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Chapter 13:  Query OptimizationChapter 13:  Query Optimization

� Introduction 

� Generating Equivalent Expressions

� Statistical Information for Cost Estimation (the Catalog)

� Choice of Evaluation Plans

� Dynamic Programming for Choosing Evaluation Plans
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IntroductionIntroduction
� Query optimization is the process the best query execution plan

(QEP) among the many possible ones

� Alternative ways to execute a given query

� Equivalent relational algebra expressions

� Different implementation choices for each relational algebra operation

INSTR(i_id, name, dept_name, ...)

COURSE(c_id, title, ...)

TEACHES(i_id, c_id, ...)

The name of all instructors in the department of Music 

together with the titles of all courses they teach
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TEACHES(i_id, c_id, ...)

SELECT  I.name, C.title

FROM INSTR I, COURSE C, TEACHES T

WHERE I.i_id = T.i_id

AND T.c_id = C.c_id

AND dept_name=“Music”

)))     (     ((∏ COURSETEACHESINSTRσ ))     (     )((∏ COURSETEACHESINSTRσ



Introduction (Cont.)Introduction (Cont.)

� A query evaluation plan (QEP) defines exactly what algorithm is used 

for each operation, and how the execution of the operations is 

coordinated
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� Find out how to view query execution plans on your favorite database



Introduction (Cont.)Introduction (Cont.)

� Cost difference between query evaluation plans can be enormous

� E.g. seconds vs. days in some cases

� Steps in cost-based query optimization

1. Generate logically equivalent expressions using equivalence 
rules

2. Annotate resulting expressions to get alternative QEP

3. Evaluate/estimate the cost (execution time) of each QEP
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3. Evaluate/estimate the cost (execution time) of each QEP

4. Choose the cheapest QEP based on estimated cost

� Estimation of QEP cost based on:

� Statistical information about relations (stored in the Catalog)

� number of tuples, number of distinct values for an attribute

� Statistics estimation for intermediate results

� to compute cost of complex expressions

� Cost formulae for algorithms, computed using statistics



Generating Equivalent ExpressionsGenerating Equivalent Expressions
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Transformation of Relational ExpressionsTransformation of Relational Expressions

� Two relational algebra expressions are said to be equivalent if the two 

expressions generate the same set of tuples on every legal database 

instance

� Note: order of tuples is irrelevant (and also order of attributes)

� we don’t care if they generate different results on databases that 

violate integrity constraints (e.g., uniqueness of keys)

� In SQL, inputs and outputs are multisets of tuples
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� In SQL, inputs and outputs are multisets of tuples

� Two expressions in the multiset version of the relational algebra are 

said to be equivalent if the two expressions generate the same multiset 

of tuples on every legal database instance

� We focus on relational algebra and treat relations as sets

� An equivalence rule states that expressions of two forms are equivalent

� One can replace an expression of first form by one of the second form, 

or vice versa



Equivalence RulesEquivalence Rules

1. Conjunctive selection operations can be deconstructed into a 

sequence of individual selections.

2. Selection operations are commutative.

3. Only the last in a sequence of projection operations is 

needed, the others can be omitted

))(())((
1221
EE θθθθ σσσσ =

))(()(
2121
EE θθθθ σσσ =∧
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needed, the others can be omitted

where

4. Selections can be combined with Cartesian products and 

theta joins.

a. σθ(E1X E2) =  E1 θ E2

b. σθ1
(E1 θ2

E2) =  E1 θ1∧ θ2
E2

)())))((((
121
EE LLLL n

Π=ΠΠΠ KK

nLLL ⊆⊆⊆ K21



Equivalence Rules (Cont.)Equivalence Rules (Cont.)

5. Theta-join (and thus natural joins) operations are commutative.

E1      θ E2 = E2 θ E1

(but the order is important for efficiency)

6. (a) Natural join operations are associative:

(E1      E2)    E3 = E1      (E2 E3)

(again, the order is important for efficiency)
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More equivalences at Ch. 13.2 of the book ⋆

⋆
Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed.

