
1

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

Chapter 12: Query Processing

Data Management for Big Data

2018-2019 (spring semester)

These slides are a modified version of the slides provided with the book

The original version of the slides is available at: https://www.db-book.com/

Dario Della Monica

©Silberschatz, Korth and Sudarshan12.2Database System Concepts - 6th Edition

Chapter 12: Query Processing

 Overview

 How to measure query costs

 Algorithms for evaluating relational

algebra operations

 Selection Operation

 Sorting

 Join Operation

 Evaluation of Expressions
(How to combine algorithms for individual

operations in order to evaluate a complex

expression)

 Materialization

 Pipelining

Silberschatz, Korth, Sudarshan,

Database System Concepts,

6° edition, 2011

©Silberschatz, Korth and Sudarshan12.3Database System Concepts - 6th Edition

Basic Steps in Query Processing

1. Parsing and translation

2. Optimization

3. Evaluation

We focus on

the optimizer

©Silberschatz, Korth and Sudarshan12.4Database System Concepts - 6th Edition

Basic Steps in Query Processing (cont.)

 Parser and translator

 translate the (SQL) query into relational algebra

 Parser checks syntax, verifies relations

 Evaluation engine

 The query-execution engine takes a query-evaluation plan,

executes that plan, and returns the answers to the query

 Optimizer (in a nutshell -- more details in the next slides)

 Chooses the most efficient implementation to execute the query

Produces equivalent relational algebra expressions

Annotates them with instructions (algorithms)

©Silberschatz, Korth and Sudarshan12.5Database System Concepts - 6th Edition

Basic Steps: Optimization

 1st level of optimization: an SQL query has many equivalent relational

algebra expressions

 salary75000(salary(instructor)) and

salary(salary75000(instructor)) are equivalent

 They both correspond to SELECT salary

FROM instructor

WHERE salary < 75000

 2nd level of optimization: a relational algebra operation can be evaluated

using one of several different algorithms

 Selection: file scan VS. indices

 Output of optimization: annotated relational algebra expression specifying

detailed evaluation strategy (query evaluation plan or query execution

plan - QEP)

©Silberschatz, Korth and Sudarshan12.6Database System Concepts - 6th Edition

Basic Steps: Optimization (Cont.)

 Different query evaluation plans have different costs

 User is not expected to specify least-cost plans

 Query Optimization: amongst all equivalent evaluation-plans choose

the one with lowest cost.

 Cost is estimated using statistical information from the database catalog

 # of tuples in relations, tuple sizes, # of distinct values for a given attribute, etc.

 We study… (Chapter 12⋆ – evaluation of QEP)

 How to measure query costs

 Algorithms for evaluating relational algebra operations

 How to combine algorithms for individual operations in order to evaluate a

complex expression (QEP)

 … and (Chapter 13⋆ – choosing the best QEP)

 How to optimize queries, that is, how to find a query evaluation plan with

lowest estimated cost

⋆
Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed.

http://www.db-book.com/

2

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

How to measure query costs

©Silberschatz, Korth and Sudarshan12.8Database System Concepts - 6th Edition

Measures of Query Cost

 Cost is generally measured as total elapsed time for answering query

 Many factors contribute to time cost

disk accesses, CPU (or even network communication for

distributed DBMS – later in this course)

 Typically disk access is the predominant cost, and is also relatively

easy to estimate. Measured by taking into account

 Number of seeks (average-seek-cost)

 Number of blocks read (average-block-read-cost)

 Number of blocks written (average-block-write-cost)

Cost to write a block is greater than cost to read a block

– data is read back after being written to ensure that the write

was successful

During the whole optimization process, optimizers can make different assumptions (e.g., indices

are always stored in in-memory buffer, etc.)

To be applied to concrete systems, our analysis should be adapted according to system features

©Silberschatz, Korth and Sudarshan12.9Database System Concepts - 6th Edition

Measures of Query Cost (Cont.)

 For the sake of simplicity, we ignore difference between reading

and writing a block and thus we just use

 number of seeks (tT – time for one seek)

 number of block transfers (tT – time to transfer one block)

 Example: cost for b block transfers plus S seeks

b * tT + S * tS

 Values of tT and tS must be calibrated for the specific disk system

 Typical values (2011): tS = 4 ms, tT = 0.1 ms

 Some DBMS performs, during installation, seeks and block transfers

to estimate average values

 We ignore CPU costs for simplicity

 Real systems do take CPU cost into account

 We do not include cost to writing output to disk in our cost formulae

©Silberschatz, Korth and Sudarshan12.10Database System Concepts - 6th Edition

Measures of Query Cost (Cont.)

