Chapter 13: Query Optimization

Data Management for Big Data
2018-2019 (spring semester)

Dario Della Monica

These slides are a modified version of the slides provided with the book
Database System Concepts, $6^{\text {th }}$ Ed.
©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use
The original version of the slides is available at: https://www.db-book.com/

Chapter 13: Query Optimization

- Introduction
- Generating Equivalent Expressions
- Statistical Information for Cost Estimation (the Catalog)
- Choice of Evaluation Plans
- Dynamic Programming for Choosing Evaluation Plans

Introduction

- Query optimization is the process the best query execution plan (QEP) among the many possible ones
- Alternative ways to execute a given query
- Equivalent relational algebra expressions
- Different implementation choices for each relational algebra operation

```
INSTR(i id, name, dept_name, ...)
COURSE(c id, title, ...)
TEACHES(i id, c id, ...)
```

The name of all instructors in the department of Music together with the titles of all courses they teach

```
SELECT I.name, C.title
FROM INSTR I, COURSE C, TEACHES T
WHERE I.i_id = T.i_id
AND T.c_id = C.c_id
AND dept_name="Music"
```


©Silberschatz, Korth and Sudarshan

Introduction (Cont.)

- A query evaluation plan (QEP) defines exactly what algorithm is used for each operation, and how the execution of the operations is coordinated

- Find out how to view query execution plans on your favorite database

Introduction (Cont.)

- Cost difference between query evaluation plans can be enormous
- E.g. seconds vs. days in some cases
- Steps in cost-based query optimization

1. Generate logically equivalent expressions using equivalence rules
2. Annotate resulting expressions to get alternative QEP
3. Evaluate/estimate the cost (execution time) of each QEP
4. Choose the cheapest QEP based on estimated cost

- Estimation of QEP cost based on:
- Statistical information about relations (stored in the Catalog)
- number of tuples, number of distinct values for an attribute
- Statistics estimation for intermediate results
- to compute cost of complex expressions
- Cost formulae for algorithms, computed using statistics

Generating Equivalent Expressions

Database System Concepts, $6^{\text {th }}$ Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

Transformation of Relational Expressions

■ Two relational algebra expressions are said to be equivalent if the two expressions generate the same set of tuples on every legal database instance

- Note: order of tuples is irrelevant (and also order of attributes)
- we don't care if they generate different results on databases that violate integrity constraints (e.g., uniqueness of keys)
- In SQL, inputs and outputs are multisets of tuples
- Two expressions in the multiset version of the relational algebra are said to be equivalent if the two expressions generate the same multiset of tuples on every legal database instance
- We focus on relational algebra and treat relations as sets
- An equivalence rule states that expressions of two forms are equivalent
- One can replace an expression of first form by one of the second form, or vice versa

Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a sequence of individual selections.

$$
\sigma_{\theta_{1} \wedge \theta_{2}}(E)=\sigma_{\theta_{1}}\left(\sigma_{\theta_{2}}(E)\right)
$$

2. Selection operations are commutative.

$$
\sigma_{\theta_{1}}\left(\sigma_{\theta_{2}}(E)\right)=\sigma_{\theta_{2}}\left(\sigma_{\theta_{1}}(E)\right)
$$

3. Only the last in a sequence of projection operations is needed, the others can be omitted

$$
\Pi_{L_{1}}\left(\Pi_{L_{2}}\left(\ldots\left(\Pi_{L_{n}}(E)\right) \ldots\right)\right)=\Pi_{L_{1}}(E)
$$

where $L_{1} \subseteq L_{2} \subseteq \ldots \subseteq L_{n}$
4. Selections can be combined with Cartesian products and theta joins.

$$
\begin{aligned}
& \text { a. } \sigma_{\theta}\left(E_{1} X E_{2}\right)=E_{1} \bowtie_{\theta} E_{2} \\
& \text { b. } \sigma_{\theta_{1}}\left(E_{1} \bowtie_{\theta_{2}} E_{2}\right)=E_{1} \bowtie_{\theta_{1} \wedge \theta_{2}} E_{2}
\end{aligned}
$$

Equivalence Rules (Cont.)