(b) Theta joins are associative in the following manner:

(E1       θ1
E2)     θ2∧θ3

E3 = E1        θ1∧ θ3
(E2 θ2

E3)    

where θ1 involves attributes from only E1 and E2

and θ2 involves attributes from only E2 and E3



Pictorial Depiction of Equivalence RulesPictorial Depiction of Equivalence Rules
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ExerciseExercise
� Create equivalence rules to push selection inside a left outer join Ex. 13.1(c) ⋆

� Disprove the equivalence Ex. 13.1(d) ⋆

( R        S )        T    =    R        ( S        T )

Definition (left outer join): the result of a left outer join T = R      S is a super-set of the 

result of the join T’ = R    S in that all tuples in T’ appear in T. In addition, T preserve 

those tuples that are lost in the join, by creating tuples in T that are filled with null

values
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STUD        TAKES
STUD stud_id name surname

1 gino bianchi

2 filippo neri

3 mario rossi

TAKES stud_id course grade

1 Math 30

1 Algebra 26

2 Progr. 22

2 Math 28

2 Logic 30

stud_id name surname course grade

1 gino bianchi Math 30

1 gino bianchi Algebra 26

2 filippo neri Progr. 22

2 filippo neri Math 28

2 filippo neri Logic 30

3 mario rossi null null



SolutionsSolutions

� Disprove the equivalence 

AR ARS ART

1 1 1

R

AS ARS AST

1 1 1

S

AT ART AST

1 2 1

T

� Create equivalence rules involving left outer join and selection

σθ ( R        S ) = σθ ( R )        S 

( R        S )        T    =    R        ( S        T )

where θ uses only attributes of R
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1 1 1 1 1 1 1 2 1

R        S

AR ARS ART AS AST

1 1 1 1 1

S        T

AS ARS AST AT ART

1 1 1 1 2

( R        S )        T

AR ARS ART AS AST AT

1 1 1 1 1 null

R        ( S        T )

AR ARS ART AS AST AT

1 1 1 null null null



SolutionsSolutions ((contcont’d)’d)

� Disprove the equivalence 

A AR

1 1

R

A AS

2 1

S

A AT

1 1

T

( R        S )        T    =    R        ( S        T )

Another counter-example (to fix for solution given on the webpage of the book)
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R        S

A AR AS

1 1 null

S        T

A AS AT

2 1 null

( R        S )        T

A AR AS AT

1 1 null 1

R        ( S        T )

A AR AS AT

1 1 null null



Enumeration of Equivalent ExpressionsEnumeration of Equivalent Expressions

� Query optimizers use equivalence rules to systematically generate 

expressions equivalent to the given expression

� Can generate all equivalent expressions as follows: 

� Repeat

� apply all applicable equivalence  rules on every sub-expression of 

every equivalent expression found so far

� add newly generated expressions to the set of equivalent 

expressions 
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expressions 

Until no new equivalent expressions are generated above

� The above approach is very expensive in space and time

� Space: sharing (re-using) common sub-expressions
(detect duplicate sub-expressions and share one copy)

� Time:

� Dynamic programming

� Greedy techniques (select best choices at each step)

� Heuristics, e.g., single-relation operations

(selections, projections) are pushed inside (performed earlier)

E1 E2



Statistical Information for Cost Statistical Information for Cost 

Estimation (the Catalog)Estimation (the Catalog)

Database System Concepts, 6th Ed.
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Cost EstimationCost Estimation

� Cost of each operator computed as described in Chapter 12 ⋆

� Need statistics of input relations

� E.g. number of tuples, sizes of tuples

� Inputs can be results of sub-expressions

� Need to estimate statistics of expression results

� E.g., selectivity rate based on number of distinct values for an 

attribute
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attribute

� Statistics are collected in the Catalog

⋆
Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed.



