
	Chapter 12: Query Processing		
	Overview		
Image: Provide a start of the star	How to measure query costs	Rataharea	
Chapter 12: Query Processing	 Algorithms for evaluating relational algebra operations 	Abraham Silliverchatz	
Data Management for Big Data 2018-2019 (spring semester)	Selection OperationSortingJoin Operation		
Dario Della Monica	 Evaluation of Expressions (How to combine algorithms for individual operations in order to evaluate a complex expression) 	Bala Loture	
These slides are a modified version of the slides provided with the book	 Materialization 	Silberschatz, Korth, Sudarshan, Database System Concepts,	
Database System Concepts, 6th Ed.	 Pipelining 	6° edition, 2011	
©Silberschatz, Korth and Sudarshan See <u>www.db-book.com</u> for conditions on re-use			
The original version of the slides is available at: https://www.db-book.com/	Database System Concepts - 6 th Edition 12.2	©Silberschatz, Korth and Sudarshan	

Basic Steps in Query Processing

1. Parsing and translation

- Parser and translator
 - translate the (SQL) query into relational algebra
 - Parser checks syntax, verifies relations
- Evaluation engine

e System Concepts - 6th Edition

- The query-execution engine takes a query-evaluation plan, executes that plan, and returns the answers to the query
- Optimizer (in a nutshell -- more details in the next slides)
 - · Chooses the most efficient implementation to execute the query Produces equivalent relational algebra expressions
 - > Annotates them with instructions (algorithms)

chatz, Korth and Sudarshan

Basic Steps: Optimization (Cont.)

12.4

©Silberschatz, Korth and Sudarshar

atz. Korth and Sudarsha

- Different query evaluation plans have different costs
- User is not expected to specify least-cost plans
- Query Optimization: amongst all equivalent evaluation-plans choose the one with lowest cost.
 - Cost is estimated using statistical information from the database catalog + # of tuples in relations, tuple sizes, # of distinct values for a given attribute, etc.
- We study... (Chapter 12* evaluation of QEP)
 - How to measure query costs
 - Algorithms for evaluating relational algebra operations
 - · How to combine algorithms for individual operations in order to evaluate a complex expression (QEP)
- ... and (Chapter 13^{*} choosing the best QEP)
 - How to optimize queries, that is, how to find a query evaluation plan with lowest estimated cost

12.6

* Silberschatz, Korth, and Sudarshan, Database System Concepts, 6* ed.

e System Concepts - 6th Edition

Basic Steps: Optimization

- 1st level of optimization: an SQL query has many equivalent relational algebra expressions
 - $\begin{array}{l} \sigma_{salary<75000}(\prod_{salary}(instructor)) \ and \\ \prod_{salary}(\sigma_{salary<75000}(instructor)) \ are \ equivalent \end{array}$

 - SELECT salary They both correspond to FROM instructor WHERE salary < 75000
- 2nd level of optimization: a relational algebra operation can be evaluated using one of several different algorithms
 - Selection: file scan VS. indices

se System Concepts - 6th Edition

 Output of optimization: annotated relational algebra expression specifying detailed evaluation strategy (query evaluation plan or query execution plan - QEP)

12.5

		Measures of Query Cost
How to measure query costs		 Cost is generally measured as total elapsed time for answering query Many factors contribute to time cost <i>disk accesses, CPU</i> (or even network <i>communication</i> for distributed DBMS – later in this course) Typically disk access is the predominant cost, and is also relatively easy to estimate. Measured by taking into account Number of seeks (average-seek-cost) Number of blocks read (average-block-read-cost) Number of blocks written (average-block-write-cost) Cost to write a block is greater than cost to read a block data is read back after being written to ensure that the write was successful
Database System Concepts, 6 th Ed. ©Silberschatz, Korth and Sudarahan See www.db-book.com for conditions on re-use		During the whole optimization process, optimizers can make different assumptions (e.g., indices are always stored in in-memory buffer, etc.) To be applied to concrete systems, our analysis should be adapted according to system features Database System Concepts - 6 th Edition 12.8 Cöliberschatz, Korth and Buderham

Measures of Query Cost (Cont.)

