
Distributed DB designDistributed DB design

Data Management for Big Data

2019-2020 (spring semester)

Dario Della Monica

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/1

Dario Della Monica

These slides are a modified version of the slides provided with the book

Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

The original version of the slides is available at: extras.springer.com

Outline (distributed DB)

• Introduction (Ch. 1) ⋆

⋆• Distributed Database Design (Ch. 3) ⋆

➡ Fragmentation

➡ Data distribution (allocation)

• Distributed Query Processing (Ch. 6-8) ⋆

⋆

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/2

⋆

• Distributed Transaction Management (Ch. 10-12) ⋆

⋆ Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

Outline (today)

• Distributed DB design (Ch. 3) ⋆

➡ IntroductionIntroduction

➡ Top-down (vs. bottom-up) design

➡ Distribution design issues

✦ Fragmentation

✦ Allocation

➡ Fragmentation

✦ Horizontal Fragmentation (HF)

✓ Primary Horizontal Fragmentation (PHF)

✓ Derived Horizontal Fragmentation (DHF)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/3

Derived Horizontal Fragmentation (DHF)

✦ Vertical Fragmentation (VF)

✦ Hybrid Fragmentation (HyF)

➡ Allocation

➡ Data directory

⋆ Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

Design Problem

• In the general setting:

Making decisions about the placement of data and programs (control) across
the sites of a computer network as well as possibly designing the network
itself

• In Distributed DBMS, the placement of applications entails

➡ placement of the distributed DBMS software; and

➡ placement of the applications that run on the database

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/4

➡ placement of the applications that run on the database

Distribution Design

• Top-down

➡ mostly in designing systems from scratch

➡ mostly in homogeneous systems

➡ applies to fully distributed DBMS (a logical view of the whole DB exists)

• Bottom-up

➡ when the databases already exist at a number of sites

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/5

➡ when the databases already exist at a number of sites

➡ applies to MDBS (we will not treat them)

Top-Down Design
Requirements

Analysis

System requirements
(Objectives)

User Input

View Integration

User Input

(Objectives)

Conceptual
Design

View Design

Access
Information ES’sGCS

Distribution
Design

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/6

Physical
Design

LCS’s

LIS’s
feedback feedback

Distribution Design Issues

Distribution design activity boils down to fragmentation and allocation

�Why fragment at all? [reasons for fragmentation]

�How to fragment? [fragmentation alternatives]

�How much to fragment? [degree of fragmentation]

�How to test correctness? [correctness rules of fragmentation]

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/7

�How to allocate? [allocation alternatives]

� Information requirements? [for both fragmentation and allocation]

1. Reasons for Fragmentation

• Can't we just distribute relations (no intrinsic reason to fragment)?

➡ distributed file systems are not fragmented (i.e., distr. unit is the file)➡ distributed file systems are not fragmented (i.e., distr. unit is the file)

• What is a reasonable unit of distribution?

➡ advantages of fragmentation (why isn’t relation the best choice?)

✦ application views are subsets of relations � locality allows for finer accesses
(applications only access to relevant subsets of relations)

✓ 2 applications accessing different portion of a relation: without fragmentation, either
unnecessary data replication or loss of locality (extra communication)

without fragmentation, no intra-query parallelism

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/8

✦ without fragmentation, no intra-query parallelism

➡ disadvantages of fragmentation

✦ might cause queries to be executed on more than one fragment (performance
degradation, especially when fragments are not disjoint)

✦ semantic data control (especially integrity enforcement) more difficult and costly

2. Fragmentation Alternatives

PROJ
New York

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal
P2 Database Develop. 135000

