Distributed DB design

Data Management for Big Data
2019-2020 (spring semester)

Dario Della Monica

These slides are a modified version of the slides provided with the book

Ozsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

The original version of the slides is available at: extras.springer.com

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.3/1

Outline (distributed DB)

® Introduction (Ch. 1) *

® Distributed Database Design (Ch. 3) *

= Fragmentation

= Data distribution (allocation)

® Distributed Query Processing (Ch. 6-8) *

® Distributed Transaction Management (Ch. 10-12) *

* Bzsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch3/2

Outline (today)

® Distributed DB design (Ch. 3) *

= Introduction
= Top-down (vs. bottom-up) design
= Distribution design issues
+ Fragmentation
+ Allocation
= Fragmentation

+ Horizontal Fragmentation (HF)
v Primary Horizontal Fragmentation (PHF)

v Derived Horizontal Fragmentation (DHF)
+ Vertical Fragmentation (VF)
+ Hybrid Fragmentation (HyF)
= Allocation

= Data directory

* Bzsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch3/3

Design Problem

® In the general setting:

Making decisions about the placement of data and programs (control) across
the sites of a computer network as well as possibly designing the network
itself

® In Distributed DBMS, the placement of applications entails
= placement of the distributed DBMS software; and

= placement of the applications that run on the database

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.3/4

Distribution Design

® Top-down

= mostly in designing systems from scratch

= mostly in homogeneous systems

= applies to fully distributed DBMS (a logical view of the whole DB exists)
® Bottom-up

= when the databases already exist at a number of sites

= applies to MDBS (we will not treat them)

Distributed DBMS © M. T. Ozsu & P. Valduriez (Clav3})/5

Top-Down Design

5| Requirements
Analysis
System requirements
{ (Objectives)
%‘g:%x 4 <« View Integration View Design (<
l Access \ ,
1 [GCS j Information [ES’s j
q D butia
] Jes1g 2 User Input
4 e
i Physical |,
Design
4 l
b feedback [3 Y feedback
3 k LIS S)

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.3/6

Distribution Design Issues

Distribution design activity boils down to fragmentation and allocation

O Why fragment at all? [reasons for fragmentation]

® How to fragment? [fragmentation alternatives]

® How much to fragment? |degree of fragmentation]

O How to test correctness? correctness rules of fragmentation]

® How to allocate? [allocation alternatives]

® Information requirements? for both fragmentation and allocation]

Distributed DBMS © M. T. Ozsu & P. Valduriez (@ns)) 7/

1. Reasons for Fragmentation

® Can't we just distribute relations (no intrinsic reason to fragment)?
= distributed file systems are not fragmented (i.e., distr. unit is the file)
® What is a reasonable unit of distribution?

= advantages of fragmentation (why isn’t relation the best choice?)

+ application views are subsets of relations =» locality allows for finer accesses
(applications only access to relevant subsets of relations)

v 2 applications accessing different portion of a relation: without fragmentation, either
unnecessary data replication or loss of locality (extra communication)

+ without fragmentation, no intra-query parallelism
= disadvantages of fragmentation

+ might cause queries to be executed on more than one fragment (performance
degradation, especially when fragments are not disjoint)

+ semantic data control (especially integrity enforcement) more difficult and costly

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.3/8

2. Fragmentation Alternatives

PNO PNAME BUDGET LOC
PRO] P1 | Instrumentation 150000 | Montreal
P2 | Database Develop. | 135000 | New York
P3 | CAD/CAM 250000 | New York
P4 | Maintenance 310000 | Paris
Horizontal fragmentation Vertical fragmentation
- PROJ;: projects with budget less than $200,000 + PROJ1: information about project budgets
-+ PROJ,: projects with budget greater than or - PROJ2:information about project names and
equal to $200,000 locations
PRO]J PROJ
it 2
PROJ 1 | PNO PNAME BUDGET| LOC
P1 |Instrumentation 150000 |Montreal PNO | BUDGET PNO PNAME LOC
P2 | Database Develop. | 135000 [New York P1 150000 Dl e e e o Nt
P2 135000 P2 | Database Develop. New York
PROJ, |rno PNAME BUDGET| LOC me il ge e P3 | CAD/CAM N
P3 | CAD/CAM 250000 |New York P4 310000 P4 | Maintenance Paris
P4 | Maintenance 310000 | Paris