- For the sake of simplicity, we ignore difference between reading and writing a block and thus we just use
 - number of seeks (t_T time for one seek)
 - number of block transfers (t_T time to transfer one block)
 - Example: cost for **b** block transfers plus **S** seeks b * t_T + S * t_S
 - Values of t_{τ} and t_{s} must be calibrated for the specific disk system
 - Typical values (2011): $t_s = 4 \text{ ms}, t_T = 0.1 \text{ ms}$
 - Some DBMS performs, during installation, seeks and block transfers to estimate average values
- We ignore CPU costs for simplicity

base System Concepts - 6th Edition

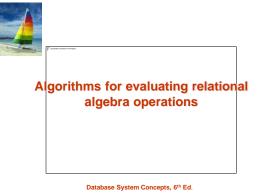
- Real systems do take CPU cost into account
- We do not include cost to writing output to disk in our cost formulae

12.9

©Silberschatz, Korth and Sudarshan

Measures of Query Cost (Cont.)

- Response time of a QEP is hard to estimate without actually executing the plan because some runtime information is needed
 the content of the buffer when the execution begins
 - parameter embedded in query which are resolved at runtime only
 SELECT salary
 - FROM instructor
 - WHERE salary < \$a
 - where \$a is a variable provided by the application (user)
- Several algorithms can reduce disk IO by using extra buffer space
 Amount of real memory available to buffer depends on other concurrent
 - queries and OS processes, known only during execution


 We often use worst case estimates, assuming only the minimum amount of
 - we often use worst case estimates, assuming only the minimum amount memory needed for the operation is available (e.g., 1 block per relation)

12.10

©Silberschatz, Korth and Sudarshar

chatz, Korth and Sudarshar

CSIL

©Silberschatz, Korth and Sudarshan See <u>www.db-book.com</u> for conditions on re-use

Selection Operation

File scan

ise System Concepts - 6th Edition

base System Concepts - 6th Edition

PROs: can be applied to any file, regardless of its ordering, availability of indices, nature of selection operation, etc. CONs: it is slow

- Algorithm A1 (linear search). Scan each file block and test all records to see whether they satisfy the selection condition
 - b_r denotes number of blocks containing records from relation r

• Cost estimate = b_r block transfers + 1 seek = $t_s + b_r * t_T$

We assume blocks are stored contiguously so 1 seek operation is enough (disk head does not need to move to seek next block

If selection is on a key attribute, can stop on finding record
 cost = (b_r/2) block transfers + 1 seek = t_S + (b_r/2)* t_T

12.12

Selections Using Indices

- Index scan: search algorithms that use an index
 - selection condition must be on search-key of index
 - h: height of the B⁺-tree (# of accesses to traverse the index before accessing the data)
- A2 (primary index, equality on key). Retrieve a single record that satisfies the corresponding equality condition
 - $Cost = (h_i + 1)^* (t_T + t_S)$
- A3 (primary index, equality on nonkey). Retrieve multiple records
 - Let b = number of blocks containing matching records
 - Records will be on consecutive blocks

• $Cost = h_i * (t_T + t_S) + t_S$	+ t _T * b	There is a mistake in the book* (Fig. 12.3): the " t_s " summand	
, Korth, and Sudarshan, Database System Concep	ots, 6° ed.	is omitted	
Concepts - 6th Edition	12.13	©Silberschatz, Korth and Sudarshan	

Selections Using Indices

- A4 (secondary index, equality on key)
 - Equal to A2
 - $Cost = (h_i + 1)^* (t_T + t_S)$
- A4 (secondary index, equality on nonkey)
 - Retrieve multiple records
 - each of n matching records may be on a different block
 - Cost = $(h_i + n) * (t_T + t_S)$
 - Can be very expensive! Can be worse than file scan

Silberschatz, tabase System C

Selections Involving Comparisons

- Can implement selections of the form $\sigma_{A \leq V}(r)$ or $\sigma_{A \geq V}(r)$ by using • a linear file scan,
 - or by using indices in the following ways:
- A5 (primary index, comparison).

base System Concepts - 6th Edition

- For $\sigma_{A \geq V}(r)$ use index to find first tuple $\geq v~$ and scan relation sequentially from there
 - b is the number of blocks containing matching records
 - Equal to A3: $Cost = h_i^* (t_T + t_S) + t_S + t_T^* b$
- For σ_{A<V}(r) just scan relation sequentially till first tuple > v; do not use the index $Cost = t_S + (b_r / 2)^* t_T$