PROJ

New York
New York

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris

Horizontal fragmentation
• PROJ1: projects with budget less than $200,000

• PROJ2: projects with budget greater than or
equal to $200,000

PROJ1 PROJ2

Vertical fragmentation
• PROJ1: information about project budgets

• PROJ2:information about project names and
locations

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/9

PROJ1 PNO PNAME LOC

P1 Instrumentation 150000 Montreal
P2 Database Develop. 135000 New York

BUDGET

PNO PNAME BUDGET LOC

P3 CAD/CAM 250000 New York
P4 Maintenance 310000 Paris

PROJ2

PNO PNAME LOC

P1 Instrumentation Montreal

P3 CAD/CAM New York
P2 Database Develop. New York

P4 Maintenance Paris

PNO BUDGET

P1 150000

P3 250000
P2 135000

P4 310000

PROJ1 PROJ2

Hybrid fragmentation: obtained by nesting horizontal and vertical fragmentation

3. Degree of Fragmentation

finite number of alternatives

tuples
or

attributes

relations

finite number of alternatives

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/10

• Finding the suitable level of partitioning within this range

• It depends especially on the applications that will use the DB

• This is the real difficulty of fragmentation

4. Correctness of Fragmentation

• Completeness

➡ Decomposition of relation R into fragments R , R , ..., R is complete if and ➡ Decomposition of relation R into fragments R1, R2, ..., Rn is complete if and
only if each data item in R can also be found in some Ri

• Reconstruction

➡ If relation R is decomposed into fragments R1, R2, ..., Rn, then there should
exist some relational operator ∇ such that

R = ∇1≤i≤nRi

• Disjointness

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/11

∇

• Disjointness

➡ If relation R is decomposed into fragments R1, R2, ..., Rn, and data item di is in
Rj, then di should not be in any other fragment Rk (k ≠ j).

5. Allocation Alternatives

• Assigning fragments to sites and deciding whether or not to replicate a
fragment

➡ partitioned (aka non-replicated): each fragment resides at only one site

➡ fully replicated: each fragment at each site

➡ partially replicated: each fragment at some of the sites

• Rule of thumb:

problems causemay nreplicatio otherwise

us,advantageo is nreplicatio 1, If
queries update
queriesonly -read >>

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/12

• In case of partially replicated DDBS, the number of copies of replicated
fragments can either be an input to the allocation algorithm or a decision
variable to be computed by the algorithm

problems causemay nreplicatio otherwise

6. Information Requirements

• The difficulty of the distributed DB design problem is that too many factor
affect the choices towards an optimal designaffect the choices towards an optimal design

➡ Logical organization of the DB

➡ Location of DBMS applications

➡ Characteristics of user applications (how they access the DB)

➡ Properties of (computers at) network nodes

➡…

• Those can be grouped into four categories:

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/13

• Those can be grouped into four categories:

➡ Database information

➡ Application information

➡ Communication network information

➡ Computer system information
quantitative information, mostly used
for allocation, we will not treat them

Fragmentation

• Horizontal Fragmentation (HF)

Primary Horizontal Fragmentation (PHF)➡ Primary Horizontal Fragmentation (PHF)

➡ Derived Horizontal Fragmentation (DHF)

• Vertical Fragmentation (VF)

• Hybrid Fragmentation (HyF)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/14

PHF – Information Requirements

• application information needed for horizontal fragmentation

➡ Predicates used in queries➡ Predicates used in queries

✦80/20 rule: the most active 20% of user applications account for 80% of accesses

✦simple predicates: Given R[A1, A2, …, An], a simple predicate pj over R is

Ai θ Value

where θ ∈ {=,<,≤,>,≥,≠}, Value ∈ Di and Di is the domain of Ai.

Example:

PNAME = "Maintenance"

BUDGET ≤ 200 000

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/15

✦minterms: Given a set Pr = {p1, p2, …,pm} of simple predicates over a relation R, a minterm
(induced by Pr) is a conjunction

∧pj∈Pr
pr*

where pj* ∈ { pj , ¬ pj } , for all pj ∈ Pr

We let MPr = {m1,m2,…,mr} be the set of all minterms induced by a set of simple predicates Pr

PHF – Information Requirements
Example

Example

Pr = { PNAME="Maintenance" , BUDGET < 200000 }

MPr = { m1 , m2 , m3 , m4 }

Where

• m1: PNAME="Maintenance" ∧ BUDGET < 200000

• m2: ¬(PNAME="Maintenance") ∧ BUDGET < 200000

• m3: PNAME= "Maintenance" ∧ ¬(BUDGET < 200000)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/16

