
1

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

Chapter 13: Query Optimization

These slides are a modified version of the slides provided with the book

The original version of the slides is available at: https://www.db-book.com/

Data Management for Big Data

2018-2019 (spring semester)

Dario Della Monica

©Silberschatz, Korth and Sudarshan1.2Database System Concepts - 6th Edition

Chapter 13: Query Optimization

 Introduction

 Generating Equivalent Expressions

 Statistical Information for Cost Estimation (the Catalog)

 Choice of Evaluation Plans

 Dynamic Programming for Choosing Evaluation Plans

©Silberschatz, Korth and Sudarshan1.3Database System Concepts - 6th Edition

Introduction
 Query optimization is the process the best query execution plan

(QEP) among the many possible ones

 Alternative ways to execute a given query

 Equivalent relational algebra expressions

 Different implementation choices for each relational algebra operation

INSTR(i_id, name, dept_name, ...)

COURSE(c_id, title, ...)

TEACHES(i_id, c_id, ...)

The name of all instructors in the department of Music

together with the titles of all courses they teach

SELECT I.name, C.title

FROM INSTR I, COURSE C, TEACHES T

WHERE I.i_id = T.i_id

AND T.c_id = C.c_id

AND dept_name=“Music”

))) (((COURSETEACHESINSTR)) ()((COURSETEACHESINSTR

©Silberschatz, Korth and Sudarshan1.4Database System Concepts - 6th Edition

Introduction (Cont.)

 A query evaluation plan (QEP) defines exactly what algorithm is used

for each operation, and how the execution of the operations is

coordinated

 Find out how to view query execution plans on your favorite database

©Silberschatz, Korth and Sudarshan1.5Database System Concepts - 6th Edition

Introduction (Cont.)

 Cost difference between query evaluation plans can be enormous

 E.g. seconds vs. days in some cases

 Steps in cost-based query optimization

1. Generate logically equivalent expressions using equivalence
rules

2. Annotate resulting expressions to get alternative QEP

3. Evaluate/estimate the cost (execution time) of each QEP

4. Choose the cheapest QEP based on estimated cost

 Estimation of QEP cost based on:

 Statistical information about relations (stored in the Catalog)

 number of tuples, number of distinct values for an attribute

 Statistics estimation for intermediate results

 to compute cost of complex expressions

 Cost formulae for algorithms, computed using statistics
Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

Generating Equivalent Expressions

http://www.db-book.com/
http://www.db-book.com/

2

©Silberschatz, Korth and Sudarshan1.7Database System Concepts - 6th Edition

Transformation of Relational Expressions

 Two relational algebra expressions are said to be equivalent if the two

expressions generate the same set of tuples on every legal database

instance

 Note: order of tuples is irrelevant (and also order of attributes)

 we don’t care if they generate different results on databases that

violate integrity constraints (e.g., uniqueness of keys)

 In SQL, inputs and outputs are multisets of tuples

 Two expressions in the multiset version of the relational algebra are

said to be equivalent if the two expressions generate the same multiset

of tuples on every legal database instance

 We focus on relational algebra and treat relations as sets

 An equivalence rule states that expressions of two forms are equivalent

 One can replace an expression of first form by one of the second form,

or vice versa

©Silberschatz, Korth and Sudarshan1.8Database System Concepts - 6th Edition

Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a

sequence of individual selections.

2. Selection operations are commutative.

3. Only the last in a sequence of projection operations is

needed, the others can be omitted

where

4. Selections can be combined with Cartesian products and

theta joins.

a. (E1 X E2) = E1 E2

b. 1
(E1 2

E2) = E1 1 2
E2

))(())((
1221
EE qqqq ssss =

))(()(
2121
EE qqqq sss =Ù

)())))((((
121

EE LLLL n

nLLL 21

©Silberschatz, Korth and Sudarshan1.9Database System Concepts - 6th Edition

Equivalence Rules (Cont.)

5. Theta-join (and thus natural joins) operations are commutative.

E1 E2 = E2 E1

(but the order is important for efficiency)

More equivalences at Ch. 13.2 of the book ⋆

⋆
Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed.