Hybrid fragmentation: obtained by nesting horizontal and vertical fragmentation

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.3/9

3. Degree of Fragmentation

finite number of alternatives

tuples relations
or
attributes

® Finding the suitable level of partitioning within this range
® It depends especially on the applications that will use the DB

® This is the real difficulty of fragmentation

Distributed DBMS ©M. T. Ozsu & P. Valduriez

Ch.3/10

4. Correctness of Fragmentation

® Completeness

= Decomposition of relation R into fragments R;, R,, ..., R, is complete if and
only if each data item in R can also be found in some R;

® Reconstruction

= [f relation R is decomposed into fragments R;, R,, ..., R,, then there should
exist some relational operator V such that

R=V 4R

® Disjointness

i

= [f relation R is decomposed into fragments R;, R,, ..., R,, and data item d; is in
R;, then d; should not be in any other fragment Ry (k #).

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.3/11

5. Allocation Alternatives

® Assigning fragments to sites and deciding whether or not to replicate a
fragment

= partitioned (aka non-replicated): each fragment resides at only one site
= fully replicated: each fragment at each site
= partially replicated: each fragment at some of the sites

® Rule of thumb:

|f read-only queries . { rgplication is advantageous,
update queries

otherwisereplication may cause problems

® In case of par’ciall¥l reEIicated DDBS, the number of copies of replicated
fragments can either be an input to the allocation algorithm or a decision
variable to be computed by the algorithm

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.3/12

6. Information Requirements

® The difficulty of the distributed DB design problem is that too many factor
affect the choices towards an optimal design

= Logical organization of the DB
= Location of DBMS applications
= Characteristics of user applications (how they access the DB)

= Properties of (computers at) network nodes

-o.o

® Those can be grouped into four categories:
= Database information

Application information

)

= Communication network information B .
quantitative information, mostly used

[3

Computer system information for allocation, we will not treat them

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.3/13

Fragmentation

® Horizontal Fragmentation (HF)
= Primary Horizontal Fragmentation (PHF)
= Derived Horizontal Fragmentation (DHF)

® Vertical Fragmentation (VF)
® Hybrid Fragmentation (HyF)

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.3/14

PHF — Information Requirements

¢ application information needed for horizontal fragmentation

= Predicates used in queries
+80/20 rule: the most active 20% of user applications account for 80% of accesses
+ simple predicates: Given R[A, A,, ..., A,], a simple predicate p; over R is
A; 0 Value
where 0 € {=,<,5,>,2,#}, Value € D; and D, is the domain of A,.
Example:
PNAME = "Maintenance"
BUDGET < 200 000

+ minterms: Given a set Pr = {p;, p,, ...,p,,} of simple predicates over a relation R, a minterm
(induced by Pr) is a conjunction

/\pjePr pr*
where p* € {p;, 7 p;}, forall p; € Pr

We let My, = {m;,m,,...,m,} be the set of all minterms induced by a set of simple predicates Pr

Distributed DBMS © M. T. Ozsu & P. Valduriez GCh:3/4ll5

PHF — Information Requirements
Example

Example
Pr ={ PNAME="Maintenance" , BUDGET < 200000 }
Mp, ={my, m,, ms, m,}

Where

- my: PNAME="Maintenance" A BUDGET < 200000

- m,: 7(PNAME="Maintenance") A BUDGET < 200000

- my: PNAME= "Maintenance" A ~(BUDGET < 200000)

- my: “(PNAME="Maintenance") A =(BUDGET < 200000)

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.3/16

PHF — Extra Information
Requirements

® Database Information

= minterm selectivity (quantitative)

® Application Information

= predicates used in queries (simple predicates, minterms) (qualitative)
= access frequency of queries (quantitative)

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.3/17

Primary Horizontal Fragmentation

® Primary horizontal fragmentation (PHF) is induced by a set of minterm.

® Definition: A set M = { m;, m,, ..., m, } of minterm induces the
fragmentation

F={R; | R;=0c,(R), m;e M}

i

® Therefore, a horizontal fragment R; of relation R consists of all the tuples of
R which satisty a minterm predicate m;,

Given a set of minterm predicates M, there are as many horizontal fragments of
relation R as there are minterm predicates (some fragments might be empty)

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.3/18

PHF — Example (1)

