
1

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use 

Chapter 13: Query Optimization

These slides are a modified version of the slides provided with the book

The original version of the slides is available at: https://www.db-book.com/

Data Management for Big Data

2018-2019 (spring semester)

Dario Della Monica

©Silberschatz, Korth and Sudarshan1.2Database System Concepts - 6th Edition

Chapter 13:  Query Optimization

 Introduction 

 Generating Equivalent Expressions

 Statistical Information for Cost Estimation (the Catalog)

 Choice of Evaluation Plans

 Dynamic Programming for Choosing Evaluation Plans

©Silberschatz, Korth and Sudarshan1.3Database System Concepts - 6th Edition

Introduction
 Query optimization is the process the best query execution plan

(QEP) among the many possible ones

 Alternative ways to execute a given query

 Equivalent relational algebra expressions

 Different implementation choices for each relational algebra operation

INSTR(i_id, name, dept_name, ...)

COURSE(c_id, title, ...)

TEACHES(i_id, c_id, ...)

The name of all instructors in the department of Music 

together with the titles of all courses they teach

SELECT  I.name, C.title

FROM INSTR I, COURSE C, TEACHES T

WHERE I.i_id = T.i_id

AND T.c_id = C.c_id

AND dept_name=“Music”

)))     (     (( COURSETEACHESINSTR ))     (     )(( COURSETEACHESINSTR

©Silberschatz, Korth and Sudarshan1.4Database System Concepts - 6th Edition

Introduction (Cont.)

 A query evaluation plan (QEP) defines exactly what algorithm is used 

for each operation, and how the execution of the operations is 

coordinated

 Find out how to view query execution plans on your favorite database

©Silberschatz, Korth and Sudarshan1.5Database System Concepts - 6th Edition

Introduction (Cont.)

 Cost difference between query evaluation plans can be enormous

 E.g. seconds vs. days in some cases

 Steps in cost-based query optimization

1. Generate logically equivalent expressions using equivalence 
rules

2. Annotate resulting expressions to get alternative QEP

3. Evaluate/estimate the cost (execution time) of each QEP

4. Choose the cheapest QEP based on estimated cost

 Estimation of QEP cost based on:

 Statistical information about relations (stored in the Catalog)

 number of tuples, number of distinct values for an attribute

 Statistics estimation for intermediate results

 to compute cost of complex expressions

 Cost formulae for algorithms, computed using statistics
Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use 

Generating Equivalent Expressions

http://www.db-book.com/
http://www.db-book.com/


2

©Silberschatz, Korth and Sudarshan1.7Database System Concepts - 6th Edition

Transformation of Relational Expressions

 Two relational algebra expressions are said to be equivalent if the two 

expressions generate the same set of tuples on every legal database 

instance

 Note: order of tuples is irrelevant (and also order of attributes)

 we don’t care if they generate different results on databases that 

violate integrity constraints (e.g., uniqueness of keys)

 In SQL, inputs and outputs are multisets of tuples

 Two expressions in the multiset version of the relational algebra are 

said to be equivalent if the two expressions generate the same multiset 

of tuples on every legal database instance

 We focus on relational algebra and treat relations as sets

 An equivalence rule states that expressions of two forms are equivalent

 One can replace an expression of first form by one of the second form, 

or vice versa

©Silberschatz, Korth and Sudarshan1.8Database System Concepts - 6th Edition

Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a 

sequence of individual selections.

2. Selection operations are commutative.

3. Only the last in a sequence of projection operations is 

needed, the others can be omitted

where

4. Selections can be combined with Cartesian products and 

theta joins.

a. (E1 X E2) =  E1  E2

b. 1
(E1 2

E2) =  E1 1 2
E2

))(())((
1221
EE qqqq ssss =

))(()(
2121
EE qqqq sss =Ù

)())))((((
121

EE LLLL n
 

nLLL  21

©Silberschatz, Korth and Sudarshan1.9Database System Concepts - 6th Edition

Equivalence Rules (Cont.)

5. Theta-join (and thus natural joins) operations are commutative.

E1       E2 = E2  E1

(but the order is important for efficiency)

More equivalences at Ch. 13.2 of the book ⋆

⋆
Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed.

