
Good-for-Game QPTL: An Alternating Hodges Semantics

DYLAN BELLIER, Université Rennes 1, France
MASSIMO BENERECETTI, Università degli Studi di Napoli Federico II, Italy
DARIO DELLA MONICA, Università degli Studi di Udine, Italy
FABIO MOGAVERO, Università degli Studi di Napoli Federico II, Italy

An extension of QPTL is considered where functional dependencies among the quantified variables can be
restricted in such a way that their current values are independent of the future values of the other variables.
This restriction is tightly connected to the notion of behavioral strategies in game-theory and allows the
resulting logic to naturally express game-theoretic concepts. Inspired by the work on logics of dependence
and independence, we provide a new compositional semantics for QPTL that allows for expressing such
functional dependencies among variables. The fragment where only restricted quantifications are considered,
called behavioral quantifications, allows for linear-time properties that are satisfiable if and only if they are
realisable in the Pnueli-Rosner sense. This fragment can be decided, for both model checking and satisfiability,
in 2ExpTime and is expressively equivalent to QPTL, though significantly less succinct.

CCS Concepts: •Theory of computation→Modal and temporal logics; Logic and verification;Automata
over infinite objects.

ACM Reference Format:
Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero. . Good-for-Game QPTL: An
Alternating Hodges Semantics. ACM Trans. Comput. Logic 0, 0, Article 0 (), 57 pages.

1 INTRODUCTION
The tight connection between logic and games has been acknowledged since the sixties, when
first Lorenzen [54] and later Lorenz [53] and Hintikka [34] proposed game-theoretic semantics for
first-order logic [36, 39]. In this approach, the meaning of a sentence is given in terms of a zero-sum
game played by two agents: the verifier, whose objective is to show the sentence true, and the
falsifier, with the dual objective of showing the sentence false. Satisfiability of a sentence, then,
becomes a game between these two players and the sentence is satisfiable (resp., unsatisfiable) iff
verifier (resp., falsifier) has a strategy to win the game. This tight connection can clearly be viewed
in the other direction as well: logic can be used to reason about games, i.e., we can encode the
problem of solving a game into a decision problem, such as satisfiability or model-checking, of some
logic. The idea is to describe the game and the winning condition with a formula of the logic and
exploit the game-theoretic interpretation to reduce the solution of the game to a specific decision
problem for that logic. Essentially, the winning strategy for the game can be extracted from the
winning strategy for the decision game.

Authors’ addresses: Dylan Bellier, Université Rennes 1, Rennes, France, dylan.bellier@irisa.fr; Massimo Benerecetti, Univer-
sità degli Studi di Napoli Federico II, Napoli, Italy, massimo.benerecetti@unina.it; Dario Della Monica, Università degli Studi
di Udine, Udine, Italy, dario.dellamonica@uniud.it; Fabio Mogavero, Università degli Studi di Napoli Federico II, Napoli,
Italy, fabio.mogavero@unina.it.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
1529-3785//0-ART0 $15.00
https://doi.org/

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

HTTPS://ORCID.ORG/0000-0003-4763-5655
HTTPS://ORCID.ORG/0000-0003-4664-6061
HTTPS://ORCID.ORG/0000-0001-9743-665X
HTTPS://ORCID.ORG/0000-0002-5140-5783
https://orcid.org/0000-0003-4763-5655
https://orcid.org/0000-0003-4664-6061
https://orcid.org/0000-0001-9743-665X
https://orcid.org/0000-0002-5140-5783
https://doi.org/

0:2 Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero

Suppose we have a formula𝜓 (𝑥,𝑦), expressing a required relation between the choice 𝑦 made
by a player, from now on called Eloise, and a choice 𝑥 made by the adversary, namely Abelard,
i.e.,𝜓 (𝑥,𝑦) encodes the objective of a two-player game. We say that the game is won by Eloise if
there exists a strategy for her such that, for each choice 𝑥 made by Abelard, the corresponding
response 𝑦 of Eloise using that strategy guarantees that the resulting play satisfies the requirement
𝜓 (𝑥,𝑦). This condition can clearly be expressed by a sentence of the form ∀𝑥 . ∃𝑦.𝜓 (𝑥,𝑦). We could
then solve the game by solving the satisfiability problem for this sentence. In other words, solving
the game reduces to checking whether there exists a Skolem function f such that ∀𝑥 .𝜓 (𝑥, f (𝑥)) is
satisfied. This function basically dictates the response of Eloise to the choice of Abelard, thereby
encoding her strategy.