® Assume there is an application Q: find projects with budget less than 200 000 €
® Then, it makes sense to consider the set of simple predicates S = { BUDGET < 200000 |

which induces the set of minterms

which, in turn, induces fragmentation

M, ={ BUDGET < 200000, =(BUDGET < 200000) }

® PROJ; and PROYJ, are the fragments induced by S

F = { PROJ, , PROYJ, }

PROJ 1 | PNO PNAME BUDGET| LOC
PNO PNAME BUDGET LOC P1 |Instrumentation 150000 | Montreal
PR P2 | Database Develop. | 135000 |New York
O] P1 | Instrumentation 150000 | Montreal veop
P2 | Database Develop. | 135000 | New York LOC
P3 | CAD)CAM 250000 | Mooy yor PROJ, [PnO| PNAME BUDGET
P4 | Maintenance 310000 | Paris P3 | CAD/CAM 250000 |New York
P4 | Maintenance 310000 | Paris

Distributed DBMS

©M. T. Ozsu & P. Valduriez

Ch3/19

PHF — Example (2

¢ Consider now another application

Then, it makes sense to consider the set of simple predicates

S"={LOC = “Montreal”,

LOC =“New York”,

Q’: find projects at any given location

E@E =R arisets!

which induces the set of minterms (use abbreviations Ly;: LOC = “Montreal”, Ly: LOC = “New York”, Ly: LOC = “Paris”)
e

Ly Atreta
ﬂLM

which reduces to

or, even more succinctly,

which, in turn, induces fragmentation

Ly Al

gl S Bt I B

4

NS LY gl
M, Ly » Lp}
F’={PROJ’;, PROJ’,, PROJ'; }

PROJ

PNO PNAME BUDGET LOC
P1 |[Instrumentation 150000 | Montreal
P2 |Database Develop. | 135000 | New York
P3 |CAD/CAM 250000 | New York
P4 [Maintenance 310000 | Paris

“LyA~LyALp,

PROJ,

PROY,

PROJ’,

Ly A "LyA—Lp,

e £)

)

LA LyALp }

PNO PNAME BUDGET| LOC
P1 | Instrumentation 150000 | Montreal

PNO PNAME BUDGET| LOC
P2 | Database Develop. | 135000 |New York
P3 [CAD/CAM 250000 |New York

PNO PNAME BUDGET| LOC
P4 | Maintenance 310000 | Paris

Distributed DBMS

©M. T. Ozsu & P. Valduriez

Ch.3/20

Completeness of the Set of
Simple Predicates

® Set of simple predicates (and thus sets of minterms) should be complete
and minimal

® Intuitively, complete means that all applications (queries) are taken into
account

® Definition: a set of simple predicates Pr is said to be complete if and only if
any two tuples in a fragment induced by Pr have the same probability of
being accessed by any application

Informal definition (completeness): in other words, we have that

Q access either all or none of the tuples in F

for every application Q and every fragment F induced by Pr

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.3/21

Completeness — Examples

Informal definition (completeness): Q and Q" access either all or none of the tuples in each fragment

Q: find projects with budget less than 200 000 €

Q’: find projects based in New York

Is S"={ LOC = “New York” } complete wrt. appl. Q and Q"?

o NO!
> it produces F = { PROJ, , PROJ, }

> Q only accesses project P2 in fragment PROJ;

S” = {BUDGET < 200000, LOC = “New York” } is complete wrt.

appl. Q and Q’

o it produces the minterm set (L), stands for LOC = “New York”)

" RGeSO

BUDGET > 200000 A = Ly,
BUDGET 2200000 A Ly,

)

PROJ,

PNO PNAME BUDGET| LOC
P2 | Database Develop. | 135000 |New York
P3 [CAD/CAM 250000 |New York

PROJ,

PNO PNAME BUDGET| LOC
P1 | Instrumentation 150000 |Montreal
P4 | Maintenance 310000 |Paris

PROJ
PNO PNAME BUDGET LOC

P3 | CAD/CAM
P4 | Maintenance

250000 | New York

310000 | Paris

Distributed DBMS

©M. T. Ozsu & P. Valduriez

Ch.3/22

Minimality of the Set of Simple
Predicates

¢ Set of simple predicates (and thus sets of minterms) should be complete and minimal

® Intuitively, minimal means that all predicates should be relevant in the set:

o relevant wrt. to final fragmentation (every predicate produces some fragments not produced by
other predicates in Pr)

o relevant wrt. to applications (there is at least one application that benefits from the predicate)

® Definition: a set of simple predicates Pr is said to be minimal if and only if every
predicates p € Pr creates a new fragment (i.e., p divides fragment F into F; and F,) and
F, and F, are accessed differently by at least one application

Distributed DBMS © M. T. Ozsu & P. Valduriez GChi3/P8

Minimality — Example 1

® Intuitively, minimal means that all predicates should be relevant in the set wrt.:

o final fragmentation (every predicate produces some fragments not produced by other predicates)
o applications (there is at least one application that benefit from the predicate)

Q: find projects with budget less than 200 000 €

Q’: find projects based in New York

Q" find “Database Develop.” projects

Is S” = { BUDGET < 200000, Ly, , PNAMEpgever }
minimal wrt. applications Q, Q’, Q" ?

o NO!