6. (a) Natural join operations are associative:

(b) Theta joins are associative in the following manner:

(E1       1
E2)     23

E3 = E1        1 3
(E2 2

E3)    

where 1 involves attributes from only E1 and E2

and 2 involves attributes from only E2 and E3

(E1      E2)    E3 = E1      (E2 E3)

(again, the order is important for efficiency)

©Silberschatz, Korth and Sudarshan1.10Database System Concepts - 6th Edition

Pictorial Depiction of Equivalence Rules

©Silberschatz, Korth and Sudarshan1.11Database System Concepts - 6th Edition

Exercise

 Create equivalence rules to push selection inside a left outer join Ex. 13.1(c) ⋆

 Disprove the equivalence Ex. 13.1(d) ⋆

( R        S )        T    =    R        ( S        T )

⋆
Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed.

Definition (left outer join): the result of a left outer join T = R      S is a super-set of the 

result of the join T’ = R    S in that all tuples in T’ appear in T. In addition, T preserve 

those tuples that are lost in the join, by creating tuples in T that are filled with null

values

STUD        TAKES
STUD stud_id name surname

1 gino bianchi

2 filippo neri

3 mario rossi

TAKES stud_id course grade

1 Math 30

1 Algebra 26

2 Progr. 22

2 Math 28

2 Logic 30

stud_id name surname course grade

1 gino bianchi Math 30

1 gino bianchi Algebra 26

2 filippo neri Progr. 22

2 filippo neri Math 28

2 filippo neri Logic 30

3 mario rossi null null

©Silberschatz, Korth and Sudarshan1.12Database System Concepts - 6th Edition

Solutions

 Disprove the equivalence 

AR ARS ART

1 1 1

R

AS ARS AST

1 1 1

S

AT ART AST

1 2 1

T

R        S

AR ARS ART AS AST

1 1 1 1 1

S        T

AS ARS AST AT ART

1 1 1 1 2

 Create equivalence rules involving left outer join and selection

 ( R        S ) =  ( R )        S 

( R        S )        T    =    R        ( S        T )

( R        S )        T

AR ARS ART AS AST AT

1 1 1 1 1 null

R        ( S        T )

AR ARS ART AS AST AT

1 1 1 null null null

where  uses only attributes of R



3

©Silberschatz, Korth and Sudarshan1.13Database System Concepts - 6th Edition

Solutions (cont’d)

 Disprove the equivalence 

A AR

1 1

R

A AS

2 1

S

A AT

1 1

T

R        S

A AR AS

1 1 null

S        T

A AS AT

2 1 null

( R        S )        T    =    R        ( S        T )

( R        S )        T

A AR AS AT

1 1 null 1

R        ( S        T )

A AR AS AT

1 1 null null

Another counter-example (to fix for solution given on the webpage of the book)

©Silberschatz, Korth and Sudarshan1.14Database System Concepts - 6th Edition

Enumeration of Equivalent Expressions

 Query optimizers use equivalence rules to systematically generate 

expressions equivalent to the given expression

 Can generate all equivalent expressions as follows: 

 Repeat

 apply all applicable equivalence  rules on every sub-expression of 

every equivalent expression found so far

 add newly generated expressions to the set of equivalent 

expressions 

Until no new equivalent expressions are generated above

 The above approach is very expensive in space and time

 Space: sharing (re-using) common sub-expressions
(detect duplicate sub-expressions and share one copy)

 Time:

 Dynamic programming

 Greedy techniques (select best choices at each step)

 Heuristics, e.g., single-relation operations
(selections, projections) are pushed inside (performed earlier)

E1 E2

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use 

Statistical Information for Cost 

Estimation (the Catalog)

©Silberschatz, Korth and Sudarshan1.16Database System Concepts - 6th Edition

Cost Estimation

 Cost of each operator computed as described in Chapter 12 ⋆

 Need statistics of input relations

 E.g. number of tuples, sizes of tuples

 Inputs can be results of sub-expressions

 Need to estimate statistics of expression results

 E.g., selectivity rate based on number of distinct values for an 

attribute

 Statistics are collected in the Catalog

⋆
Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed.

