
Chapter 15: Query ProcessingChapter 15: Query Processing

Data Management for Big Data

2019-2020 (spring semester)

Dario Della Monica

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

These slides are a modified version of the slides provided with the book:
(however, chapter numeration refers to 7th Ed.)

The original version of the slides is available at: https://www.db-book.com/

Chapter 15: Query ProcessingChapter 15: Query Processing

� Overview

� How to measure query costs

� Establishing a cost model

� Algorithms for evaluating relational
algebra operations (cost estimates)

� Selection

©Silberschatz, Korth and Sudarshan15.2Database System Concepts - 7th Edition

� Sorting

� Join

� Evaluation of Expressions
(How to combine algorithms for individual
operations in order to evaluate a complex
expression)

� Materialization

� Pipelining

Silberschatz, Korth, Sudarshan,

Database System Concepts,

7° edition, 2011

Basic Steps in Query ProcessingBasic Steps in Query Processing

1. Parsing and translation

2. Optimization

3. Evaluation

We mainly focus on
the optimization phase

©Silberschatz, Korth and Sudarshan15.3Database System Concepts - 7th Edition

Basic Steps in Query Processing (cont.)Basic Steps in Query Processing (cont.)

� Parser and translator

� Translate the (SQL) query into relational algebra

� Parser checks syntax (e.g., correct relation and operator names)

� Evaluation engine

� The query-execution engine takes a query-evaluation plan, executes

©Silberschatz, Korth and Sudarshan15.4Database System Concepts - 7th Edition

� The query-execution engine takes a query-evaluation plan, executes
that plan, and returns the answers to the query

� Optimizer (in a nutshell – more details in the next slides)

� Chooses the most efficient implementation to execute the query

� Produces equivalent relational algebra expressions

� Annotates them with instructions (algorithms): query execution plan (QEP)

� Estimates the cost of each equivalent QEP, according to a given cost model

� Choose the “best” QEP

Basic Steps: OptimizationBasic Steps: Optimization

� 1st level of optimization: an SQL query has many equivalent relational
algebra expressions

� σσσσsalary<<<<75000(∏∏∏∏salary(instructor)) and
∏∏∏∏salary(σσσσsalary<<<<75000(instructor)) are equivalent

� They both correspond to SELECT salary
FROM instructor
WHERE salary < 75000

©Silberschatz, Korth and Sudarshan15.5Database System Concepts - 7th Edition

� 2nd level of optimization: a relational algebra operation can be evaluated
using one of several different algorithms

� e.g., block nested-loop join VS. merge-join; file scan VS. index scan

� Input of optimization: a query in the form of an algebra expression

� Output of optimization: the “best” annotated relational algebra expression
specifying detailed evaluation strategy (query evaluation plan or query
execution plan – QEP) answering the input query

Basic Steps: Optimization (Cont.)Basic Steps: Optimization (Cont.)

� Different query evaluation plans have different costs

� User is not expected to specify least-cost plans

� Query Optimization: amongst all equivalent QEP choose the one
with lowest cost

� Cost is estimated using statistical information from the database catalog

� # of tuples in relations, tuple sizes, # of distinct values for a given attribute, etc.

� We study… (Chapter 15⋆ – evaluation of QEP)

How to measure query costs (establish a cost model)

©Silberschatz, Korth and Sudarshan15.6Database System Concepts - 7th Edition

⋆

� How to measure query costs (establish a cost model)

� Algorithms for evaluating relational algebra operations and their cost

� How to combine algorithms for individual operations in order to evaluate a
complex expression (QEP)

� … and (Chapter 16⋆ – choosing the best QEP)

� How to optimize queries, that is, how to find a QEP with lowest estimated
cost

⋆
Silberschatz, Korth, and Sudarshan, Database System Concepts, 7° ed.

How to measure query costsHow to measure query costs

(cost model)(cost model)

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

These slides are a modified version of the slides provided with the book:
(however, chapter numeration refers to 7th Ed.)

