# Overview of distributed query processing

Data Management for Big Data 2018-2019 (spring semester)

Dario Della Monica

These slides are a modified version of the slides provided with the book Özsu and Valduriez, *Principles of Distributed Database Systems* (3rd Ed.), 2011 The original version of the slides is available at: extras.springer.com

## Outline (distributed DB)

- Introduction (Ch. 1) \*
- Distributed Database Design (Ch. 3) \*
- Distributed Query Processing (Ch. 6-8) \*
  - ⇒ Overview (Ch. 6) \*
  - ➡ Query decomposition and data localization (Ch. 7) \*
  - ➡ Distributed query optimization (Ch. 8) \*
- Distributed Transaction Management (Ch. 10-12) \*

<sup>\*</sup> Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

## **Query Processing in a D-DBMS**



### **Selecting Alternatives**

| SELECT | *                 |
|--------|-------------------|
| FROM   | EMP,ASG           |
| WHERE  | EMP.ENO = ASG.ENO |
| AND    | RESP = "Manager"  |

 $\text{EMP} \Join_{\text{ENO}} (\sigma_{\text{RESP="Manager"}} (\text{ASG}))$ 

 $\sigma_{\text{RESP}="Manager"}$  (EMP  $\bowtie_{\text{ENO}}$  (ASG))

# What are the Additional Problems?

- More parameters
  - ➡ Fragmentation
  - ➡ Replication
  - ➡ Data exchange alternatives/multiple sites
- To transform a **global query on relations** of a distributed DB (seen as a single DB by the user) into **local queries on fragments** stored on several local DB's (**data localization**)
- QEP must include information on communications (data transfers among sites) and on which sites operations are performed
- Use of semijoins to reduce the amount of data transferred among sites
  - → Focus of the optimizer is selecting optimal order for join and semijoin operations
- Centralized vs. distributed optimization
- Cost to minimize
  - → Centralized DB: CPU and I/O cost only (actually, only I/O)
  - Distributed DB: also communication costs
  - Communication costs are the dominating ones (even though this might not be the case with increased network speed, especially within Local Area Network)

## What are the Additional **Problems? – Example**

Global query:  $\text{EMP} \Join_{\text{ENO}} (\sigma_{\text{RESP="Manager"}} (\text{ASG}))$ 

Fragmentation and allocation



#### Relational algebra must be extended to model exchanging data between sites



### **Cost of Alternatives**

#### Assume

- → *card* (EMP) = 400, *card*(ASG) = 1000, 20 managers in ASG
- ➡ indexes on ASG.RESP and EMP.ENO
- tuple access cost = 1 unit; tuple transfer cost = 10 units

#### Strategy A

| → produce ASG': (10+10) * tuple access cost                               | 20     |
|---------------------------------------------------------------------------|--------|
| → transfer ASG' to the sites of EMP: (10+10) * tuple transfer cost        | 200    |
| → produce EMP': (10+10) * 2 * tuple access cost                           | 40     |
| $\Rightarrow$ transfer EMP' to result site: (10+10) * tuple transfer cost | 200    |
| Total Cost                                                                | 460    |
| Strategy B                                                                |        |
| ➡ transfer EMP to site 5: 400 * tuple transfer cost                       | 4,000  |
| → transfer ASG to site 5: 1000 * tuple transfer cost                      | 10,000 |
| → produce ASG': 1000 * tuple access cost                                  | 1,000  |
| ➡ join EMP and ASG': 400 * 20 * tuple access cost                         | 8,000  |
| Total Cost                                                                | 23,000 |

# Distributed Query Processing Methodology

