
XML and Databases Data Management for Big Data 1'

&

$

%

XML and Databases

Data Management for Big Data
2018-2019 (spring semester)

Dario Della Monica

These slides have been translated in English from slides in
Italian by Angelo Montanari

XML and Databases Data Management for Big Data 2'

&

$

%

What XML is

XML stands for eXtensible Markup Language

Main features:

(1) XML is a formal language. XML is defined through a set
of formal rules (a grammar), that defines how an XML
document is generated.

(2) XML allows for data description (markup). Data are
included in XML documents as string of characters enclosed
between markup tags, which describe structure and content
type.

(3) XML is extensible. The language provides an extensible set
of tags that can be adapted (unlike HTML, whose set of tags is
fixed).

XML and Databases Data Management for Big Data 3'

&

$

%

What XML is NOT - 1

An XML document is a text document that can be read and
modified with any text editor.

Therefore, XML is not:

• a language for data presentation, like HTML. XML markups
define data semantics (content), rather than presentation stlye.
Style information can be included in a separate stylesheet. XSL
(XML Stylesheet Language) stylesheet can be used to translate
XML data into HTML. Resulting HTML pages can be
displayed inside a browser.

XML and Databases Data Management for Big Data 4'

&

$

%

What XML is NOT - 2

• a programming language (such as Java). An XML
document does not perform computations.

• a network transfer data protocol (such as HTTP). XML
does not transfer data over the network.

• a DBMS (such as Oracle). XML does not store or return data.

XML and Databases Data Management for Big Data 5'

&

$

%

XML elements

An XML element is a text enclosed between text tags. Tags are
enclosed between angle brackets.
Example—XML document:

< person >

Alan Turing

< /person >

The document contains only 1 element, called person. Such an
element is delimited by the beginning tag < person > and the
ending tag < /person >. Tags are used for text markup. Whatever
is enclosed between a beginning and an ending tag is called
element content (in the example, the string Alan Turing). An
XML element can contain free text (called character data) or other
XML elements.

XML and Databases Data Management for Big Data 6'

&

$

%

Example: an XML document

Example.

< person >

< name >

< first > Alan < /first >

< last > Turing < /last >

< /name >

< profession > computer scientist < /profession >

< profession > mathematician < /profession >

< profession > cryptographer < /profession >

< /person >

Element person contains a sub-element name and 3 sub-elements
profession.
Element name, in turn, contains 2 sub-elements first and last.

XML and Databases Data Management for Big Data 7'

&

$

%

Features of an XML document

• Elements cannot overlap: if the beginning tag of element B
follows the beginning tag of element A, then ending tag of B
must precede ending tag of A.

• There must exist a single element that encloses all of the other
ones (document element).

• Each element, except for document element, is enclosed (in
a direct fashion) in exactly one other element.

Consequently: an XML document can be represented as a tree
structure: elements are the nodes, document element is the root,
sub-elements are the children.

XML and Databases Data Management for Big Data 8'

&

$

%

Another example

XML elements can interleave free text and sub-elements as in
the following example:
< person >

< first > Alan < /first >< last > Turing < /last > is mainly known

as a < profession > computer scientist < /profession > . However, he

was also an accomplished < profession > mathematician < /profession >

and a < profession > cryptographer < /profession > .

< /person >

There might also be elements with no content at all (empty
elements. An empty address element can be compactly
represented as < address/ >).

Notice: XML is case sensitive (address and Address are different
tags).

XML and Databases Data Management for Big Data 9'

&

$

%

XML attributes

XML elements can have attributes describing their properties. An
attribute has the following syntax: name = ”value”, where name is the
attribute’s name and value is a string. value can be enclosed between
single or double quotes. An element can have an arbitrary number of
attributes, which must have different names. Attribute order is irrelevant
(unlike element order, which DOES matter).
< person born = ”23/06/1912” died = ”07/06/1954” >

< name >

< first > Alan < /first >

< last > Turing < /last >

< /name >

< profession > computer scientist < /profession >

< profession > mathematician < /profession >

< profession > cryptographer < /profession >

< /person >

XML and Databases Data Management for Big Data 10'

&

$

%

XML elements vs. XML attributes

Some pieces of information can be encoded both as attribute
value and as element content.