6. (a) Natural join operations are associative:

(b) Theta joins are associative in the following manner:

(E1 1
E2) 23

E3 = E1 1 3
(E2 2

E3)

where 1 involves attributes from only E1 and E2

and 2 involves attributes from only E2 and E3

(E1 E2) E3 = E1 (E2 E3)

(again, the order is important for efficiency)

©Silberschatz, Korth and Sudarshan1.10Database System Concepts - 6th Edition

Pictorial Depiction of Equivalence Rules

©Silberschatz, Korth and Sudarshan1.11Database System Concepts - 6th Edition

Exercise

 Create equivalence rules to push selection inside a left outer join Ex. 13.1(c) ⋆

 Disprove the equivalence Ex. 13.1(d) ⋆

(R S) T = R (S T)

⋆
Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed.

Definition (left outer join): the result of a left outer join T = R S is a super-set of the

result of the join T’ = R S in that all tuples in T’ appear in T. In addition, T preserve

those tuples that are lost in the join, by creating tuples in T that are filled with null

values

STUD TAKES
STUD stud_id name surname

1 gino bianchi

2 filippo neri

3 mario rossi

TAKES stud_id course grade

1 Math 30

1 Algebra 26

2 Progr. 22

2 Math 28

2 Logic 30

stud_id name surname course grade

1 gino bianchi Math 30

1 gino bianchi Algebra 26

2 filippo neri Progr. 22

2 filippo neri Math 28

2 filippo neri Logic 30

3 mario rossi null null

©Silberschatz, Korth and Sudarshan1.12Database System Concepts - 6th Edition

Solutions

 Disprove the equivalence

AR ARS ART

1 1 1

R

AS ARS AST

1 1 1

S

AT ART AST

1 2 1

T

R S

AR ARS ART AS AST

1 1 1 1 1

S T

AS ARS AST AT ART

1 1 1 1 2

 Create equivalence rules involving left outer join and selection

 (R S) = (R) S

(R S) T = R (S T)

(R S) T

AR ARS ART AS AST AT

1 1 1 1 1 null

R (S T)

AR ARS ART AS AST AT

1 1 1 null null null

where uses only attributes of R

3

©Silberschatz, Korth and Sudarshan1.13Database System Concepts - 6th Edition

Solutions (cont’d)

 Disprove the equivalence

A AR

1 1

R

A AS

2 1

S

A AT

1 1

T

R S

A AR AS

1 1 null

S T

A AS AT

2 1 null

(R S) T = R (S T)

(R S) T

A AR AS AT

1 1 null 1

R (S T)

A AR AS AT

1 1 null null

Another counter-example (to fix for solution given on the webpage of the book)

©Silberschatz, Korth and Sudarshan1.14Database System Concepts - 6th Edition

Enumeration of Equivalent Expressions

 Query optimizers use equivalence rules to systematically generate

expressions equivalent to the given expression

 Can generate all equivalent expressions as follows:

 Repeat

 apply all applicable equivalence rules on every sub-expression of

every equivalent expression found so far

 add newly generated expressions to the set of equivalent

expressions

Until no new equivalent expressions are generated above

 The above approach is very expensive in space and time

 Space: sharing (re-using) common sub-expressions
(detect duplicate sub-expressions and share one copy)

 Time:

 Dynamic programming

 Greedy techniques (select best choices at each step)

 Heuristics, e.g., single-relation operations
(selections, projections) are pushed inside (performed earlier)

E1 E2

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

Statistical Information for Cost

Estimation (the Catalog)

©Silberschatz, Korth and Sudarshan1.16Database System Concepts - 6th Edition

Cost Estimation

 Cost of each operator computed as described in Chapter 12 ⋆

 Need statistics of input relations

 E.g. number of tuples, sizes of tuples

 Inputs can be results of sub-expressions

 Need to estimate statistics of expression results

 E.g., selectivity rate based on number of distinct values for an

attribute

 Statistics are collected in the Catalog

⋆
Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed.