 Response time of a QEP is hard to estimate without actually

executing the plan because some runtime information is needed

 the content of the buffer when the execution begins

 parameter embedded in query which are resolved at runtime only

SELECT salary

FROM instructor

WHERE salary < $a

where $a is a variable provided by the application (user)

 Several algorithms can reduce disk IO by using extra buffer space

 Amount of real memory available to buffer depends on other concurrent

queries and OS processes, known only during execution

 We often use worst case estimates, assuming only the minimum amount of

memory needed for the operation is available (e.g., 1 block per relation)

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

Algorithms for evaluating relational

algebra operations

©Silberschatz, Korth and Sudarshan12.12Database System Concepts - 6th Edition

Selection Operation

 File scan

PROs: can be applied to any file, regardless of its ordering, availability of indices,
nature of selection operation, etc.

CONs: it is slow

 Algorithm A1 (linear search). Scan each file block and test all
records to see whether they satisfy the selection condition

 br denotes number of blocks containing records from relation r

 Cost estimate = br block transfers + 1 seek = tS + br * tT

 If selection is on a key attribute, can stop on finding record

 cost = (br /2) block transfers + 1 seek = tS + (br / 2)* tT

We assume blocks are stored contiguously so 1 seek operation is enough (disk head

does not need to move to seek next block

http://www.db-book.com/
http://www.db-book.com/

3

©Silberschatz, Korth and Sudarshan12.13Database System Concepts - 6th Edition

Selections Using Indices

 Index scan: search algorithms that use an index

 selection condition must be on search-key of index

 hi : height of the B+-tree (# of accesses to traverse the index

before accessing the data)

 A2 (primary index, equality on key). Retrieve a single record

that satisfies the corresponding equality condition

 Cost = (hi + 1) * (tT + tS)

 A3 (primary index, equality on nonkey). Retrieve multiple

records

 Let b = number of blocks containing matching records

 Records will be on consecutive blocks

 Cost = hi * (tT + tS) + tS + tT * b
There is a mistake in the book⋆

(Fig. 12.3): the “tS” summand

is omitted⋆
Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed.

©Silberschatz, Korth and Sudarshan12.14Database System Concepts - 6th Edition

Selections Using Indices

 A4 (secondary index, equality on key)

 Equal to A2

Cost = (hi + 1) * (tT + tS)

 A4 (secondary index, equality on nonkey)

 Retrieve multiple records

each of n matching records may be on a different block

Cost = (hi + n) * (tT + tS)

– Can be very expensive! Can be worse than file scan

©Silberschatz, Korth and Sudarshan12.15Database System Concepts - 6th Edition

Selections Involving Comparisons

 Can implement selections of the form AV (r) or A V(r) by using

 a linear file scan,

 or by using indices in the following ways:

 A5 (primary index, comparison).

 For A V(r) use index to find first tuple v and scan relation sequentially
from there

 b is the number of blocks containing matching records

 Equal to A3: Cost = hi * (tT + tS) + tS + tT * b

 For AV(r) just scan relation sequentially till first tuple > v; do not use the index

 Equal to A1, equality on key: Cost = tS + (br / 2)* tT

©Silberschatz, Korth and Sudarshan12.16Database System Concepts - 6th Edition

Selections Involving Comparisons

 A6 (secondary index, comparison).

 For A V(r) use index to find first index entry v and scan index sequentially
from there, to find pointers to records.

 For AV (r) just scan leaf pages of index finding pointers to records, till first
entry > v

 In either case, retrieve records that are pointed to

 requires an I/O for each record

 Equal to A4, equality on nonkey: Cost = (hi + n) * (tT + tS)

 Linear file scan may be cheaper

©Silberschatz, Korth and Sudarshan12.17Database System Concepts - 6th Edition

Summary of costs for selections

©Silberschatz, Korth and Sudarshan12.18Database System Concepts - 6th Edition

Sorting

 Reasons for sorting

 Explicitly requested by SQL query

 SELECT …

FROM …

SORT BY …

 Needed to efficient executions of join operations

 We may build an index on the relation, and then use the index

to read the relation in sorted order. May lead to one disk block

access for each tuple

 For relations that fit in memory, standard sorting techniques like

quick-sort can be used. For relations that don’t fit in memory,

external sort-merge algorithm is a good choice

4

©Silberschatz, Korth and Sudarshan12.19Database System Concepts - 6th Edition

External Sort-Merge

1. Create sorted runs (files containing sorted pieces of relation)

Let i be 0 initially.

Repeatedly do the following till the end of the relation:

(a) Read M blocks of relation into memory

(b) Sort the in-memory blocks

(c) Write sorted data to run Ri

(d) Increment i

Let the final value of i be N (number of runs)

2. Merge the runs (next slide)…..

Let M denote number of blocks that can fit in memory.

