
Introduction to transaction
managementmanagement

Data Management for Big Data

2018-2019 (spring semester)

Dario Della Monica

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/1

Dario Della Monica

These slides are a modified version of the slides provided with the book

Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

The original version of the slides is available at: extras.springer.com

Outline (distributed DB)

• Introduction (Ch. 1) ⋆

⋆• Distributed Database Design (Ch. 3) ⋆

• Distributed Query Processing (Ch. 6-8) ⋆

• Distributed Transaction Management (Ch. 10-12) ⋆

Introduction to transaction management (Ch. 10) ⋆

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/2

⋆

➡ Introduction to transaction management (Ch. 10) ⋆

➡ Distributed Concurrency Control (Ch. 11) ⋆

➡ Distributed DBMS Reliability (Ch. 12) ⋆

⋆ Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

Outline (today)

• Introduction to transaction management (Ch. 10) ⋆

➡ Definitions of transaction➡ Definitions of transaction

➡ Properties of Transactions (ACID)

✦ Atomicity

✦ Consistency

✦ Isolation

✦ Durability

➡ Architecture

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/3

⋆ Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

Transactions

A transaction is a collection of actions that make transformations of system states
while preserving system consistency (from consistent state to another consistent
state)state)
➡ concurrency: expected behavior when 2 queries modify the DB simultaneously
➡ Integrity: integrity constraints (e.g., primary/foreign keys), replicated copies have same

values
➡ failure: restart or abort on failure while updating

Database in a
consistent

state

Database may be
temporarily in an
inconsistent state

Database in a
consistent

state

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/4

state
inconsistent state
during execution

Begin
Transaction

End
Transaction

Execution of
Transaction

state

Alternative definitions

• One way to see transactions: we often treat a transaction as a program, that is, a
sequence of DB operations, Write (W) and Read (R), interleaved with sequence of DB operations, Write (W) and Read (R), interleaved with
computation steps (e.g., x := x+1) and delimited by Begin (B) and Commit
(C)/Abort (A)

• Another way to see then: a transaction is just a single execution the program

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/5

Transaction Example –
A Simple SQL Query

Transaction BUDGET_UPDATE

begin

EXEC SQL UPDATE PROJ
SET BUDGET = BUDGET∗1.1
WHERE PNAME = “CAD/CAM”

end.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/6

end.

Example Database

Consider an airline reservation example with the relations:Consider an airline reservation example with the relations:

FLIGHT(FNO, DATE, SRC, DEST, STSOLD, CAP)

CUST(CNAME, ADDR)

FC(FNO, DATE, CNAME,SPECIAL)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/7

Example Transaction – A Simple
Program

Begin_transaction Reservation
beginbegin

input(flight_no, date, customer_name);

EXEC SQL UPDATE FLIGHT
SET STSOLD = STSOLD + 1
WHERE FNO = flight_no AND DATE = date;

EXEC SQL INSERT
INTO FC(FNO, DATE, CNAME, SPECIAL);
VALUES (flight_no, date, customer_name, null);

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/8

VALUES (flight_no, date, customer_name, null);
output(“reservation completed”)

end . {Reservation}

Termination condition

• Commit (C) vs. Abort (A)

• Commit (C) denotes success• Commit (C) denotes success

➡ DB goes into a new state, visible to everybody

➡ Cannot be undone

• Abort (A) happens on failure

➡ Application logic reach a failure state (Abort keyword in the program)

✦ Bad input, unfulfilled condition

✦ Controlled through the program flow control (e.g., if-then-else)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/9

✦ E.g., a seat is reserved but payment does not go through

➡ Deadlock (Abort command is sent by DBMS or OS)

➡ Node/hardware failure

➡ Abort causes rollback (restore the state before transaction started)

Termination of Transactions
Begin_transaction Reservation
begin

input(flight_no, date, customer_name);input(flight_no, date, customer_name);
EXEC SQL SELECT STSOLD,CAP

INTO temp1,temp2
FROM FLIGHT
WHERE FNO = flight_no AND DATE = date;

if temp1 = temp2 then
output(“no free seats”);
Abort

else
EXEC SQL UPDATE FLIGHT

SET STSOLD = STSOLD + 1

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/10

SET STSOLD = STSOLD + 1
WHERE FNO = flight_no AND DATE = date;

EXEC SQL INSERT
INTO FC(FNO, DATE, CNAME, SPECIAL);
VALUES (flight_no, date, customer_name, null);

Commit
output(“reservation completed”)

endif
end . {Reservation}

Properties of Transactions

ATOMICITY (Ch. 12)
⋆

➡ unit of operation, all or nothing/Abort or Commit

⋆

⋆

➡ unit of operation, all or nothing/Abort or Commit

CONSISTENCY (Ch. 11)
⋆

➡ ensures correctness (if DB is in a consistent state, so is after transaction
execution, independently from failures or other issues)
✦ no violation of integrity constraints

✦ expected behavior in presence of concurrency

ISOLATION (Ch. 11)
⋆

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/11

ISOLATION (Ch. 11)
⋆

➡ changes visible only after commit

➡ Intermediate changes invisible to other transactions ⇒ serializability

DURABILITY (Ch. 12)
⋆

➡ committed updates persist (permanent, cannot be undone)

⋆ Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

Atomicity

• Either all or none of the transaction's operations are performed

• Atomicity requires that if a transaction is interrupted by a failure, its • Atomicity requires that if a transaction is interrupted by a failure, its
partial results must be undone

• The activity of preserving the transaction's atomicity in presence of
transaction aborts due to input errors, system overloads, or deadlocks is
called transaction recovery

• The activity of ensuring atomicity in the presence of system crashes is
called crash recovery

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/12

Consistency

• Internal consistency

➡ A transaction which executes alone against a consistent database leaves it in a ➡ A transaction which executes alone against a consistent database leaves it in a
consistent state.

