Chapter 13: Query Optimization
Data Management for Big Data
2018-2019 (spring semester)
Dario Della Monica
These stides are modified version the slides provided with the book

Database System Concepts, $6^{\text {th }}$ Ed
©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use
The original version of the slides is available at: https://www.db-book.com/

Chapter 13: Query Optimization

- Introduction
- Generating Equivalent Expressions
- Statistical Information for Cost Estimation (the Catalog)
- Choice of Evaluation Plans
- Dynamic Programming for Choosing Evaluation Plans

Introduction

- Query optimization is the process the best query execution plan (QEP) among the many possible ones
- Alternative ways to execute a given query
- Equivalent relational algebra expressions
- Different implementation choices for each relational algebra operation

NSTR(i id, name, dept_name, ...)
COURSE(c id, title, ...)
The name of all instructors in the department of Music
TEACHES(i id c id ...) together with the titles of all courses they teach

SELECT I.name, C.title
FROM INSTR I, COURSE C, TEACHEST
WHERE l.i_id = T.i_id
AND T.c_id = C.c_id
AND dept_name="Music"
\qquad

П(σ (INSTR $\bowtie(T E A C H E S ~ \bowtie C O U R S E)) ~) ~$ 1.3

$\prod^{(\sigma(I N S T R) \bowtie(\text { TEACHES } \bowtie \text { COURSE }))}$

Introduction (Cont.)

- Cost difference between query evaluation plans can be enormous
- E.g. seconds vs. days in some cases
- Steps in cost-based query optimization

1. Generate logically equivalent expressions using equivalence rules
2. Annotate resulting expressions to get alternative QEP
3. Evaluate/estimate the cost (execution time) of each QEP
4. Choose the cheapest QEP based on estimated cost

- Estimation of QEP cost based on:
- Statistical information about relations (stored in the Catalog) , number of tuples, number of distinct values for an attribute
- Statistics estimation for intermediate results
, to compute cost of complex expressions
- Cost formulae for algorithms, computed using statistics

Transformation of Relational Expressions

- Two relational algebra expressions are said to be equivalent if the two expressions generate the same set of tuples on every legal database instance
- Note: order of tuples is irrelevant (and also order of attributes)
- we don't care if they generate different results on databases that violate integrity constraints (e.g., uniqueness of keys)
- In SQL, inputs and outputs are multisets of tuples
- Two expressions in the multiset version of the relational algebra are said to be equivalent if the two expressions generate the same multiset of tuples on every legal database instance
- We focus on relational algebra and treat relations as sets
- An equivalence rule states that expressions of two forms are equivalent
- One can replace an expression of first form by one of the second form, or vice versa

Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a sequence of individual selections.

$$
(E)=\quad(\quad(E))
$$

2. Selection operations are commutative.

$$
\left(\quad{ }_{2}(E)\right)={ }_{2}(\quad(E))
$$

3. Only the last in a sequence of projection operations is needed, the others can be omitted

$$
\Pi_{L_{1}}\left(\Pi_{L_{2}}\left(\ldots\left(\Pi_{L_{n}}(E)\right) \ldots\right)\right)=\Pi_{L_{1}}(E)
$$

where $L_{1} \subseteq L_{2} \subseteq \ldots \subseteq L_{n}$
4. Selections can be combined with Cartesian products and theta joins.
a. $\sigma_{\theta}\left(\mathrm{E}_{1} X \mathrm{E}_{2}\right)=\mathrm{E}_{1} \bowtie_{\theta} \mathrm{E}_{2}$
b. $\sigma_{\theta_{1}}\left(E_{1} \bowtie_{\theta_{2}} E_{2}\right)=E_{1} \bowtie_{\theta_{1 \wedge} \theta_{2}} E_{2}$
5. Theta-join (and thus natural joins) operations are commutative

$$
E_{1} \bowtie_{\theta} E_{2}=E_{2} \bowtie_{\theta} E_{1}
$$

(but the order is important for efficiency)
6. (a) Natural join operations are associative:

$$
\left(E_{1} \bowtie E_{2}\right) \bowtie E_{3}=E_{1} \bowtie\left(E_{2} \bowtie E_{3}\right)
$$