12.15

Silberschatz, Korth and Sudarshan

rschatz, Korth and Sudarshan

Equal to A1, equality on key:

Database System Concepts - 6th Edition

Selections Involving Comparisons

12.14

©Silberschatz, Korth and Sudarsha

©Silberschatz, Korth and Sudarshar

hatz. Korth and Sudarsha

- A6 (secondary index, comparison).
 - For σ_{A≥V}(r) use index to find first index entry ≥ v and scan index sequentially from there, to find pointers to records.
 - For σ_{A≤V}(*t*) just scan leaf pages of index finding pointers to records, till first entry > v
 - In either case, retrieve records that are pointed to requires an I/O for each record
 - > Equal to A4, equality on nonkey: $Cost = (h_i + n)^* (t_T + t_S)$
 - > Linear file scan may be cheaper

Summary of costs for selections Algorithm Cost Reason A1 Linear Search I₅ + b₁ + t₁ One initial seek plus b₂ block transfers,

			where h, denotes the number of blocks in the file.
	Linear Search, Equality on Key	Average case t_5 + $(b_1/2) * t_T$	Since at most one record satisfies con- dition, scan can be terminated as soon as the required record is found. In the worst case, b, blocks transfers are still required.
A2	B ⁺ -tree Index, Equality on Key	$(b_{1} + 1) * (t_{T} + t_{S})$	(Where Ii, denotes the height of the in- dex.) Index lookup traverses the height of the tree plus one I/O to fetch the record; each of these I/O operations re- quires a seek and a block transfer.
73	Primary B ⁺ -tree Index, Equality on Nonkey	$h_i = 0_T + t_S) + b + t_T$	One seek for each level of the tree, one seek for the first block. Here b is the number of blocks containing records with the specified search key, all of which are read. These blocks are leaf blocks assumed to be stored sequen- tially (since it is a primary index) and don't require additional seeks.
	Secondary B ⁺ -tree Index, Equality on Key	$(h_1 + 1) * (t_7 + t_5)$	This case is similar to primary index.
A3	B ⁺ -tree Index, Equality on Nonkey	$(t_1 + n) + (t_T + t_5)$	(Where <i>n</i> is the number of records fetched.) Here, cost of index traversal is the same as for A3, but each record may be on a different block, requiring a seek per record. Cost is potentially very high if <i>n</i> is large.
AS	Primary B ⁺ -tree Index, Comparison	$h_i = (l_T + l_S) + b = l_T$	Identical to the case of A3, equality on nonkey.
A6	Secondary B ⁺ -tree Index, Comparison	$(h_1 + n) * (l_7 + l_5)$	Identical to the case of A4, equality on nonkey.

Sorting

12.16

Reasons for sorting

ase System Concepts - 6th Edition

se System Concepts - 6th Edition

- Explicitly requested by SQL query SELECT . FROM . SORT BY .
- Needed to efficient executions of join operations
- We may build an index on the relation, and then use the index to read the relation in sorted order. May lead to one disk block access for each tuple
- For relations that fit in memory, standard sorting techniques like quick-sort can be used. For relations that don't fit in memory, external sort-merge algorithm is a good choice

12.18

External Sort-Merge

Let *M* denote number of blocks that can fit in memory.

- 1. Create sorted runs (files containing sorted pieces of relation) Let i be 0 initially.
 - Repeatedly do the following till the end of the relation:
 - (a) Read M blocks of relation into memory
 - (b) Sort the in-memory blocks
 - (c) Write sorted data to run R;
 - (d) Increment i
 - Let the final value of *i* be *N* (number of runs)
- 2. Merge the runs (next slide).....

External Sort-Merge (Cont.)

2. Merge the runs (N-way merge). We assume (for now) that N <

1. Use N blocks of memory to buffer input runs, and 1 block to buffer output. Read the first block of each run into its buffer page

2. repeat

М.

abase System Concepts - 6th Edition

- 1. Select the first record (in sort order) among all buffer pages
- 2. Write the record to the output buffer. If the output buffer is full write it to disk.
- 3. Delete the record from its input buffer page. If the buffer page becomes empty then read the next block (if any) of the run into the buffer.