• m3: PNAME= "Maintenance" ∧ ¬(BUDGET < 200000)

• m4: ¬(PNAME="Maintenance") ∧ ¬(BUDGET < 200000)

PHF – Extra Information
Requirements

• Database Information• Database Information

➡ minterm selectivity (quantitative)

• Application Information

➡ predicates used in queries (simple predicates, minterms) (qualitative)

➡ access frequency of queries (quantitative)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/17

Primary Horizontal Fragmentation

• Primary horizontal fragmentation (PHF) is induced by a set of minterm.

• Definition: A set M = { m , m , …, m } of minterm induces the • Definition: A set M = { m1, m2, …, mn } of minterm induces the
fragmentation

F = { Ri | Ri = σmi
(R), mi ∈M }

• Therefore, a horizontal fragment Ri of relation R consists of all the tuples of
R which satisfy a minterm predicate mi

�

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/18

�
Given a set of minterm predicates M, there are as many horizontal fragments of
relation R as there are minterm predicates (some fragments might be empty)

PHF – Example (1)

• Assume there is an application Q: find projects with budget less than 200 000 €

• Then, it makes sense to consider the set of simple predicates S = { BUDGET < 200000 }• Then, it makes sense to consider the set of simple predicates S = { BUDGET < 200000 }

which induces the set of minterms MS = { BUDGET < 200000, ¬(BUDGET < 200000) }

which, in turn, induces fragmentation F = { PROJ1 , PROJ2 }

• PROJ1 and PROJ2 are the fragments induced by S

PROJ PNO PNAME LOCBUDGET

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/19

PROJ

New York
New York

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris

PROJ1 PNO PNAME LOC

P1 Instrumentation 150000 Montreal
P2 Database Develop. 135000 New York

BUDGET

PNO PNAME BUDGET LOC

P3 CAD/CAM 250000 New York
P4 Maintenance 310000 Paris

PROJ2

PHF – Example (2)

• Consider now another application Q’: find projects at any given location

Then, it makes sense to consider the set of simple predicates

S’ = { LOC = “Montreal”, LOC = “New York”, LOC = “Paris” }

which induces the set of minterms (use abbreviations LM: LOC = “Montreal”, LN: LOC = “New York”, LP: LOC = “Paris”)

MS’ = { LM ∧ LN ∧ LP , LM ∧ LN ∧ ¬LP , LM ∧ ¬LN ∧ LP , LM ∧ ¬LN ∧ ¬LP ,

¬LM ∧ LN ∧ LP , ¬LM ∧ LN ∧ ¬LP , ¬LM ∧ ¬LN ∧ LP , ¬LM ∧ ¬LN ∧ ¬LP }

which reduces to { LM ∧ ¬LN ∧ ¬LP , ¬LM ∧ LN ∧ ¬LP , ¬LM ∧ ¬LN ∧ LP }

or, even more succinctly, { LM , LN , LP }

which, in turn, induces fragmentation F’ = { PROJ’1 , PROJ’2 , PROJ’3 }

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/20

PROJ’1 PNO PNAME LOC

P1 Instrumentation 150000 Montreal

BUDGET

P2 Database Develop. 135000 New York

PNO PNAME BUDGET LOC

P3 CAD/CAM 250000 New York

PROJ’2
PROJ

New York
New York

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris

P4 Maintenance 310000 Paris

PNO PNAME LOCBUDGET
PROJ’3

Completeness of the Set of
Simple Predicates
• Set of simple predicates (and thus sets of minterms) should be complete

and minimaland minimal

• Intuitively, complete means that all applications (queries) are taken into
account

• Definition: a set of simple predicates Pr is said to be complete if and only if
any two tuples in a fragment induced by Pr have the same probability of
being accessed by any application

Informal definition (completeness): in other words, we have that

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/21

Informal definition (completeness): in other words, we have that

Q access either all or none of the tuples in F

for every application Q and every fragment F induced by Pr

Completeness – Examples

Informal definition (completeness): Q and Q’ access either all or none of the tuples in each fragment

