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Chapter 12:  Query ProcessingChapter 12:  Query Processing

� Overview 

� How to measure query costs

� Algorithms for evaluating relational 
algebra operations 

� Selection Operation  

� Sorting 
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� Join Operation 

� Evaluation of Expressions
(How to combine algorithms for individual 
operations in order to evaluate a complex 
expression)

� Materialization

� Pipelining

Silberschatz, Korth, Sudarshan,

Database System Concepts,

6° edition, 2011



Basic Steps in Query ProcessingBasic Steps in Query Processing

1. Parsing and translation

2. Optimization

3. Evaluation

We focus on 
the optimizer
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Basic Steps in Query Processing (cont.)Basic Steps in Query Processing (cont.)

� Parser and translator

� translate the (SQL) query into relational algebra

� Parser checks syntax, verifies relations

� Evaluation engine

� The query-execution engine takes a query-evaluation plan, 
executes that plan, and returns the answers to the query
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executes that plan, and returns the answers to the query

� Optimizer (in a nutshell -- more details in the next slides)

� Chooses the most efficient implementation to execute the query

�Produces equivalent relational algebra expressions

�Annotates them with instructions (algorithms)



Basic Steps: OptimizationBasic Steps: Optimization

� 1st level of optimization: an SQL query has many equivalent relational 
algebra expressions

� σσσσsalary<<<<75000(∏∏∏∏salary(instructor)) and

∏∏∏∏salary(σσσσsalary<<<<75000(instructor)) are equivalent

� They both correspond to SELECT salary
FROM instructor
WHERE salary < 75000
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WHERE salary < 75000

� 2nd level of optimization: a relational algebra operation can be evaluated 
using one of several different algorithms

� Selection: file scan VS. indices

� Output of optimization: annotated relational algebra expression specifying 
detailed evaluation strategy (query evaluation plan or query execution 
plan - QEP)



Basic Steps: Optimization (Cont.)Basic Steps: Optimization (Cont.)

� Different query evaluation plans have different costs

� User is not expected to specify least-cost plans

� Query Optimization: amongst all equivalent evaluation-plans choose 
the one with lowest cost. 

� Cost is estimated using statistical information from the database catalog

� # of tuples in relations, tuple sizes, # of distinct values for a given attribute, etc.

� We study… (Chapter 12⋆ – evaluation of QEP)

How to measure query costs
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⋆

� How to measure query costs

� Algorithms for evaluating relational algebra operations

� How to combine algorithms for individual operations in order to evaluate a 
complex expression (QEP)

� … and (Chapter 13⋆ – choosing the best QEP)

� How to optimize queries, that is, how to find a query evaluation plan with 
lowest estimated cost

⋆
Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed.



How to measure query costsHow to measure query costs

Database System Concepts, 6th Ed.
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Measures of Query CostMeasures of Query Cost

� Cost is generally measured as total elapsed time for answering query

� Many factors contribute to time cost

�disk accesses, CPU (or even network communication for 
distributed DBMS – later in this course)

� Typically disk access is the predominant cost, and is also relatively 
easy to estimate.   Measured by taking into account

� Number of seeks (average-seek-cost)
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� Number of blocks read (average-block-read-cost)

� Number of blocks written (average-block-write-cost)

�Cost to write a block is greater than cost to read a block 

– data is read back after being written to ensure that the write 
was successful

During the whole optimization process, optimizers can make different assumptions (e.g., indices 
are always stored in in-memory buffer, etc.)
To be applied to concrete systems, our analysis should be adapted according to system features



Measures of Query Cost (Cont.)Measures of Query Cost (Cont.)

� For the sake of simplicity, we ignore difference between reading 
and writing a block and thus we just use

� number of seeks (tT – time for one seek)

� number of block transfers (tT – time to transfer one block)

� Example: cost for b block transfers plus S seeks
b * tT + S * tS

� Values of tT and tS must be calibrated for the specific disk system
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� Values of tT and tS must be calibrated for the specific disk system

� Typical values (2011): tS = 4 ms, tT = 0.1 ms

� Some DBMS performs, during installation, seeks and block transfers 
to estimate average values

� We ignore CPU costs for simplicity

� Real systems do take CPU cost into account

� We do not include cost to writing output to disk in our cost formulae



Measures of Query Cost (Cont.)Measures of Query Cost (Cont.)