The original version of the slides is available at: https://www.db-book.com/

Measures of Query CostMeasures of Query Cost

Response time (wall-clock time needed to execute a plan) depends on several factors

� system configuration

� amount of dedicated buffer in RAM (aka, memory, main memory)

� whether or not indices are (partially) stored permanently in the buffer

� runtime conditions

� amount of free buffer at the time the plan is executed

� content of the buffer at the time the plan is executed

� parameters, embedded in queries, which are resolved at runtime only

©Silberschatz, Korth and Sudarshan15.8Database System Concepts - 7th Edition

� parameters, embedded in queries, which are resolved at runtime only

SELECT salary
FROM instructor
WHERE salary < $a

where $a is a variable provided by the application (user)

Thus

1. cost models (like ours) focus on resource consumption rather than response time
(optimizers minimize resource consumption rather than response time)

2. different optimizers may make different assumptions (parameters): every theoretical analysis
must be recast with the actual parameters used by the concrete system (optimizer) to which
the analysis is going to be applied

Measures of Query Cost (Cont.)Measures of Query Cost (Cont.)
� Query cost (total elapsed time for answering a query) is measured in terms of

different resources

� disk access (I/O operation on disk)

� CPU usage

� (network communication for distributed DBMS – later in this course)

� Typically disk access is the predominant cost, and is also relatively easy to
estimate. Measured by taking into account

� Number of seeks (number of random I/O accesses)

©Silberschatz, Korth and Sudarshan15.9Database System Concepts - 7th Edition

� Number of blocks read

� Number of blocks written

� It is generally assumed cost for writing to be twice as the cost for reading
(data is read back after being written to ensure the write was successful)

This is a so far accepted choice for measuring query costs (cost model).
New technologies: faster hard-disks (solid-state drives – SSD) and cheaper (thus bigger) RAM
might direct towards different cost models (e.g., based also on CPU usage or RAM I/O operations)

VERY IMPORTANT!!!

- “disk” refers to permanent drive for file storage, hard-disk, secondary memory, permanent memory

- “memory” refers to volatile drive for data storage, RAM, main memory, buffer
These are all used as synonims

Measures of Query Cost (Cont.)Measures of Query Cost (Cont.)

� We ignore difference between writing and reading: we just consider

� tS – time for one seek

� tT – time to transfer one block

� Example: cost for b block transfers plus S seeks

b * tT + S * tS

� Values of tT and tS must be calibrated for the specific disk system

©Silberschatz, Korth and Sudarshan15.10Database System Concepts - 7th Edition

� Typical values (2018): tS = 4 ms, tT = 0.1 ms

� Some DBMS performs, during installation, seeks and block transfers to
estimate average values

� We ignore CPU costs for simplicity

� Real systems usually do take CPU cost into account

� We do not include cost to writing output to disk in our cost formulae

Algorithms for evaluating relational Algorithms for evaluating relational

algebra operationsalgebra operations

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

These slides are a modified version of the slides provided with the book:
(however, chapter numeration refers to 7th Ed.)

The original version of the slides is available at: https://www.db-book.com/

Physical organization of recordsPhysical organization of records

� At the physical level, records are stored (on permanent disks) in files
(managed and organized by the filesystem)

� We assume files are organized according to sequential file
organization

� i.e., a file is stored in contiguous blocks, with records ordered according
to some attribute(s) – not necessarily ordered by primary key

©Silberschatz, Korth and Sudarshan15.12Database System Concepts - 7th Edition

� Other file organization techniques exist (e.g., B+-tree file
organization), leading to different formulas for cost estimate

Selection OperationSelection Operation

� File scan (relation scan without indices)

PROs: can be applied to any file, regardless of its ordering, availability of indices,
nature of selection operation, etc.

CONs: it is slow

� Algorithm A1 (linear search). Retrieve and scan each file block and
test all records to see whether they satisfy the selection condition

� br denotes number of blocks containing records from relation r

� Cost estimate??? (selection on a generic, non-key attribute)

©Silberschatz, Korth and Sudarshan15.13Database System Concepts - 7th Edition

� Cost estimate??? (selection on a generic, non-key attribute)

� cost = br block transfers + 1 seek = tS + br * tT

� Selection on a key attribute. Cost estimate???