PROJ

P2 Database Develop. 135000 New York

PNO PNAME BUDGET LOC

P3 CAD/CAM 250000 New York

PROJ1

PROJ2

PNO PNAME LOC

P1 Instrumentation 150000 Montreal
P4 Maintenance 310000 Paris

BUDGET

• Q: find projects with budget less than 200 000 €

• Q’: find projects based in New York

• Is S’ = { LOC = “New York” } complete wrt. appl. Q and Q’ ?

o NO!

	 it produces F = { PROJ1 , PROJ2 }

	 Q only accesses project P2 in fragment PROJ1

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/22

• S’’ = {BUDGET < 200000 , LOC = “New York” } is complete wrt.
appl. Q and Q’

o it produces the minterm set (LN stands for LOC = “New York”)

MS’’ = { BUDGET < 200000 ∧ ¬ LN , BUDGET ≥ 200000 ∧ ¬ LN ,
BUDGET < 200000 ∧ LN , BUDGET ≥ 200000 ∧ LN , }

PROJ

New York
New York

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris

Minimality of the Set of Simple
Predicates

• Set of simple predicates (and thus sets of minterms) should be complete and minimal

• Intuitively, minimal means that all predicates should be relevant in the set:

o relevant wrt. to final fragmentation (every predicate produces some fragments not produced by
other predicates in Pr)

o relevant wrt. to applications (there is at least one application that benefits from the predicate)

• Definition: a set of simple predicates Pr is said to be minimal if and only if every
predicates p ∈ Pr creates a new fragment (i.e., p divides fragment F into F1 and F2) and
F1 and F2 are accessed differently by at least one application

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/23

F1 and F2 are accessed differently by at least one application

Minimality – Example 1

• Intuitively, minimal means that all predicates should be relevant in the set wrt.:

o final fragmentation (every predicate produces some fragments not produced by other predicates)o final fragmentation (every predicate produces some fragments not produced by other predicates)
o applications (there is at least one application that benefit from the predicate)

PROJ’’

PROJ’1 PNO PNAME LOC

P1 Instrumentation 150000 Montreal

BUDGET

• Is S’’ = { BUDGET < 200000 , LN , PNAMEDBdevel }
minimal wrt. applications Q, Q’, Q’’ ?

o NO!
	 PNAME is not relvant wrt. final fragmentation

• Q: find projects with budget less than 200 000 €

• Q’: find projects based in New York LN stands for LOC = “New York”

• Q’’: find “Database Develop.” projects PNAMEDBdevel stands for PNAME = “Database Develop.”

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/24

PROJ’’2 PNO PNAME LOCBUDGET

P2 Database Develop. 135000 New York

PNO PNAME BUDGET LOC

P3 CAD/CAM 250000 New York

PROJ’’’2

PROJ

New York
New York

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris

P4 Maintenance 310000 Paris

PNO PNAME LOCBUDGET
PROJ’3

	 PNAMEDBdevel is not relvant wrt. final fragmentation
	 S’’ = { BUDGET < 200000 , LN } produces the same

fragmentation

Minimality – Example 2

• Intuitively, minimal means that all predicates should be relevant in the set wrt.:

o final fragmentation (every predicate produces some fragments not produced by other predicates)

PROJ’’

PROJ’1 PNO PNAME LOC

P1 Instrumentation 150000 Montreal

BUDGET

• Q’: find projects based in New York

• Is S’’ = { BUDGET < 200000 , LN } minimal wrt. application Q’ ?

o it produces F = { PROJ’1 , PROJ’’2 , PROJ’’’2 , PROJ’3 }
o BUDGET < 200000 is the reason of dividing PROJ’’2 and PROJ’’’2

o Q’ cannot distinguish between PROJ’’2 and PROJ’’’2:

Q’ accesses PROJ’’2 iff Q’ accesses PROJ’’’2

o final fragmentation (every predicate produces some fragments not produced by other predicates)
o applications (there is at least one application that benefit from the predicate)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/25