(again, the order is important for efficiency)
(b) Theta joins are associative in the following manner:

$$
\left(E_{1} \bowtie_{\theta_{1}} E_{2}\right) \bowtie_{\theta_{2} \wedge \theta_{3}} E_{3}=E_{1} \bowtie_{\theta_{1} \wedge \theta_{3}}\left(E_{2} \bowtie_{\theta_{2}} E_{3}\right)
$$

where θ_{1} involves attributes from only E_{1} and E_{2}
and $\quad \theta_{2}$ involves attributes from only E_{2} and E_{3}

More equivalences at Ch. 13.2 of the book *

- Create equivalence rules to push selection inside a left outer join

Ex. 13.1(c) *

- Disprove the equivalence

Ex. 13.1(d) *

$$
(R D \bowtie S) D T=R D(S D \backslash T)
$$

Definition (left outer join): the result of a left outer join $T=R \rrbracket$ S is a super-set of the result of the join $T^{\prime}=R \bowtie S$ in that all tuples in T^{\prime} appear in T. In addition, T preserve those tuples that are lost in the join, by creating tuples in T that are filled with null values

STUD	stud_id 1	name gino	surname bianchi	STUD \triangle TAKES				
		filippo	neri	stud_id	name	surname	course	grade
	3	mario	rossi	1	gino	bianchi	Math	30
TAKES	stud_id	course	grade	1	gino	bianchi	Algebra	26
		Math		2	filippo	neri	Progr.	22
		Algebra	26	2	filippo	neri	Math	28
	2	Progr.	22	2	filippo	neri	Logic	30
	2	Math	28	3	mario	rossi	null	null
	2	Logic	30					

Pictorial Depiction of Equivalence Rules

Solutions

- Create equivalence rules involving left outer join and selection

$$
\sigma_{\theta}(R D \backslash S)=\sigma_{\theta}(R) D \bowtie S
$$

where θ uses only attributes of R

- Disprove the equivalence $(R D \triangle) D \backslash T=R D(S D \bowtie T)$
R

A_{R}	$A_{R S}$	$A_{R T}$				
1	1	1	\quad	A_{S}	$A_{R S}$	$A_{S T}$
:---	:---	:---				
1	1	1	\quad	A_{T}	$A_{R T}$	$A_{S T}$
:---	:---	:---				
1	2	1				

$R D \triangle S$

A_{R}	$A_{R S}$	$A_{R T}$	A_{S}	$A_{S T}$
1	1	1	1	1

$S \searrow \backslash \mid$

A_{S}	$A_{R S}$	$A_{S T}$	A_{T}	$A_{R T}$
1	1	1	1	2

A_{R}	$\mathrm{A}_{\text {RS }}$	$\mathrm{A}_{\text {RT }}$	$\mathrm{A}_{\text {S }}$	$\mathrm{A}_{\text {ST }}$	$\mathrm{A}_{\text {T }}$
1	1	1	1	1	null

$\mathrm{R} \triangle(\mathrm{S} \triangle \mathrm{T})$

A_{R}	$A_{R S}$	$A_{R T}$	A_{S}	$A_{S T}$	A_{T}
1	1	1	null	null	null

Solutions (cont'd)

Enumeration of Equivalent Expressions

Another counter-example (to fix for solution given on the webpage of the book)
R

A	A_{R}
1	1

S

A	A_{S}
2	1

T

A	A_{T}
1	1

$R D \bowtie S$

A	A_{R}	A_{S}
1	1	null

S $\triangle \backslash T$

A	A_{S}	A_{T}
2	1	null

A	$\mathrm{A}_{\text {R }}$	$\mathrm{A}_{\text {S }}$	$\mathrm{A}_{\text {T }}$
1	1	null	1