� stop on finding record

� cost = (br /2) block transfers + 1 seek = tS + (br / 2)* tT

We assume blocks are stored contiguously so 1 seek operation is enough (disk head
does not need to move to seek next block)

Selections Using IndicesSelections Using Indices

� Index scan (relation scan using an index)

� selection condition must be on search-key of index

� hi : height of the B
+-tree (# of accesses to traverse the index

before accessing the data)

� A2 (primary index, equality on key). Retrieve a single record
that satisfies the corresponding equality condition. Cost?

©Silberschatz, Korth and Sudarshan15.14Database System Concepts - 7th Edition

� cost = (hi + 1) * (tT + tS)

� A3 (primary index, equality on nonkey). Retrieve multiple
records. Cost?

� Let b = number of blocks containing matching records

� Records will be on consecutive blocks

� cost = hi * (tT + tS) + tS + tT * b There is a mistake in the 6th ed.

of the book⋆ (Fig. 12.3): the “tS”
summand is omitted⋆

Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed.

Selections Using IndicesSelections Using Indices

� A4 (secondary index, equality on key). Cost?

� Equal to A2

�cost = (hi + 1) * (tT + tS)

� A4 (secondary index, equality on nonkey)

� Retrieve multiple records. Cost?

©Silberschatz, Korth and Sudarshan15.15Database System Concepts - 7th Edition

� Retrieve multiple records. Cost?

�each of n matching records may be on a different block

�Cost = (hi + n) * (tT + tS)

– Can be very expensive! Can be worse than file scan

Selections Involving ComparisonsSelections Involving Comparisons

� Can implement selections of the form σA≤V (r) or σA ≥ V(r) by using

� a linear file scan,

� or by using indices in the following ways:

� A5 (primary index, comparison).

� σA ≥ V(r)

©Silberschatz, Korth and Sudarshan15.16Database System Concepts - 7th Edition

A ≥ V

� use index to find first tuple ≥ v and scan relation sequentially from there

� RECALL: b is the number of blocks containing matching records

� Equal to A3: Cost = hi * (tT + tS) + tS + tT * b

� σA≤V(r)

� just scan relation sequentially till first tuple > v; do not use the index

� Similar to A1 (file scan, equality on key): Cost = tS + b* tT

Selections Involving ComparisonsSelections Involving Comparisons

� A6 (secondary index, comparison). Cost?

� For σA ≥ V(r) use index to find first index entry ≥ v and scan index sequentially
from there, to find pointers to records.

� For σA≤V (r) just scan leaf pages of index finding pointers to records, till first
entry > v

� In either case, retrieve records that are pointed to

©Silberschatz, Korth and Sudarshan15.17Database System Concepts - 7th Edition

� In either case, retrieve records that are pointed to

� requires an I/O for each record

� Equal to A4, equality on nonkey: cost = (hi + n) * (tT + tS)

� Linear file scan may be cheaper

SummarySummary ofof costscosts forfor selectionsselections

©Silberschatz, Korth and Sudarshan15.18Database System Concepts - 7th Edition

Complex SelectionsComplex Selections

� A7 (conjunctive selection using 1 index)

� θ1 AND θ2 AND … AND θn

� If there is at least 1 index useful for 1 simple condition θi, then
� use the right algorithm among A2-A6 to retrieve tuple satisfying θi

� and in the meantime check for the other simple conditions on records selected .

� Cost?

conjunctions, disjunctions, and negation of simple conditions

©Silberschatz, Korth and Sudarshan15.19Database System Concepts - 7th Edition

� Cost is given by the cost of chosen algorithm for the chosen condition
� cost depend on the choice of the condition (and the choice of the algorithm)

� example: σid=x AND dept=y (teacher)

� primary index over id and secondary index over dept

� id is primary key

� it is convenient to choose id=x (with algorithm A2)

� A8 (conjunctive selection using composite index)

� use a composite index over attributes involved in all or some of the simple
conditions, if any
� example: σname=x AND dept=y (teacher)

� use composite index over pair (name,dept) with algorithm A4 (secondary index, equality on non-key)

Complex Selections (cont’d)Complex Selections (cont’d)

� A9 (conjunctive selection by intersection of identifiers)

� If there are indices with pointers to records (rather than actual records) – this is
our assumption so far anyway

� Scan indices but do not access records, just collect sets of pointers (one per
index)

� Compute the intersection, and then access records. Cost?