� Response time of a QEP is hard to estimate without actually 
executing the plan because some runtime information is needed

� the content of the buffer when the execution begins

� parameter embedded in query which are resolved at runtime only 

SELECT salary
FROM instructor 
WHERE salary < $a
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WHERE salary < $a
where  $a is a variable provided by the application (user)

� Several algorithms can reduce disk IO by using extra buffer space 

� Amount of real memory available to buffer depends on other concurrent 
queries and OS processes, known only during execution

� We often use worst case estimates, assuming only the minimum amount of 
memory needed for the operation is available (e.g., 1 block per relation)



Algorithms for evaluating relational Algorithms for evaluating relational 

algebra operationsalgebra operations

Database System Concepts, 6th Ed.
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Selection OperationSelection Operation

� File scan

PROs: can be applied to any file, regardless of its ordering, availability of indices, 
nature of selection operation, etc.

CONs: it is slow

� Algorithm A1 (linear search).  Scan each file block and test all 
records to see whether they satisfy the selection condition

� br denotes number of blocks containing records from relation r

� Cost estimate = b block transfers + 1 seek = t + b * t
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� Cost estimate = br block transfers + 1 seek = tS + br * tT

� If selection is on a key attribute, can stop on finding record

�cost = (br /2) block transfers + 1 seek = tS + (br / 2)* tT

We assume blocks are stored contiguously so 1 seek operation is enough (disk head 
does not need to move to seek next block



Selections Using IndicesSelections Using Indices

� Index scan: search algorithms that use an index

� selection condition must be on search-key of index

� hi : height of the B
+-tree (# of accesses to traverse the index 

before accessing the data)

� A2 (primary index, equality on key).  Retrieve a single record 
that satisfies the corresponding equality condition  
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� Cost = (hi + 1) * (tT + tS)

� A3 (primary index, equality on nonkey). Retrieve multiple
records

� Let b = number of blocks containing matching records

� Records will be on consecutive blocks

� Cost = hi * (tT + tS) + tS + tT * b There is a mistake in the book⋆

(Fig. 12.3): the “tS” summand
is omitted⋆

Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed.



Selections Using IndicesSelections Using Indices

� A4 (secondary index, equality on key)

� Equal to A2

�Cost = (hi + 1) * (tT + tS)

� A4 (secondary index, equality on nonkey)

� Retrieve multiple records
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� Retrieve multiple records

�each of n matching records may be on a different block  

�Cost =  (hi + n) * (tT + tS)

– Can be very expensive! Can be worse than file scan



Selections Involving ComparisonsSelections Involving Comparisons

� Can implement selections of the form σA≤V (r) or σA ≥ V(r) by using

� a linear file scan,

� or by using indices in the following ways:

� A5 (primary index, comparison).

� For σA ≥ V(r)  use index to find first tuple ≥ v  and scan relation sequentially  
from there
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A ≥ V
from there

� b is the number of blocks containing matching records

� Equal to A3: Cost = hi * (tT + tS) + tS + tT * b

� For σA≤V(r) just scan relation sequentially till first tuple > v; do not use the index

� Equal to A1, equality on key: Cost = tS + (br / 2)* tT



Selections Involving ComparisonsSelections Involving Comparisons

� A6 (secondary index, comparison). 

� For σA ≥ V(r) use index to find first index entry ≥ v and scan index sequentially  
from there, to find pointers to records.

� For σA≤V (r) just scan leaf pages of index finding pointers to records, till first 
entry > v

� In either case, retrieve records that are pointed to
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� In either case, retrieve records that are pointed to

� requires an I/O for each record

� Equal to A4, equality on nonkey: Cost = (hi + n) * (tT + tS)

� Linear file scan may be cheaper



SummarySummary ofof costscosts forfor selectionsselections
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SortingSorting

� Reasons for sorting

� Explicitly requested by SQL query

� SELECT …
FROM … 
SORT BY …

� Needed to efficient executions of join operations

� We may build an index on the relation, and then use the index 
to read the relation in sorted order.  May lead to one disk block 
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to read the relation in sorted order.  May lead to one disk block 
access for each tuple

� For relations that fit in memory, standard sorting techniques like 
quick-sort can be used.  For relations that don’t fit in memory, 
external sort-merge algorithm is a good choice



External SortExternal Sort--MergeMerge

1. Create sorted runs (files containing sorted pieces of relation) 

Let i be 0 initially.

Repeatedly do the following till the end of the relation:

(a)  Read M blocks of relation into memory
(b)  Sort the in-memory blocks

Let M denote number of blocks that can fit in memory. 

©Silberschatz, Korth and Sudarshan12.19Database System Concepts - 6th Edition

(c)  Write sorted data to run Ri

(d)  Increment i
Let the final value of i be N (number of runs)

2. Merge the runs (next slide)…..



External SortExternal Sort--Merge (Cont.)Merge (Cont.)

