
Chapter 13: Query OptimizationChapter 13: Query Optimization

Data Management for Big Data

2018-2019 (spring semester)

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

These slides are a modified version of the slides provided with the book

The original version of the slides is available at: https://www.db-book.com/

2018-2019 (spring semester)

Dario Della Monica

Chapter 13: Query OptimizationChapter 13: Query Optimization

� Introduction

� Generating Equivalent Expressions

� Statistical Information for Cost Estimation (the Catalog)

� Choice of Evaluation Plans

� Dynamic Programming for Choosing Evaluation Plans

©Silberschatz, Korth and Sudarshan1.2Database System Concepts - 6th Edition

IntroductionIntroduction
� Query optimization is the process the best query execution plan

(QEP) among the many possible ones

� Alternative ways to execute a given query

� Equivalent relational algebra expressions

� Different implementation choices for each relational algebra operation

INSTR(i_id, name, dept_name, ...)

COURSE(c_id, title, ...)

TEACHES(i_id, c_id, ...)

The name of all instructors in the department of Music

together with the titles of all courses they teach

©Silberschatz, Korth and Sudarshan1.3Database System Concepts - 6th Edition

TEACHES(i_id, c_id, ...)

SELECT I.name, C.title

FROM INSTR I, COURSE C, TEACHES T

WHERE I.i_id = T.i_id

AND T.c_id = C.c_id

AND dept_name=“Music”

))) (((∏ COURSETEACHESINSTRσ)) ()((∏ COURSETEACHESINSTRσ

Introduction (Cont.)Introduction (Cont.)

� A query evaluation plan (QEP) defines exactly what algorithm is used

for each operation, and how the execution of the operations is

coordinated

©Silberschatz, Korth and Sudarshan1.4Database System Concepts - 6th Edition

� Find out how to view query execution plans on your favorite database

Introduction (Cont.)Introduction (Cont.)

� Cost difference between query evaluation plans can be enormous

� E.g. seconds vs. days in some cases

� Steps in cost-based query optimization

1. Generate logically equivalent expressions using equivalence
rules

2. Annotate resulting expressions to get alternative QEP

3. Evaluate/estimate the cost (execution time) of each QEP

©Silberschatz, Korth and Sudarshan1.5Database System Concepts - 6th Edition

3. Evaluate/estimate the cost (execution time) of each QEP

4. Choose the cheapest QEP based on estimated cost

� Estimation of QEP cost based on:

� Statistical information about relations (stored in the Catalog)

� number of tuples, number of distinct values for an attribute

� Statistics estimation for intermediate results

� to compute cost of complex expressions

� Cost formulae for algorithms, computed using statistics

Generating Equivalent ExpressionsGenerating Equivalent Expressions

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Transformation of Relational ExpressionsTransformation of Relational Expressions

� Two relational algebra expressions are said to be equivalent if the two

expressions generate the same set of tuples on every legal database

instance

� Note: order of tuples is irrelevant (and also order of attributes)

� we don’t care if they generate different results on databases that

violate integrity constraints (e.g., uniqueness of keys)

� In SQL, inputs and outputs are multisets of tuples

©Silberschatz, Korth and Sudarshan1.7Database System Concepts - 6th Edition

� In SQL, inputs and outputs are multisets of tuples

� Two expressions in the multiset version of the relational algebra are

said to be equivalent if the two expressions generate the same multiset

of tuples on every legal database instance

� We focus on relational algebra and treat relations as sets

� An equivalence rule states that expressions of two forms are equivalent

� One can replace an expression of first form by one of the second form,

or vice versa

Equivalence RulesEquivalence Rules

1. Conjunctive selection operations can be deconstructed into a

sequence of individual selections.

2. Selection operations are commutative.

3. Only the last in a sequence of projection operations is

needed, the others can be omitted

))(())((
1221
EE θθθθ σσσσ =

))(()(
2121
EE θθθθ σσσ =∧

©Silberschatz, Korth and Sudarshan1.8Database System Concepts - 6th Edition

needed, the others can be omitted

where

4. Selections can be combined with Cartesian products and

theta joins.

a. σθ(E1X E2) = E1 θ E2

b. σθ1
(E1 θ2

E2) = E1 θ1∧ θ2
E2

)())))((((
121
EE LLLL n

Π=ΠΠΠ KK

nLLL ⊆⊆⊆ K21

Equivalence Rules (Cont.)Equivalence Rules (Cont.)