< person born = ”23/06/1912” died = ”07/06/1954” >

< name first = ”Alan” last = ”Turing”/ >

< profession value = ”computer scientist”/ >

< profession value = ”mathematician”/ >

< profession value = ”cryptographer”/ >

< /person >

How to choose? Attributes for element metadata, elements for
storing information.

XML and Databases Data Management for Big Data 11'

&

$

%

XML references - 1

So far, XML documents have a tree structure. XML allows one
to define and use references that make it possible to produce
documents with a graph structure.

It is possible to associate a unique identifier to elements as value of
a suitable attribute (e.g., the id attribute).

< state id = ”s1” >

< scode > CA < /scode >

< sname > California < /sname >

< /state >

XML and Databases Data Management for Big Data 12'

&

$

%

XML references - 2

To refer to state element previously defined, it is possible to use
idref attribute.

< city id = ”c1” >

< ccode > LA < /ccode >

< cname > Los Angeles < /cname >

< state-of idref = ”s1”/ >

< /city >

Notice that state-of is an empty element, whose only purpose is
referring to another element through the value of idref attribute.
Through references, it is possible to represent looping/recursive
data structures. In the previous example, we can add a
sub-element capital within state element, featuring attribute idref
referring to element city.

XML and Databases Data Management for Big Data 13'

&

$

%

XML parser

An XML parser is a software that reads an XML document and
establishes whether or not it is well-formed. A well-formed
document fulfills XML grammar rules:

1. every beginning tag has a corresponding ending tag;

2. elements do not overlap;

3. there must be exactly one document element;

4. attribute values must be enclosed between quotes;

5. attributes within the same element must have different names.

The simplest way to parse an XML document is to load it inside a
web browser that recognizes XML (i.e., browser includes an
implementation of an XML parser). There are also stand-alone
XML parsers like xmllint command line tool.

XML and Databases Data Management for Big Data 14'

&

$

%

XML main applications

XML main applications are the following:

• Data exchange. In presence of information from different
data source (relational DB, object DB, text document), that
needs to be exchanged/integrated, XML is a suitable common
language to facilitate the inter-change/integration.

• Semi-structured databases. Semi-structured data are
devoid of a regular schema; therefore, relational DB can be
inadequate to deal with them. XML has been proposed as data
model for semi-structured data. Such a data model is close to
the hierarchical data model.

XML and Databases Data Management for Big Data 15'

&

$

%

DTD (Document Type Definition)

It is possible to specify markup that is allowed inside an XML
application through the definition of a schema. The most common
schema definition language (the only one that is present in XML
1.0 standard) is DTD (Document Type Definition). An alternative
is XSchema.

A DTD allows one to force structural constraints over an XML
document. It lists elements, attributes and entities (as we will see
later on, an XML entity is a name for a portion of text; some entity
come by default, other can be defined by the user) used inside the
document and specify the context within which they are used.

DTD do not carry any semantic information about element
contents or attribute values.

XML and Databases Data Management for Big Data 16'

&

$

%

DTD for the “Alan Turing” document - 1

A DTD is precisely a context-free grammar for the document.

DTD for the “Alan Turing” document:

<!ELEMENT person (name, profession∗) >
<!ATTLIST person born CDATA #REQUIRED

died CDATA #IMPLIED >

<!ELEMENT name (first, last) >

<!ELEMENT first (#PCDATA) >

<!ELEMENT last (#PCDATA) >

<!ELEMENT profession (#PCDATA) >

First line states that element person has exactly one child element
name and zero or more child elements profession, in this order.

XML and Databases Data Management for Big Data 17'

&

$

%

DTD for the “Alan Turing” document - 2

Second line states that element person has an attribute born and an
attribute died (order does not matter).

Sections CDATA (character data) are blocks of character data
treated as pure textual data (markups occurring inside a CDATA
section are not recognized; they are treated as character data).

Third line states that element name has 2 children called,
respectively, first and last (order matters).

Last 3 lines specify that elements first, last, and profession must
contain parsed character data (PCDATA), that is, pure text
containing entity and references, but not tags.

XML and Databases Data Management for Big Data 18'

&

$

%

Document type declaration - 1

An XML document can be associated with a DTD through a
Document type declaration. Such a declaration should follow
the XML declaration inside the XML document. Its format is as
follows:

<!DOCTY PE root [DTD] >

where DOCTYPE is the keyword for the document type
declaration, root is the name of the element of the XML document,
and DTD is the set of rules defining the DTD (previous slides).

