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Chapter 13:  Query Optimization

 Introduction 

 Generating Equivalent Expressions

 Statistical Information for Cost Estimation (the Catalog)

 Choice of Evaluation Plans

 Dynamic Programming for Choosing Evaluation Plans
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Introduction
 Query optimization is the process the best query execution plan

(QEP) among the many possible ones

 Alternative ways to execute a given query

 Equivalent relational algebra expressions

 Different implementation choices for each relational algebra operation

INSTR(i_id, name, dept_name, ...)

COURSE(c_id, title, ...)

TEACHES(i_id, c_id, ...)

The name of all instructors in the department of Music 

together with the titles of all courses they teach

SELECT  I.name, C.title

FROM INSTR I, COURSE C, TEACHES T

WHERE I.i_id = T.i_id

AND T.c_id = C.c_id

AND dept_name=“Music”

)))     (     (( COURSETEACHESINSTR ))     (     )(( COURSETEACHESINSTR
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Introduction (Cont.)

 A query evaluation plan (QEP) defines exactly what algorithm is used 

for each operation, and how the execution of the operations is 

coordinated

 Find out how to view query execution plans on your favorite database
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Introduction (Cont.)

 Cost difference between query evaluation plans can be enormous

 E.g. seconds vs. days in some cases

 Steps in cost-based query optimization

1. Generate logically equivalent expressions using equivalence 
rules

2. Annotate resulting expressions to get alternative QEP

3. Evaluate/estimate the cost (execution time) of each QEP

4. Choose the cheapest QEP based on estimated cost

 Estimation of QEP cost based on:

 Statistical information about relations (stored in the Catalog)

 number of tuples, number of distinct values for an attribute

 Statistics estimation for intermediate results

 to compute cost of complex expressions

 Cost formulae for algorithms, computed using statistics
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Transformation of Relational Expressions

 Two relational algebra expressions are said to be equivalent if the two 

expressions generate the same set of tuples on every legal database 

instance

 Note: order of tuples is irrelevant (and also order of attributes)

 we don’t care if they generate different results on databases that 

violate integrity constraints (e.g., uniqueness of keys)

 In SQL, inputs and outputs are multisets of tuples

 Two expressions in the multiset version of the relational algebra are 

said to be equivalent if the two expressions generate the same multiset 

of tuples on every legal database instance

 We focus on relational algebra and treat relations as sets

 An equivalence rule states that expressions of two forms are equivalent

 One can replace an expression of first form by one of the second form, 

or vice versa
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Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a 

sequence of individual selections.

2. Selection operations are commutative.

3. Only the last in a sequence of projection operations is 

needed, the others can be omitted

where

4. Selections can be combined with Cartesian products and 

theta joins.

a. (E1 X E2) =  E1  E2

b. 1
(E1 2

E2) =  E1 1 2
E2
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Equivalence Rules (Cont.)

5. Theta-join (and thus natural joins) operations are commutative.

E1       E2 = E2  E1

(but the order is important for efficiency)

More equivalences at Ch. 13.2 of the book ⋆

⋆
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6. (a) Natural join operations are associative:

(b) Theta joins are associative in the following manner:

(E1       1
E2)     23

E3 = E1        1 3
(E2 2

E3)    

where 1 involves attributes from only E1 and E2

and 2 involves attributes from only E2 and E3

(E1      E2)    E3 = E1      (E2 E3)

(again, the order is important for efficiency)
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Pictorial Depiction of Equivalence Rules
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Exercise

 Create equivalence rules to push selection inside a left outer join Ex. 13.1(c) ⋆

 Disprove the equivalence Ex. 13.1(d) ⋆

( R        S )        T    =    R        ( S        T )

⋆
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Definition (left outer join): the result of a left outer join T = R      S is a super-set of the 

result of the join T’ = R    S in that all tuples in T’ appear in T. In addition, T preserve 

those tuples that are lost in the join, by creating tuples in T that are filled with null

values

STUD        TAKES
STUD stud_id name surname

1 gino bianchi

2 filippo neri

3 mario rossi

TAKES stud_id course grade

1 Math 30

1 Algebra 26

2 Progr. 22

2 Math 28

2 Logic 30

stud_id name surname course grade

1 gino bianchi Math 30

1 gino bianchi Algebra 26

2 filippo neri Progr. 22

2 filippo neri Math 28

2 filippo neri Logic 30

3 mario rossi null null
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Solutions

 Disprove the equivalence 

AR ARS ART

1 1 1

R

AS ARS AST

1 1 1

S

AT ART AST

1 2 1

T

R        S

AR ARS ART AS AST

1 1 1 1 1

S        T

AS ARS AST AT ART

1 1 1 1 2

 Create equivalence rules involving left outer join and selection

 ( R        S ) =  ( R )        S 

( R        S )        T    =    R        ( S        T )