5. Theta-join (and thus natural joins) operations are commutative.

$$
E_{1} \bowtie_{\theta} E_{2}=E_{2} \bowtie_{\theta} E_{1}
$$

(but the order is important for efficiency)
6. (a) Natural join operations are associative:

$$
\left(E_{1} \bowtie E_{2}\right) \bowtie E_{3}=E_{1} \bowtie\left(E_{2} \bowtie E_{3}\right)
$$

(again, the order is important for efficiency)
(b) Theta joins are associative in the following manner:

$$
\left(E_{1} \bowtie_{\theta_{1}} E_{2}\right) \bowtie_{\theta_{2} \wedge \theta_{3}} E_{3}=E_{1} \bowtie_{\theta_{1} \wedge \theta_{3}}\left(E_{2} \bowtie_{\theta_{2}} E_{3}\right)
$$

where θ_{1} involves attributes from only E_{1} and E_{2} and $\quad \theta_{2}$ involves attributes from only E_{2} and E_{3}

More equivalences at Ch. 13.2 of the book *

[^0]
Pictorial Depiction of Equivalence Rules

Exercise

- Create equivalence rules to push selection inside a left outer join
- Disprove the equivalence

$$
(R \beth \bowtie S) \unrhd \bowtie T=R \beth \bowtie(S \beth \triangle T)
$$

Definition (left outer join): the result of a left outer join $T=R \beth \triangle$ is a super-set of the result of the join $T^{\prime}=R \bowtie S$ in that all tuples in T^{\prime} appear in T. In addition, T preserve those tuples that are lost in the join, by creating tuples in T that are filled with null values

STUD	stud_id	name	surname						
	1	gino	bianchi		STUD	D TAKES			
	2	filippo	neri		stud_id	name	surname course	grade	
	3	mario	rossi		1	gino	bianchi	Math	30
TAKES	stud_id	course	grade		1	gino	bianchi	Algebra	26
	1	Math	30		2	filippo	neri	Progr.	22
	1	Algebra	26	2	filippo	neri	Math	28	
2	Progr.	22	2	filippo	neri	Logic	30		
	2	Math	28	3	mario	rossi	null	null	
	2	Logic	30						

[^1]
Solutions

■ Create equivalence rules involving left outer join and selection

$$
\sigma_{\theta}(R \beth \triangle)=\sigma_{\theta}(R) \rrbracket S
$$

where θ uses only attributes of R

R

A_{R}	$A_{R S}$	$A_{R T}$
1	1	1

T

A_{T}	$A_{R T}$	$A_{S T}$
1	2	1

$R \beth \bowtie S$

A_{R}	$A_{R S}$	$A_{R T}$	A_{S}	$A_{S T}$
1	1	1	1	1

$S D \backslash T$

A_{S}	$A_{R S}$	$A_{S T}$	A_{T}	$A_{R T}$
1	1	1	1	2

$(R D \bowtie S) \unrhd$ T

A_{R}	$A_{R S}$	$A_{R T}$	A_{S}	$A_{S T}$	A_{T}
1	1	1	1	1	null

$R \beth(S D \backslash T)$

A_{R}	$A_{R S}$	$A_{R T}$	A_{S}	$A_{S T}$	A_{T}
1	1	1	null	null	null

Solutions (cont'd)

Another counter-example (to fix for solution given on the webpage of the book)
R

A	A_{R}
1	1

S

A	A_{S}
2	1

T

A	A_{T}
1	1

$R D ゆ S$

A	A_{R}	A_{S}
1	1	null

$S \beth$ T

A	A_{S}	A_{T}
2	1	null

$(R D \bowtie$ S $) \pitchfork$ T

A	A_{R}	A_{S}	A_{T}
1	1	null	1

$R \perp(S D T)$

A	A_{R}	A_{S}	A_{T}
1	1	null	null

Enumeration of Equivalent Expressions

- Query optimizers use equivalence rules to systematically generate expressions equivalent to the given expression
- Can generate all equivalent expressions as follows:
- Repeat
- apply all applicable equivalence rules on every sub-expression of every equivalent expression found so far
- add newly generated expressions to the set of equivalent expressions
Until no new equivalent expressions are generated above
- The above approach is very expensive in space and time
- Space: sharing (re-using) common sub-expressions (detect duplicate sub-expressions and share one copy)
- Time:
- Dynamic programming
- Greedy techniques (select best choices at each step)
, Heuristics, e.g., single-relation operations
 (selections, projections) are pushed inside (performed earlier)

Statistical Information for Cost Estimation (the Catalog)

Cost Estimation

- Cost of each operator computed as described in Chapter 12 *
- Need statistics of input relations
- E.g. number of tuples, sizes of tuples
- Inputs can be results of sub-expressions
- Need to estimate statistics of expression results
- E.g., selectivity rate based on number of distinct values for an attribute
- Statistics are collected in the Catalog