> PNAME g eve 18 NOt relvant wrt. final fragmentation
» §”={BUDGET < 200000, Ly }produces the same

fragmentation
PNO PNAME BUDGET LOC
PROJ P1 |[Instrumentation 150000 | Montreal
P2 |Database Develop. | 135000 | New York
P3 |CAD/CAM 250000 | New York
P4 |Maintenance 310000 | Paris

PROJ,

PROJ",

PROJ/ 124 5

PROJ’,

Ly stands for LOC = “New York”
PNAMEpgever Stands for PNAME = “Database Develop.”

PNO PNAME BUDGET| LOC
P1 [Instrumentation 150000 |Montreal

PNO PNAME BUDGET| LOC
P2 | Database Develop. | 135000 |New York

PNO PNAME BUDGET| LOC
P3 |CAD/CAM 250000 |New York

PNO PNAME BUDGET| LOC
P4 | Maintenance 310000 | Paris

Distributed DBMS

©M. T. Ozsu & P. Valduriez

Ch.3/24

Minimality — Example 2

® Intuitively, minimal means that all predicates should be relevant in the set wrt.:

o final fragmentation (every predicate produces some fragments not produced by other predicates)
o applications (there is at least one application that benefit from the predicate)

Q’: find projects based in New York
Is S” = { BUDGET < 200000, Ly } minimal wrt. application Q" ?

o it produces F = { PROJ’; , PROJ”,, PROJ”’, , PROJ’; }

o BUDGET < 200000 is the reason of dividing PROJ”, and PROJ"”,

o Q' cannot distinguish between PROJ”, and PROJ"”

Q’ accesses PROJ”, iff Q’accesses PROJ"”,
PNO PNAME BUDGET LOC
PROJ P1 |Instrumentation 150000 | Montreal
P2 |Database Develop. | 135000 | New York
P3 |CAD/CAM 250000 | New York
P4 |Maintenance 310000 | Paris

PROJ,

PROJ",

PROJ/ 124 5

PROJ’,

PNO PNAME BUDGET| LOC
P1 [Instrumentation 150000 |Montreal

PNO PNAME BUDGET| LOC
P2 | Database Develop. | 135000 |New York

PNO PNAME BUDGET| LOC
P3 |CAD/CAM 250000 |New York

PNO PNAME BUDGET| LOC
P4 | Maintenance 310000 | Paris

Distributed DBMS

©M. T. Ozsu & P. Valduriez

Ch3/25

PHF — Algorithm (Intuition)

Input: arelation R and a set of simple predicates Pr over attributes of R

Output: a complete and minimal set of simple predicates Pr' over R

Minimality rule (relevant predicates): a predicate p € Pr is relevant in Pr if and only if
= produces some fragments which is not produced by any other predicate in Pr
= there is at least one application that benefit from p

repeat
select a relevant predicate p € Pr
Pr := Pr \ { p}
P4 e A OSNE et s
Papr =Pl e W DTS ol sl i neilE = el lie el i o)

until P’ is complete
compute set M of minterms induced by Pr

el imihabevc onbraditcitoriziml Nite tMs & 57 O M/ 400 St @iz i Stehe s
// produce empty fragments
return -fragmemtatiohwEi=StEaR. SoioXERS] etntey FIE)

m

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.3/26

DHF — Information Requirements

® qualitative Database Information

= relationship

owner(L;) = PRO]J

PAY
member (L;) = ASG

TITLE, SAL

Ll
EMP PROJ
ENO, ENAME, TITLE PNO, PNAME, BUDGET, LOC |,

LZ LS
ASG

ENO, PNO, RESP, DUR |~

...
N
N
N
.
.
N
.
N
N
.
N
N
N
.
.
.
.
.
.
.
LN
"

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.3/27

Derived Horizontal Fragmentation

® Derived Horizontal Fragmentation (DHF) is defined on a member relation
of a link according to a selection operation specified on its owner
(propagated from owner to member)