( R        S )        T

AR ARS ART AS AST AT

1 1 1 1 1 null

R        ( S        T )

AR ARS ART AS AST AT

1 1 1 null null null

where  uses only attributes of R
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Solutions (cont’d)

 Disprove the equivalence 

A AR

1 1

R

A AS

2 1

S

A AT

1 1

T

R        S

A AR AS

1 1 null

S        T

A AS AT

2 1 null

( R        S )        T    =    R        ( S        T )

( R        S )        T

A AR AS AT

1 1 null 1

R        ( S        T )

A AR AS AT

1 1 null null

Another counter-example (to fix for solution given on the webpage of the book)
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Enumeration of Equivalent Expressions

 Query optimizers use equivalence rules to systematically generate 

expressions equivalent to the given expression

 Can generate all equivalent expressions as follows: 

 Repeat

 apply all applicable equivalence  rules on every sub-expression of 

every equivalent expression found so far

 add newly generated expressions to the set of equivalent 

expressions 

Until no new equivalent expressions are generated above

 The above approach is very expensive in space and time

 Space: sharing (re-using) common sub-expressions
(detect duplicate sub-expressions and share one copy)

 Time:

 Dynamic programming

 Greedy techniques (select best choices at each step)

 Heuristics, e.g., single-relation operations
(selections, projections) are pushed inside (performed earlier)

E1 E2
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Statistical Information for Cost 

Estimation (the Catalog)
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Cost Estimation

 Cost of each operator computed as described in Chapter 12 ⋆

 Need statistics of input relations

 E.g. number of tuples, sizes of tuples

 Inputs can be results of sub-expressions

 Need to estimate statistics of expression results

 E.g., selectivity rate based on number of distinct values for an 

attribute

 Statistics are collected in the Catalog

⋆
Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed.
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Statistical Information for Cost Estimation

 Statistics information for cost estimation is maintained in the Catalog

 The catalog is itself stored in the database

 It contains:

 nr:  number of tuples in a relation r

 br: number of blocks containing tuples of r

 lr: size of a tuple of r (in bytes)

 fr: blocking factor of r — i.e., the number of tuples of r that fit into one block

 V(A, r): number of distinct values that appear in r for attribute A; same as the 
size of A(r)

 min(A,r): smallest value appearing in relation r for attribute A;

 max(A,r): largest value appearing in relation r for attribute A;

 If tuples of r are stored together physically in a file, then: 


















rf
rn

rb
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Histograms

 Histogram on attribute age of relation person

 For each range

 Number of records (tuples) with value in the range

 Also, number of distinct values in the range

 Without histogram information, uniform distribution is assumed
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Selection Size Estimation

 A=v(r )

 nr / V(A,r) : number of records that will satisfy the selection

(uniform distribution)

 Equality condition on a key attribute: size estimate = 1

 A  v(r ) (case of A  V(r) is symmetric)

 n: estimated number of tuples satisfying the condition is computed 

assuming that min(A,r) and max(A,r) are available in catalog

 n = 0 if v < min(A,r)

 n = otherwise

(uniform distribution) 

 In absence of statistical information or when v is unknown at time of 

cost estimation (e.g., v is computed at run-time by the application using 

the DB) n is assumed to be nr / 2

 If histograms are available, we can refine above estimate by using values 

for restricted ranges instead of values referring to the entire domain (nr , 

V(A,r), min(A, r), max(A, r) )

),min(),max(

),min(
.

rArA

rAv
nr

-

-
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Choice of Evaluation Plans
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Choice of Evaluation Plans

 Must consider the interaction of evaluation techniques when choosing 

evaluation plans

 choosing the cheapest algorithm for each operation independently 

may not yield best overall algorithm.  E.g.

 merge-join may be costlier than hash-join, but may provide a 

sorted output which reduces the cost for an outer level 

aggregation

 nested-loop join may provide opportunity for pipelining

 Practical query optimizers incorporate elements of the following two 

broad approaches:

1. Search all the plans and choose the best plan in a cost-based 

fashion

2. Uses heuristics to choose a plan
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Cost-Based Optimization

 Consider finding the best join-order for r1 r2      . . . rn.

 There are (2(n – 1))!/(n – 1)! different join orders for above expression.  

With n = 7, the number is 665280, with n = 10, the number is greater 

than 17.6 billion!