5. Theta-join (and thus natural joins) operations are commutative.

E1 θ E2 = E2 θ E1

(but the order is important for efficiency)

6. (a) Natural join operations are associative:

(E1 E2) E3 = E1 (E2 E3)

(again, the order is important for efficiency)

©Silberschatz, Korth and Sudarshan1.9Database System Concepts - 6th Edition

More equivalences at Ch. 13.2 of the book ⋆

⋆
Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed.

(b) Theta joins are associative in the following manner:

(E1 θ1
E2) θ2∧θ3

E3 = E1 θ1∧ θ3
(E2 θ2

E3)

where θ1 involves attributes from only E1 and E2

and θ2 involves attributes from only E2 and E3

Pictorial Depiction of Equivalence RulesPictorial Depiction of Equivalence Rules

©Silberschatz, Korth and Sudarshan1.10Database System Concepts - 6th Edition

ExerciseExercise
� Create equivalence rules to push selection inside a left outer join Ex. 13.1(c) ⋆

� Disprove the equivalence Ex. 13.1(d) ⋆

(R S) T = R (S T)

Definition (left outer join): the result of a left outer join T = R S is a super-set of the

result of the join T’ = R S in that all tuples in T’ appear in T. In addition, T preserve

those tuples that are lost in the join, by creating tuples in T that are filled with null

values

©Silberschatz, Korth and Sudarshan1.11Database System Concepts - 6th Edition

⋆
Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed.

STUD TAKES
STUD stud_id name surname

1 gino bianchi

2 filippo neri

3 mario rossi

TAKES stud_id course grade

1 Math 30

1 Algebra 26

2 Progr. 22

2 Math 28

2 Logic 30

stud_id name surname course grade

1 gino bianchi Math 30

1 gino bianchi Algebra 26

2 filippo neri Progr. 22

2 filippo neri Math 28

2 filippo neri Logic 30

3 mario rossi null null

SolutionsSolutions

� Disprove the equivalence

AR ARS ART

1 1 1

R

AS ARS AST

1 1 1

S

AT ART AST

1 2 1

T

� Create equivalence rules involving left outer join and selection

σθ (R S) = σθ (R) S

(R S) T = R (S T)

where θ uses only attributes of R

©Silberschatz, Korth and Sudarshan1.12Database System Concepts - 6th Edition

1 1 1 1 1 1 1 2 1

R S

AR ARS ART AS AST

1 1 1 1 1

S T

AS ARS AST AT ART

1 1 1 1 2

(R S) T

AR ARS ART AS AST AT

1 1 1 1 1 null

R (S T)

AR ARS ART AS AST AT

1 1 1 null null null

SolutionsSolutions ((contcont’d)’d)

� Disprove the equivalence

A AR

1 1

R

A AS

2 1

S

A AT

1 1

T

(R S) T = R (S T)

Another counter-example (to fix for solution given on the webpage of the book)

©Silberschatz, Korth and Sudarshan1.13Database System Concepts - 6th Edition

R S

A AR AS

1 1 null

S T

A AS AT

2 1 null

(R S) T

A AR AS AT

1 1 null 1

R (S T)

A AR AS AT

1 1 null null

Enumeration of Equivalent ExpressionsEnumeration of Equivalent Expressions

� Query optimizers use equivalence rules to systematically generate

expressions equivalent to the given expression

� Can generate all equivalent expressions as follows:

� Repeat

� apply all applicable equivalence rules on every sub-expression of

every equivalent expression found so far

� add newly generated expressions to the set of equivalent

expressions

©Silberschatz, Korth and Sudarshan1.14Database System Concepts - 6th Edition

expressions

Until no new equivalent expressions are generated above

� The above approach is very expensive in space and time

� Space: sharing (re-using) common sub-expressions
(detect duplicate sub-expressions and share one copy)

� Time:

� Dynamic programming

� Greedy techniques (select best choices at each step)

� Heuristics, e.g., single-relation operations

(selections, projections) are pushed inside (performed earlier)

E1 E2

Statistical Information for Cost Statistical Information for Cost

Estimation (the Catalog)Estimation (the Catalog)

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Cost EstimationCost Estimation

� Cost of each operator computed as described in Chapter 12 ⋆

� Need statistics of input relations

� E.g. number of tuples, sizes of tuples

� Inputs can be results of sub-expressions

� Need to estimate statistics of expression results

� E.g., selectivity rate based on number of distinct values for an

attribute

©Silberschatz, Korth and Sudarshan1.16Database System Concepts - 6th Edition

attribute

� Statistics are collected in the Catalog

⋆
Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed.