XML and Databases Data Management for Big Data 19'

&

$

%

Document type declaration - 2

An XML document might contain a DTD reference, rather than
including it. This allows for DTD sharing among more XML
documents. In this case, the declaration is as follows:

<!DOCTY PE root KEYWORD ”URI” >

where KEYWORD can be SYSTEM o PUBLIC. In the former
case, the DTD is specified through a Uniform Resource Locator
(URL); in the latter case, the DTD is specified through a Uniform
Resource Name (URN), where the URN is a name that
unambiguously identify the XML application. (a backup URL can
be added in case local DTD becomes unavailable).

XML and Databases Data Management for Big Data 20'

&

$

%

XML element definition in DTD - 1

Every element used in a valid document must be declared in the
DTD through an element definition, in the following form:

<!ELEMENT name content >

where name is the name of the element and content specified the
children that it must/can have, and their order.

content can be one of the following:

• Parsed character data
<!ELEMENT email (#PCDATA) >

• Child element. An element can have a child element of one type
only

<!ELEMENT contact (e-mail) >

XML and Databases Data Management for Big Data 21'

&

$

%

XML element definition in DTD - 2

• Choice. An element can contain one or another type of child but
cannot have children of both types

<!ELEMENT contact (e-mail|phone) >

• Sequence. An element can contain more children, in a given order.
<!ELEMENT name (first, last) >

• Empty content. An element cannot contain any content; however,
it can have attributes.

<!ELEMENT image EMPTY >

• Any content. An element can have content of any kind (if it has
children, they must be defined).

<!ELEMENT image ANY >

XML and Databases Data Management for Big Data 22'

&

$

%

XML element definition in DTD - 3

• Iteration. Three different suffixes can be used to specify how many
children element there can be:
∗ zero or more;
+ one or more;
? zero or one.

For instance, the following definition forces name to have zero or
more first children, followed, possibly, by a child middle and by one
or more last children.

<!ELEMENT name (first∗,middle?, last+) >

XML and Databases Data Management for Big Data 23'

&

$

%

Examples

According to previous definition, all of the following name elements are
valid:
< name >

< first > Samuel < /first >

< middle > Lee < /middle >

< last > Jackson < /last >

< /name >

< name >

< first > Samuel < /first >

< first > Michael < /first >

< last > Jackson < /last >

< /name >

< name >

< last > Jackson < /last >

< last > Keaton < /last >

< /name >

XML and Databases Data Management for Big Data 24'

&

$

%

More examples - 1

The following definition of name allows for arbitrary many
occurrences of children first, middle, and last in any order:

<!ELEMENT name (first|middle|last)∗ >

The following definition allows for mixing text and markup: name
can feature any number of occurrences of children first, middle, and
last in any order, possibly interleaved with free text.

<!ELEMENT name (#PCDATA|first|middle|last)∗ >

XML and Databases Data Management for Big Data 25'

&

$

%

More examples - 2

According to the previous definition, the following name element is
valid:

< name >

First comes the first name : < first > Samuel < /first >

Then the middle one : < middle > Lee < /middle >

Last comes the last name : < last > Jackson < /last >

Not very surprising indeed!

< /name >

Notice that this is the only way of characterizing mixed content: an
element containing arbitrary many occurrences of some element
from a given list, in any order, interleaved with free text (keyword
#PCDATA must be the first component in the list).

XML and Databases Data Management for Big Data 26'

&

$

%

Determinism and non-determinism

Consider the following alternative definition of name:
<!ELEMENT name (first|last|(first, last)) >

Such a definition is not valid, because the content model of name is not
deterministic.

The problem is about DTD (not XML): content model produced by
DTD must be deterministic.

When a validator reads an element first, it can interpret it in 2 ways:

1. the definition of name is terminated (first disjoint in the definition);

2. the definition of name must be followed by an element last (last
disjoint in the definition).

By reading the same symbol, the validator should proceed in 2 different
ways (non-determinism).

XML and Databases Data Management for Big Data 27'

&

$

%

Other components

A valid XML document must also define element attributes.
Declaration is as follows:

<!ATTLIST element attribute TY PE DEFAULT >

ID and IDREF are important attributes. They can be thought of
as the XML counterparts of primary and foreign keys in
relational DB.