2. Merge the runs (N-way merge). We assume (for now) that N < 

M. 

1. Use N blocks of memory to buffer input runs, and 1 block to 
buffer output. Read the first block of each run into its buffer 
page

2. repeat

1. Select the first record (in sort order) among all buffer 
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1. Select the first record (in sort order) among all buffer 
pages

2. Write the record to the output buffer.  If the output buffer 
is full write it to disk.

3. Delete the record from its input buffer page.
If the buffer page becomes empty then
read the next block (if any) of the run into the buffer. 

3. until all input buffer pages are empty:



External SortExternal Sort--Merge (Cont.)Merge (Cont.)

� If N ≥ M, several merge passes are required.

� In each pass, contiguous groups of M - 1 runs are merged. 

� A pass reduces the number of runs by a factor of M -1, and 
creates runs longer by the same factor. 

�E.g.  If M=11, and there are 90 runs, one pass reduces 
the number of runs to 9, each 10 times the size of the 
initial runs
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initial runs

� Repeated passes are performed till all runs have been 
merged into one.



Example: External Sorting Using SortExample: External Sorting Using Sort--MergeMerge

g

a   

d   31

c    33

b   14

e   16

r   16

a    14

a    19

b    14

c    33

d     7

d    21

d    31

a    19

b    14

c    33

d    31

e    16

g    24

a    14

a   19

d   31

g   24

b   14

c   33

e   16

d   21

24

19
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r   16

d   21

m    3

p     2

d     7

a   14

d    31

e    16

g    24

m    3

p     2

r    16

a    14

d     7

d    21

m    3

p     2

r    16

d   21

m    3

r    16

a    14

d     7

p     2
initial

relation
create
runs

merge
pass–1

merge
pass–2

runs runs
sorted
output



External SortExternal Sort--Merge: Cost AnalysisMerge: Cost Analysis

� Cost of block transfers:

� Total number of merge passes required: log M–1(br / M)

� Block transfers for initial run creation as well as in each pass is 2br

� for final pass, we don’t count write cost 

– we ignore final write cost for all operations since the output 
of an operation may be sent to the parent operation without 
being written to disk

� Thus total number of block transfers for external sorting:

©Silberschatz, Korth and Sudarshan12.23Database System Concepts - 6th Edition

� Thus total number of block transfers for external sorting:

2br +  2 br log M–1 (br / M) - br =

=  br ( 2 log M–1 (br / M) + 1)

� Seeks: next slide



External SortExternal Sort--Merge: Cost Analysis (cont.)Merge: Cost Analysis (cont.)

� Cost of seeks

� During run generation: one seek to read each run and one seek to 
write each run

� 2 br / M

� During the merge phase

� Need 2 br seeks for each merge pass 

– except the final one which does not require a write
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– except the final one which does not require a write

� Total number of seeks:

2 br / M + 2br logM–1(br / M) - br =

=    2 br / M +  br  (2 logM–1(br / M) -1)



� Number of seeks can be reduced by using bb many blocks (instead of 1) 
for each run during the run merge phase

� Using 1 block per run leads to too many seeks

� Instead, using bb buffer blocks per run � read/write bb blocks with only 1 seek

� Merge together: M/bb  – 1 runs (instead of M – 1 )

� Number of passes required: log M/bb–1(br / M) instead of log M–1(br / M)

External SortExternal Sort--Merge: Cost Analysis (cont.)Merge: Cost Analysis (cont.)

An improved version of the algorithm ⋆⋆⋆⋆
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� During the merge phase: 2 br / bb seeks for each pass (instead of 2 br)

– Except the final one (we assume final result is not written on disk)

� Thus total number of block transfers for external sorting:
br ( 2 log M/bb–1 

(br / M) + 1)

Total number of seeks:
2 br / M + br / bb (2 log M / bb –1

(br / M) -1)

⋆
In Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed., the non-improved version of the algorithm is given only, but 

the cost analysis mixes elements from both versions of the algorithm



Join OperationJoin Operation

� Several different algorithms to implement joins

� Nested-loop join

� Block nested-loop join

� Indexed nested-loop join

� Merge-join

� Hash-join
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� Hash-join

� Choice based on cost estimate

� Example of join used in the cost analysis:

where

� Number of records of student: 5,000

� Number of blocks of student: 100

� Number of records of takes: 10,000

� Number of blocks of takes: 400

students      takes



NestedNested--Loop JoinLoop Join

� To compute the theta join        r θ s

for each tuple tr in r do begin

for each tuple ts in s do begin

test pair (tr,ts) to see if they satisfy the join condition θ

if they do, add tr • ts to the result

end

end
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end

� r is called the outer relation and s the inner relation of the join

� Requires no indices and can be used with any kind of join 
condition

� Expensive since it examines every pair of tuples in the two 
relations



NestedNested--Loop Join (Cont.)Loop Join (Cont.)

