
Chapter 12: Query ProcessingChapter 12: Query Processing

Data Management for Big Data

2018-2019 (spring semester)

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

2018-2019 (spring semester)

These slides are a modified version of the slides provided with the book

The original version of the slides is available at: https://www.db-book.com/

Dario Della Monica

Chapter 12: Query ProcessingChapter 12: Query Processing

� Overview

� How to measure query costs

� Algorithms for evaluating relational
algebra operations

� Selection Operation

� Sorting

©Silberschatz, Korth and Sudarshan12.2Database System Concepts - 6th Edition

� Join Operation

� Evaluation of Expressions
(How to combine algorithms for individual
operations in order to evaluate a complex
expression)

� Materialization

� Pipelining

Silberschatz, Korth, Sudarshan,

Database System Concepts,

6° edition, 2011

Basic Steps in Query ProcessingBasic Steps in Query Processing

1. Parsing and translation

2. Optimization

3. Evaluation

We focus on
the optimizer

©Silberschatz, Korth and Sudarshan12.3Database System Concepts - 6th Edition

Basic Steps in Query Processing (cont.)Basic Steps in Query Processing (cont.)

� Parser and translator

� translate the (SQL) query into relational algebra

� Parser checks syntax, verifies relations

� Evaluation engine

� The query-execution engine takes a query-evaluation plan,
executes that plan, and returns the answers to the query

©Silberschatz, Korth and Sudarshan12.4Database System Concepts - 6th Edition

executes that plan, and returns the answers to the query

� Optimizer (in a nutshell -- more details in the next slides)

� Chooses the most efficient implementation to execute the query

�Produces equivalent relational algebra expressions

�Annotates them with instructions (algorithms)

Basic Steps: OptimizationBasic Steps: Optimization

� 1st level of optimization: an SQL query has many equivalent relational
algebra expressions

� σσσσsalary<<<<75000(∏∏∏∏salary(instructor)) and

∏∏∏∏salary(σσσσsalary<<<<75000(instructor)) are equivalent

� They both correspond to SELECT salary
FROM instructor
WHERE salary < 75000

©Silberschatz, Korth and Sudarshan12.5Database System Concepts - 6th Edition

WHERE salary < 75000

� 2nd level of optimization: a relational algebra operation can be evaluated
using one of several different algorithms

� Selection: file scan VS. indices

� Output of optimization: annotated relational algebra expression specifying
detailed evaluation strategy (query evaluation plan or query execution
plan - QEP)

Basic Steps: Optimization (Cont.)Basic Steps: Optimization (Cont.)

� Different query evaluation plans have different costs

� User is not expected to specify least-cost plans

� Query Optimization: amongst all equivalent evaluation-plans choose
the one with lowest cost.

� Cost is estimated using statistical information from the database catalog

� # of tuples in relations, tuple sizes, # of distinct values for a given attribute, etc.

� We study… (Chapter 12⋆ – evaluation of QEP)

How to measure query costs

©Silberschatz, Korth and Sudarshan12.6Database System Concepts - 6th Edition

⋆

� How to measure query costs

� Algorithms for evaluating relational algebra operations

� How to combine algorithms for individual operations in order to evaluate a
complex expression (QEP)

� … and (Chapter 13⋆ – choosing the best QEP)

� How to optimize queries, that is, how to find a query evaluation plan with
lowest estimated cost

⋆
Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed.

How to measure query costsHow to measure query costs

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Measures of Query CostMeasures of Query Cost

� Cost is generally measured as total elapsed time for answering query

� Many factors contribute to time cost

�disk accesses, CPU (or even network communication for
distributed DBMS – later in this course)

� Typically disk access is the predominant cost, and is also relatively
easy to estimate. Measured by taking into account

� Number of seeks (average-seek-cost)

©Silberschatz, Korth and Sudarshan12.8Database System Concepts - 6th Edition

� Number of blocks read (average-block-read-cost)

� Number of blocks written (average-block-write-cost)

�Cost to write a block is greater than cost to read a block

– data is read back after being written to ensure that the write
was successful

During the whole optimization process, optimizers can make different assumptions (e.g., indices
are always stored in in-memory buffer, etc.)
To be applied to concrete systems, our analysis should be adapted according to system features

Measures of Query Cost (Cont.)Measures of Query Cost (Cont.)