©Silberschatz, Korth and Sudarshan1.17Database System Concepts - 6th Edition

Statistical Information for Cost Estimation

 Statistics information for cost estimation is maintained in the Catalog

 The catalog is itself stored in the database

 It contains:

 nr: number of tuples in a relation r

 br: number of blocks containing tuples of r

 lr: size of a tuple of r (in bytes)

 fr: blocking factor of r — i.e., the number of tuples of r that fit into one block

 V(A, r): number of distinct values that appear in r for attribute A; same as the
size of A(r)

 min(A,r): smallest value appearing in relation r for attribute A;

 max(A,r): largest value appearing in relation r for attribute A;

 If tuples of r are stored together physically in a file, then:

rf
rn

rb

©Silberschatz, Korth and Sudarshan1.18Database System Concepts - 6th Edition

Histograms

 Histogram on attribute age of relation person

 For each range

 Number of records (tuples) with value in the range

 Also, number of distinct values in the range

 Without histogram information, uniform distribution is assumed

value

fr
eq

u
en

cy

50

40

30

20

10

1–5 6–10 11–15 16–20 21–25

http://www.db-book.com/

4

©Silberschatz, Korth and Sudarshan1.19Database System Concepts - 6th Edition

Selection Size Estimation

 A=v(r)

 nr / V(A,r) : number of records that will satisfy the selection

(uniform distribution)

 Equality condition on a key attribute: size estimate = 1

 A v(r) (case of A V(r) is symmetric)

 n: estimated number of tuples satisfying the condition is computed

assuming that min(A,r) and max(A,r) are available in catalog

 n = 0 if v < min(A,r)

 n = otherwise

(uniform distribution)

 In absence of statistical information or when v is unknown at time of

cost estimation (e.g., v is computed at run-time by the application using

the DB) n is assumed to be nr / 2

 If histograms are available, we can refine above estimate by using values

for restricted ranges instead of values referring to the entire domain (nr ,

V(A,r), min(A, r), max(A, r))

),min(),max(

),min(
.

rArA

rAv
nr

-

-

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

Choice of Evaluation Plans

©Silberschatz, Korth and Sudarshan1.21Database System Concepts - 6th Edition

Choice of Evaluation Plans

 Must consider the interaction of evaluation techniques when choosing

evaluation plans

 choosing the cheapest algorithm for each operation independently

may not yield best overall algorithm. E.g.

 merge-join may be costlier than hash-join, but may provide a

sorted output which reduces the cost for an outer level

aggregation

 nested-loop join may provide opportunity for pipelining

 Practical query optimizers incorporate elements of the following two

broad approaches:

1. Search all the plans and choose the best plan in a cost-based

fashion

2. Uses heuristics to choose a plan

©Silberschatz, Korth and Sudarshan1.22Database System Concepts - 6th Edition

Cost-Based Optimization

 Consider finding the best join-order for r1 r2 . . . rn.

 There are (2(n – 1))!/(n – 1)! different join orders for above expression.

With n = 7, the number is 665280, with n = 10, the number is greater

than 17.6 billion!

 No need to generate all the join orders. Exploiting some monotonicity

(optimal substructure property), the least-cost join order for any subset

of {r1, r2, . . ., rn} is computed only once.

©Silberschatz, Korth and Sudarshan1.23Database System Concepts - 6th Edition

Cost-Based Optimization: An example

 Consider finding the best join-order for r1 r2 r3 r4 r5

 Number of possible different join orderings:

 The least-cost join order for any subset of { r1, r2, r3, r4, r5 } is computed only once

 Assume we want to compute N123/45 : number of possible different join orderings

where r1, r2, r3 sare grouped together, e.g.,

1680
! 4

! 8

)!1(

))!1(2(

n

n

(r1 r2 r3) r4 r5 (r2 r3 r1) (r5 r4) r4 (r5 (r1 (r2 r3)))

 The naïve approach

 N123/45 = N123 * N45

 N123 = (N123 : # ways of arranging r1, r2, and r3)

 N45 = N123 = 12 (N45 : # ways of arranging r4 and r5 wrt. block of r1, r2, and r3)

 N123/45 = 12 * 12 = 144

 Exploiting optimal substructure property:

 compute only once best ordering for r1 r2 r3 : 12 possibilities (N123)

 compute best ordering for R123 r4 r5 : 12 possibilities (N45)