04 owner(L,) = PAY
TITLE, SAL member (L,) = EMP
owner(L,) = EMP
Li member (L,) = ASG
EMP PROJ
ENO, ENAME, TITLE | | PNO, PNAME, BUDGET, LOC owner(Ls) = PROJ

member (L;) = ASG

L, L,
ASG

ENO, PNO, RESP, DUR

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.3/28

DHF — Definition

Given PAY
® arelation S fragmented into F¢=1{S;, S,, ..., S, } and TIILE SAL
® alink L where owner(L)=S and member(L)=R,
the derived horizontal fragments of R are defined as R; = R x §; (S; € Fy) EMP lLl
ENO, ENAME, TITLE
EMP; [ENO| ENAME TITLE
Sha TITLE SAL E1l J. Doe Elect. Eng.

£ M. Smith Syst. Anal.

g;zesitfr?agl ggggg ES B. Casey Syst. Anal. i TITLE SAL
9 | G Elect. Eng, A e
FAY, Trre SAL Eepaio) Jans DT Syst. Anal. | 34000
EMP; | gno| ENAME TITLE Mech. Eng. | 27000
Mech. Eng. | 27000 Programmer | 24000
Programmer | 24000 E3 | A.Lee Mech. Eng.
E4 J. Miller Programmer EMP ENO| ENAME TITLE
E7 R. Davis Mech. Eng. F1 ¥ Do Elect. Eng,
RN = Ocpr s 30000(13 AY) 9 EMP, = EMP x PAY, E2 M. Smith Syst. Anal.
B0 =00, L sonoPAY) EMP, = EMP x PAY, ety N

E4 J. Miller Programmer
E5 B. Casey Syst. Anal.

ASG could be fragmented into (the choice depends on applications) Eg]i %}al:/is f/}z; EEr;gé

either ASG1 = ASG EMPI E8 J. Jones Syst, Anal.

or ASG, = ASG x PROJ,

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.3/29

HF — Correctness

® Completeness (info is entirely preserved) for primary horizontal fragmentation

= PHF: completeness follows from the way minterms are built (exhaustively)
+ NOTICE: The textbook says something slightly different

Reconstruction for both primary and derived horizontal fragmentation

= Assume R is fragmented into F = {Ry,R,,...,R,}
R = g rR;

Disjointness for primary horizontal fragmentation

= PHF: minterms are mutually exclusive by construction (assuming the set of simple
predicates to be minimal)

Completeness and disjointness for derived horizontal fragmentation

= Both come from integrity constraints of foreign keys and from completeness/ disjointness of
PHF

+ fra%mentation propagates from owner to member following one-to-many associations; thus, each
tuple of member is associated with exactly 1 tuple of owner (a NOT NULL constraint must be
defined on the foreign key in the member relation that refer to the owner relation); by disjointness
and completeness of PHF, such tuple of owner appears in exactly 1 fragment of owner

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.3/30

Vertical Fragmentation

Has been studied within the centralized context

= design methodology

= physical clustering

® Choose a partition P ={ P, P,, ..., P, } of the set of attribute of relation. Then,
F={R, | R;= Hpiukey(R) and P, € P}

where key is the (set of) key attribute(s): they are replicated in each fragment

The problems boils down to finding the best partition

= Number of elements of the partition

= Distribution of attributes among elements of the partition

More difficult than horizontal, because more alternatives exist

= Number of possible partitions of a set of size n is the Bell’s number B, (its growth rate is more than exponential)
Two approaches :

= Grouping (bottom-up) - from single attributes to fragments

= Splitting (top-down) - from relation to fragments

+ preferable for 2 reasons
v close to the design approach

v optimal solution is more likely to be close to the full relation than to the fully fragmented situation

Distributed DBMS © M. T. Ozsu & P. Valduriez (@ars))/311

VF — The General |Idea

® Partition is guided by a measure of affinity (“togetherness”)

® Affinity measures how much attributes that are accessed together by queries

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.3/32

VF — Information Requirements
(Qualitative Application Info)

® The matrix use(q, A) for attribute usage values

= R relation over attributes A, A,,..., A,

= Q={q1, 9., q,}: set of queries that will run on R

+ (the 80/20 rule can be used here, too: select the most active 20% of queries only)

use(g, A) = 1 if attribute A, is referenced by query g;
e 0 otherwise

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.3/33

VF — Example of use(q,,A))

