Chapter 13: Query Optimization

Data Management for Big Data
2018-2019 (spring semester)

Dario Della Monica

El
3

Database System Concepts, 61 Ed.

@©silberschatz, Korth and Sudarshan
See for conditions on re-use

The original version of the slides is available at: https://www.db-book.com/

Introduction

m Query optimization is the process the best query execution plan
(QEP) among the many possible ones
m Alternative ways to execute a given query
Equivalent relational algebra expressions
Different implementation choices for each relational algebra operation

INSTR(i_id, name, dept_name, ...)
COURSE(c_id, title,
TEACHES(i_id, c_id, ...

The name of all instructors in the department of Music
together with the titles of all courses they teach

SELECT Iname, C.title I

FROM INSTR |, COURSE C, TEACHES T

WHERE Li_id = T.i_id s el ) P—_—"
AND T.c_id = C.c_id [ (A3
AND dept_name="Music” 2 D
s )<1\ /
instructor > Citept_name = Music <]
lnn‘ll:‘s course instructor teaches course

TT(o(INSTR M (TEACHES MCOURSE)) [ (o(INSTR) M (TEACHES M COURSE))
13

Database System Concepts - 6 Edition @silberschatz, Korth and Sudarshan

g Introduction (Cont.)

m Cost difference between query evaluation plans can be enormous
E.g. seconds vs. days in some cases
m  Steps in cost-based query optimization

Generate logically equivalent expressions using equivalence
rules

Annotate resulting expressions to get alternative QEP
Evaluate/estimate the cost (execution time) of each QEP
Choose the cheapest QEP based on estimated cost
m  Estimation of QEP cost based on:
Statistical information about relations (stored in the Catalog)
» number of tuples, number of distinct values for an attribute
Statistics estimation for intermediate results
» to compute cost of complex expressions
Cost formulae for algorithms, computed using statistics

Database System Concepts - 6 Edition 15 @silberschatz, Korth and Sudarshan

— Chapter 13: Query Optimization

Introduction
Generating Equivalent Expressions
Statistical Information for Cost Estimation (the Catalog)

Choice of Evaluation Plans
Dynamic Programming for Choosing Evaluation Plans

Database System Concepts - 6 Edition 12 ©silberschatz, Korth and Sudarshan

g Introduction (Cont.)

m A query evaluation plan (QEP) defines exactly what algorithm is used
for each operation, and how the execution of the operations is
coordinated

Il

 (sort lo remove duplicates
iame, tittel plisstes)

[><] (hash join)

[>< (merge join) course

pipclin/ \pipelint‘

Sept_name=Music  Oyear =2009
(use index 1) (use linear scan)

instructor teaches

m Find out how to view query execution plans on your favorite database

Database System Concepts - 6 Edition 14 @silberschatz, Korth and Sudarshan

Generating Equivalent Expressions

Database System Concepts, 6" Ed.

@silberschatz, Korth and Sudarshan
See for conditions on re-use


http://www.db-book.com/
http://www.db-book.com/

__.--’ Transformation of Relational Expressions

=]

® Two relational algebra expressions are said to be equivalent if the two
expressions generate the same set of tuples on every legal database
instance

Note: order of tuples is irrelevant (and also order of attributes)

we don’t care if they generate different results on databases that
violate integrity constraints (e.g., uniqueness of keys)

= In SQL, inputs and outputs are multisets of tuples

Two expressions in the multiset version of the relational algebra are
said to be equivalent if the two expressions generate the same multiset
of tuples on every legal database instance

We focus on relational algebra and treat relations as sets
® An equivalence rule states that expressions of two forms are equivalent

One can replace an expression of first form by one of the second form,
or vice versa

Database System Concepts - 6 Edition 17 Silberschatz, Korth and Sudarshan

Equivalence Rules (Cont.)

5. Theta-join (and thus natural joins) operations are commutative.
E\Mg E,=E, X E,
(but the order is important for efficiency)
6. (a) Natural join operations are associative:
(EsXE)ME; = E;X (EM Ey)
(again, the order is important for efficiency)
(b) Theta joins are associative in the following manner:
(B g, D)X 4,00, Ea =By Mg, 0, (B2 Mg, Ea)

where 0, involves attributes from only E; and E,
and 6, involves attributes from only E, and E;

More equivalences at Ch. 13.2 of the book *

* Silberschatz, Korth, and Sudarshan, Database System Concepts, 6" ed.