R $\searrow(S D \backslash T)$

A	A_{R}	A_{S}	A_{T}
1	1	null	null

- Query optimizers use equivalence rules to systematically generate expressions equivalent to the given expression
- Can generate all equivalent expressions as follows:
- Repeat
, apply all applicable equivalence rules on every sub-expression of every equivalent expression found so far
, add newly generated expressions to the set of equivalent expressions
Until no new equivalent expressions are generated above
- The above approach is very expensive in space and time
- Space: sharing (re-using) common sub-expressions X
(detect duplicate sub-expressions and share one copy)
- Time:

Dynamic programming

- Greedy techniques (select best choices at each step)

Heuristics, e.g., single-relation operations
(selections, projections) are pushed inside (performed earlier)

Cost Estimation

- Cost of each operator computed as described in Chapter 12 *
- Need statistics of input relations
E.g. number of tuples, sizes of tuples
- Inputs can be results of sub-expressions
- Need to estimate statistics of expression results
- E.g., selectivity rate based on number of distinct values for an attribute
- Statistics are collected in the Catalog

Statistical Information for Cost Estimation

- Statistics information for cost estimation is maintained in the Catalog
- The catalog is itself stored in the database
- It contains:
- n_{r} : number of tuples in a relation r
- b_{r} : number of blocks containing tuples of r
- I_{r} : size of a tuple of r (in bytes)
- t_{r} : blocking factor of r-i.e., the number of tuples of r that fit into one block
- $V(A, r)$: number of distinct values that appear in r for attribute A; same as the size of $\prod_{A}(r)$
- $\min (A, r)$: smallest value appearing in relation r for attribute A;
- $\max (A, r)$: largest value appearing in relation r for attribute A;
- If tuples of r are stored together physically in a file, then:

$$
b_{r}=\left\lceil\frac{n_{r}}{f_{r}}\right\rceil
$$

- $\sigma_{A=v}(r)$
. $n_{r} / V(A, r)$: number of records that will satisfy the selection (uniform distribution)
- Equality condition on a key attribute: size estimate $=1$
- $\sigma_{A \leq \downarrow}(r)$ (case of $\sigma_{A \geq \downarrow}(r)$ is symmetric
- n : estimated number of tuples satisfying the condition is computed assuming that $\min (A, r)$ and $\max (A, r)$ are available in catalog
, $\mathrm{n}=0 \quad$ if $\mathrm{v}<\min (\mathrm{A}, \mathrm{r})$
, $\mathrm{n}=n_{r} \cdot \frac{v \min (A, r)}{\operatorname{mav}(A, r) \min (A, r)}$
otherwise
(uniform distribution)
- In absence of statistical information or when v is unknown at time of cost estimation (e.g., v is computed at run-time by the application using the DB) n is assumed to be $n_{r} / 2$
- If histograms are available, we can refine above estimate by using values for restricted ranges instead of values referring to the entire domain (n_{r}, $V(A, r), \min (A, r), \max (A, r))$

Choice of Evaluation Plans

- Must consider the interaction of evaluation techniques when choosing evaluation plans
- choosing the cheapest algorithm for each operation independently may not yield best overall algorithm. E.g.
- merge-join may be costlier than hash-join, but may provide a sorted output which reduces the cost for an outer level aggregation
, nested-loop join may provide opportunity for pipelining
- Practical query optimizers incorporate elements of the following two broad approaches

1. Search all the plans and choose the best plan in a cost-based fashion
2. Uses heuristics to choose a plan

Cost-Based Optimization: An example

- Consider finding the best join-order for $r_{1} \bowtie r_{2} \bowtie r_{3} \bowtie r_{4} \bowtie r_{5}$
- Number of possible different join orderings: $\frac{(2(n-1))!}{(n-1)!}=\frac{8!}{4!}=1680$
- The least-cost join order for any subset of $\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}\right\}$ is computed only once
- Assume we want to compute $\boldsymbol{N}_{123 / 45}$: number of possible different join orderings where r_{1}, r_{2}, r_{3} sare grouped together, e.g.,

$$
\left(r_{1} \bowtie r_{2} \bowtie r_{3}\right) \bowtie r_{4} \bowtie r_{5} \quad\left(r_{2} \bowtie r_{3} \bowtie r_{1}\right) \bowtie\left(r_{5} \bowtie r_{4}\right) \quad r_{4} \bowtie\left(r_{5} \bowtie\left(r_{1} \bowtie\left(r_{2} \bowtie r_{3}\right)\right)\right)
$$

