
1

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use 

Chapter 12: Query Processing

Data Management for Big Data

2018-2019 (spring semester)

These slides are a modified version of the slides provided with the book

The original version of the slides is available at: https://www.db-book.com/

Dario Della Monica

©Silberschatz, Korth and Sudarshan12.2Database System Concepts - 6th Edition

Chapter 12:  Query Processing

 Overview 

 How to measure query costs

 Algorithms for evaluating relational 

algebra operations 

 Selection Operation  

 Sorting 

 Join Operation 

 Evaluation of Expressions
(How to combine algorithms for individual 

operations in order to evaluate a complex 

expression)

 Materialization

 Pipelining
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Basic Steps in Query Processing

1. Parsing and translation

2. Optimization

3. Evaluation

We focus on 

the optimizer
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Basic Steps in Query Processing (cont.)

 Parser and translator

 translate the (SQL) query into relational algebra

 Parser checks syntax, verifies relations

 Evaluation engine

 The query-execution engine takes a query-evaluation plan, 

executes that plan, and returns the answers to the query

 Optimizer (in a nutshell -- more details in the next slides)

 Chooses the most efficient implementation to execute the query

Produces equivalent relational algebra expressions

Annotates them with instructions (algorithms)
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Basic Steps: Optimization

 1st level of optimization: an SQL query has many equivalent relational 

algebra expressions

 salary75000(salary(instructor)) and

salary(salary75000(instructor)) are equivalent

 They both correspond to SELECT salary

FROM instructor

WHERE salary < 75000

 2nd level of optimization: a relational algebra operation can be evaluated 

using one of several different algorithms

 Selection: file scan VS. indices

 Output of optimization: annotated relational algebra expression specifying 

detailed evaluation strategy (query evaluation plan or query execution 

plan - QEP)
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Basic Steps: Optimization (Cont.)

 Different query evaluation plans have different costs

 User is not expected to specify least-cost plans

 Query Optimization: amongst all equivalent evaluation-plans choose 

the one with lowest cost. 

 Cost is estimated using statistical information from the database catalog

 # of tuples in relations, tuple sizes, # of distinct values for a given attribute, etc.

 We study… (Chapter 12⋆ – evaluation of QEP)

 How to measure query costs

 Algorithms for evaluating relational algebra operations

 How to combine algorithms for individual operations in order to evaluate a 

complex expression (QEP)

 … and (Chapter 13⋆ – choosing the best QEP)

 How to optimize queries, that is, how to find a query evaluation plan with 

lowest estimated cost

⋆
Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed.
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How to measure query costs
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Measures of Query Cost

 Cost is generally measured as total elapsed time for answering query

 Many factors contribute to time cost

disk accesses, CPU (or even network communication for 

distributed DBMS – later in this course)

 Typically disk access is the predominant cost, and is also relatively 

easy to estimate.   Measured by taking into account

 Number of seeks (average-seek-cost)

 Number of blocks read (average-block-read-cost)

 Number of blocks written (average-block-write-cost)

Cost to write a block is greater than cost to read a block 

– data is read back after being written to ensure that the write 

was successful

During the whole optimization process, optimizers can make different assumptions (e.g., indices 

are always stored in in-memory buffer, etc.)

To be applied to concrete systems, our analysis should be adapted according to system features
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Measures of Query Cost (Cont.)

 For the sake of simplicity, we ignore difference between reading 

and writing a block and thus we just use

 number of seeks (tT – time for one seek)

 number of block transfers (tT – time to transfer one block)

 Example: cost for b block transfers plus S seeks

b * tT + S * tS

 Values of tT and tS must be calibrated for the specific disk system

 Typical values (2011): tS = 4 ms, tT = 0.1 ms

 Some DBMS performs, during installation, seeks and block transfers 

to estimate average values

 We ignore CPU costs for simplicity

 Real systems do take CPU cost into account

 We do not include cost to writing output to disk in our cost formulae
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Measures of Query Cost (Cont.)