PROJ’’2 PNO PNAME LOCBUDGET

P2 Database Develop. 135000 New York

PNO PNAME BUDGET LOC

P3 CAD/CAM 250000 New York

PROJ’’’2

PROJ

New York
New York

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris

P4 Maintenance 310000 Paris

PNO PNAME LOCBUDGET
PROJ’3

PHF – Algorithm (Intuition)

Input: a relation R and a set of simple predicates Pr over attributes of R

Output: a complete and minimal set of simple predicates Pr' over ROutput: a complete and minimal set of simple predicates Pr' over R

repeat

select a relevant predicate p ∈ Pr

Pr := Pr \ { p }

∪

Minimality rule (relevant predicates): a predicate p ∈ Pr is relevant in Pr if and only if
➡ produces some fragments which is not produced by any other predicate in Pr
➡ there is at least one application that benefit from p

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/26

Pr := Pr \ { p }

P’ := P’ ∪ { p }

P’ := P’ \ {p ∈ P’ | p is not relevant in P’ }

until P’ is complete

compute set M of minterms induced by Pr

eliminate contradictory minterms from M // i.e., minterms that

// produce empty fragments

return fragmentation F = { Rm = σm(R)| m ∈ M }

DHF – Information Requirements

• qualitative Database Information
➡ relationship

TITLE, SAL

PAY

ENO, ENAME, TITLE PNO, PNAME, BUDGET, LOC
EMP PROJ

L1

L2 L3

owner(L3) = PROJ
member (L3) = ASG

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/27

ENO, PNO, RESP, DUR

ASG

L2 L3

member

owner

Derived Horizontal Fragmentation

• Derived Horizontal Fragmentation (DHF) is defined on a member relation
of a link according to a selection operation specified on its owner of a link according to a selection operation specified on its owner
(propagated from owner to member)

TITLE,SAL

PAY

ENO, ENAME, TITLE PNO, PNAME, BUDGET, LOC

EMP PROJ

L1

owner(L1) = PAY
member (L1) = EMP

owner(L2) = EMP
member (L2) = ASG

owner(L3) = PROJ

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/28

ENO, ENAME, TITLE PNO, PNAME, BUDGET, LOC

ENO, PNO, RESP, DUR

ASG

L2 L3

owner(L3) = PROJ
member (L3) = ASG

DHF – Definition
Given
• a relation S fragmented into FS = { S1, S2, …, Sw } and
• a link L where owner(L)=S and member(L)=R,

⋉

TITLE, SAL

PAY

• a link L where owner(L)=S and member(L)=R,
the derived horizontal fragments of R are defined as Ri = R ⋉ Si (Si ∈ FS)

TITLE SAL

Elect. Eng. 40000

Mech. Eng. 27000
Syst. Anal. 34000

Programmer 24000

PAY

TITLE SAL

Elect. Eng. 40000
Syst. Anal. 34000

PAY1

TITLE SAL

Mech. Eng. 27000
Programmer 24000

PAY2

ENO, ENAME, TITLE

EMP L1

ENO ENAME TITLE

E3 A. Lee Mech. Eng.

EMP1

EMP2

ENO ENAME TITLE

E1 J. Doe Elect. Eng.

E2 M. Smith Syst. Anal.

E5 B. Casey Syst. Anal.
E6 L. Chu Elect. Eng.
E8 J. Jones Syst. Anal.�

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/29

Programmer 24000 E3 A. Lee Mech. Eng.
E4 J. Miller Programmer
E7 R. Davis Mech. Eng.

E3 A. Lee Mech. Eng.
E4 J. Miller Programmer

E7 R. Davis Mech. Eng.

ENO ENAME TITLE

E1 J. Doe Elect. Eng.
E2 M. Smith Syst. Anal.

E5 B. Casey Syst. Anal.
E6 L. Chu Elect. Eng.

E8 J. Jones Syst. Anal.