©Silberschatz, Korth and Sudarshan1.17Database System Concepts - 6th Edition

Statistical Information for Cost Estimation

 Statistics information for cost estimation is maintained in the Catalog

 The catalog is itself stored in the database

 It contains:

 nr:  number of tuples in a relation r

 br: number of blocks containing tuples of r

 lr: size of a tuple of r (in bytes)

 fr: blocking factor of r — i.e., the number of tuples of r that fit into one block

 V(A, r): number of distinct values that appear in r for attribute A; same as the 
size of A(r)

 min(A,r): smallest value appearing in relation r for attribute A;

 max(A,r): largest value appearing in relation r for attribute A;

 If tuples of r are stored together physically in a file, then: 


















rf
rn

rb

©Silberschatz, Korth and Sudarshan1.18Database System Concepts - 6th Edition

Histograms

 Histogram on attribute age of relation person

 For each range

 Number of records (tuples) with value in the range

 Also, number of distinct values in the range

 Without histogram information, uniform distribution is assumed

value

fr
eq

u
en

cy

50

40

30

20

10

1–5 6–10 11–15 16–20 21–25 

http://www.db-book.com/


4

©Silberschatz, Korth and Sudarshan1.19Database System Concepts - 6th Edition

Selection Size Estimation

 A=v(r )

 nr / V(A,r) : number of records that will satisfy the selection

(uniform distribution)

 Equality condition on a key attribute: size estimate = 1

 A  v(r ) (case of A  V(r) is symmetric)

 n: estimated number of tuples satisfying the condition is computed 

assuming that min(A,r) and max(A,r) are available in catalog

 n = 0 if v < min(A,r)

 n = otherwise

(uniform distribution) 

 In absence of statistical information or when v is unknown at time of 

cost estimation (e.g., v is computed at run-time by the application using 

the DB) n is assumed to be nr / 2

 If histograms are available, we can refine above estimate by using values 

for restricted ranges instead of values referring to the entire domain (nr , 

V(A,r), min(A, r), max(A, r) )

),min(),max(

),min(
.

rArA

rAv
nr

-

-

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use 

Choice of Evaluation Plans

©Silberschatz, Korth and Sudarshan1.21Database System Concepts - 6th Edition

Choice of Evaluation Plans

 Must consider the interaction of evaluation techniques when choosing 

evaluation plans

 choosing the cheapest algorithm for each operation independently 

may not yield best overall algorithm.  E.g.

 merge-join may be costlier than hash-join, but may provide a 

sorted output which reduces the cost for an outer level 

aggregation

 nested-loop join may provide opportunity for pipelining

 Practical query optimizers incorporate elements of the following two 

broad approaches:

1. Search all the plans and choose the best plan in a cost-based 

fashion

2. Uses heuristics to choose a plan

©Silberschatz, Korth and Sudarshan1.22Database System Concepts - 6th Edition

Cost-Based Optimization

 Consider finding the best join-order for r1 r2      . . . rn.

 There are (2(n – 1))!/(n – 1)! different join orders for above expression.  

With n = 7, the number is 665280, with n = 10, the number is greater 

than 17.6 billion!

 No need to generate all the join orders.  Exploiting some monotonicity 

(optimal substructure property), the least-cost join order for any subset 

of {r1, r2, . . ., rn} is computed only once. 

©Silberschatz, Korth and Sudarshan1.23Database System Concepts - 6th Edition

Cost-Based Optimization: An example

 Consider finding the best join-order for r1 r2       r3 r4 r5

 Number of possible different join orderings: 

 The least-cost join order for any subset of { r1, r2, r3, r4, r5 } is computed only once

 Assume we want to compute N123/45 : number of possible different join orderings 

where r1, r2, r3 sare grouped together, e.g.,

1680
! 4

! 8

)!1(

))!1(2(






n

n

(r1 r2       r3) r4 r5 (r2 r3       r1) (r5 r4 ) r4 (r5    (r1 (r2       r3)))

 The naïve approach

 N123/45 = N123 * N45

 N123 =                   (N123 : # ways of arranging r1, r2, and r3)

 N45 = N123 = 12     (N45 : # ways of arranging r4 and r5 wrt. block of r1, r2, and r3)

 N123/45 = 12 * 12 = 144

 Exploiting optimal substructure property:

 compute only once best ordering for r1 r2       r3 : 12 possibilities (N123) 

 compute best ordering for R123 r4       r5 : 12 possibilities (N45) 