� Cost: cost of scanning all indices plus cost of accessing records

©Silberschatz, Korth and Sudarshan15.20Database System Concepts - 7th Edition

Cost: cost of scanning all indices plus cost of accessing records

� Optimization: order records in the intersection and then access them in sorted
order. Advantages:
� no block is accessed twice (2 records in the same block are retrieved together)

� some seek time is saved as blocks are transferred in sorted order (disk-arm is minimized)

� A10 (disjunctive selection by union of identifiers)

� If ALL conditions can be checked through some index, then similar to A9
� Scan indices but do not access records, just collect sets of pointers (one per index)

� Compute the union, and then access records (in sorted order)

� Cost: cost of scanning all indices plus cost of accessing records

� If even only 1 condition has no associate index, then A1 (linear scan)

2 more things on selections2 more things on selections

1. Negation of a simple condition
� NOT (Attr < v) is equivalent to Attr >= v NOT (Attr > v) is equivalent to Attr <= v

� NOT (Attr <= v) is equivalent to Attr > v NOT (Attr >= v) is equivalent to Attr < v

� NOT (Attr = v) is equivalent (Attr < v) OR (Attr > v)

2. A4, A6, A9, A10 are very inefficient (possibly worse than linear scan) due to some
blocks possibly accessed more than once

� few records to be retrieved: better to use index scan,
a lot of records to be retrieved: better to use liner scan

©Silberschatz, Korth and Sudarshan15.21Database System Concepts - 7th Edition

a lot of records to be retrieved: better to use liner scan

� Solution: collect and sort pointers before accessing records (see optimization for A9)

� Improved solution, based on bitmap structure: bitmap is a vector of bits (as many as number of blocks
used by the relation)

� visit index without accessing records: in the bitmap set to 1 the bits corresponding to blocks to be accessed

� linear scan guided by bitmap (sorted order access thanks to bitmap without actually performing a sorting)

� hybrid solution (mix between linear scan and index access)

� few records to be retrieved: slightly worse than index access,
a lot of records to be retrieved: slightly worse than liner scan

� thus, the cost is slightly worse than the optimal plan (linear or index scan)

SortingSorting

� Reasons for sorting

� Explicitly requested by SQL query

� SELECT …
FROM …
SORT BY …

� Needed to efficient executions of join operations

� We may build an index on the relation, and then use the index
to read the relation in sorted order. May lead to one disk block

©Silberschatz, Korth and Sudarshan15.22Database System Concepts - 7th Edition

to read the relation in sorted order. May lead to one disk block
access for each tuple

� For relations that fit in memory, standard sorting techniques like
quick-sort can be used. For relations that don’t fit in memory,
external sort-merge algorithm is a good choice

External SortExternal Sort--MergeMerge

1. Create sorted runs (files containing sorted pieces of relation)

Let i be 0 initially.

Repeatedly do the following till the end of the relation:

(a) Read M blocks of relation into memory
(b) Sort the in-memory blocks

Let M denote number of blocks that can fit in memory.

©Silberschatz, Korth and Sudarshan15.23Database System Concepts - 7th Edition

(b) Sort the in-memory blocks

(c) Write sorted data to run Ri
(d) Increment i

Let the final value of i be N (number of runs)

1. Merge the runs (next slide)…..

External SortExternal Sort--Merge (Cont.)Merge (Cont.)

2. Merge the runs (N-way merge). We assume (for now) that N < M.

1. Use N blocks of memory to buffer input runs, and 1 block to
buffer output. Read the first block of each run into its buffer
page

2. repeat

1. Select the first record (in sort order) among the N blocks

©Silberschatz, Korth and Sudarshan15.24Database System Concepts - 7th Edition

for the runs

2. Write the record to the output buffer. If the output buffer is
full write it to disk.

3. Delete the record from its input buffer block.
If the buffer block becomes empty then
transfer the next block (if any) of the run into the buffer.