EMP

EMP1 = EMP ⋉ PAY1

EMP2 = EMP ⋉ PAY2

ASG could be fragmented into (the choice depends on applications)
either ASGi = ASG ⋉⋉⋉⋉ EMPi

or ASGi = ASG ⋉⋉⋉⋉ PROJi

PAY1 = σSAL ≥ 30000(PAY)
PAY2 = σSAL < 30000(PAY) �

• Completeness (info is entirely preserved) for primary horizontal fragmentation

➡ PHF: completeness follows from the way minterms are built (exhaustively)

HF – Correctness

➡ PHF: completeness follows from the way minterms are built (exhaustively)

✦ NOTICE: The textbook says something slightly different

• Reconstruction for both primary and derived horizontal fragmentation

➡ Assume R is fragmented into F = {R1,R2,…,Rr }

R = ∪∀Ri ∈F
Ri

• Disjointness for primary horizontal fragmentation

➡ PHF: minterms are mutually exclusive by construction (assuming the set of simple
predicates to be minimal)

•

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/30

• Completeness and disjointness for derived horizontal fragmentation

➡ Both come from integrity constraints of foreign keys and from completeness/disjointness of
PHF

✦ fragmentation propagates from owner to member following one-to-many associations; thus, each
tuple of member is associated with exactly 1 tuple of owner (a NOT NULL constraint must be
defined on the foreign key in the member relation that refer to the owner relation); by disjointness
and completeness of PHF, such tuple of owner appears in exactly 1 fragment of owner

• Has been studied within the centralized context

➡ design methodology

Vertical Fragmentation

➡ physical clustering

• Choose a partition P = { P1, P2, …, Pn } of the set of attribute of relation. Then,

F = { Ri | Ri = ПPi ∪ key(R) and Pi ∈ P }

where key is the (set of) key attribute(s): they are replicated in each fragment

• The problems boils down to finding the best partition

➡ Number of elements of the partition

➡ Distribution of attributes among elements of the partition

• More difficult than horizontal, because more alternatives exist

Number of possible partitions of a set of size n is the Bell’s number B (its growth rate is more than exponential)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/31

➡ Number of possible partitions of a set of size n is the Bell’s number Bn (its growth rate is more than exponential)

• Two approaches :

➡ Grouping (bottom-up) – from single attributes to fragments

➡ Splitting (top-down) – from relation to fragments

✦ preferable for 2 reasons

✓ close to the design approach

✓ optimal solution is more likely to be close to the full relation than to the fully fragmented situation

• Partition is guided by a measure of affinity (“togetherness”)

• Affinity measures how much attributes that are accessed together by queries

VF – The General Idea

• Affinity measures how much attributes that are accessed together by queries

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/32

VF – Information Requirements
(Qualitative Application Info)
• The matrix use(q, A) for attribute usage values

➡ R relation over attributes A , A ,…, A➡ R relation over attributes A1 , A2 ,…, An

➡ Q = {q1, q2,…, qq}: set of queries that will run on R

✦ (the 80/20 rule can be used here, too: select the most active 20% of queries only)

use(qi , Aj) =
1 if attribute Aj is referenced by query qi
0 otherwise





Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/33

VF – Example of use(qi,Aj)

Consider the following 4 queries for relation PROJ

q : SELECT BUDGET q : SELECT PNAME,BUDGETq1: SELECT BUDGET q2: SELECT PNAME,BUDGET
FROM PROJ FROM PROJ

WHERE PNO=Value

q3: SELECT PNAME q4: SELECT SUM(BUDGET)
FROM PROJ FROM PROJ

WHERE LOC=Value WHERE LOC=Value

PNO PNAME BUDGET LOCuse(q, A)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/34

q1

q2

q3

q4

PNO

1 0 1 0

0 01 1

0 01 1

0 0 1 1

PNAME BUDGET LOCuse(q, A)

VF – Information Requirements
(Quantitative Application Info)
•matrix accs(q) for the number of execution of q at s in a given period