Consider the following 4 queries for relation PRO]J

g,: SELECT BUDGET g, SELECT PNAMEBUDGET
FROM PROJ FROM PROJ
WHERE PNO=Value

gy, SELECT PNAME g, SELECT SUM(BUDGET)
FROM PROJ FROM PROJ
WHERE LOC=Value WHERE LOC=Value
use(q, A) PNO PNAME BUDGET LOC

9 | 1 0 1 D
q> 0 1 1 0
qs 0 1 0 1
i) 0 1 i)

Distributed DBMS ©M. T. Ozsu & P. Valduriez

Ch.3/34

VF — Information Requirements
(Quantitative Application Info)

® matrix acc,(q) for the number of execution of g at s in a given period

® attribute affinity measure aff(A;, A) between any two attributes A; and A; of a
relation R with respect to a set of applications Q

aff (A;, A) = Z Z accy(q)

all queries g all sites s
that access

both A; and A, use(q, A) PNO PNAME BUDGET LOC

/ R] 0 1 08
qo 0 1 1 0
according to matrix use(q,A):
all queries g such that 13 0 4 0 E
use(q, A) = use(q, A) = 1 il s

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.3/35

VF — Computation of aff(A;, A)

use(q, A) PNO PNAME BUDGET LOC

aff (A, A) = Z 2 acc(q) A BRI
all queries g that ~ all sites s 0 0 1 i 0

accessclfi:h A; o 0 1 0 1

SIS 0s 0 0 1 1

® Example: affinity between PNO and BUDGET

® g, is the only query that access both PNO and BUDGET accy(q)

® Also consider the access frequencies: acc,(q) L

® Then, aff(PNO, BUDGET) =15 + 20 + 10 = 45 i

® aff(.,.)is stored in the attribute affinity matrix AA &

® Any clustering algorithm based on the attribute affinit\ e
values

= Bond energy algorithm

= Neural network pnvo | 4D

& : .
Machine learning pname | O

= (no details here) et

LOC 0

0
80

5
75

a]f(Ai, A].) _PNO PNAME BUDGET LOC

45
5

)
3

0
75
3
78

Distributed DBMS ©M. T. Ozsu & P. Valduriez

Ch.3/36

VF — Correctness

® Completeness and disjointness follow from properties (completeness and
disjointness) intrinsic of a partition (returned by the clustering algorithm)

® Reconstruction
= Let F; = {Ry, Ry, ..., R, } be the vertical fragmentation obtained for R
= R is recovered by joining the fragments
R=R{X R, ™ ... xR,

Distributed DBMS © M. T. Ozsu & P. Valduriez (@0vs))/37

Hybrid Fragmentation

Hybrid fragmentation, aka mixed or nested fragmentation

R
HF HF
Rl RZ
Vf/\fF VE VI _VF
Rll R12 R21 RZZ R23

To reconstruct R: start from the leaves and move upward applying fragmentation
reconstruction methods depending on fragmentation types

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.3/38

Fragment Allocation

® Fragment allocation concerns distribution of resources across network nodes
= Assignment (possibly with replications) of fragments to sites
® Problem formalization
= Given
Bb=el ok 5 E) fragments
C S i e network sites
Q=1{491 92---, 9;} application information (frequencies, access patterns, ecc.)
Find the best (“optimal”) distribution of fragments in F among sites in S according to info in Q
Optimality factors
= Minimal cost

+ Communication, Storage (of F; at site 5;), Querying (F; at site s;, from site s), Updating (F; at all sites
where it is replicated, from site s))

= Performance
+ Response time and/or total time
= Can be formulated as an operations research problem
+ one of the above optimality factors is the cost function to minimize, the others are constraint to satisty)
min (cost function)

SioE L consEratnteislire sponses thine, s sSitoRacenfg .

+ techniques and heuristics from the field of operations research apply (no optimal solution, NP-hard)

Distributed DBMS © M. T. Ozsu & P. Valduriez (@08))/31)

Data directory

® Data directory (aka. data dictionary or catalog)

® Both in classic (centralized) and distributed DB, it stores metadata about
DB

= Centralized context
+ Schema (relation metadata) definitions
+ Usage statistics
+ Memory usage
+ ..
= Distributed context
+ Info to reconstruct global view of whole DB
+ What relation/fragment is stored at which site

9=

® Itis itself part of the DB, so considerations about fragmentation and
allocation issues apply

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.3/40

