and global operations based on catalog statistics

✦ Cost function (in terms of time)

✓ I/O cost + CPU cost + communication cost

✓ These might have different weights in different distributed environments (LAN vs WAN)

✓ Can also maximize throughput

✓ In early approach only communication costs were considered; due to fast communication technology, 
communication and I/O costs become comparable

➡ Search algorithm (aka search strategy)

✦ How do we move inside the solution space?

✓ Exhaustive search, heuristic algorithms (iterative improvement, simulated annealing, genetic,…)

✦ Goal is finding a good strategy according to the cost model

• Difference between centralized and distributed settings: search space and cost model
(search strategy remains the same)
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Search Space

• Search space is large

➡ N relations         ((2(N-1))!)/((N-1)!) ⋆ equivalent join 
trees (by join commutativity and associativity)

➡ SELECT ENAME,RESP

FROM EMP, ASG,PROJ

WHERE EMP.ENO=ASG.ENO

AND ASG.PNO=PROJ.PNO

• Focus on join trees

•A difference

➡ A good heuristics for centralized context: left-deep 
trees

➡ In distributed context: non left-deep trees allow for 
parallelization

PROJ

ASGEMP

▷◁PNO

▷◁ENO

PROJ ASG

EMP▷◁PNO

▷◁ENO

PROJ

ASG

EMP

×

▷◁ENO,PNO

⋆ In Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011: it is said O(N!), which is incorrect
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Centralized vs. Distributed Query 
Optimization
•Relation between centralized and distributed query optimization

➡ Distributed query optimization (DQO) employs techniques and solutions 
from the centralized context

✦ A distributed query is translated into local ones (localized queries): centralized 
query optimization (CQO) techniques

✦ Distributed query optimization is a more general (and thus difficult) problem

✓ Most solution to DQO extend solutions to CQO

➡ We focus on communication costs (local CPU and I/O costs are ignored)

✦ Clearly, cost of localized queries (handled with CQO techniques) is computed as 
in the centralized case (mainly I/O costs)
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Join Ordering in Localized 
Queries
• Join ordering is important in centralized query optimization

• It is even more in distributed query optimization (reduce communication costs)

•Use of semijoins to reduce relation sizes (and thus communication costs) before 

performing join operations
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Join Ordering – 2 relations

R

if size(R) < size(S)

if size(R) > size(S)
S

•We assume query to be already localized (i.e., on fragments)

➡ Fragments are relations entirely stored at a single site

✦ We often use “fragments” and “relations” indistinguishably (no technical reason to 
distinguish them)

•We first focus on ordering issues without using semijoins

➡ Consider two relations only: R ⋈ S (R and S are at different sites)

✦ Move the smaller relation to the site of the larger one
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Join Ordering – Multiple 
Relations
•Multiple relations case: more difficult because too many alternatives

•Goal is still transmit small operands (relations)

➡ Compute the cost of all alternatives and select the best one

✦ Necessary to compute the size of intermediate relations which is difficult

✓ In distributed context it is even more because information may be not available on site
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Join Ordering – Example

Consider  PROJ ⋈PNO ASG ⋈ENO EMP Site 2

Site 3Site 1

PNOENO

PROJ

ASG

EMP

Join graph of distributed query

Execution alternatives:

1. EMP Site 2
Site 2 computes EMP'=EMP ⋈ ASG
EMP' Site 3
Site 3 computes EMP' ⋈ PROJ

2. ASG  Site 1
Site 1 computes EMP'=EMP⋈ ASG
EMP'  Site 3
Site 3 computes EMP’ ⋈ PROJ

3. ASG  Site 3
Site 3 computes ASG'=ASG ⋈ PROJ
ASG'  Site 1
Site 1 computes ASG' ▷◁EMP

4. PROJ  Site 2
Site 2 computes PROJ'=PROJ ⋈ ASG
PROJ'  Site 1
Site 1 computes PROJ' ⋈ EMP

5. EMP  Site 2
PROJ  Site 2
Site 2 computes EMP ⋈ PROJ ⋈ ASG
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Semijoin Algorithms

• Semijoins can be used to reduce the sizes of operands to transfer (similar to what 
selections do)

➡ Reduced communication costs

•Consider the join of two relations:

➡ R (at site 1)

➡ S (at site 2)

•Alternatives:

1. Do the join R ⋈AS

2. Perform one of the semijoin-based equivalent options

R⋈AS  (R ⋉AS) ⋈AS

 R ⋈A (S ⋉A R)

 (R ⋉A S) ⋈A (S ⋉A R)

Tradeoff between

a) cost to compute and send semijoin to other
site (and then perform the join there)

b) Cost to send the whole relation to other
site (and then perform the join there)
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Semijoin Algorithms – Example

•Perform the join

➡ Send R to Site 2

➡ Site 2 computes R ⋈A S

•Consider semijoin (R ⋉AS) ⋈AS

➡ S' = A(S)

➡ S'  Site 1

➡ Site 1 computes R' = R ⋉AS'