The above approach works pretty well when we consider single-round games, a.k.a., normal-form
games [85], and can easily be extended to finite-rounds games, a.k.a., extensive-form games [49, 50, 84],
by extending the quantification prefix to a sequence of alternations of quantifiers, one for each round.
Things, however, get much more complicated when infinite-rounds games come into play [22, 86].
For such a class of extensive-form games, indeed, plays are induced by infinite sequences of choices
made by the players over time and a strategy dictates how a player at a given stage of a play
responds to the choices made by the adversary up to that stage. Extending the quantification prefix
to match the rounds would immediately lead to infinitary logics, such as the one proposed by
Kolaitis [46] and further studied by Heikkilä and Väänänen [30] (see also [37]). This technique
has some interesting applications in logic [31], computer science [44], and even philosophy [21].
Besides its infinitary nature, however, this approach has also the drawback of heavily departing
from the standard Tarskian viewpoint, as only non-compositional game-theoretic semantics have
been provided.

A more viable route, instead, is to make the quantified variables 𝑥 and 𝑦 range over sequences of
choices. For example, when the choices are simply Boolean values, iterated Boolean games are to be
considered [28, 29]. Then, first-order extensions of temporal logics, such as Quantified Propositional
Temporal Logic (QPTL) [77], seem like a good place to start, as they predicate over infinite sequences
of temporal points (the stages of the game). In this setting, however, the Skolem function f cannot
be interpreted as a strategy in the game-theoretic sense anymore, since its value at a given stage
depends on the entire evaluation of its argument 𝑥 , namely the entire sequence of choices made by
the adversary, including all the future ones. By contrast, a strategy for a player can only dictate, step
by step, what its responses should be, depending on the choices made so far by its opponent. What
that means is that, in principle, the satisfiability and the game solution problems do not coincide
anymore. A classic example of this problem has already been observed by Pnueli and Rosner [72].
Assume 𝜓 (𝑥,𝑦) is the LTL [70, 71] formula G (𝑦 ↔ X𝑥) (or just 𝑦 ↔ X𝑥). Clearly, the sentence
∀𝑥 . ∃𝑦.𝜓 (𝑥,𝑦) is satisfiable. However, there is no “feasible” (i.e., implementable) strategy that can
enforce 𝜓 (𝑥,𝑦), without Eloise knowing in advance the future values that Abelard is going to
choose for 𝑥 in the rest of the play. The problem is that the standard interpretation of quantification
treats the quantified objects as atomic entities, regardless of their inner structure, like their being
sequences in the above example. This is by no means the only exemplification of the problem,
which was already recognised in the theory of extensive-form games since its dawn [49], where the
notion of feasible strategy, called behavioral, has been introduced (see also [48, 50, 67, 76]). Another
important source of unfeasible strategic behaviours is hidden in the semantics of Strategy Logic
(SL) [8, 9, 59, 60, 63], an extension of LTL that allows for explicit quantifications over strategies
and binding of strategies with players. In this logic, formulae can be written that can be satisfied
only by allowing players to look at what other strategies dictate in the future or counterfactual
situations [61, 62], admitting infeasible behaviours. Once again, the problem lies in the intrinsic
dependence among the strategy variables quantified in the specific formula.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

Good-for-Game QPTL: An Alternating Hodges Semantics 0:3

One way to reconcile quantifications and strategies in a temporal setting would be to extend
the game-theoretic interpretation of the quantifiers, and of the logic in general, to account for
the underlying temporal dynamics. This would imply allowing the players in the satisfiability
game to play with partial information on the choices of the adversary, namely the players have no
information about the future and can only choose based on the moves played so far in the game.
Previous attempts to address the issue typically involve resorting to ad hoc Skolem semantics [40]
for the specific logic. In the case of SL, for instance, the notion of behavioral semantics has been
introduced [59], which prevents the players from looking at future choices when selecting their
strategy, effectively limiting the player observation ability to the current history in the game. Amore
liberal semantics based on timeline dependencies has been also proposed [23, 24]. Recently, the same
semantic approach has been ported to QPTL [25]. While these approaches do solve the problem in
each specific case, they lead to non-compositional semantics [74], in that the interpretation of a
formula is not defined in terms of the interpretation of its component subformulae. To obtain a
compositional version of the game-theoretic semantics, a finer grained technical setting is required,
compared to the classic Tarskian semantics, specifically, one that can accommodate some form of
partial independence among the quantified variables.
Following Tarski’s approach, each choice for a quantified variable in a sentence is made with