 Response time of a QEP is hard to estimate without actually 

executing the plan because some runtime information is needed

 the content of the buffer when the execution begins

 parameter embedded in query which are resolved at runtime only 

SELECT salary

FROM instructor 

WHERE salary < $a

where  $a is a variable provided by the application (user)

 Several algorithms can reduce disk IO by using extra buffer space 

 Amount of real memory available to buffer depends on other concurrent 

queries and OS processes, known only during execution

 We often use worst case estimates, assuming only the minimum amount of 

memory needed for the operation is available (e.g., 1 block per relation)

Database System Concepts, 6th Ed.
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Algorithms for evaluating relational 

algebra operations
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Selection Operation

 File scan

PROs: can be applied to any file, regardless of its ordering, availability of indices, 
nature of selection operation, etc.

CONs: it is slow

 Algorithm A1 (linear search).  Scan each file block and test all 
records to see whether they satisfy the selection condition

 br denotes number of blocks containing records from relation r

 Cost estimate = br block transfers + 1 seek = tS + br * tT

 If selection is on a key attribute, can stop on finding record

 cost = (br /2) block transfers + 1 seek = tS + (br / 2)* tT

We assume blocks are stored contiguously so 1 seek operation is enough (disk head 

does not need to move to seek next block

http://www.db-book.com/
http://www.db-book.com/
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Selections Using Indices

 Index scan: search algorithms that use an index

 selection condition must be on search-key of index

 hi : height of the B+-tree (# of accesses to traverse the index 

before accessing the data)

 A2 (primary index, equality on key).  Retrieve a single record 

that satisfies the corresponding equality condition  

 Cost = (hi + 1) * (tT + tS)

 A3 (primary index, equality on nonkey). Retrieve multiple

records

 Let b = number of blocks containing matching records

 Records will be on consecutive blocks

 Cost = hi * (tT + tS) + tS + tT * b
There is a mistake in the book⋆

(Fig. 12.3): the “tS” summand

is omitted⋆
Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed.
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Selections Using Indices

 A4 (secondary index, equality on key)

 Equal to A2

Cost = (hi + 1) * (tT + tS)

 A4 (secondary index, equality on nonkey)

 Retrieve multiple records

each of n matching records may be on a different block  

Cost =  (hi + n) * (tT + tS)

– Can be very expensive! Can be worse than file scan
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Selections Involving Comparisons

 Can implement selections of the form AV (r) or A  V(r) by using

 a linear file scan,

 or by using indices in the following ways:

 A5 (primary index, comparison).

 For A  V(r)  use index to find first tuple  v  and scan relation sequentially  
from there

 b is the number of blocks containing matching records

 Equal to A3: Cost = hi * (tT + tS) + tS + tT * b

 For AV(r) just scan relation sequentially till first tuple > v; do not use the index

 Equal to A1, equality on key: Cost = tS + (br / 2)* tT
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Selections Involving Comparisons

 A6 (secondary index, comparison). 

 For A  V(r) use index to find first index entry  v and scan index sequentially  
from there, to find pointers to records.

 For AV (r) just scan leaf pages of index finding pointers to records, till first 
entry > v

 In either case, retrieve records that are pointed to

 requires an I/O for each record

 Equal to A4, equality on nonkey: Cost = (hi + n) * (tT + tS)

 Linear file scan may be cheaper
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Summary of costs for selections
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Sorting

 Reasons for sorting

 Explicitly requested by SQL query

 SELECT …

FROM … 

SORT BY …

 Needed to efficient executions of join operations

 We may build an index on the relation, and then use the index 

to read the relation in sorted order.  May lead to one disk block 

access for each tuple

 For relations that fit in memory, standard sorting techniques like 

quick-sort can be used.  For relations that don’t fit in memory, 

external sort-merge algorithm is a good choice
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External Sort-Merge

1. Create sorted runs (files containing sorted pieces of relation) 

Let i be 0 initially.