� For the sake of simplicity, we ignore difference between reading
and writing a block and thus we just use

� number of seeks (tT – time for one seek)

� number of block transfers (tT – time to transfer one block)

� Example: cost for b block transfers plus S seeks
b * tT + S * tS

� Values of tT and tS must be calibrated for the specific disk system

©Silberschatz, Korth and Sudarshan12.9Database System Concepts - 6th Edition

� Values of tT and tS must be calibrated for the specific disk system

� Typical values (2011): tS = 4 ms, tT = 0.1 ms

� Some DBMS performs, during installation, seeks and block transfers
to estimate average values

� We ignore CPU costs for simplicity

� Real systems do take CPU cost into account

� We do not include cost to writing output to disk in our cost formulae

Measures of Query Cost (Cont.)Measures of Query Cost (Cont.)

� Response time of a QEP is hard to estimate without actually
executing the plan because some runtime information is needed

� the content of the buffer when the execution begins

� parameter embedded in query which are resolved at runtime only

SELECT salary
FROM instructor
WHERE salary < $a

©Silberschatz, Korth and Sudarshan12.10Database System Concepts - 6th Edition

WHERE salary < $a
where $a is a variable provided by the application (user)

� Several algorithms can reduce disk IO by using extra buffer space

� Amount of real memory available to buffer depends on other concurrent
queries and OS processes, known only during execution

� We often use worst case estimates, assuming only the minimum amount of
memory needed for the operation is available (e.g., 1 block per relation)

Algorithms for evaluating relational Algorithms for evaluating relational

algebra operationsalgebra operations

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Selection OperationSelection Operation

� File scan

PROs: can be applied to any file, regardless of its ordering, availability of indices,
nature of selection operation, etc.

CONs: it is slow

� Algorithm A1 (linear search). Scan each file block and test all
records to see whether they satisfy the selection condition

� br denotes number of blocks containing records from relation r

� Cost estimate = b block transfers + 1 seek = t + b * t

©Silberschatz, Korth and Sudarshan12.12Database System Concepts - 6th Edition

� Cost estimate = br block transfers + 1 seek = tS + br * tT

� If selection is on a key attribute, can stop on finding record

�cost = (br /2) block transfers + 1 seek = tS + (br / 2)* tT

We assume blocks are stored contiguously so 1 seek operation is enough (disk head
does not need to move to seek next block

Selections Using IndicesSelections Using Indices

� Index scan: search algorithms that use an index

� selection condition must be on search-key of index

� hi : height of the B
+-tree (# of accesses to traverse the index

before accessing the data)

� A2 (primary index, equality on key). Retrieve a single record
that satisfies the corresponding equality condition

©Silberschatz, Korth and Sudarshan12.13Database System Concepts - 6th Edition

� Cost = (hi + 1) * (tT + tS)

� A3 (primary index, equality on nonkey). Retrieve multiple
records

� Let b = number of blocks containing matching records

� Records will be on consecutive blocks

� Cost = hi * (tT + tS) + tS + tT * b There is a mistake in the book⋆

(Fig. 12.3): the “tS” summand
is omitted⋆

Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed.

Selections Using IndicesSelections Using Indices

� A4 (secondary index, equality on key)

� Equal to A2

�Cost = (hi + 1) * (tT + tS)

� A4 (secondary index, equality on nonkey)

� Retrieve multiple records

©Silberschatz, Korth and Sudarshan12.14Database System Concepts - 6th Edition

� Retrieve multiple records

�each of n matching records may be on a different block

�Cost = (hi + n) * (tT + tS)

– Can be very expensive! Can be worse than file scan

Selections Involving ComparisonsSelections Involving Comparisons

� Can implement selections of the form σA≤V (r) or σA ≥ V(r) by using

� a linear file scan,

� or by using indices in the following ways:

� A5 (primary index, comparison).