➡ Transactions do not violate database integrity constraints

• Transactions are correct programs

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/13

Consistency Degrees

• Degree 0

➡ Transaction T does not overwrite dirty data of other transactions➡ Transaction T does not overwrite dirty data of other transactions

➡ Dirty data refers to data values that have been updated by a transaction prior
to its commitment

• Degree 1

➡ T does not overwrite dirty data of other transactions

➡ T does not commit any writes before EOT

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/14

Consistency Degrees (cont’d)

• Degree 2

➡ T does not overwrite dirty data of other transactions➡ T does not overwrite dirty data of other transactions

➡ T does not commit any writes before EOT

➡ T does not read dirty data from other transactions

• Degree 3

➡ T does not overwrite dirty data of other transactions

➡ T does not commit any writes before EOT

T does not read dirty data from other transactions

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/15

➡ T does not read dirty data from other transactions

➡ Other transactions do not dirty any data read by T before T completes.

Isolation

• Serializability

➡ If several transactions are executed concurrently, the results must be the same ➡ If several transactions are executed concurrently, the results must be the same
as if they were executed serially in some order

• Incomplete results

➡ An incomplete transaction cannot reveal its results to other transactions
before its commitment

➡ Necessary to avoid cascading aborts

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/16

Isolation Example

• Consider the following two transactions:

T : Read(x) T : Read(x)T1: Read(x) T2: Read(x)
x←x+1 x← x+1
Write(x) Write(x)
Commit Commit

T1: Read(x) T1: Read(x)
T1: x← x+1 T1: x← x+1

• Possible execution sequences:

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/17

T1: x← x+1 T1: x← x+1
T1: Write(x) T2: Read(x)
T1: Commit T1: Write(x)
T2: Read(x) T2: x← x+1
T2: x← x+1 T2: Write(x)
T2: Write(x) T1: Commit
T2: Commit T2: Commit

SQL-92 Isolation Levels

Phenomena:

• Dirty read• Dirty read

➡ T1 modifies xwhich is then read by T2 before T1 terminates; T1 aborts

✦ T2 has read value which never exists in the database

• Non-repeatable (fuzzy) read

➡ T1 reads x; T2 then modifies or deletes x and commits. T1 tries to read x again
but reads a different value or can’t find it

• Phantom

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/18

• Phantom

➡ T1 searches the database according to a predicate while T2 inserts new tuples
that satisfy the predicate

SQL-92 Isolation Levels (cont’d)

• Read Uncommitted

➡ For transactions operating at this level, all three phenomena are possible➡ For transactions operating at this level, all three phenomena are possible

• Read Committed

➡ Fuzzy reads and phantoms are possible, but dirty reads are not

• Repeatable Read

➡ Only phantoms possible

• Anomaly Serializable

None of the phenomena are possible

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/19

➡ None of the phenomena are possible

Durability

• Once a transaction commits, the system must guarantee that the results of
its operations will never be lost, in spite of subsequent failuresits operations will never be lost, in spite of subsequent failures

• Database recovery

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/20

Architecture

Begin_transaction,

TM: coordinates requests
(OP) of transaction

Scheduling/
Descheduling

Requests

Transaction Manager
(TM)

Distributed
Execution Monitor

With other
SCs

With other
TMs

Begin_transaction,
Read, Write,
Commit, Abort Results

Scheduler

(OP) of transaction
operations by applications,
sends requests to SC’s at
same and different sites

SC:manages concurrent
accesses to resources (DB
entities)

DP: local DBMS module for
data manipulation

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/21

To data
processor (DP)

Scheduler
(SC)

data manipulation

Transaction management
protocol
• Transactions originate at one site

• TM of that site will be the coordinator for that transaction• TM of that site will be the coordinator for that transaction

• Transaction operations (interface between TM and user/application)

➡ { B, R, W, C, A }

➡ B (Begin): TM and DP do some bookkeeping (record transaction name, originating site, originating
application, …)

➡ R (Read)/W (Write) – these have to do with concurrent access control (Consistency and Isolation) –
Ch. 11⋆:

✦ data item stored locally: TM sends request to DP to perform the read/update

✦ otherwise: TM locates site where data item is stored and request to remote DP to read/update after
concurrent access controls is granted by remote SC

⋆

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/22

➡ C (Commit) – this has to do with reliability (Atomicity and Durability) – Ch. 12⋆:

✦ TM coordinates all sites involved to make data permanently available

➡ A (Abort) – this has to do with reliability (Atomicity and Durability) – Ch. 12⋆:

✦ TM coordinates rollback; no effect of transaction is visible to other transactions

• We ignore data replication. To extend our discussion see Ch. 13 (we do not cover that chapter)

⋆ Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

Centralized Transaction
Execution

…

User
Application

User
Application

Begin_Transaction,
Read, Write, Abort,

Commit

Results &
User Notifications

Results

…

Read, Write,
Abort,

Commit

Transaction
Manager
(TM)

Scheduler

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/23

Scheduled
Operations

Results

Scheduler
(SC)

Data
Processor
(DP)

Distributed Transaction Execution

Begin_transaction,

User application

Results &Begin_transaction,
Read, Write,

Commit, Abort

Results &
User notifications

Read, Write,
Commit, Abort

TM

SC SC

TM

Distributed
Concurrency Control

Replica Control
Protocol

Distributed
Transaction Execution

Model

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/24

SC

DP

SC

DP
Local

Recovery
Protocol

Concurrency Control
Protocol