 No need to generate all the join orders.  Exploiting some monotonicity 

(optimal substructure property), the least-cost join order for any subset 

of {r1, r2, . . ., rn} is computed only once. 
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Cost-Based Optimization: An example

 Consider finding the best join-order for r1 r2       r3 r4 r5

 Number of possible different join orderings: 

 The least-cost join order for any subset of { r1, r2, r3, r4, r5 } is computed only once

 Assume we want to compute N123/45 : number of possible different join orderings 

where r1, r2, r3 sare grouped together, e.g.,

1680
! 4

! 8

)!1(

))!1(2(






n

n

(r1 r2       r3) r4 r5 (r2 r3       r1) (r5 r4 ) r4 (r5    (r1 (r2       r3)))

 The naïve approach

 N123/45 = N123 * N45

 N123 =                   (N123 : # ways of arranging r1, r2, and r3)

 N45 = N123 = 12     (N45 : # ways of arranging r4 and r5 wrt. block of r1, r2, and r3)

 N123/45 = 12 * 12 = 144

 Exploiting optimal substructure property:

 compute only once best ordering for r1 r2       r3 : 12 possibilities (N123) 

 compute best ordering for R123 r4       r5 : 12 possibilities (N45) 

 Therefore, N123/45 = 12 + 12 = 24

12
! 2

! 4
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Dynamic Programming in Optimization

 To find best join tree (equivalently, best join order) for a set of n relations:

 To find best plan for a set S of n relations, consider all possible plans 

of the form:

S’ (S \ S’ )

for every non-empty subset S’ of S

 Recursively compute costs of best join orders for subsets S’ and S \ S’

to find the cost of each plan. Choose the cheapest of the 2n – 2 

alternatives

 Base case for recursion:  single relation access plan

 Apply all selections on Ri using best choice of indices on Ri

 When a plan for a subset is computed, store it and reuse it when it is 

required again, instead of re-computing it

 Dynamic programming

http://www.db-book.com/
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Join Order Optimization Algorithm

procedure findbestplan(S)

if (bestplan[S].cost  )

return bestplan[S]

// else bestplan[S] has not been computed earlier, compute it now

if (S contains only 1 relation)

set bestplan[S].plan and bestplan[S].cost based on the best way 

of accessing S  /* Using selections on S and indices on S */

else for each non-empty subset S1 of S such that S1  S

P1= findbestplan(S1)

P2= findbestplan(S - S1)

A = best algorithm for joining results of P1 and P2

cost = P1.cost + P2.cost + cost of A

if cost < bestplan[S].cost 

bestplan[S].cost = cost

bestplan[S].plan = “execute P1.plan; execute P2.plan;

join results of P1 and P2 using A”
return bestplan[S]
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Cost of Optimization

 With dynamic programming time complexity of optimization is O(3n).  

 With n = 10, this number is 59000 instead of 17.6 billion!

 Space complexity is O(2n) 

 Better time performance when considering only left-deep tree O(n 2n)
Space complexity remains at O(2n) (heuristic approach)

 Cost-based optimization is expensive, but worthwhile for queries on 
large datasets (typical queries have small n, generally < 10)
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Cost Based Optimization with Equivalence 

Rules

 Physical equivalence rules equates logical operations (e.g., join) to physical 

ones (i.e., implementations – e.g., nested-loop join, merge join)

 Relational algebra expression are converted into QEP with implementation details

 Efficient optimizer based on equivalence rules depends on

 A space efficient representation of expressions which avoids making 

multiple copies of sub-expressions

 Efficient techniques for detecting duplicate derivations of expressions

 A form of dynamic programming, which stores the best plan for a sub-

expression the first time it is optimized, and reuses in on repeated 

optimization calls on same sub-expression

 Cost-based pruning techniques that avoid generating all plans (greedy, 

heuristics, dynamic programming/optimal substructure property)
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Heuristic Optimization

 Cost-based optimization is expensive, even with dynamic programming

 Systems may use heuristics to reduce the number of choices that must 

be made in a cost-based fashion

 Heuristic optimization transforms the query-tree by using a set of rules 

that typically (but not in all cases) improve execution performance:

 Perform selection early (reduces the number of tuples)

 Perform projection early (reduces the number of attributes)

 Perform most restrictive selection and join operations (i.e. with 

smallest result size) before other similar operations

 Only consider left-deep join orders (particularly suited for pipelining 

as only one input has to be pipelined, the other is a relation)
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Structure of Query Optimizers

 Some systems use only heuristics, others combine heuristics with partial 

cost-based optimization.

 Many optimizers considers only left-deep join orders.

 Plus heuristics to push selections and projections down the query 

tree

 Reduces optimization complexity and generates plans amenable to 

pipelined evaluation.

 Heuristic optimization used in some versions of Oracle:

 Repeatedly pick “best” relation to join next 

 Starting from each of n starting points.  Pick best among these
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