Repeatedly do the following till the end of the relation:

(a)  Read M blocks of relation into memory

(b)  Sort the in-memory blocks

(c)  Write sorted data to run Ri

(d)  Increment i

Let the final value of i be N (number of runs)

2. Merge the runs (next slide)…..

Let M denote number of blocks that can fit in memory. 
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External Sort-Merge (Cont.)

2. Merge the runs (N-way merge). We assume (for now) that N < 

M. 

1. Use N blocks of memory to buffer input runs, and 1 block to 

buffer output. Read the first block of each run into its buffer 

page

2. repeat

1. Select the first record (in sort order) among all buffer 

pages

2. Write the record to the output buffer.  If the output buffer 

is full write it to disk.

3. Delete the record from its input buffer page.

If the buffer page becomes empty then

read the next block (if any) of the run into the buffer. 

3. until all input buffer pages are empty:

©Silberschatz, Korth and Sudarshan12.21Database System Concepts - 6th Edition

External Sort-Merge (Cont.)

 If N  M, several merge passes are required.

 In each pass, contiguous groups of M - 1 runs are merged. 

 A pass reduces the number of runs by a factor of M -1, and 

creates runs longer by the same factor. 

E.g.  If M=11, and there are 90 runs, one pass reduces 

the number of runs to 9, each 10 times the size of the 

initial runs

 Repeated passes are performed till all runs have been 

merged into one.
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Example: External Sorting Using Sort-Merge
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External Sort-Merge: Cost Analysis

 Cost of block transfers:

 Total number of merge passes required: log M–1(br / M)

 Block transfers for initial run creation as well as in each pass is 2br

 for final pass, we don’t count write cost 

– we ignore final write cost for all operations since the output 
of an operation may be sent to the parent operation without 
being written to disk

 Thus total number of block transfers for external sorting:

2br +  2 br log M–1 (br / M) - br =

=  br ( 2 log M–1 (br / M) + 1)

 Seeks: next slide
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External Sort-Merge: Cost Analysis (cont.)

 Cost of seeks

 During run generation: one seek to read each run and one seek to 

write each run

 2 br / M

 During the merge phase

 Need 2 br seeks for each merge pass 

– except the final one which does not require a write

 Total number of seeks:

2 br / M + 2br logM–1(br / M) - br =

=    2 br / M +  br  (2 logM–1(br / M) -1)
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 Number of seeks can be reduced by using bb many blocks (instead of 1) 
for each run during the run merge phase

 Using 1 block per run leads to too many seeks

 Instead, using bb buffer blocks per run  read/write bb blocks with only 1 seek

 Merge together: M/bb  – 1 runs (instead of M – 1 )

 Number of passes required: log M/bb–1(br / M) instead of log M–1(br / M)

 During the merge phase: 2 br / bb seeks for each pass (instead of 2 br)

– Except the final one (we assume final result is not written on disk)

 Thus total number of block transfers for external sorting:

br ( 2 log M/bb–1 (br / M) + 1)

Total number of seeks:
2 br / M + br / bb (2 log M / bb –1(br / M) -1)

External Sort-Merge: Cost Analysis (cont.)

An improved version of the algorithm ⋆

⋆
In Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed., the non-improved version of the algorithm is given only, but 

the cost analysis mixes elements from both versions of the algorithm
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Join Operation

 Several different algorithms to implement joins

 Nested-loop join

 Block nested-loop join

 Indexed nested-loop join

 Merge-join

 Hash-join

 Choice based on cost estimate

 Example of join used in the cost analysis:

where

 Number of records of student: 5,000

 Number of blocks of student: 100

 Number of records of takes: 10,000

 Number of blocks of takes: 400

students      takes
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Nested-Loop Join

 To compute the theta join        r  s

for each tuple tr in r do begin

for each tuple ts in s do begin

test pair (tr,ts) to see if they satisfy the join condition 

if they do, add tr • ts to the result

end

end

 r is called the outer relation and s the inner relation of the join

 Requires no indices and can be used with any kind of join 

condition

 Expensive since it examines every pair of tuples in the two 

relations
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Nested-Loop Join (Cont.)