Datal

ystem Concepts - 6% Edition 19 @silberschatz, Korth and Sudarshan

: Exercise

m Create equivalence rules to push selection inside a left outer join Ex. 13.1(c) *

m Disprove the equivalence Ex. 13.1(d) *
(RXs)IXT = RIX (sIX 1)

Definition (left outer join): the result of a left outer join T = RIX| S is a super-set of the
result of the join T = R S in that all tuples in T appear in T. In addition, T preserve
those tuples that are lost in the join, by creating tuples in T that are filled with null
values

STUD  stud_id name surname
1

gino bianchi STUD IX TAKES

2 filippo  neri stud_id name  surname course grade

3 mario rossi 1 gino bianchi  Math 30
TAKES stud_id course grade 1 gino bianchi ~ Algebra 26

1 Math 30 2 filippo neri Progr. 22

1 Algebra 26 2 filippo neri Math 28

2 Pr?) r 22 2 filippo neri Logic 30

2 Mat% T 28 3 mario rossi null null

2 Logic 30

* silberschatz, Korth, and Sudarshan, Database System Concepts, 67 ed.

Database System Concepts - 6 Edition 111 @silberschatz, Korth and Sudarshan

Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a
sequence of individual selections.

X S%_qu(E):sax(saz(E))
2. Selection operations are commutative.

54(54,(E) =5,,(5,(E)

3. Only the last in a sequence of projection operations is
needed, the others can be omitted

HL.(HLZ((HL“(E)))) :HL](E)
where LclL,c...clL,

4. Selections can be combined with Cartesian products and
theta joins.

op(E1 X Ep) = E1 Xy By
oo, (Ed o, E2) = EsM g 10, Ey

Database System Concepts - 6 Edition 18 ©silberschatz, Korth and Sudarshan

Pictorial Depiction of Equivalence Rules

Rule 5
No ule > M 8
El E E2 El
Rule 6a
B E3 El [
El E2 E2 E3
a, Rule 7a I
I 1f 8 only has / \
N\ attributes from E1 TH E2
Fl E2 El
Database System Conceps - 6 Editon 110 GSiberschatz, Korth and Sudarshan

Solutions

m Create equivalence rules involving left outer join and selection
(RN S)=0, (R)IN S

where 0 uses only attributes of R

®m Disprove the equivalence (R} S)IXIT = RIX (SIX T)

R S T

[Ae [As |Aer | [As [Aes [Ac | [Ar [Aer |Asr |
EEEN [t o o | [ ]2 J1 ]
RIX S SIXT

AR ARS ART AS AST AS ARS AST AT ART

1 1 1 1 1 1 1 1 1 2
(RIXIS)IX T RIX(SIKT)

[Ar [Ars [Arr [As [Asr[Ar |

‘AR ‘ARS‘ART‘AS ‘AST‘AT ‘
[1 [ J1 1 2 [nu]

[1 1 2 [nun]nui]nun]

Database System Concepts - 6 Edition 112 osilberschatz, Korth and Sudarshan



Solutions (cont’d)

m Disprove the equivalence (RIX S)IX T = RIX (sIX T)

Another counter-example (to fix for solution given on the webpage of the book)

ST
A |As |A
2 1 null

(RIX S)IK T R (SINT)

A AR |As |Ar A Az |As |Ar

1 |1 |nuilj1 1 |1 |null|null

Database System Concepts - 6 Edition

e

Statistical Information for Cost
Estimation (the Catalog)

Database System Concepts, 6" Ed.

©silberschatz, Korth and Sudarshan
See for conditions on re-use

E Statistical Information for Cost Estimation

=l
m Statistics information for cost estimation is maintained in the Catalog
® The catalog is itself stored in the database
= |t contains:
n;: number of tuples in a relation r
- number of blocks containing tuples of r
I: size of a tuple of r (in bytes)
f.: blocking factor of r — i.e., the number of tuples of r that fit into one block
V(A, r): number of distinct values that appear in r for attribute A; same as the
size of [1(r)
min(A,r): smallest value appearing in relation r for attribute A;
max(A,r): largest value appearing in relation r for attribute A;
If tuples of r are stored together physically in a file, then:

n,
ald

Database System Concepts - 6 Edition 117 @silberschatz, Korth and Sudarshan

g Enumeration of Equivalent Expressions

= Query optimizers use equivalence rules to systematically generate
expressions equivalent to the given expression
® Can generate all equivalent expressions as follows:
Repeat
» apply all applicable equivalence rules on every sub-expression of
every equivalent expression found so far
» add newly generated expressions to the set of equivalent
expressions
Until no new equivalent expressions are generated above
® The above approach is very expensive in space and time
Space: sharing (re-using) common sub-expressions M M