� For σA ≥ V(r) use index to find first tuple ≥ v and scan relation sequentially
from there

©Silberschatz, Korth and Sudarshan12.15Database System Concepts - 6th Edition

A ≥ V
from there

� b is the number of blocks containing matching records

� Equal to A3: Cost = hi * (tT + tS) + tS + tT * b

� For σA≤V(r) just scan relation sequentially till first tuple > v; do not use the index

� Equal to A1, equality on key: Cost = tS + (br / 2)* tT

Selections Involving ComparisonsSelections Involving Comparisons

� A6 (secondary index, comparison).

� For σA ≥ V(r) use index to find first index entry ≥ v and scan index sequentially
from there, to find pointers to records.

� For σA≤V (r) just scan leaf pages of index finding pointers to records, till first
entry > v

� In either case, retrieve records that are pointed to

©Silberschatz, Korth and Sudarshan12.16Database System Concepts - 6th Edition

� In either case, retrieve records that are pointed to

� requires an I/O for each record

� Equal to A4, equality on nonkey: Cost = (hi + n) * (tT + tS)

� Linear file scan may be cheaper

SummarySummary ofof costscosts forfor selectionsselections

©Silberschatz, Korth and Sudarshan12.17Database System Concepts - 6th Edition

SortingSorting

� Reasons for sorting

� Explicitly requested by SQL query

� SELECT …
FROM …
SORT BY …

� Needed to efficient executions of join operations

� We may build an index on the relation, and then use the index
to read the relation in sorted order. May lead to one disk block

©Silberschatz, Korth and Sudarshan12.18Database System Concepts - 6th Edition

to read the relation in sorted order. May lead to one disk block
access for each tuple

� For relations that fit in memory, standard sorting techniques like
quick-sort can be used. For relations that don’t fit in memory,
external sort-merge algorithm is a good choice

External SortExternal Sort--MergeMerge

1. Create sorted runs (files containing sorted pieces of relation)

Let i be 0 initially.

Repeatedly do the following till the end of the relation:

(a) Read M blocks of relation into memory
(b) Sort the in-memory blocks

Let M denote number of blocks that can fit in memory.

©Silberschatz, Korth and Sudarshan12.19Database System Concepts - 6th Edition

(c) Write sorted data to run Ri

(d) Increment i
Let the final value of i be N (number of runs)

2. Merge the runs (next slide)…..

External SortExternal Sort--Merge (Cont.)Merge (Cont.)

2. Merge the runs (N-way merge). We assume (for now) that N <

M.

1. Use N blocks of memory to buffer input runs, and 1 block to
buffer output. Read the first block of each run into its buffer
page

2. repeat

1. Select the first record (in sort order) among all buffer

©Silberschatz, Korth and Sudarshan12.20Database System Concepts - 6th Edition

1. Select the first record (in sort order) among all buffer
pages

2. Write the record to the output buffer. If the output buffer
is full write it to disk.

3. Delete the record from its input buffer page.
If the buffer page becomes empty then
read the next block (if any) of the run into the buffer.

3. until all input buffer pages are empty:

External SortExternal Sort--Merge (Cont.)Merge (Cont.)

� If N ≥ M, several merge passes are required.

� In each pass, contiguous groups of M - 1 runs are merged.

� A pass reduces the number of runs by a factor of M -1, and
creates runs longer by the same factor.

�E.g. If M=11, and there are 90 runs, one pass reduces
the number of runs to 9, each 10 times the size of the
initial runs

©Silberschatz, Korth and Sudarshan12.21Database System Concepts - 6th Edition

initial runs

� Repeated passes are performed till all runs have been
merged into one.

Example: External Sorting Using SortExample: External Sorting Using Sort--MergeMerge

g

a

d 31

c 33

b 14

e 16

r 16

a 14

a 19

b 14

c 33

d 7

d 21

d 31

a 19

b 14

c 33

d 31

e 16

g 24

a 14

a 19

d 31

g 24

b 14

c 33

e 16

d 21

24

19

©Silberschatz, Korth and Sudarshan12.22Database System Concepts - 6th Edition

r 16

d 21

m 3

p 2

d 7

a 14

d 31

e 16

g 24

m 3

p 2

r 16

a 14

d 7

d 21

m 3

p 2

r 16

d 21

m 3

r 16

a 14

d 7

p 2
initial

relation
create
runs

merge
pass–1

merge
pass–2

runs runs
sorted
output

External SortExternal Sort--Merge: Cost AnalysisMerge: Cost Analysis

� Cost of block transfers:

� Total number of merge passes required: log M–1(br / M)

� Block transfers for initial run creation as well as in each pass is 2br

� for final pass, we don’t count write cost

– we ignore final write cost for all operations since the output
of an operation may be sent to the parent operation without
being written to disk

� Thus total number of block transfers for external sorting:

©Silberschatz, Korth and Sudarshan12.23Database System Concepts - 6th Edition

� Thus total number of block transfers for external sorting:

2br + 2 br log M–1 (br / M) - br =

= br (2 log M–1 (br / M) + 1)

� Seeks: next slide

External SortExternal Sort--Merge: Cost Analysis (cont.)Merge: Cost Analysis (cont.)

� Cost of seeks

� During run generation: one seek to read each run and one seek to
write each run

� 2 br / M

� During the merge phase

� Need 2 br seeks for each merge pass

– except the final one which does not require a write

©Silberschatz, Korth and Sudarshan12.24Database System Concepts - 6th Edition

– except the final one which does not require a write

� Total number of seeks:

2 br / M + 2br logM–1(br / M) - br =

= 2 br / M + br (2 logM–1(br / M) -1)

� Number of seeks can be reduced by using bb many blocks (instead of 1)
for each run during the run merge phase

� Using 1 block per run leads to too many seeks

� Instead, using bb buffer blocks per run � read/write bb blocks with only 1 seek

� Merge together: M/bb  – 1 runs (instead of M – 1)

� Number of passes required: log M/bb–1(br / M) instead of log M–1(br / M)

External SortExternal Sort--Merge: Cost Analysis (cont.)Merge: Cost Analysis (cont.)

An improved version of the algorithm ⋆⋆⋆⋆

©Silberschatz, Korth and Sudarshan12.25Database System Concepts - 6th Edition

� During the merge phase: 2 br / bb seeks for each pass (instead of 2 br)

– Except the final one (we assume final result is not written on disk)

� Thus total number of block transfers for external sorting:
br (2 log M/bb–1

(br / M) + 1)

Total number of seeks:
2 br / M + br / bb (2 log M / bb –1

(br / M) -1)

⋆
In Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed., the non-improved version of the algorithm is given only, but

the cost analysis mixes elements from both versions of the algorithm

Join OperationJoin Operation

� Several different algorithms to implement joins

� Nested-loop join

� Block nested-loop join

� Indexed nested-loop join

� Merge-join

� Hash-join

©Silberschatz, Korth and Sudarshan12.26Database System Concepts - 6th Edition

� Hash-join

� Choice based on cost estimate

� Example of join used in the cost analysis:

where

� Number of records of student: 5,000

� Number of blocks of student: 100

� Number of records of takes: 10,000

� Number of blocks of takes: 400

students takes

NestedNested--Loop JoinLoop Join

� To compute the theta join r θ s

for each tuple tr in r do begin

for each tuple ts in s do begin

test pair (tr,ts) to see if they satisfy the join condition θ

if they do, add tr • ts to the result

end

end

©Silberschatz, Korth and Sudarshan12.27Database System Concepts - 6th Edition

end

� r is called the outer relation and s the inner relation of the join

� Requires no indices and can be used with any kind of join
condition

� Expensive since it examines every pair of tuples in the two
relations

NestedNested--Loop Join (Cont.)Loop Join (Cont.)