12.20

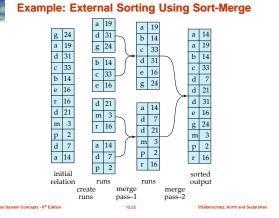
©Silberschatz, Korth and Sudarshar

3. until all input buffer pages are empty:

abase System Concepts - 6th Edition

External Sort-Merge (Cont.)

12.19


ESilberschatz, Korth and Sudarshar

rschatz, Korth and Sudars

chatz. Korth and Sudarshan

- If N ≥ M, several merge passes are required.
 - In each pass, contiguous groups of M 1 runs are merged.
 - A pass reduces the number of runs by a factor of M-1, and creates runs longer by the same factor.
 - E.g. If M=11, and there are 90 runs, one pass reduces the number of runs to 9, each 10 times the size of the initial runs
 - Repeated passes are performed till all runs have been merged into one.

12.21

External Sort-Merge: Cost Analysis

Cost of block transfers:

se System Concepts - 6th Edition

- Total number of merge passes required: [log _{M−1}(b_r/M)]
- Block transfers for initial run creation as well as in each pass is 2b_r For final pass, we don't count write cost
 - we ignore final write cost for all operations since the output of an operation may be sent to the parent operation without being written to disk
 - Thus total number of block transfers for external sorting:

12.23

- $2b_r + 2 b_r \lceil \log_{M-1} (b_r / M) \rceil b_r =$ $= b_r (2 \lceil \log_{M-1} (b_r / M) \rceil + 1)$
- Seeks: next slide

se System Concepts - 6th Edition

External Sort-Merge: Cost Analysis (cont.)

Cost of seeks

ise System Concepts - 6th Edition

- During run generation: one seek to read each run and one seek to write each run
- $\blacktriangleright 2 \left[b_r / M \right]$
- During the merge phase
 - Need 2 b_r seeks for each merge pass
 - except the final one which does not require a write

12.24

- Total number of seeks:
- $2 \lceil b_r / M \rceil + 2b_r \lceil \log_{M-1}(b_r / M) \rceil b_r =$
- $= 2 \lceil b_r / M \rceil + b_r (2 \lceil \log_{M-1}(b_r / M) \rceil 1)$

atz. Korth and Suda

An improved version of the algorithm *

- Number of seeks can be reduced by using b_b many blocks (instead of 1) for each run during the run merge phase
 - Using 1 block per run leads to too many seeks
 - Instead, using b_b buffer blocks per run → read/write b_b blocks with only 1 seek
 - Merge together: ∠M/b_b → 1 runs (instead of M 1)
 - Number of passes required: [log LM/b,L-1(br/M)] instead of [log M-1(br/M)] > During the merge phase: $2[b_r/b_h]$ seeks for each pass (instead of 2 b,)
 - Except the final one (we assume final result is not written on disk)
- Thus total number of block transfers for external sorting:
 - $b_r(2\lceil \log_{\lfloor Mb_b \rfloor -1}(b_r/M)\rceil+1)$

Total number of seeks: $2\lceil b_r/M\rceil + \lceil b_r/b_b\rceil (2\lceil \log_{\lfloor M/b_b\rfloor - 1}(b_r/M)\rceil - 1)$

* In Silberschatz, Korth, and Sudarshan, Database System Concepts, the cost analysis mixes elements from both versions of the algorithm	Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed., the non-improved version of the algorithm is given only, but cost analysis mixes elements from both versions of the algorithm				
latabase System Concepts - 6 th Edition	12.25	©Silberschatz, Korth and Sudarshan			

Join Operation

- Several different algorithms to implement joins
 - Nested-loop join
 - Block nested-loop join
 - Indexed nested-loop join
 - Merge-join
 - Hash-join
- Choice based on cost estimate
- Example of join used in the cost analysis: students X takes where

base System Concepts - 6th Edition

- Number of records of student: 5.000
- Number of blocks of student: 100
- Number of records of takes: 10,000

12.26

- Number of blocks of
- takes: 400

ESilberschatz, Korth and Sudarsha

ESilberschatz, Korth and Sudarshar

atz. Korth and Suda

D:

Nested-Loop Join

- To compute the theta join $r \boxtimes_{\theta} s$ for each tuple tr in r do begin for each tuple t_s in s do begin test pair (t_p, t_s) to see if they satisfy the join condition θ if they do, add $t_r \bullet t_s$ to the result
 - end

end

ase System Concepts - 6th Edition

- r is called the outer relation and s the inner relation of the join
- Requires no indices and can be used with any kind of join condition
- Expensive since it examines every pair of tuples in the two relations

12.27

rschatz, Korth and Sudars

atz. Korth and Sudarshan

Nested-Loop Join (Cont.)