(detect duplicate sub-expressions and share one copy) kvé)
Time:

» Dynamic programming

» Greedy techniques (select best choices at each step)

» Heuristics, e.g., single-relation operations
(selections, projections) are pushed inside (performed earlier)

Database System Concepts - 6 Edition 114 ©silberschatz, Korth and Sudarshan

- Cost Estimation
m  Cost of each operator computed as described in Chapter 12 *
Need statistics of input relations
» E.g. number of tuples, sizes of tuples
m Inputs can be results of sub-expressions
Need to estimate statistics of expression results
E.g., selectivity rate based on number of distinct values for an
attribute
® Statistics are collected in the Catalog

* Silberschatz, Korth, and Sudarshan, Database System Concepts, 6" ed.

se System Concepts - 61 Edition 116 @silberschatz, Korth and Sudarshan

Datal

- Histograms

m Histogram on attribute age of relation person

frequency

: ]

15 6-10 11-15 16-20 21-25
value

= For each range
Number of records (tuples) with value in the range
Also, number of distinct values in the range
= Without histogram information, uniform distribution is assumed

Database System Concepts - 6 Edition 118 esilberschatz, Korth and Sudarshan


http://www.db-book.com/

Database System Concepts - 6 Edition 119

Database System Concepts - 6 Edition 121

Database System Concepts - 6 Edition 123

Selection Size Estimation

B oon(r)
» n./V(A;r) : number of records that will satisfy the selection
(uniform distribution)

» Equality condition on a key attribute: size estimate = 1
B g, . (r) (case of o, (r) is symmetric)

n: estimated number of tuples satisfying the condition is computed
assuming that min(A,r) and max(A,r) are available in catalog

»n=0 if v.< min(A,r)

o, vemin(dr) otherwise
" max(4,r) - min(4,r)

(uniform distribution)

In absence of statistical information or when v is unknown at time of
cost estimation (e.g., v is computed at run-time by the application using
the DB) n is assumed to be n./ 2

m If histograms are available, we can refine above estimate by using values
for restricted ranges instead of values referring to the entire domain (n, ,
V(A), min(A, 1), max(A, ) )

eSilberschatz, Korth and Sudarshan

—— Choice of Evaluation Plans

®  Must consider the interaction of evaluation techniques when choosing
evaluation plans

choosing the cheapest algorithm for each operation independently
may not yield best overall algorithm. E.g.

» merge-join may be costlier than hash-join, but may provide a
sorted output which reduces the cost for an outer level
aggregation

» nested-loop join may provide opportunity for pipelining

m Practical query optimizers incorporate elements of the following two
broad approaches:

1. Search all the plans and choose the best plan in a cost-based
fashion

2. Uses heuristics to choose a plan

@silberschatz, Korth and Sudarshan

=& Cost-Based Optimization: An example

Consider finding the best join-order for ry;> ryb< 1 ry= ry
Number of possible different join orderings: %:
The least-costjoin order for any subset of { 1, 15, I3, I, I's } is computed only once
Assume we want to compute N;,3,5 : number of possible different join orderings
where ry, r,, r3 sare grouped together, e.g.,

(ryparypa raparymaty (r2pa g pa 1) (rgpa Tg) Tq 0 (repa(ry > (122 13)))

The naive approach
" Niggas = Nigs “Nas
B N = g:lz (N, : # ways of arranging ry, r,, and r3)
B Ny =Ny =12 (N, : # ways of arranging r, and rs wrt. block of r;, r,, and ry)
B Ny =12*12 =144
Exploiting optimal substructure property:
= compute only once best ordering for rysq ryia 13 : 12 possibilities (N;,3)
= compute best ordering for Ry,3 1, > 15 : 12 possibilities (N5)
m  Therefore, Nygaus =12 +12=24

@silberschatz, Korth and Sudarshan

'

se System Concepts - 61 Edition 122

Database System Concepts - 6 Edition 124

Choice of Evaluation Plans

Database System Concepts, 6 Ed.

©Silberschatz, Korth and Sudarshan
See for conditions on re-use

Cost-Based Optimization

m  Consider finding the best join-order for ryX| ryx . . . 1,

m There are (2(n — 1))!/(n — 1)! different join orders for above expression.
With n = 7, the number is 665280, with n = 10, the number is greater
than 17.6 billion!