Statistical Information for Cost EstimationStatistical Information for Cost Estimation

� Statistics information for cost estimation is maintained in the Catalog

� The catalog is itself stored in the database

� It contains:

� nr:  number of tuples in a relation r

� br: number of blocks containing tuples of r

� lr: size of a tuple of r (in bytes)

� fr: blocking factor of r — i.e., the number of tuples of r that fit into one block

� V(A, r): number of distinct values that appear in r for attribute A; same as the 

©Silberschatz, Korth and Sudarshan1.17Database System Concepts - 6th Edition

� V(A, r): number of distinct values that appear in r for attribute A; same as the 
size of ∏A(r)

� min(A,r): smallest value appearing in relation r for attribute A;

� max(A,r): largest value appearing in relation r for attribute A;

� If tuples of r are stored together physically in a file, then: 
















=
rf
rn

rb



HistogramsHistograms

� Histogram on attribute age of relation person
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� For each range

� Number of records (tuples) with value in the range

� Also, number of distinct values in the range

� Without histogram information, uniform distribution is assumed

value

10

1–5 6–10 11–15 16–20 21–25 



Selection Size EstimationSelection Size Estimation

� σσσσA=v(r )

� nr / V(A,r) : number of records that will satisfy the selection

(uniform distribution)

� Equality condition on a key attribute: size estimate = 1

� σσσσA ≤ v(r ) (case of σA ≥ V(r) is symmetric)

� n: estimated number of tuples satisfying the condition is computed 

assuming that min(A,r) and max(A,r) are available in catalog

� n = 0 if v < min(A,r)
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� n = 0 if v < min(A,r)

� n = otherwise

(uniform distribution) 

� In absence of statistical information or when v is unknown at time of 

cost estimation (e.g., v is computed at run-time by the application using 

the DB) n is assumed to be nr / 2

� If histograms are available, we can refine above estimate by using values 

for restricted ranges instead of values referring to the entire domain (nr , 

V(A,r), min(A, r), max(A, r) )

),min(),max(

),min(
.

rArA

rAv
nr −

−



Choice of Evaluation PlansChoice of Evaluation Plans
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Choice of Evaluation PlansChoice of Evaluation Plans

� Must consider the interaction of evaluation techniques when choosing 

evaluation plans

� choosing the cheapest algorithm for each operation independently 

may not yield best overall algorithm.  E.g.

� merge-join may be costlier than hash-join, but may provide a 

sorted output which reduces the cost for an outer level 

aggregation

nested-loop join may provide opportunity for pipelining

©Silberschatz, Korth and Sudarshan1.21Database System Concepts - 6th Edition

� nested-loop join may provide opportunity for pipelining

� Practical query optimizers incorporate elements of the following two 

broad approaches:

1. Search all the plans and choose the best plan in a cost-based 

fashion

2. Uses heuristics to choose a plan



CostCost--Based OptimizationBased Optimization

� Consider finding the best join-order for r1 r2      . . . rn.

� There are (2(n – 1))!/(n – 1)! different join orders for above expression.  

With n = 7, the number is 665280, with n = 10, the number is greater 

than 17.6 billion!

� No need to generate all the join orders.  Exploiting some monotonicity 

(optimal substructure property), the least-cost join order for any subset 

of {r1, r2, . . ., rn} is computed only once. 
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CostCost--Based Optimization: An exampleBased Optimization: An example

� Consider finding the best join-order for r1 r2       r3 r4 r5

� Number of possible different join orderings: 

� The least-cost join order for any subset of { r1, r2, r3, r4, r5 } is computed only once

� Assume we want to compute N123/45 : number of possible different join orderings 

where r1, r2, r3 sare grouped together, e.g.,

1680
! 4

! 8

)!1(

))!1(2(
==

−

−

n

n

(r1 r2       r3) r4 r5 (r2 r3       r1) (r5 r4 ) r4 (r5    (r1 (r2       r3)))

� The naïve approach
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� The naïve approach

� N123/45 = N123 * N45

� N123 =                   (N123 : # ways of arranging r1, r2, and r3)

� N45 = N123 = 12     (N45 : # ways of arranging r4 and r5 wrt. block of r1, r2, and r3)

� N123/45 = 12 * 12 = 144

� Exploiting optimal substructure property:

� compute only once best ordering for r1 r2       r3 : 12 possibilities (N123) 