[^2]
Statistical Information for Cost Estimation

- Statistics information for cost estimation is maintained in the Catalog
- The catalog is itself stored in the database
- It contains:
- n_{r} : number of tuples in a relation r
- b_{r} : number of blocks containing tuples of r
- I_{r} : size of a tuple of r (in bytes)
- f_{r} : blocking factor of r - i.e., the number of tuples of r that fit into one block
- $V(A, r)$: number of distinct values that appear in r for attribute A; same as the size of $\prod_{A}(r)$
- $\min (A, r)$: smallest value appearing in relation r for attribute A;
- max (A, r) : largest value appearing in relation r for attribute A;
- If tuples of r are stored together physically in a file, then:

$$
b_{r}=\left\lceil\frac{n_{r}}{f_{r}}\right\rceil
$$

Histograms

- Histogram on attribute age of relation person

- For each range
- Number of records (tuples) with value in the range
- Also, number of distinct values in the range
- Without histogram information, uniform distribution is assumed

Selection Size Estimation

- $\sigma_{A=v}(r)$
- $n_{r} / V(A, r)$: number of records that will satisfy the selection
(uniform distribution)
- Equality condition on a key attribute: size estimate $=1$
- $\sigma_{A \leq v}(r)$ (case of $\sigma_{A \geq V}(r)$ is symmetric)
- n : estimated number of tuples satisfying the condition is computed assuming that $\min (A, r)$ and $\max (A, r)$ are available in catalog
- $\mathrm{n}=0$
, $\mathrm{n}=n_{r} \cdot \frac{v-\min (A, r)}{\max (A, r)-\min (A, r)}$
if $v<\min (A, r)$
otherwise

(uniform distribution)

- In absence of statistical information or when v is unknown at time of cost estimation (e.g., v is computed at run-time by the application using the DB) n is assumed to be $n_{r} / 2$
- If histograms are available, we can refine above estimate by using values for restricted ranges instead of values referring to the entire domain (n_{r}, $V(A, r), \min (A, r), \max (A, r))$

Choice of Evaluation Plans

Database System Concepts, $6^{\text {th }}$ Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

Choice of Evaluation Plans

- Must consider the interaction of evaluation techniques when choosing evaluation plans
- choosing the cheapest algorithm for each operation independently may not yield best overall algorithm. E.g.
- merge-join may be costlier than hash-join, but may provide a sorted output which reduces the cost for an outer level aggregation
- nested-loop join may provide opportunity for pipelining
- Practical query optimizers incorporate elements of the following two broad approaches:

1. Search all the plans and choose the best plan in a cost-based fashion
2. Uses heuristics to choose a plan

Cost-Based Optimization

- Consider finding the best join-order for $r_{1} \bowtie r_{2} \bowtie \ldots r_{n}$.
- There are $(2(n-1))!/(n-1)$! different join orders for above expression. With $n=7$, the number is 665280 , with $n=10$, the number is greater than 17.6 billion!
- No need to generate all the join orders. Exploiting some monotonicity (optimal substructure property), the least-cost join order for any subset of $\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ is computed only once.

Cost-Based Optimization: An example

- Consider finding the best join-order for $r_{1} \bowtie r_{2} \bowtie r_{3} \bowtie r_{4} \bowtie r_{5}$
- Number of possible different join orderings: $\frac{(2(n-1))!}{(n-1)!}=\frac{8!}{4!}=1680$
- The least-cost join order for any subset of $\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}\right\}$ is computed only once
- Assume we want to compute $\boldsymbol{N}_{123 / 45}$: number of possible different join orderings where r_{1}, r_{2}, r_{3} sare grouped together, e.g.,
$\left(r_{1} \bowtie r_{2} \bowtie r_{3}\right) \bowtie r_{4} \bowtie r_{5}$
$\left(r_{2} \bowtie r_{3} \bowtie r_{1}\right) \bowtie\left(r_{5} \bowtie r_{4}\right)$
$r_{4} \bowtie\left(r_{5} \bowtie\left(r_{1} \bowtie\left(r_{2} \bowtie r_{3}\right)\right)\right)$
- The naïve approach
- $N_{123 / 45}=N_{123}{ }^{*} N_{45}$
- $\boldsymbol{N}_{123}=\frac{4!}{2!}=12 \quad\left(\boldsymbol{N}_{123}\right.$: \# ways of arranging r_{1}, r_{2}, and $\left.r_{3}\right)$
- $\boldsymbol{N}_{\mathbf{4 5}}=\boldsymbol{N}_{123}=12 \quad\left(\boldsymbol{N}_{45}\right.$: \# ways of arranging r_{4} and r_{5} wrt. block of r_{1}, r_{2}, and $\left.r_{3}\right)$
- $N_{123 / 45}=12 * 12=144$
- Exploiting optimal substructure property:
- compute only once best ordering for $r_{1} \bowtie r_{2} \bowtie r_{3}$: 12 possibilities (\boldsymbol{N}_{123})
- compute best ordering for $R_{123} \bowtie r_{4} \bowtie r_{5}: 12$ possibilities (\boldsymbol{N}_{45})
- Therefore, $\quad N_{123 / 45}=12+12=24$