 Therefore, N123/45 = 12 + 12 = 24

12
! 2

! 4


©Silberschatz, Korth and Sudarshan1.24Database System Concepts - 6th Edition

Dynamic Programming in Optimization

 To find best join tree (equivalently, best join order) for a set of n relations:

 To find best plan for a set S of n relations, consider all possible plans 

of the form:

S’ (S \ S’ )

for every non-empty subset S’ of S

 Recursively compute costs of best join orders for subsets S’ and S \ S’

to find the cost of each plan. Choose the cheapest of the 2n – 2 

alternatives

 Base case for recursion:  single relation access plan

 Apply all selections on Ri using best choice of indices on Ri

 When a plan for a subset is computed, store it and reuse it when it is 

required again, instead of re-computing it

 Dynamic programming

http://www.db-book.com/


5

©Silberschatz, Korth and Sudarshan1.25Database System Concepts - 6th Edition

Join Order Optimization Algorithm

procedure findbestplan(S)

if (bestplan[S].cost  )

return bestplan[S]

// else bestplan[S] has not been computed earlier, compute it now

if (S contains only 1 relation)

set bestplan[S].plan and bestplan[S].cost based on the best way 

of accessing S  /* Using selections on S and indices on S */

else for each non-empty subset S1 of S such that S1  S

P1= findbestplan(S1)

P2= findbestplan(S - S1)

A = best algorithm for joining results of P1 and P2

cost = P1.cost + P2.cost + cost of A

if cost < bestplan[S].cost 

bestplan[S].cost = cost

bestplan[S].plan = “execute P1.plan; execute P2.plan;

join results of P1 and P2 using A”
return bestplan[S]

©Silberschatz, Korth and Sudarshan1.26Database System Concepts - 6th Edition

Cost of Optimization

 With dynamic programming time complexity of optimization is O(3n).  

 With n = 10, this number is 59000 instead of 17.6 billion!

 Space complexity is O(2n) 

 Better time performance when considering only left-deep tree O(n 2n)
Space complexity remains at O(2n) (heuristic approach)

 Cost-based optimization is expensive, but worthwhile for queries on 
large datasets (typical queries have small n, generally < 10)

©Silberschatz, Korth and Sudarshan1.27Database System Concepts - 6th Edition

Cost Based Optimization with Equivalence 

Rules

 Physical equivalence rules equates logical operations (e.g., join) to physical 

ones (i.e., implementations – e.g., nested-loop join, merge join)

 Relational algebra expression are converted into QEP with implementation details

 Efficient optimizer based on equivalence rules depends on

 A space efficient representation of expressions which avoids making 

multiple copies of sub-expressions

 Efficient techniques for detecting duplicate derivations of expressions

 A form of dynamic programming, which stores the best plan for a sub-

expression the first time it is optimized, and reuses in on repeated 

optimization calls on same sub-expression

 Cost-based pruning techniques that avoid generating all plans (greedy, 

heuristics, dynamic programming/optimal substructure property)

©Silberschatz, Korth and Sudarshan1.28Database System Concepts - 6th Edition

Heuristic Optimization

 Cost-based optimization is expensive, even with dynamic programming

 Systems may use heuristics to reduce the number of choices that must 

be made in a cost-based fashion

 Heuristic optimization transforms the query-tree by using a set of rules 

that typically (but not in all cases) improve execution performance:

 Perform selection early (reduces the number of tuples)

 Perform projection early (reduces the number of attributes)

 Perform most restrictive selection and join operations (i.e. with 

smallest result size) before other similar operations

 Only consider left-deep join orders (particularly suited for pipelining 

as only one input has to be pipelined, the other is a relation)

©Silberschatz, Korth and Sudarshan1.29Database System Concepts - 6th Edition

Structure of Query Optimizers

 Some systems use only heuristics, others combine heuristics with partial 

cost-based optimization.

 Many optimizers considers only left-deep join orders.

 Plus heuristics to push selections and projections down the query 

tree

 Reduces optimization complexity and generates plans amenable to 

pipelined evaluation.

 Heuristic optimization used in some versions of Oracle:

 Repeatedly pick “best” relation to join next 

 Starting from each of n starting points.  Pick best among these

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use 

End of Chapter

http://www.db-book.com/