3. until all blocks for the runs are empty:

External SortExternal Sort--Merge (Cont.)Merge (Cont.)

� If N ≥ M, several merge passes are required.

� In each pass, contiguous groups of M - 1 runs are merged.

� A pass reduces the number of runs by a factor of M -1 (and
creates runs longer by the same factor)

�E.g. If M=11, and there are 90 runs, one pass merge
together groups of 10 runs into 9 new runs
Thus, one pass reduces the number of runs to 9, each 10

©Silberschatz, Korth and Sudarshan15.25Database System Concepts - 7th Edition

Thus, one pass reduces the number of runs to 9, each 10
times the size of the initial runs

� Repeated passes are performed till all runs have been
merged into one.

Example: External Sorting Using SortExample: External Sorting Using Sort--MergeMerge

g

a

d 31

c 33

b 14

e 16

r 16

a 14

a 19

b 14

c 33

d 7

d 21

d 31

a 19

b 14

c 33

d 31

e 16

g 24

a 14

a 19

d 31

g 24

b 14

c 33

e 16

d 21

24

19M = 3

©Silberschatz, Korth and Sudarshan15.26Database System Concepts - 7th Edition

r 16

d 21

m 3

p 2

d 7

a 14

d 31

e 16

g 24

m 3

p 2

r 16

a 14

d 7

d 21

m 3

p 2

r 16

d 21

m 3

r 16

a 14

d 7

p 2
initial

relation
create
runs

merge
pass–1

merge
pass–2

runs runs
sorted
output

External SortExternal Sort--Merge: Cost AnalysisMerge: Cost Analysis

� Cost of block transfers:

� Number of block transfers (read and write) for initial run creation: 2br

� Total number of merge passes required: log M–1(br / M)

� Number of block transfers (read and write) in each pass: 2br

� For final pass, we don’t count write cost: - br (i.e, subtract br)

� we ignore final write cost for all operations since the output of an operation
may be sent to the parent operation without being written to disk or just
shown to video

©Silberschatz, Korth and Sudarshan15.27Database System Concepts - 7th Edition

shown to video

� Thus, total number of block transfers for external sorting:

2br + 2 br log M–1 (br / M) - br =

= br (2 log M–1 (br / M) + 1)

� Seeks: next slide

External SortExternal Sort--Merge: Cost Analysis (cont.)Merge: Cost Analysis (cont.)

� Cost of seeks

� During run generation: one seek to read each run and one seek to
write each run

� 2 br / M

� Total number of merge passes required: log M–1(br / M)

� During each pass (merge phases)

� 1 seek for reading each block and 1 seek for writing each block

©Silberschatz, Korth and Sudarshan15.28Database System Concepts - 7th Edition

� 1 seek for reading each block and 1 seek for writing each block

– 2 br seeks for each merge pass

� except the final one which does not require a write

– - br (i.e, subtract br)

� Total number of seeks:

2 br / M + 2br logM–1(br / M) - br =

= 2 br / M + br (2 logM–1(br / M) -1)

� Number of seeks can be reduced by using bb many blocks (instead of 1)
for each run during the run merge phase

� Using 1 block per run leads to too many seeks

� Instead, using bb buffer blocks per run � read/write bb blocks with only 1 seek

� Number of runs merged together: M/bb  – 1 runs (instead of M – 1)

– Scaling factor is M / bb  – 1 instead of M – 1

Number of passes required: log (b / M) instead of log (b / M)

External SortExternal Sort--Merge: Cost Analysis (cont.)Merge: Cost Analysis (cont.)