� In the worst case, if there is enough memory only to hold one block of each relation,
the estimated cost is

of block transfer:
(br transfers to read relation r + nr ∗ bs transfers to read s for each tuple in r)

of seeks:
(br seeks to read relation r + nr seeks to read s for each tuple in r)

� If the smaller relation fits entirely in memory, use that as the inner relation

� Reduces cost to br + bs block transfers and 2 seeks

(same cost in the best case scenario, when both relations fit in memory)

� Assuming worst case memory availability cost estimate is

nr ∗ bs + br

nr + br

©Silberschatz, Korth and Sudarshan12.28Database System Concepts - 6th Edition

� Assuming worst case memory availability cost estimate is

� with student as outer relation:

� 5000 ∗ 400 + 100 = 2,000,100 block transfers

� 5000 + 100 = 5100 seeks

� with takes as the outer relation

� 10000 ∗ 100 + 400 = 1,000,400 block transfers and 10,400 seeks

� If smaller relation (student) fits entirely in memory, the cost estimate will be 500 block
transfers

� Block nested-loops algorithm (next slide) is preferable

Block NestedBlock Nested--Loop JoinLoop Join

� Variant of nested-loop join in which every block of inner
relation is paired with every block of outer relation.

for each block Br of r do begin

for each block Bs of s do begin

for each tuple tr in Br do begin

for each tuple ts in Bs do begin

Check if (t ,t) satisfy the join condition

©Silberschatz, Korth and Sudarshan12.29Database System Concepts - 6th Edition

Check if (tr,ts) satisfy the join condition

if they do, add tr • ts to the result.

end

end

end

end

Block NestedBlock Nested--Loop Join (Cont.)Loop Join (Cont.)

� Worst case estimate (memory holds one block for each relation):

� Each block in the inner relation s is read once for each block
in the outer relation

� br ∗ bs + br block transfers + 2 * br seeks

� Best case:

� br + bs block transfers + 2 seeks

©Silberschatz, Korth and Sudarshan12.30Database System Concepts - 6th Edition

How to combine algorithms for How to combine algorithms for

individual operations in order to individual operations in order to

evaluate a complex expressionevaluate a complex expression

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Evaluation of ExpressionsEvaluation of Expressions

� So far: we have seen algorithms for individual operations

� Alternatives for evaluating an entire expression tree

� Materialization: store (materialize) on disk results of
evaluation of sub-expressions into temporary relations for
subsequent use

� Disadvantage: several disk writing to store temporary relations

� Always possible

©Silberschatz, Korth and Sudarshan12.32Database System Concepts - 6th Edition

� Always possible

� Pipelining: pass on tuples to parent operations as they are
generated by inner operations being executed

� Advantage: less disk writing

� Not always possible

MaterializationMaterialization

� Materialized evaluation: evaluate one operation at a time,
starting at the lowest-level. Use intermediate results materialized
into temporary relations to evaluate next-level operations

∏ =name building department)instructor)(("Watson"σE.g.,

1. compute and store

©Silberschatz, Korth and Sudarshan12.33Database System Concepts - 6th Edition

)("Watson" departmentbuilding =σ
1. compute and store

2. then compute and store its join with instructor

3. finally, compute the projection on name

PipeliningPipelining

� Pipelined evaluation: evaluate several operations simultaneously,
passing the results of one operation on to the next and without
writing on disk intermediate results

� E.g., in previous expression tree, don’t store result of

Instead, pass tuples directly to the join as they are found

)("Watson" departmentbuilding=σ

©Silberschatz, Korth and Sudarshan12.34Database System Concepts - 6th Edition

Similarly, don’t store result of join, pass tuples directly to projection

� Much cheaper than materialization: no need to store a temporary
relation to disk

� Pipelining may not always be possible – e.g., some sorting
algorithms
(it cannot output tuples early, only after all tuples have been
examined)

End of ChapterEnd of Chapter

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

ss

Figure 12.02Figure 12.02

©Silberschatz, Korth and Sudarshan12.36Database System Concepts - 6th Edition

Selection Operation (Cont.)Selection Operation (Cont.)

� Old-A2 (binary search). Applicable if selection is an equality
comparison on the attribute on which file is ordered.

� Assume that the blocks of a relation are stored contiguously

� Cost estimate (number of disk blocks to be scanned):

� cost of locating the first tuple by a binary search on the
blocks

– log2(br) * (tT + tS)

©Silberschatz, Korth and Sudarshan12.37Database System Concepts - 6th Edition

– log2(br) * (tT + tS)

� If there are multiple records satisfying selection

– Add transfer cost of the number of blocks containing
records that satisfy selection condition

– Will see how to estimate this cost in Chapter 13