 In the worst case, if there is enough memory only to hold one block of each relation, 
the estimated cost is

# of block transfer:
(br transfers to read relation r  + nr  bs transfers to read s for each tuple in r)

# of seeks:
(br seeks to read relation r  + nr seeks to read s for each tuple in r)

 If the smaller relation fits entirely in memory, use that as the inner relation

 Reduces cost to br + bs block transfers and 2 seeks

(same cost in the best case scenario, when both relations fit in memory)

 Assuming worst case memory availability cost estimate is

 with student as outer relation:

 5000  400 + 100 = 2,000,100 block transfers

 5000 + 100 = 5100 seeks 

 with takes as the outer relation 

 10000  100 + 400 = 1,000,400 block transfers and 10,400 seeks

 If smaller relation (student) fits entirely in memory, the cost estimate will be 500 block 
transfers

 Block nested-loops algorithm (next slide) is preferable

nr  bs + br

nr + br
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Block Nested-Loop Join

 Variant of nested-loop join in which every block of inner 

relation is paired with every block of outer relation.

for each block Br of r do begin

for each block Bs of s do begin

for each tuple tr in Br do begin

for each tuple ts in Bs do begin

Check if (tr,ts) satisfy the join condition 

if they do, add tr • ts to the result.

end

end

end

end
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Block Nested-Loop Join (Cont.)

 Worst case estimate (memory holds one block for each relation):

 Each block in the inner relation s is read once for each block
in the outer relation

 br  bs + br block transfers + 2 * br seeks

 Best case:

 br + bs block transfers + 2 seeks
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How to combine algorithms for 

individual operations in order to 

evaluate a complex expression
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Evaluation of Expressions

 So far: we have seen algorithms for individual operations

 Alternatives for evaluating an entire expression tree

 Materialization:  store (materialize) on disk results of 

evaluation of sub-expressions into temporary relations for 

subsequent use

 Disadvantage: several disk writing to store temporary relations

 Always possible

 Pipelining:  pass on tuples to parent operations as they are 

generated by inner operations being executed

 Advantage: less disk writing

 Not always possible
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Materialization

 Materialized evaluation:  evaluate one operation at a time, 

starting at the lowest-level.  Use intermediate results materialized 

into temporary relations to evaluate next-level operations

 name building department )instructor     )(( "Watson"E.g., 

)("Watson" departmentbuilding
1. compute and store

2. then compute and store its join with instructor

3. finally, compute the projection on name
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Pipelining

 Pipelined evaluation: evaluate several operations simultaneously, 
passing the results of one operation on to the next and without 
writing on disk intermediate results

 E.g., in previous expression tree, don’t store result of

Instead, pass tuples directly to the join as they are found

Similarly, don’t store result of join, pass tuples directly to projection

 Much cheaper than materialization: no need to store a temporary 
relation to disk

 Pipelining may not always be possible – e.g., some sorting 
algorithms
(it cannot output tuples early, only after all tuples have been 
examined)

)("Watson" departmentbuilding
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End of Chapter

ss
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Figure 12.02
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Selection Operation (Cont.)

 Old-A2 (binary search).  Applicable if selection is an equality 

comparison on the attribute on which file is ordered. 

 Assume that the blocks of a relation are stored contiguously 

 Cost estimate (number of disk blocks to be scanned):

 cost of locating the first tuple by a binary search on the 

blocks

– log2(br) * (tT + tS)

 If there are multiple records satisfying selection

– Add transfer cost  of the number of blocks containing 

records that satisfy selection condition 

– Will see how to estimate this cost in Chapter 13