An improved version of the algorithm ⋆⋆⋆⋆

©Silberschatz, Korth and Sudarshan15.29Database System Concepts - 7th Edition

� Number of passes required: log M / bb – 1(br / M) instead of log M–1(br / M)

� During the merge phase: 2 br / bb seeks for each pass (instead of 2 br)

– Except the final one (we assume final result is not written to disk)

� Thus total number of block transfers for external sorting:
br (2 log M / bb  –1

(br / M) + 1)

Total number of seeks:
2 br / M + br / bb (2 log M / bb  –1 (br / M) -1)

⋆
In Silberschatz, Korth, and Sudarshan, Database System Concepts, 6° ed., the non-improved version of the algorithm is given only, but

the cost analysis mixes elements from both versions of the algorithm

Join OperationJoin Operation

� Several different algorithms to implement joins

� Nested-loop join

� Block nested-loop join

� Indexed nested-loop join

� Merge-join

� Hash-join

©Silberschatz, Korth and Sudarshan15.30Database System Concepts - 7th Edition

� Hash-join

� Choice based on cost estimate

� Running example :

where

� Number of records of student: 5,000

� Number of blocks of student: 100

� Number of records of takes: 10,000

� Number of blocks of takes: 400

students takes

NestedNested--Loop JoinLoop Join

� To compute the theta join r θ s

for each tuple tr in r do

for each tuple ts in s do

test pair (tr,ts) to see if they satisfy the join condition θ

if it does, add tr • ts to the result

end

©Silberschatz, Korth and Sudarshan15.31Database System Concepts - 7th Edition

end

end

� r is called the outer relation and s the inner relation of the join

� Requires no indices and can be used with any kind of join
condition

� Expensive since it examines every pair of tuples in the two
relations

NestedNested--Loop Join (Cont.)Loop Join (Cont.)

� If the smaller relation fits entirely in memory, use that as the inner relation

� br + bs block transfers and 2 seeks

(same cost in the best case scenario, when both relations fit in memory)

� Worst case (there is enough memory forn only one block for each relation)

of block transfer:

nr ∗ bs + br (br transfers to read relation r + nr∗bs transfers to read s for each tuple in r)

of seeks:

nr + br (br seeks to read relation r + nr seeks to read s for each tuple in r)

©Silberschatz, Korth and Sudarshan15.32Database System Concepts - 7th Edition

� Running example (join between students and takes – assuming worst case memory availability)

� with student as outer relation:

� 5,000 ∗ 400 + 100 = 2,000,100 block transfers

� 5,000 + 100 = 5,100 seeks

� with takes as the outer relation

� 10,000 ∗ 100 + 400 = 1,000,400 block transfers

� 10,000 + 400 = 10,400 seeks

� if smaller relation (student) fits entirely in memory, the cost estimate will be 500 block transfers and 2
seeks

� Block nested-loops algorithm (next slide) is preferable

Block NestedBlock Nested--Loop JoinLoop Join

� Variant of nested-loop join in which every block of inner
relation is paired with every block of outer relation.

for each block Br of r do

for each block Bs of s do

for each tuple tr in Br do

for each tuple ts in Bs do

check if (t ,t) satisfy the join condition

©Silberschatz, Korth and Sudarshan15.33Database System Concepts - 7th Edition

check if (tr,ts) satisfy the join condition

if it does, add tr • ts to the result

end

end

end

end

Block NestedBlock Nested--Loop Join (Cont.)Loop Join (Cont.)

� Worst case estimate (memory holds one block for each relation):

� Each block in the inner relation is read once for each block in the
outer relation

� # of block transfers:

� br ∗ bs + br

� # of seeks:

� 2 * br

©Silberschatz, Korth and Sudarshan15.34Database System Concepts - 7th Edition

� (block) nested-loop improvements

� join attributes form a key for the inner relation:

� inner loop terminates when first match is found

� If there is more space in memory

� read as many blocks as possible for the outer relation (block nested-loop):

� # of block transfer: br / (M-2)  ∗ bs + br

� # of seeks: 2 ∗ br / (M-2) 

� alternate forward and backward scan for inner relation:

� Use blocks already in buffer: save some block transfer

Indexed NestedIndexed Nested--Loop JoinLoop Join

� If an index is available for one of the relations on the attribute of the join condition

� then use such a relation as inner relation in a nested-loop join

� Instead of doing a linear scan as inner loop, do an index scan

for each tuple tr in r do
index scan over s to find tuples ts satisfying the join condition with tuple tr

end

(basically, for every tuple in r, do a selection on s using the index)