� In the worst case, if there is enough memory only to hold one block of each relation, 
the estimated cost is

# of block transfer:
(br transfers to read relation r  + nr ∗ bs transfers to read s for each tuple in r)

# of seeks:
(br seeks to read relation r  + nr seeks to read s for each tuple in r)

� If the smaller relation fits entirely in memory, use that as the inner relation

� Reduces cost to br + bs block transfers and 2 seeks

(same cost in the best case scenario, when both relations fit in memory)

� Assuming worst case memory availability cost estimate is

nr ∗ bs + br

nr + br
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� Assuming worst case memory availability cost estimate is

� with student as outer relation:

� 5000 ∗ 400 + 100 = 2,000,100 block transfers

� 5000 + 100 = 5100 seeks 

� with takes as the outer relation 

� 10000 ∗ 100 + 400 = 1,000,400 block transfers and 10,400 seeks

� If smaller relation (student) fits entirely in memory, the cost estimate will be 500 block 
transfers

� Block nested-loops algorithm (next slide) is preferable



Block NestedBlock Nested--Loop JoinLoop Join

� Variant of nested-loop join in which every block of inner 
relation is paired with every block of outer relation.

for each block Br of r do begin

for each block Bs of s do begin

for each tuple tr in Br do begin

for each tuple ts in Bs do begin

Check if (t ,t ) satisfy the join condition 

©Silberschatz, Korth and Sudarshan12.29Database System Concepts - 6th Edition

Check if (tr,ts) satisfy the join condition 

if they do, add tr • ts to the result.

end

end

end

end



Block NestedBlock Nested--Loop Join (Cont.)Loop Join (Cont.)

� Worst case estimate (memory holds one block for each relation):

� Each block in the inner relation s is read once for each block
in the outer relation

� br ∗ bs + br block transfers + 2 * br seeks

� Best case:

� br + bs block transfers + 2 seeks
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How to combine algorithms for How to combine algorithms for 

individual operations in order to individual operations in order to 

evaluate a complex expressionevaluate a complex expression

Database System Concepts, 6th Ed.
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Evaluation of ExpressionsEvaluation of Expressions

� So far: we have seen algorithms for individual operations

� Alternatives for evaluating an entire expression tree

� Materialization:  store (materialize) on disk results of 
evaluation of sub-expressions into temporary relations for 
subsequent use

� Disadvantage: several disk writing to store temporary relations

� Always possible
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� Always possible

� Pipelining:  pass on tuples to parent operations as they are 
generated by inner operations being executed

� Advantage: less disk writing

� Not always possible



MaterializationMaterialization

� Materialized evaluation:  evaluate one operation at a time, 
starting at the lowest-level.  Use intermediate results materialized 
into temporary relations to evaluate next-level operations

∏ =name building department )instructor     )(( "Watson"σE.g., 

1. compute and store
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)("Watson" departmentbuilding =σ
1. compute and store

2. then compute and store its join with instructor

3. finally, compute the projection on name



PipeliningPipelining

� Pipelined evaluation: evaluate several operations simultaneously, 
passing the results of one operation on to the next and without 
writing on disk intermediate results

� E.g., in previous expression tree, don’t store result of

Instead, pass tuples directly to the join as they are found

)("Watson" departmentbuilding=σ
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Similarly, don’t store result of join, pass tuples directly to projection

� Much cheaper than materialization: no need to store a temporary 
relation to disk

� Pipelining may not always be possible – e.g., some sorting 
algorithms
(it cannot output tuples early, only after all tuples have been 
examined)



End of ChapterEnd of Chapter

Database System Concepts, 6th Ed.
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Figure 12.02Figure 12.02
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Selection Operation (Cont.)Selection Operation (Cont.)

� Old-A2 (binary search).  Applicable if selection is an equality 
comparison on the attribute on which file is ordered. 

� Assume that the blocks of a relation are stored contiguously 

� Cost estimate (number of disk blocks to be scanned):

� cost of locating the first tuple by a binary search on the 
blocks

– log2(br) * (tT + tS)
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– log2(br) * (tT + tS)

� If there are multiple records satisfying selection

– Add transfer cost  of the number of blocks containing 
records that satisfy selection condition 

– Will see how to estimate this cost in Chapter 13