Besides attributes, it is possible to define entities. An entity is an
abbreviation for a certain set of data, not necessarily in XML
format. There are several kind of entity: internal or external,
default or user-defined. Internal, user-defined entities are defined as
follows:

<!ENTITY name ”text” >

XML and Databases Data Management for Big Data 28'

&

$

%

Validity of an XML document

An XML document is said valid if it fulfills specifications
contained in its DTD. In general, web browsers do not validate
documents; they only verify they are well-formed

In order to validate, one can use parser API or online or
stand-alone validators

XML Validation Form by Brown University Scholarly Technology
Group is an online validator. xmllint is a command-line XML
parser and validator; it is part of the XML library libxml, developed
within the Gnome project; it can be used outside of Gnome as well

XML and Databases Data Management for Big Data 29'

&

$

%

Validation modality

For instance, document Turing.xml can be validated wrt.
Turing.dtd by executing the following command:

xmllint –dtdvalid Turing.dtd Turing.xml

If Turing.xml contains document type declaration, it is possible to
use the following command:

xmllint –valid Turing.xml

To avoid showing XML document output, option –noout should be
used.

XML and Databases Data Management for Big Data 30'

&

$

%

DTD and relational schemas - 1

DTD can be used as schemas. There are, however, some
limitations:

• Sub-elements of an element (interpreted as attributes of a relation in
a relational DB) are ordered. To allow for any order, it is necessary
to explicitly list all possible orderings. Example: a relation R(A,B)

(from a relational DB) must correspond to a declaration
<!ELEMENT R ((A,B)|(B,A)) >.

• There is no notion of atomic entity. The only atomic type is
PCDATA (string).

• It is not possible to specify constraints about sets of legal values for
a given element (e.g., to force age to range between 0 and 125).

XML and Databases Data Management for Big Data 31'

&

$

%

DTD and relational schemas - 2

• It is not possible to constrain the number of occurrences of elements.
For instance, it is not possible to force at least 3 occurrences of a
given element.

• The mechanism for managing ID / IDREF atributes is too simple.
For instance, it is not possible to limit the uniqueness condition for
ID attributes to only hold on a fragment of the document (rather
than the whole document). Moreover, it is not possible to constrain
the type for idref attributes (it is possible to do that with foreign
keys in relational DB’s). Finally, only single attributes can be used
as keys.

• The type associated to an element tag is global. For instance, in an
object DB a field name can have different structure depending on
the class with which it is associated. This is not possible in XML. A
possible solution would be to use different tags and namespaces.

XML and Databases Data Management for Big Data 32'

&

$

%

DTD and relational schemas - 3

• DTD provides limited support for modularity, code reuse, and
schema evolution. This makes it difficult to manage large schemas
involving many associations.

• DTD are not described using XML notation; if that were the case,
their management (well-formed check, validation, schema query, ...)
could have been done using XML tools

On the bright side, DTD allows one to describe in a easy way
optional and multi-valued attributes from E-R schemas.

Example.

<!ELEMENT R (A,B?, C+)) > states that A is mandatory, B is
optional, and C must have one or more occurrences.

XML and Databases Data Management for Big Data 33'

&

$

%

Beyond DTD: XML Schema

XML Schema has been proposed by W3C to overcome DTD
limitations.

In particular, it provides:

1. a powerful type system: it allows definition of both simple and
complex types, as well as definition of type inheritance
mechanisms, along the lines of object-oriented programming
languages,

2. types can be associated to both elements and attributes, thus
increasing their semantic content.

On the dark side, such extensions make XML Schema more difficult
to work with, especially for inexperienced users.

XML and Databases Data Management for Big Data 34'

&

$

%

XML query languages

An XML DB is a collection of XML inter-related documents.

The different data model behind XML DB’s (trees) wrt to the data
model behind relational DB’s (tables) requires the use of ad-hoc query
languages.

The most common XML query languages are:

• XML Path Language (XPath). It makes it possible to get elements
from a single XML document.
Online XPath Tester/Evaluator:

https://www.freeformatter.com/xpath-tester.html

• XML Query Language (XQuery). It is a full query language for
XML DB’s (it is the XML counterpart for SQL in relational DB’s).
Online XPath/XQuery Tester:

http://www.xpathtester.com/xquery

XML and Databases Data Management for Big Data 35'

&

$

%

XML references

Chapter 23

Database System Concepts
Silberschatz, Korth, Sudarshan,
6th ed., McGraw-Hill, 2011
https://www.db-book.com/db6/index.html