Statistical Information for Cost EstimationStatistical Information for Cost Estimation

� Statistics information for cost estimation is maintained in the Catalog

� The catalog is itself stored in the database

� It contains:

� nr: number of tuples in a relation r

� br: number of blocks containing tuples of r

� lr: size of a tuple of r (in bytes)

� fr: blocking factor of r — i.e., the number of tuples of r that fit into one block

� V(A, r): number of distinct values that appear in r for attribute A; same as the

©Silberschatz, Korth and Sudarshan1.17Database System Concepts - 6th Edition

� V(A, r): number of distinct values that appear in r for attribute A; same as the
size of ∏A(r)

� min(A,r): smallest value appearing in relation r for attribute A;

� max(A,r): largest value appearing in relation r for attribute A;

� If tuples of r are stored together physically in a file, then:

=
rf
rn

rb

HistogramsHistograms

� Histogram on attribute age of relation person

fr
eq

u
en

cy

50

40

30

20

©Silberschatz, Korth and Sudarshan1.18Database System Concepts - 6th Edition

� For each range

� Number of records (tuples) with value in the range

� Also, number of distinct values in the range

� Without histogram information, uniform distribution is assumed

value

10

1–5 6–10 11–15 16–20 21–25

Selection Size EstimationSelection Size Estimation

� σσσσA=v(r)

� nr / V(A,r) : number of records that will satisfy the selection

(uniform distribution)

� Equality condition on a key attribute: size estimate = 1

� σσσσA ≤ v(r) (case of σA ≥ V(r) is symmetric)

� n: estimated number of tuples satisfying the condition is computed

assuming that min(A,r) and max(A,r) are available in catalog

� n = 0 if v < min(A,r)

©Silberschatz, Korth and Sudarshan1.19Database System Concepts - 6th Edition

� n = 0 if v < min(A,r)

� n = otherwise

(uniform distribution)

� In absence of statistical information or when v is unknown at time of

cost estimation (e.g., v is computed at run-time by the application using

the DB) n is assumed to be nr / 2

� If histograms are available, we can refine above estimate by using values

for restricted ranges instead of values referring to the entire domain (nr ,

V(A,r), min(A, r), max(A, r))

),min(),max(

),min(
.

rArA

rAv
nr −

−

Choice of Evaluation PlansChoice of Evaluation Plans

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Choice of Evaluation PlansChoice of Evaluation Plans

� Must consider the interaction of evaluation techniques when choosing

evaluation plans

� choosing the cheapest algorithm for each operation independently

may not yield best overall algorithm. E.g.

� merge-join may be costlier than hash-join, but may provide a

sorted output which reduces the cost for an outer level

aggregation

nested-loop join may provide opportunity for pipelining

©Silberschatz, Korth and Sudarshan1.21Database System Concepts - 6th Edition

� nested-loop join may provide opportunity for pipelining

� Practical query optimizers incorporate elements of the following two

broad approaches:

1. Search all the plans and choose the best plan in a cost-based

fashion

2. Uses heuristics to choose a plan

CostCost--Based OptimizationBased Optimization

� Consider finding the best join-order for r1 r2 . . . rn.

� There are (2(n – 1))!/(n – 1)! different join orders for above expression.

With n = 7, the number is 665280, with n = 10, the number is greater

than 17.6 billion!

� No need to generate all the join orders. Exploiting some monotonicity

(optimal substructure property), the least-cost join order for any subset

of {r1, r2, . . ., rn} is computed only once.

©Silberschatz, Korth and Sudarshan1.22Database System Concepts - 6th Edition

CostCost--Based Optimization: An exampleBased Optimization: An example

� Consider finding the best join-order for r1 r2 r3 r4 r5

� Number of possible different join orderings:

� The least-cost join order for any subset of { r1, r2, r3, r4, r5 } is computed only once

� Assume we want to compute N123/45 : number of possible different join orderings

where r1, r2, r3 sare grouped together, e.g.,

1680
! 4

! 8

)!1(

))!1(2(
==

−

−

n

n

(r1 r2 r3) r4 r5 (r2 r3 r1) (r5 r4) r4 (r5 (r1 (r2 r3)))

� The naïve approach

©Silberschatz, Korth and Sudarshan1.23Database System Concepts - 6th Edition

� The naïve approach

� N123/45 = N123 * N45

� N123 = (N123 : # ways of arranging r1, r2, and r3)

� N45 = N123 = 12 (N45 : # ways of arranging r4 and r5 wrt. block of r1, r2, and r3)

� N123/45 = 12 * 12 = 144

� Exploiting optimal substructure property:

� compute only once best ordering for r1 r2 r3 : 12 possibilities (N123)