complete information about, hence it is (potentially) completely dependent on, the values of
variables quantified before it in the sentence. This idiosyncrasy of the classic interpretation of
quantifiers is well known and attempts have been made to overcome the linear dependence of
quantifiers dictated by their relative position in a sentence [5, 32, 35, 75]. Most notably, Hintikka
and Sandu [38] proposed Independence-Friendly Logic (IF), as a first-order logic where independence
between quantified variables can be explicitly asserted in the formulae together with a game-
theoretic, non-compositional, semantics [73] for the logic. A compositional semantics for IF was
later proposed by Hodges [41, 42], whose idea was to replace the standard notion of assignment
of the Tarskian semantics with that of set of assignments (called trump [41] or team [79]), as the
basic semantic element with respect to which the truth of a formula is evaluated. This multiplicity
of assignments effectively allows one to express the notion of dependence/independence among
variables, a distinction that makes very little sense, in particular from a formal point of view, when
only a single assignment is considered.

Taking inspiration from Hodges’ work, the goal of this work is to devise a compositional semantic
framework that can account for a game-theoretic interpretation of quantification over (possibly
infinite) sequences of choices. The framework is specifically tailored to deal with quantifications in a
linear time setting and applied to the logic QPTL, which was introduced by Sistla [77] as a unifying
𝜔-regular language allowing for both temporal operators and propositional quantifiers. Despite its
expressiveness and theoretical interest, QPTL has not gained much traction in practical contexts,
mainly due to the high complexity of its decision problems. Indeed, both the satisfiability and the
model checking problems are non-elementary in the number of alternations of the quantifiers [78].
In this article we propose a novel semantics for QPTL, inspired by the body of work on

(in)dependence logics [1, 55, 79]. Application of Hodges-like semantics in the temporal context,
though with very different objectives, have recently been proposed. For instance, Krebs et al. [47]
and Virtema et al. [83] introduce a team semantics for the linear temporal logic LTL, with the aim
of expressing temporal hyperproperties [11], namely properties involving sets of timelines at once,
in a similar vein as HyperLTL [10]. Similarly to the works mentioned above, the semantics we
propose here provides a compositional formulation [74] for a game-theoretic interpretation of the
quantifiers. In contrast to them, however, we require a symmetric treatment of the two quantifiers
in order to preserve closure under negation and avoid undetermined formulae [41, 42]. The most
significant feature of the new approach is the ability to encode various forms of independence

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

0:4 Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero

constraints among the quantified variables and provide a powerful tool to fine-tune the semantics
of the propositional quantifiers. In particular, we discuss a specific instantiation of the semantics
that allows one to recover a game-theoretic interpretation of the quantifiers and reconcile the
satisfiability and the game solution problems. This result is achieved by first generalising classic
temporal assignments, which give values to propositional variables at each time instant, to sets
of sets of assignments, called hyperassignments. This also generalises teams, defined as sets of
assignments, used by Hodges. The second step is to introduce new classes of functors that map
temporal assignments to valuations of a given variable over time and, intuitively, correspond to
the semantic counterparts of the Skolem functions. The dependence of functors on assignments
allows us to impose various forms of independence constraints among the variables. In particular,
we investigate two specific forms, called behavioral and strongly-behavioral, that require functors
to choose the value of the variable at any given time instant based only upon the values dictated by
the input assignment to the other variables up to that instant (possibly excluded). These are forms
of independence constraints that make the choice of the value of a variable at a given time totally
independent of the values that other variables assume in the future. The behavioral restrictions are
precisely what allows us to recover the correspondence between Skolem functions and strategies
and to reconcile the satisfiability and game solution problems, thus making the resulting version of
QPTL, called Good-for-Games QPTL (GFG-QPTL), well suited to express game-theoretic concepts
and a logical analogue of Good-for-Games Automata [6, 33].

On the technical side, the novel semantics under the behavioral interpretation of the quantifiers
leads to 2ExpTime decision procedures for both the satisfiability and model-checking problems.
On the other hand, it does not give up expressiveness, as we show that the vanilla and behavioral
semantics turn out to be expressively equivalent. These results also show that the high complexity
of the decision problems for vanillaQPTL stems from the fact that unrestricted dependencies among
the quantified variables are allowed. The properties expressible by exploiting such unrestricted
dependencies can, however, still be expressed under the behavioral semantics via encoding of
𝜔-regular automata, though with a non-elementary blowup.

2 ALTERNATING HODGES SEMANTICS
QPTL [77] extends LTL [70, 71] with quantifications over atomic propositions from a given set AP,
with the intuition that the Boolean values of the same proposition in different time instants are
independent of each other.

2.1 Quantified Propositional Temporal Logic
For convenience, we provide a syntax forQPTLwhere quantifications do not occur within temporal
operators. This is equivalent to the original logic, thanks to the prenex normal form (pnf, for short)
property enjoyed by QPTL [77], which allows to move quantifiers outside temporal operators.