 Therefore, N123/45 = 12 + 12 = 24

12
! 2

! 4

©Silberschatz, Korth and Sudarshan1.24Database System Concepts - 6th Edition

Dynamic Programming in Optimization

 To find best join tree (equivalently, best join order) for a set of n relations:

 To find best plan for a set S of n relations, consider all possible plans

of the form:

S’ (S \ S’)

for every non-empty subset S’ of S

 Recursively compute costs of best join orders for subsets S’ and S \ S’

to find the cost of each plan. Choose the cheapest of the 2n – 2

alternatives

 Base case for recursion: single relation access plan

 Apply all selections on Ri using best choice of indices on Ri

 When a plan for a subset is computed, store it and reuse it when it is

required again, instead of re-computing it

 Dynamic programming

http://www.db-book.com/

5

©Silberschatz, Korth and Sudarshan1.25Database System Concepts - 6th Edition

Join Order Optimization Algorithm

procedure findbestplan(S)

if (bestplan[S].cost)

return bestplan[S]

// else bestplan[S] has not been computed earlier, compute it now

if (S contains only 1 relation)

set bestplan[S].plan and bestplan[S].cost based on the best way

of accessing S /* Using selections on S and indices on S */

else for each non-empty subset S1 of S such that S1 S

P1= findbestplan(S1)

P2= findbestplan(S - S1)

A = best algorithm for joining results of P1 and P2

cost = P1.cost + P2.cost + cost of A

if cost < bestplan[S].cost

bestplan[S].cost = cost

bestplan[S].plan = “execute P1.plan; execute P2.plan;

join results of P1 and P2 using A”
return bestplan[S]

©Silberschatz, Korth and Sudarshan1.26Database System Concepts - 6th Edition

Cost of Optimization

 With dynamic programming time complexity of optimization is O(3n).

 With n = 10, this number is 59000 instead of 17.6 billion!

 Space complexity is O(2n)

 Better time performance when considering only left-deep tree O(n 2n)
Space complexity remains at O(2n) (heuristic approach)

 Cost-based optimization is expensive, but worthwhile for queries on
large datasets (typical queries have small n, generally < 10)

©Silberschatz, Korth and Sudarshan1.27Database System Concepts - 6th Edition

Cost Based Optimization with Equivalence

Rules

 Physical equivalence rules equates logical operations (e.g., join) to physical

ones (i.e., implementations – e.g., nested-loop join, merge join)

 Relational algebra expression are converted into QEP with implementation details

 Efficient optimizer based on equivalence rules depends on

 A space efficient representation of expressions which avoids making

multiple copies of sub-expressions

 Efficient techniques for detecting duplicate derivations of expressions

 A form of dynamic programming, which stores the best plan for a sub-

expression the first time it is optimized, and reuses in on repeated

optimization calls on same sub-expression

 Cost-based pruning techniques that avoid generating all plans (greedy,

heuristics, dynamic programming/optimal substructure property)

©Silberschatz, Korth and Sudarshan1.28Database System Concepts - 6th Edition

Heuristic Optimization

 Cost-based optimization is expensive, even with dynamic programming

 Systems may use heuristics to reduce the number of choices that must

be made in a cost-based fashion

 Heuristic optimization transforms the query-tree by using a set of rules

that typically (but not in all cases) improve execution performance:

 Perform selection early (reduces the number of tuples)

 Perform projection early (reduces the number of attributes)

 Perform most restrictive selection and join operations (i.e. with

smallest result size) before other similar operations

 Only consider left-deep join orders (particularly suited for pipelining

as only one input has to be pipelined, the other is a relation)

©Silberschatz, Korth and Sudarshan1.29Database System Concepts - 6th Edition

Structure of Query Optimizers

 Some systems use only heuristics, others combine heuristics with partial

cost-based optimization.

 Many optimizers considers only left-deep join orders.

 Plus heuristics to push selections and projections down the query

tree

 Reduces optimization complexity and generates plans amenable to

pipelined evaluation.

 Heuristic optimization used in some versions of Oracle:

 Repeatedly pick “best” relation to join next

 Starting from each of n starting points. Pick best among these

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

End of Chapter

http://www.db-book.com/