©Silberschatz, Korth and Sudarshan12.20Database System Concepts - 6th Edition

External Sort-Merge (Cont.)

2. Merge the runs (N-way merge). We assume (for now) that N <

M.

1. Use N blocks of memory to buffer input runs, and 1 block to

buffer output. Read the first block of each run into its buffer

page

2. repeat

1. Select the first record (in sort order) among all buffer

pages

2. Write the record to the output buffer. If the output buffer

is full write it to disk.

3. Delete the record from its input buffer page.

If the buffer page becomes empty then

read the next block (if any) of the run into the buffer.

3. until all input buffer pages are empty:

©Silberschatz, Korth and Sudarshan12.21Database System Concepts - 6th Edition

External Sort-Merge (Cont.)

 If N M, several merge passes are required.

 In each pass, contiguous groups of M - 1 runs are merged.

 A pass reduces the number of runs by a factor of M -1, and

creates runs longer by the same factor.

E.g. If M=11, and there are 90 runs, one pass reduces

the number of runs to 9, each 10 times the size of the

initial runs

 Repeated passes are performed till all runs have been

merged into one.

©Silberschatz, Korth and Sudarshan12.22Database System Concepts - 6th Edition

Example: External Sorting Using Sort-Merge

g

a

d 31

c 33

b 14

e 16

r 16

d 21

m 3

p 2

d 7

a 14

a 14

a 19

b 14

c 33

d 7

d 21

d 31

e 16

g 24

m 3

p 2

r 16

a 19

b 14

c 33

d 31

e 16

g 24

a 14

d 7

d 21

m 3

p 2

r 16

a 19

d 31

g 24

b 14

c 33

e 16

d 21

m 3

r 16

a 14

d 7

p 2
initial

relation
create
runs

merge
pass–1

merge
pass–2

runs runs
sorted
output

24

19

©Silberschatz, Korth and Sudarshan12.23Database System Concepts - 6th Edition

External Sort-Merge: Cost Analysis

 Cost of block transfers:

 Total number of merge passes required: log M–1(br / M)

 Block transfers for initial run creation as well as in each pass is 2br

 for final pass, we don’t count write cost

– we ignore final write cost for all operations since the output
of an operation may be sent to the parent operation without
being written to disk

 Thus total number of block transfers for external sorting:

2br + 2 br log M–1 (br / M) - br =

= br (2 log M–1 (br / M) + 1)

 Seeks: next slide

©Silberschatz, Korth and Sudarshan12.24Database System Concepts - 6th Edition

External Sort-Merge: Cost Analysis (cont.)

 Cost of seeks

 During run generation: one seek to read each run and one seek to

write each run

 2 br / M

 During the merge phase

 Need 2 br seeks for each merge pass

– except the final one which does not require a write

 Total number of seeks:

2 br / M + 2br logM–1(br / M) - br =

= 2 br / M + br (2 logM–1(br / M) -1)

5

©Silberschatz, Korth and Sudarshan12.25Database System Concepts - 6th Edition

 Number of seeks can be reduced by using bb many blocks (instead of 1)
for each run during the run merge phase

 Using 1 block per run leads to too many seeks

 Instead, using bb buffer blocks per run read/write bb blocks with only 1 seek

 Merge together: M/bb – 1 runs (instead of M – 1)

 Number of passes required: log M/bb–1(br / M) instead of log M–1(br / M)

 During the merge phase: 2 br / bb seeks for each pass (instead of 2 br)

– Except the final one (we assume final result is not written on disk)

 Thus total number of block transfers for external sorting:

br (2 log M/bb–1 (br / M) + 1)

Total number of seeks:
2 br / M + br / bb (2 log M / bb –1(br / M) -1)

External Sort-Merge: Cost Analysis (cont.)

An improved version of the algorithm ⋆

⋆
In Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed., the non-improved version of the algorithm is given only, but

the cost analysis mixes elements from both versions of the algorithm

©Silberschatz, Korth and Sudarshan12.26Database System Concepts - 6th Edition

Join Operation

 Several different algorithms to implement joins

 Nested-loop join

 Block nested-loop join

 Indexed nested-loop join

 Merge-join

 Hash-join

 Choice based on cost estimate

 Example of join used in the cost analysis:

where

 Number of records of student: 5,000

 Number of blocks of student: 100

 Number of records of takes: 10,000

 Number of blocks of takes: 400

students takes

©Silberschatz, Korth and Sudarshan12.27Database System Concepts - 6th Edition

Nested-Loop Join

 To compute the theta join r s

for each tuple tr in r do begin

for each tuple ts in s do begin

test pair (tr,ts) to see if they satisfy the join condition

if they do, add tr • ts to the result

end

end

 r is called the outer relation and s the inner relation of the join

 Requires no indices and can be used with any kind of join

condition

 Expensive since it examines every pair of tuples in the two

relations

©Silberschatz, Korth and Sudarshan12.28Database System Concepts - 6th Edition

Nested-Loop Join (Cont.)