- In the worst case, if there is enough memory only to hold one block of each relation, the estimated cost is
 - # of block transfer: $n_r * b_a + b_r$ (b_r transfers to read relation $r + n_r * b_s$ transfers to read s for each tuple in r) # of seeks: $n_r + b_r$ (b_r seeks to read relation $r + n_r$ seeks to read s for each tuple in r)
- If the smaller relation fits entirely in memory, use that as the inner relation
- Reduces cost to b_r + b_s block transfers and 2 seeks (same cost in the best case scenario, when both relations fit in memory)
- Assuming worst case memory availability cost estimate is with student as outer relation:

 - > 5000 * 400 + 100 = 2,000,100 block transfers ▶ 5000 + 100 = 5100 seeks
- with takes as the outer relation
- > 10000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks If smaller relation (student) fits entirely in memory, the cost estimate will be 500 block

12.28

Block nested-loops algorithm (next slide) is preferable

Block Nested-Loop Join

 Variant of nested-loop join in which every block of inner relation is paired with every block of outer relation.

for each block Br of r do begin for each block B_s of s do begin for each tuple t_r in B_r do begin for each tuple t_s in B_s do begin Check if $(t_{r_i}t_s)$ satisfy the join condition if they do, add $t_r \bullet t_s$ to the result. end end

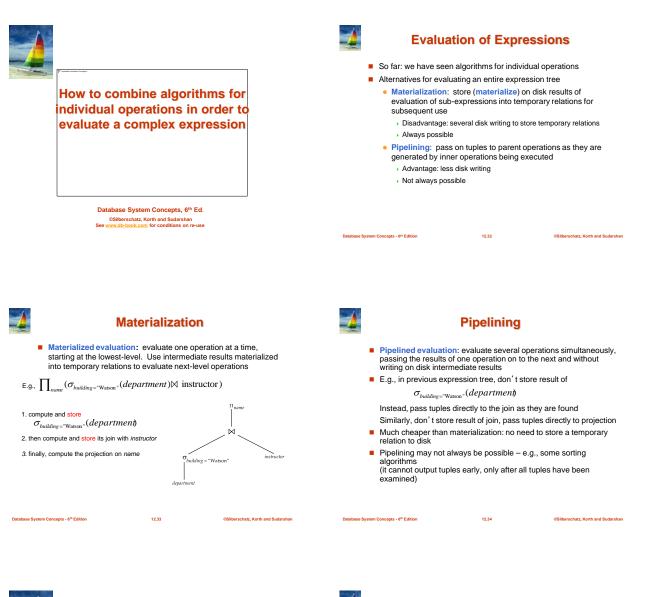
12.29

end end

e System Concepts - 6th Edition

Block Nested-Loop Join (Cont.)

Worst case estimate (memory holds one block for each relation): • Each block in the inner relation s is read once for each block in the outer relation


12.30

- $b_r * b_s + b_r$ block transfers + 2 * b_r seeks
- Best case:

se System Concepts - 6th Edition

ase System Concepts - 6th Edition

• $b_r + b_s$ block transfers + 2 seeks

Selection Operation (Cont.)

- Old-A2 (binary search). Applicable if selection is an equality comparison on the attribute on which file is ordered.
 - Assume that the blocks of a relation are stored contiguously
 - Cost estimate (number of disk blocks to be scanned):
 - cost of locating the first tuple by a binary search on the blocks
 - $\lceil \log_2(b_r) \rceil^* (t_T + t_S)$
 - If there are multiple records satisfying selection
 - Add transfer cost of the number of blocks containing records that satisfy selection condition
 - Will see how to estimate this cost in Chapter 13

Database System Concepts - 6th Edition

12.37

©Silberschatz, Korth and Sudarshan