©Silberschatz, Korth and Sudarshan15.35Database System Concepts - 7th Edition

� It might be convenient to create an ad-hoc index for the join if it does not exist

� Cost (worst case: space in memory for only 1 block for each relation)

� br seeks and block transfers to read r: br * (tT + tS)

� for each record in r, index scan on s: nr * c (where c is the cost of index scan on s)

� thus, total cost = br * (tT + tS) + nr * c

� NOTICE: if there are index for both relations, then better to use relation with less
records as outer relation

Indexed vs. Block NestedIndexed vs. Block Nested--Loop JoinLoop Join

� Block nested-loop join

� br ∗ bs + br block transfer and 2 * br seeks, that is, (br ∗ bs + br) * tT + 2 * br * tS

� Indexed nested-loop join

� br * (tT + tS) + nr * c

� Running example : students ⋈ takes

� nstudents = 5,000
bstudents = 100
ntakes = 10,000
b = 400

©Silberschatz, Korth and Sudarshan15.36Database System Concepts - 7th Edition

takes

btakes = 400

students is used as outer relation as it has less records

� B+-index on takes.id with fan = 20, and thus height h = 4

� cost of each index scan c = (h + n) * (tT + tS) [A4: secondary index, eq. on non-key]

� n = nstudents / ntakes = 2 [average]

� cost indexed nested-loop join:
100 * (tT + tS) + 5,000 * ((4+2) * (tT + tS)) = 30,100* (tT + tS)

� cost block nested-loop join:
(100 ∗ 400 + 100) * tT + 2 * 100 * tS = 40,100 * tT + 200 * tS

How to combine algorithms for How to combine algorithms for

individual operations in order to individual operations in order to

evaluate a complex expressionevaluate a complex expression

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

These slides are a modified version of the slides provided with the book:
(however, chapter numeration refers to 7th Ed.)

The original version of the slides is available at: https://www.db-book.com/

Evaluation of ExpressionsEvaluation of Expressions

� So far: we have seen algorithms for individual operations

� Alternatives for evaluating an entire expression tree

� Materialization: store (materialize) on disk results of
evaluation of sub-expressions into temporary relations for
subsequent use

� Disadvantage: several disk writing and reading to store
temporary relations

©Silberschatz, Korth and Sudarshan15.38Database System Concepts - 7th Edition

temporary relations

� Always possible

� Pipelining: pass on tuples to parent operations as they are
generated by inner operations being executed

� Advantage: less disk writing

� Not always possible

MaterializationMaterialization

� Materialized evaluation: evaluate one operation at a time,
starting at the lowest-level. Use intermediate results materialized
into temporary relations to evaluate next-level operations

∏ =name building department)instructor)(("Watson"σE.g.,

)(departmentσ
1. compute and store on disk

©Silberschatz, Korth and Sudarshan15.39Database System Concepts - 7th Edition

)("Watson" departmentbuilding =σ
1. compute and store on disk

2. then compute and store on disk its join with instructor

3. finally, compute the projection on name

PipeliningPipelining

� Pipelined evaluation: evaluate several operations simultaneously,
passing (partial) results of one operation on to the next as they are
generated (es., single records), without writing them on disk

� E.g., in previous expression tree, don’t store result of

Instead, pass tuples directly to the join as they are found

Similarly, don’t store result of join, pass tuples directly to projection as they

)("Watson" departmentbuilding=σ

©Silberschatz, Korth and Sudarshan15.40Database System Concepts - 7th Edition

Similarly, don’t store result of join, pass tuples directly to projection as they
are generated

� Cheaper than materialization: no need to store a temporary relation to disk

� (partial) Results are output earlier, before waiting for complete query
execution

� Parallelization of operations

� Pipelining may not always be possible

� some sorting algorithms cannot output tuples early, only after all input tuples
have been examined

� indexed nested-loop join cannot have its input inner relation pipelined as the
whole relation with associated index must be available

End of ChapterEnd of Chapter

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

These slides are a modified version of the slides provided with the book:
(however, chapter numeration refers to 7th Ed.)

The original version of the slides is available at: https://www.db-book.com/