• attribute affinity measure aff(A , A) between any two attributes A and A of a • attribute affinity measure aff(Ai , Aj) between any two attributes Ai and Aj of a
relation R with respect to a set of applications Q

aff (Ai , Aj) = ∑ ∑
all queries q
that access

both Ai and Aj

all sites s

accs(q)

PNO PNAME BUDGET LOCuse(q, A)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/35

according to matrix use(q,A):
all queries q such that

use(q , Ai) = use(q, Aj) = 1

q1

q2

q3

q4

PNO

1 0 1 0

0 01 1

0 01 1

0 0 1 1

PNAME BUDGET LOCuse(q, A)

VF – Computation of aff(Ai, Aj)

aff (Ai , Aj) = ∑ ∑

all queries q that
access both Ai

all sites s

accs(q)
q1

q2

q

PNO

1 0 1 0

0 01 1

0 01 1

PNAME BUDGET LOCuse(q, A)

• Example: affinity between PNO and BUDGET

• q1 is the only query that access both PNO and BUDGET

• Also consider the access frequencies: accs(q)

• Then, aff(PNO, BUDGET) = 15 + 20 + 10 = 45

• aff(. , .) is stored in the attribute affinity matrix AA

• Any clustering algorithm based on the attribute affinity
values

q1

q2

q3

q4

S1 S2 S3

15 20 10

5 0 0

25 2525

3 0 0

access both Ai

and Aj

q3

q4

0 01 1

0 0 1 1

accs(q)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/36

values
➡ Bond energy algorithm

➡ Neural network

➡ Machine learning

➡ (no details here)

aff(Ai , Aj)

45 0 45 0

0 80 5 75

45 5 53 3

0 75 3 78

PNO PNAME BUDGET LOC

PNO

PNAME

BUDGET

LOC

VF – Correctness

• Completeness and disjointness follow from properties (completeness and
disjointness) intrinsic of a partition (returned by the clustering algorithm)disjointness) intrinsic of a partition (returned by the clustering algorithm)

• Reconstruction

➡ Let FR = {R1, R2, …, Rn } be the vertical fragmentation obtained for R

➡R is recovered by joining the fragments

R = R1 ⋈ R2 ⋈ … ⋈ Rn

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/37

Hybrid Fragmentation

Hybrid fragmentation, aka mixed or nested fragmentation

R

HFHF

R1

VF VFVFVFVF

R2

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/38

VF VFVFVFVF

R11 R12 R21 R22 R23

start from the leaves and move upward applying fragmentation
reconstruction methods depending on fragmentation types

To reconstruct R:

Fragment Allocation

• Fragment allocation concerns distribution of resources across network nodes
➡ Assignment (possibly with replications) of fragments to sites

• Problem formalization• Problem formalization
➡ Given

F = {F1, F2, …, Fn} fragments
S ={S1, S2, …, Sm} network sites
Q = {q1, q2,…, qq} application information (frequencies, access patterns, ecc.)

Find the best (“optimal”) distribution of fragments in F among sites in S according to info in Q

• Optimality factors
➡ Minimal cost

✦ Communication, Storage (of Fi at site sj), Querying (Fi at site sj , from site sk), Updating (Fi at all sites
where it is replicated, from site sk)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/39

k

➡ Performance
✦ Response time and/or total time

➡ Can be formulated as an operations research problem
✦ one of the above optimality factors is the cost function to minimize, the others are constraint to satisfy)

min (cost function)

s.t. constraints (response time, storage, ...)

✦ techniques and heuristics from the field of operations research apply (no optimal solution, NP-hard)

Data directory

• Data directory (aka. data dictionary or catalog)

• Both in classic (centralized) and distributed DB, it stores metadata about • Both in classic (centralized) and distributed DB, it stores metadata about
DB

➡ Centralized context

✦ Schema (relation metadata) definitions

✦ Usage statistics

✦ Memory usage

✦ ...

➡ Distributed context

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.3/40

➡ Distributed context

✦ Info to reconstruct global view of whole DB

✦ What relation/fragment is stored at which site

✦ ...

• It is itself part of the DB, so considerations about fragmentation and
allocation issues apply