➡ R' Site 2

➡ Site 2 computes R' ⋈AS

•Semijoin is better if

size(A(S)) + size(R ⋉AS)) < size(R)

➡ Only communication costs (time to transfer relations)
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Semijoin Algorithms – Sum up

Bit arrays

• Let h be a hash function that distributes possible values for A into n buckets:

h : Dom(A) { 0, …, n-1 }

• Using semijoin is convenient if R ⋉AS has high selectivity (select few tuples) and/or size 
of R is large

• It is bad otherwise, due to the additional transfer of A(S)

• Cost of transferring A(S) can be reduced by using bit arrays

• A disadvantage of using semijoin is the loss of indices

• Bit array BA[0 .. n-1] over relation S is defined as:

BA[i] = 1 iff ∃ value v for attribute A in S s.t. h(v) = i

• Transfer BA (n bits) rather than A(S)

• A tuple of R with value v for attribute A belongs to R’ iff BA[h(v)] = 1

• R’ is an (over-)approximation of R ⋉AS
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Bit Arrays for Seminoins

idR A

1 1
2 2
3 2
4 5
5 4
6 5
7 4
8 5

• Recall:

o BA[i] = 1 iff ∃ value v for attribute A in S s.t. h(v) = i

o a tuple of R with value v for A belongs to R’ iff BA[h(v)] = 1

• h(x) = x mod 4

• n = 4 (4 buckets)

• h(1) = h(5) = 1

• BA[0] = 0 (no value v occurs in S.A s.t. h(v) = 0)

• BA[1] = 1 (due to occurrence of 5 for attribute A in S)

• BA[2] = 0 (no value v occurs in S.A s.t. h(v) = 2)

• BA[3] = 1 (due to occurrence of 3 for attribute A in S)

idS A

1 5
2 5
3 3
4 5
5 3

SR

idR A

1 1
4 5
6 5
8 5

idS A

4 5
6 5
8 5

R’ : R ⋉AS computed 
with bit array

R’ R ⋉A S⊋

R’ contains tuple <1,1> that does not
belong to R ⋉A S

However, R’ is a good approximation 
because h has only one conflict (h(1) = 
h(5)) among values for attribute A in R
and S
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Semijoins for Joins among 
Multiple Relations

• Full reducer for a relation is the semijoin program that reduces the relation the most

• Finding full reducer for a relation with exhaustive brute force approach

➡ For cyclic queries full reducer cannot be found

✦ Solution: break the cycle

➡ With other queries: inefficient (NP-hard)

✦ Solution: only use semijoin when problem is simple

✓ e.g., for chained queries, where relations are in sequence and each one joins with the next one

Semijoin 
program

• Semijoins to optimize joins among more than 2 operands

EMP ⋈ ASG ⋈ PROJ = EMP’ ⋈ ASG’ ⋈ PROJ

where EMP’ = EMP ⋉ ASG
and ASG’ = ASG ⋉ PROJ

• Each operand can be further reduced using more than one semijoin in cascade

EMP’’ = EMP ⋈ (ASG ⋈ PROJ)

We have size(ASG ⋈ PROJ) <= size(ASG)
Therefore size(EMP’’) <= size(EMP’)
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Distributed Query Optimization

•We focus on optimization of joins

• The algorithm for optimizing a join is adapted from the one for the centralized 
case

• In distributed context

➡ There is a coordinator (master site) where query is initiated

➡ Coordinator chooses

1. execution site and

2. transfer method

➡ Apprentice sites (where fragments are stored and queries are executed)

✦ Apprentices behave as in the case of centralized query optimization in optimizing 
localized queries (over fragments) assigned to them

✓ Choose best join ordering, join algorithm, and access method for relations
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Choices of the Master Site

1. Choice of the execution sites

➡ E.g., R ⋈ S can be executed:

✦ at the site where R is stored

✦ at the site where S is stored

✦ at a third site (e.g., where a 3rd relation waits to be joined – allows for parallel transfer)

2. Transfer method

➡ ship-whole: relation is transferred to the join execution site entirely

✦ In some cases (e.g., for outer relations of in case of merge join) there is no need to store the relation: 
join as it arrives, in pipelined mode

➡ fetch-as-needed (only needed tuples are transferred, i.e., tuples selected by the join):

✦ equivalent to perform semijoin of one relation with tuple of the other one (to reduce size of the 
former) before executing the join

✦ e.g., semi-join of inner relation wrt outer one (only needed tuples of inner relation are transferred)

✓ tuples of the outer relation are sent (only the join attribute) to the site of the inner relation 

✓ matching tuples of the inner relation are sent to the site of the external relation to execute the join

Choices of the master produce 4 strategies (not all combinations are worth being considered)
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Strategy 1 – ship-whole/inner site

1. ship-whole/site of inner relation: move outer relation (R) to the site of the inner 
relation (S)

(a) Retrieve outer tuples

(b) Send them to the inner relation site

(c) Join them as they arrive

Total Cost = LT ( retrieve card(R) tuples from R ) 

+ CT ( size(R) )

+ LT ( retrieve s tuples from S ) * card(R)