= No need to generate all the join orders. Exploiting some monotonicity
(optimal substructure property), the least-cost join order for any subset
of {ry, 15, . . ., r,} is computed only once.

@silberschatz, Korth and Sudarshan

ﬂ Dynamic Programming in Optimization

m To find best join tree (equivalently, best join order) for a set of n relations:

To find best plan for a set S of n relations, consider all possible plans
of the form:

SN (S\S)
for every non-empty subset S’ of S

Recursively compute costs of best join orders for subsets S’and S\ S’
to find the cost of each plan. Choose the cheapest of the 2" — 2
alternatives

Base case for recursion: single relation access plan
» Apply all selections on R; using best choice of indices on R;

When a plan for a subset is computed, store it and reuse it when it is
required again, instead of re-computing it

» Dynamic programming

esilberschatz, Korth and Sudarshan


http://www.db-book.com/

% Join Order Optimization Algorithm

procedure findbestplan(S)
if (bestplan[S].cost # o)
return bestplan[S]
1/ else bestplan[S] has not been computed earlier, compute it now
if (S contains only 1 relation)
set bestplan[S].plan and bestplan[S].cost based on the best way
of accessing S /* Using selections on S and indices on S */

else for each non-empty subset S1 of S such that S1# S
P1=findbestplan(S1)
P2= findbestplan(S - S1)
A = best algorithm for joining results of P1 and P2
cost = P1.cost + P2.cost + cost of A
if cost < bestplan[S].cost
bestplan[S].cost = cost
bestplan[S].plan = “execute P1.plan; execute P2.plan;
join results of P1 and P2 using A”
return bestplan[S]

Database System Concepts - 6 Edition 125 Silberschatz, Korth and Sudarshan

ka Cost Based Optimization with Equivalence
Rules

~am

m Physical equivalence rules equates logical operations (e.g., join) to physical
ones (i.e., implementations — e.qg., nested-loop join, merge join)
Relational algebra expression are converted into QEP with implementation details
m Efficient optimizer based on equivalence rules depends on

A space efficient representation of expressions which avoids making
multiple copies of sub-expressions

Efficient techniques for detecting duplicate derivations of expressions

A form of dynamic programming, which stores the best plan for a sub-
expression the first time it is optimized, and reuses in on repeated
optimization calls on same sub-expression

Cost-based pruning techniques that avoid generating all plans (greedy,
heuristics, dynamic programming/optimal substructure property)

@silberschatz, Korth and Sudarshan

ystem Concepts - 6% Edition 127

—— Structure of Query Optimizers

m  Some systems use only heuristics, others combine heuristics with partial
cost-based optimization.

m  Many optimizers considers only left-deep join orders.
Plus heuristics to push selections and projections down the query
tree
Reduces optimization complexity and generates plans amenable to
pipelined evaluation.

Heuristic optimization used in some versions of Oracle:
Repeatedly pick “best” relation to join next
» Starting from each of n starting points. Pick best among these

Database System Concepts - 6 Edition 129 @silberschatz, Korth and Sudarshan

Cost of Optimization

= With dynamic programming time complexity of optimization is O(3").
With n = 10, this number is 59000 instead of 17.6 billion!
m  Space complexity is O(2")
m Better time performance when considering only left-deep tree O(n 2")
Space complexity remains at O(2") (heuristic approach)

NN

N g

/N\ o Dq/ \\I'? r/ \r_?
» b /

7N b

(a) Let-deep join tree (b) Non-left-deep join tree

= Cost-based optimization is expensive, but worthwhile for queries on
large datasets (typical queries have small n, generally < 10)

Database System Concepts - 6 Edition 126 ©silberschatz, Korth and Sudarshan

Heuristic Optimization

m  Cost-based optimization is expensive, even with dynamic programming

m  Systems may use heuristics to reduce the number of choices that must
be made in a cost-based fashion

® Heuristic optimization transforms the query-tree by using a set of rules
that typically (but not in all cases) improve execution performance:

Perform selection early (reduces the number of tuples)

Perform projection early (reduces the number of attributes)
Perform most restrictive selection and join operations (i.e. with
smallest result size) before other similar operations

Only consider left-deep join orders (particularly suited for pipelining
as only one input has to be pipelined, the other is a relation)

Database System Concepts - 6 Edition 128 @silberschatz, Korth and Sudarshan

End of Chapter

Database System Concepts, 6" Ed.

©silberschatz, Korth and Sudarshan
See for conditions on re-use


http://www.db-book.com/