 In the worst case, if there is enough memory only to hold one block of each relation,
the estimated cost is

of block transfer:
(br transfers to read relation r + nr bs transfers to read s for each tuple in r)

of seeks:
(br seeks to read relation r + nr seeks to read s for each tuple in r)

 If the smaller relation fits entirely in memory, use that as the inner relation

 Reduces cost to br + bs block transfers and 2 seeks

(same cost in the best case scenario, when both relations fit in memory)

 Assuming worst case memory availability cost estimate is

 with student as outer relation:

 5000 400 + 100 = 2,000,100 block transfers

 5000 + 100 = 5100 seeks

 with takes as the outer relation

 10000 100 + 400 = 1,000,400 block transfers and 10,400 seeks

 If smaller relation (student) fits entirely in memory, the cost estimate will be 500 block
transfers

 Block nested-loops algorithm (next slide) is preferable

nr bs + br

nr + br

©Silberschatz, Korth and Sudarshan12.29Database System Concepts - 6th Edition

Block Nested-Loop Join

 Variant of nested-loop join in which every block of inner

relation is paired with every block of outer relation.

for each block Br of r do begin

for each block Bs of s do begin

for each tuple tr in Br do begin

for each tuple ts in Bs do begin

Check if (tr,ts) satisfy the join condition

if they do, add tr • ts to the result.

end

end

end

end

©Silberschatz, Korth and Sudarshan12.30Database System Concepts - 6th Edition

Block Nested-Loop Join (Cont.)

 Worst case estimate (memory holds one block for each relation):

 Each block in the inner relation s is read once for each block
in the outer relation

 br bs + br block transfers + 2 * br seeks

 Best case:

 br + bs block transfers + 2 seeks

6

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

How to combine algorithms for

individual operations in order to

evaluate a complex expression

©Silberschatz, Korth and Sudarshan12.32Database System Concepts - 6th Edition

Evaluation of Expressions

 So far: we have seen algorithms for individual operations

 Alternatives for evaluating an entire expression tree

 Materialization: store (materialize) on disk results of

evaluation of sub-expressions into temporary relations for

subsequent use

 Disadvantage: several disk writing to store temporary relations

 Always possible

 Pipelining: pass on tuples to parent operations as they are

generated by inner operations being executed

 Advantage: less disk writing

 Not always possible

©Silberschatz, Korth and Sudarshan12.33Database System Concepts - 6th Edition

Materialization

 Materialized evaluation: evaluate one operation at a time,

starting at the lowest-level. Use intermediate results materialized

into temporary relations to evaluate next-level operations

 name building department)instructor)(("Watson"E.g.,

)("Watson" departmentbuilding
1. compute and store

2. then compute and store its join with instructor

3. finally, compute the projection on name

©Silberschatz, Korth and Sudarshan12.34Database System Concepts - 6th Edition

Pipelining

 Pipelined evaluation: evaluate several operations simultaneously,
passing the results of one operation on to the next and without
writing on disk intermediate results

 E.g., in previous expression tree, don’t store result of

Instead, pass tuples directly to the join as they are found

Similarly, don’t store result of join, pass tuples directly to projection

 Much cheaper than materialization: no need to store a temporary
relation to disk

 Pipelining may not always be possible – e.g., some sorting
algorithms
(it cannot output tuples early, only after all tuples have been
examined)

)("Watson" departmentbuilding

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

End of Chapter

ss

©Silberschatz, Korth and Sudarshan12.36Database System Concepts - 6th Edition

Figure 12.02

http://www.db-book.com/
http://www.db-book.com/

7

©Silberschatz, Korth and Sudarshan12.37Database System Concepts - 6th Edition

Selection Operation (Cont.)

 Old-A2 (binary search). Applicable if selection is an equality

comparison on the attribute on which file is ordered.

 Assume that the blocks of a relation are stored contiguously

 Cost estimate (number of disk blocks to be scanned):

 cost of locating the first tuple by a binary search on the

blocks

– log2(br) * (tT + tS)

 If there are multiple records satisfying selection

– Add transfer cost of the number of blocks containing

records that satisfy selection condition

– Will see how to estimate this cost in Chapter 13