� compute best ordering for R123 r4 r5 : 12 possibilities (N45)

� Therefore, N123/45 = 12 + 12 = 24

12
! 2

! 4
=

Dynamic Programming in OptimizationDynamic Programming in Optimization

� To find best join tree (equivalently, best join order) for a set of n relations:

� To find best plan for a set S of n relations, consider all possible plans

of the form:

S’ (S \ S’)

for every non-empty subset S’ of S

� Recursively compute costs of best join orders for subsets S’ and S \ S’

to find the cost of each plan. Choose the cheapest of the 2n – 2

©Silberschatz, Korth and Sudarshan1.24Database System Concepts - 6th Edition

alternatives

� Base case for recursion: single relation access plan

� Apply all selections on Ri using best choice of indices on Ri

� When a plan for a subset is computed, store it and reuse it when it is

required again, instead of re-computing it

� Dynamic programming

Join Order Optimization AlgorithmJoin Order Optimization Algorithm

procedure findbestplan(S)

if (bestplan[S].cost ≠ ∞)
return bestplan[S]

// else bestplan[S] has not been computed earlier, compute it now

if (S contains only 1 relation)

set bestplan[S].plan and bestplan[S].cost based on the best way

of accessing S /* Using selections on S and indices on S */

else for each non-empty subset S1 of S such that S1 ≠ S

©Silberschatz, Korth and Sudarshan1.25Database System Concepts - 6th Edition

else for each non-empty subset S1 of S such that S1 ≠ S

P1= findbestplan(S1)

P2= findbestplan(S - S1)

A = best algorithm for joining results of P1 and P2

cost = P1.cost + P2.cost + cost of A

if cost < bestplan[S].cost

bestplan[S].cost = cost

bestplan[S].plan = “execute P1.plan; execute P2.plan;

join results of P1 and P2 using A”

return bestplan[S]

Cost of OptimizationCost of Optimization

� With dynamic programming time complexity of optimization is O(3n).

� With n = 10, this number is 59000 instead of 17.6 billion!

� Space complexity is O(2n)

� Better time performance when considering only left-deep tree O(n 2n)
Space complexity remains at O(2n) (heuristic approach)

©Silberschatz, Korth and Sudarshan1.26Database System Concepts - 6th Edition

� Cost-based optimization is expensive, but worthwhile for queries on
large datasets (typical queries have small n, generally < 10)

Cost Based Optimization with Equivalence

Rules

� Physical equivalence rules equates logical operations (e.g., join) to physical

ones (i.e., implementations – e.g., nested-loop join, merge join)

� Relational algebra expression are converted into QEP with implementation details

� Efficient optimizer based on equivalence rules depends on

� A space efficient representation of expressions which avoids making

multiple copies of sub-expressions

� Efficient techniques for detecting duplicate derivations of expressions

©Silberschatz, Korth and Sudarshan1.27Database System Concepts - 6th Edition

� Efficient techniques for detecting duplicate derivations of expressions

� A form of dynamic programming, which stores the best plan for a sub-

expression the first time it is optimized, and reuses in on repeated

optimization calls on same sub-expression

� Cost-based pruning techniques that avoid generating all plans (greedy,

heuristics, dynamic programming/optimal substructure property)

Heuristic OptimizationHeuristic Optimization

� Cost-based optimization is expensive, even with dynamic programming

� Systems may use heuristics to reduce the number of choices that must

be made in a cost-based fashion

� Heuristic optimization transforms the query-tree by using a set of rules

that typically (but not in all cases) improve execution performance:

� Perform selection early (reduces the number of tuples)

� Perform projection early (reduces the number of attributes)

©Silberschatz, Korth and Sudarshan1.28Database System Concepts - 6th Edition

� Perform projection early (reduces the number of attributes)

� Perform most restrictive selection and join operations (i.e. with

smallest result size) before other similar operations

� Only consider left-deep join orders (particularly suited for pipelining

as only one input has to be pipelined, the other is a relation)

Structure of Query OptimizersStructure of Query Optimizers

� Some systems use only heuristics, others combine heuristics with partial

cost-based optimization.

� Many optimizers considers only left-deep join orders.

� Plus heuristics to push selections and projections down the query

tree

� Reduces optimization complexity and generates plans amenable to

pipelined evaluation.

©Silberschatz, Korth and Sudarshan1.29Database System Concepts - 6th Edition

� Heuristic optimization used in some versions of Oracle:

� Repeatedly pick “best” relation to join next

� Starting from each of n starting points. Pick best among these

End of ChapterEnd of Chapter

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