Dynamic Programming in Optimization

- To find best join tree (equivalently, best join order) for a set of n relations:
- To find best plan for a set S of n relations, consider all possible plans of the form:

$$
S^{\prime} \bowtie\left(S \backslash S^{\prime}\right)
$$

for every non-empty subset S^{\prime} of S

- Recursively compute costs of best join orders for subsets S^{\prime} and $S \backslash S^{\prime}$ to find the cost of each plan. Choose the cheapest of the $2^{n}-2$ alternatives
- Base case for recursion: single relation access plan
- Apply all selections on R_{i} using best choice of indices on R_{i}
- When a plan for a subset is computed, store it and reuse it when it is required again, instead of re-computing it
- Dynamic programming

Join Order Optimization Algorithm

procedure findbestplan(S)
if (bestplan[S].cost $\neq \infty$)
return bestplan[S]
// else bestplan[S] has not been computed earlier, compute it now if (S contains only 1 relation)
set bestplan[S].plan and bestplan[S].cost based on the best way of accessing S /* Using selections on S and indices on S */
else for each non-empty subset $S 1$ of S such that $S 1 \neq S$
P1= findbestplan(S1)
P2= findbestplan(S - S1)
$\mathrm{A}=$ best algorithm for joining results of $P 1$ and $P 2$
cost $=P 1 . \operatorname{cost}+P 2 . \operatorname{cost}+\operatorname{cost}$ of A
if cost < bestplan[S].cost
bestplan[S].cost = cost
bestplan[S].plan = "execute P1.plan; execute P2.plan; join results of $P 1$ and $P 2$ using $A "$
return bestplan[S]

Cost of Optimization

- With dynamic programming time complexity of optimization is $O\left(3^{n}\right)$.
- With $n=10$, this number is 59000 instead of 17.6 billion!
- Space complexity is $O\left(2^{n}\right)$
- Better time performance when considering only left-deep tree $O\left(\mathrm{n} 2^{n}\right)$ Space complexity remains at $O\left(2^{n}\right)$ (heuristic approach)

(a) Left-deep join tree

(b) Non-left-deep join tree
- Cost-based optimization is expensive, but worthwhile for queries on large datasets (typical queries have small n, generally < 10)

Cost Based Optimization with Equivalence Rules

- Physical equivalence rules equates logical operations (e.g., join) to physical ones (i.e., implementations - e.g., nested-loop join, merge join)
- Relational algebra expression are converted into QEP with implementation details
- Efficient optimizer based on equivalence rules depends on
- A space efficient representation of expressions which avoids making multiple copies of sub-expressions
- Efficient techniques for detecting duplicate derivations of expressions
- A form of dynamic programming, which stores the best plan for a subexpression the first time it is optimized, and reuses in on repeated optimization calls on same sub-expression
- Cost-based pruning techniques that avoid generating all plans (greedy, heuristics, dynamic programming/optimal substructure property)

Heuristic Optimization

- Cost-based optimization is expensive, even with dynamic programming
- Systems may use heuristics to reduce the number of choices that must be made in a cost-based fashion
- Heuristic optimization transforms the query-tree by using a set of rules that typically (but not in all cases) improve execution performance:
- Perform selection early (reduces the number of tuples)
- Perform projection early (reduces the number of attributes)
- Perform most restrictive selection and join operations (i.e. with smallest result size) before other similar operations
- Only consider left-deep join orders (particularly suited for pipelining as only one input has to be pipelined, the other is a relation)

Structure of Query Optimizers

- Some systems use only heuristics, others combine heuristics with partial cost-based optimization.
- Many optimizers considers only left-deep join orders.
- Plus heuristics to push selections and projections down the query tree
- Reduces optimization complexity and generates plans amenable to pipelined evaluation.
- Heuristic optimization used in some versions of Oracle:
- Repeatedly pick "best" relation to join next
- Starting from each of n starting points. Pick best among these

End of Chapter

Database System Concepts, $6^{\text {th }}$ Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

[^0]: ${ }^{\star}$ Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed.

[^1]: ${ }^{\star}$ Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed.

[^2]: ${ }^{\star}$ Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed.