• CT(x): communication time to transfer x bytes

• LT(x): local processing time to perform op. x

• s = card(S ⋉A R)/card(R): average number of
tuples of S that match a tuple of R

Join is done as R comes becauseR is the outer relation
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Strategy 2 – ship-whole/outer site

2. ship-whole/site of outer relation: move inner relation (S) to the site of outer 
relation (R)

Cannot join as S arrives; it needs to be stored

Total cost = LT ( retrieve card( S ) tuples from S )

+ CT ( size(S) )

+ LT ( store card(S) tuples in temporary relation T) 

+ LT ( retrieve card(R) tuples from R )

+ LT ( retrieve s tuples from T ) * card(R)

• CT(x): communication time to transfer x bytes

• LT(x): local processing time to perform op. x

• s = card(S ⋉A R)/card(R): average number of
tuples of S that match a tuple of R
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Strategy 3 – fetch-as-
needed/outer site
3. fetch-as-needed/site of outer relation

(a) Retrieve tuples at outer relation (R) site

(b) For each tuple of R, send join attribute values to inner relation (S) site

(c) Retrieve matching inner tuples at inner relation site

(d) Send the matching inner tuples to outer relation site

(e) Join as they arrive 

Total Cost = LT ( retrieve card( R ) tuples from R )

+ CT ( length ( A ) ) * card ( R )

+ LT ( retrieve s tuples from S ) * card ( R )

+ CT ( s * length ( S ) ) * card ( R )

• CT(x): communication time to transfer x bytes

• LT(x): local processing time to perform op. x

• s = card(S ⋉A R)/card(R): average number of
tuples of S that match a tuple of R
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Strategy 4 – Move Both Relation 
at Third Site
4. move both inner (S) and outer (R) relations to another site 

Total cost = LT ( retrieve card ( S ) tuples from S )

+ CT ( size ( S ) )

+ LT ( store card(S) tuples in temporary relation T)

+ LT ( retrieve card ( R ) tuples from R )

+ CT ( size( R ) )

+ LT ( retrieve s tuples from T ) * card ( R )

Moving inner relation S first is 
better so we can then join as outer 

relation R arrives

• CT(x): communication time to transfer x bytes

• LT(x): local processing time to perform op. x

• s = card(S ⋉A R)/card(R): average number of
tuples of S that match a tuple of R
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Strategy comparison

PROJ ⋈PNO ASG

• PROJ (outer rel.) and ASG (inner rel.) are stored at different sites

• Index on PNO for relation ASG

1. Ship whole PROJ at site of ASG CT ( size(PROJ) )

2. Ship whole ASG at site of PROJ CT ( size(ASG) )

3. Fetch tuples of ASG as needed at site of PROJ CT ( length ( A ) ) * card ( PROJ )
+ CT ( s * length ( ASG ) ) * card (PROJ )

4. Move both ASG and PROJ to a third site CT ( size ( ASG ) ) + CT ( size ( PROJ ) )

• If there is no upper level operation then 4 is a bad choice

• If size ( PROJ ) >> size ( ASG ), then 2 is a good choice (if local processing time is not too 
bad compared with 1 and 3 (1 and 3 can exploit index on ASG in their local processing)

• If PROJ is large/few tuples of ASG match, then 3 is better than 1

• Otherwise, 1 is better than 3
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Hybrid approach

• So far, focus on static approaches, i.e., strategies (QEP, expressed as decorated 
trees) are evaluated and compared at compile time

•Advantages: query optimization is done once and used for several query 
executions

•Disadvantages: cost evaluation is not that accurate

➡ it is not always done on exact values but on estimations based on statistics

✦ e.g., size of intermediate results

➡ some parameter of a query might be known only at runtime

• Problems of static query optimization are much more severe in the distributed 
context: more infomation variability at runtime

➡ Sites may become unavailable or overloaded

➡ Selection of site and fragment copy should be done at runtime to increase 
availability and load balancing

•An hybrid solution (some decisions are taken at runtime) is implemented by 
means of the CP (choose-plan) operator, which is resolved at runtime, when an 
exact plan comparison can be done
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The CP (choose-plan) Operator

SELECT *
FROM EMP, PAY
WHERE SALARY > $a

where $a is a variable whose value is specified by the user at runtime

SALARY > $a

PAY

EMP

⋈

PAY EMP

SALARY > $a

⋈

CP
Normally, pushing 
inside ⋈ is a good 
heuristics, but it can be 
bad if selection rate of 
⋈ is higher than the 
one of 
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2-Step Optimization

1. At compile time, generate a 
static plan with operation 
ordering and access methods 
only

2. At startup time, carry out site 
and copy selection and 
allocate operations to sites

• 2-Step optimization: a simpler approach (more efficient, less exhaustive) than the 
one based on CP operator; it reduces workload at runtime (no CP operator)

➡At runtime labels are added about site and fragment copy selection only

• Site (and copy) selection is done in a greedy fashion
➡best load balancing,

➡best benefit (# of queries already executed at the site, possible saving of 
communication costs as the site might have already data available)