� compute best ordering for R123 r4       r5 : 12 possibilities (N45) 

� Therefore, N123/45 = 12 + 12 = 24

12
! 2

! 4
=



Dynamic Programming in OptimizationDynamic Programming in Optimization

� To find best join tree (equivalently, best join order) for a set of n relations:

� To find best plan for a set S of n relations, consider all possible plans 

of the form:

S’ (S \ S’ )

for every non-empty subset S’ of S

� Recursively compute costs of best join orders for subsets S’ and S \ S’

to find the cost of each plan. Choose the cheapest of the 2n – 2 
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alternatives

� Base case for recursion:  single relation access plan

� Apply all selections on Ri using best choice of indices on Ri

� When a plan for a subset is computed, store it and reuse it when it is 

required again, instead of re-computing it

� Dynamic programming



Join Order Optimization AlgorithmJoin Order Optimization Algorithm

procedure findbestplan(S)

if (bestplan[S].cost ≠ ∞)
return bestplan[S]

// else bestplan[S] has not been computed earlier, compute it now

if (S contains only 1 relation)

set bestplan[S].plan and bestplan[S].cost based on the best way 

of accessing S  /* Using selections on S and indices on S */

else for each non-empty subset S1 of S such that S1 ≠ S
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else for each non-empty subset S1 of S such that S1 ≠ S

P1= findbestplan(S1)

P2= findbestplan(S - S1)

A = best algorithm for joining results of P1 and P2

cost = P1.cost + P2.cost + cost of A

if cost < bestplan[S].cost 

bestplan[S].cost = cost

bestplan[S].plan = “execute P1.plan; execute P2.plan;

join results of P1 and P2 using A”

return bestplan[S]



Cost of OptimizationCost of Optimization

� With dynamic programming time complexity of optimization is O(3n).  

� With n = 10, this number is 59000 instead of 17.6 billion!

� Space complexity is O(2n) 

� Better time performance when considering only left-deep tree O(n 2n)
Space complexity remains at O(2n) (heuristic approach)
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� Cost-based optimization is expensive, but worthwhile for queries on 
large datasets (typical queries have small n, generally < 10)



Cost Based Optimization with Equivalence 

Rules

� Physical equivalence rules equates logical operations (e.g., join) to physical 

ones (i.e., implementations – e.g., nested-loop join, merge join)

� Relational algebra expression are converted into QEP with implementation details

� Efficient optimizer based on equivalence rules depends on

� A space efficient representation of expressions which avoids making 

multiple copies of sub-expressions

� Efficient techniques for detecting duplicate derivations of expressions
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� Efficient techniques for detecting duplicate derivations of expressions

� A form of dynamic programming, which stores the best plan for a sub-

expression the first time it is optimized, and reuses in on repeated 

optimization calls on same sub-expression

� Cost-based pruning techniques that avoid generating all plans (greedy, 

heuristics, dynamic programming/optimal substructure property)



Heuristic OptimizationHeuristic Optimization

� Cost-based optimization is expensive, even with dynamic programming

� Systems may use heuristics to reduce the number of choices that must 

be made in a cost-based fashion

� Heuristic optimization transforms the query-tree by using a set of rules 

that typically (but not in all cases) improve execution performance:

� Perform selection early (reduces the number of tuples)

� Perform projection early (reduces the number of attributes)
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� Perform projection early (reduces the number of attributes)

� Perform most restrictive selection and join operations (i.e. with 

smallest result size) before other similar operations

� Only consider left-deep join orders (particularly suited for pipelining 

as only one input has to be pipelined, the other is a relation)



Structure of Query OptimizersStructure of Query Optimizers

� Some systems use only heuristics, others combine heuristics with partial 

cost-based optimization.

� Many optimizers considers only left-deep join orders.

� Plus heuristics to push selections and projections down the query 

tree

� Reduces optimization complexity and generates plans amenable to 

pipelined evaluation.
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� Heuristic optimization used in some versions of Oracle:

� Repeatedly pick “best” relation to join next 

� Starting from each of n starting points.  Pick best among these



End of ChapterEnd of Chapter
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