- The naïve approach
- $N_{123 / 45}=N_{123}{ }^{*} N_{45}$
- $\boldsymbol{N}_{123}=\frac{4!}{2!}=12 \quad\left(\boldsymbol{N}_{123}:\right.$ \# ways of arranging r_{1}, r_{2}, and $\left.r_{3}\right)$
- $\boldsymbol{N}_{45}=\boldsymbol{N}_{123}=12 \quad\left(\boldsymbol{N}_{45}\right.$: \# ways of arranging r_{4} and r_{5} wrt. block of r_{1}, r_{2}, and $\left.r_{3}\right)$
- $N_{123 / 45}=12 * 12=144$
- Exploiting optimal substructure property:
- compute only once best ordering for $r_{1} \bowtie r_{2} \bowtie r_{3}: 12$ possibilities $\left(\boldsymbol{N}_{123}\right)$
- compute best ordering for $R_{123} \bowtie r_{4} \bowtie r_{5}: 12$ possibilities $\left(\boldsymbol{N}_{45}\right)$
- Therefore, $\quad N_{123 / 45}=12+12=24$

return bestplan $[S]$

Cost Based Optimization with Equivalence Rules

- Physical equivalence rules equates logical operations (e.g., join) to physical ones (i.e., implementations - e.g., nested-loop join, merge join)
- Relational algebra expression are converted into QEP with implementation details
- Efficient optimizer based on equivalence rules depends on
- A space efficient representation of expressions which avoids making multiple copies of sub-expressions
- Efficient techniques for detecting duplicate derivations of expressions
- A form of dynamic programming, which stores the best plan for a subexpression the first time it is optimized, and reuses in on repeated optimization calls on same sub-expression
- Cost-based pruning techniques that avoid generating all plans (greedy, heuristics, dynamic programming/optimal substructure property)

Structure of Query Optimizers

- Some systems use only heuristics, others combine heuristics with partial cost-based optimization.
- Many optimizers considers only left-deep join orders.
- Plus heuristics to push selections and projections down the query tree
- Reduces optimization complexity and generates plans amenable to pipelined evaluation.
- Heuristic optimization used in some versions of Oracle:
- Repeatedly pick "best" relation to join next
, Starting from each of n starting points. Pick best among these

Cost of Optimization

- With dynamic programming time complexity of optimization is $O\left(3^{n}\right)$. - With $n=10$, this number is 59000 instead of 17.6 billion!
- Space complexity is $O\left(2^{n}\right)$
- Better time performance when considering only left-deep tree $O\left(\mathrm{n} 2^{n}\right)$ Space complexity remains at $O\left(2^{n}\right)$ (heuristic approach)

(a) Left-deep join tree

(b) Non-left-deep ioin tree
- Cost-based optimization is expensive, but worthwhile for queries on large datasets (typical queries have small n, generally < 10)

Heuristic Optimization

- Cost-based optimization is expensive, even with dynamic programming
- Systems may use heuristics to reduce the number of choices that must be made in a cost-based fashion
- Heuristic optimization transforms the query-tree by using a set of rules that typically (but not in all cases) improve execution performance:
- Perform selection early (reduces the number of tuples)
- Perform projection early (reduces the number of attributes)
- Perform most restrictive selection and join operations (i.e. with smallest result size) before other similar operations
- Only consider left-deep join orders (particularly suited for pipelining as only one input has to be pipelined, the other is a relation)
Enc| \quad End of Chapter