Definition 1 (QPTL Syntax). The Quantified Propositional Temporal Logic is the set of formulae
built accordingly to the following context-free grammar, where𝜓 ∈ LTL and 𝑝 ∈ AP:

𝜑 :=𝜓 | ¬𝜑 | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑 | ∃𝑝. 𝜑 | ∀𝑝. 𝜑.

The classic semantics is given in terms of temporal assignments (simply assignments, from now
on), which are functions associating each proposition with a temporal valuation mapping each time
instant to a Boolean value, i.e., infinite sequences of truth assignments. Let Asg≜AP⇀(N→ B)
be the set of assignments over arbitrary subsets of AP, with B≜{⊥,⊤}, where the notation A⇀B
stands for the set of partial functions with potential domain A and codomain B.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

Good-for-Game QPTL: An Alternating Hodges Semantics 0:5

For convenience, we also introduce the set of assignments defined exactly over the propositions
in P ⊆ AP, i.e., Asg(P)≜ {𝜒 ∈ Asg | dom(𝜒) = P} and the set Asg⊆ (P)≜ {𝜒 ∈ Asg | P ⊆ dom(𝜒)}
of assignments defined at least over P. The satisfaction relation |= between an assignment 𝜒 and
a QPTL formula 𝜑 is defined below, where |=

LTL
is the standard LTL satisfiability and 𝜒 [𝑝 ↦→ f]

denotes the assignment that extends 𝜒 and maps proposition 𝑝 to temporal valuation f. As usual,
by free(𝜑) we denote the set of propositions free in 𝜑 .

Definition 2 (Tarski Semantics). The Tarski-semantics relation 𝜒 |= 𝜑 is inductively defined as
follows, for all QPTL formulae 𝜑 and assignments 𝜒 ∈ Asg⊆ (free(𝜑)).
(1) 𝜒 |= 𝜓 , if 𝜒 |=

LTL
𝜓 , whenever𝜓 is an LTL formula;

(2) the semantics of Boolean connectives is defined as usual;
(3) for all atomic propositions 𝑝 ∈ AP:

(a) 𝜒 |= ∃𝑝. 𝜙 if 𝜒 [𝑝 ↦→ f] |= 𝜙 , for some f ∈ N→ B;
(b) 𝜒 |= ∀𝑝. 𝜙 if 𝜒 [𝑝 ↦→ f] |= 𝜙 , for all f ∈ N→ B.

2.2 A New Semantics for QPTL
We now introduce a novel compositional semantics for QPTL that, unlike Tarski’s one, will allow
us to specify, later on, independence constraints among quantified propositions. The new semantics
follows an approach similar to the one of Hodges [41], where a compositional semantics for IF
was first proposed. Hodges’ idea was to expand an assignment for the free variables to a set of
assignments, a trump in his terminology (a.k.a. team [79]), with the intuition of capturing all
possible choices made by one of the two players for its own variables in the satisfiability game
underlying the game-theoretic semantics of the logic [38]. Hodges’ semantics, though able to
correctly capture IF, is, however, not adequate for our purposes. Indeed, by design, it is intrinsically
asymmetric, treating the two players differently. More specifically, a single set of assignments
only provides complete information about the choices of one of the two players and only allows
to restrict the choices of the adversary. This, in turn, limits the class of games expressible in the
logic to asymmetric games, where only the observation power of one player can be restricted. To
also capture symmetric games, we need to get rid of this asymmetry, which requires a non-trivial
generalisation of Hodges’ approach. Generalisations of Hodges’ semantics have been attempted in
the past. For example, Kuusisto [51] advocates for an extension of trump semantics where, instead
of single trump, two trumps are paired together. This allows for incorporating negation more
naturally in Dependence Logic and to obtain natural duality principles. In particular, an atom is
interpreted by requiring it to be satisfied by all assignments in the first trump, while none of the
assignments in the second one satisfies it. Negation is interpreted by simply swapping the positions
of the two teams in the pair. It should be noted that while this approach allows for recovering a
form of symmetry w.r.t. negation, it does not provide a symmetric treatment of the restrictions on
the quantifiers that we are after in the present work.
To give semantics to a QPTL formula 𝜑 , we proceed as follows. Similarly to Hodges, the idea

is that the interpretations of the free atomic propositions correspond to the choices that the two
players could make prior to the current stage of the game, i.e., the stage where the formula 𝜑 has
still to be evaluated. These possible choices can be organised on a two-level structure, i.e., a set
of sets of assignments, each level summarising the information about the choices a player can
make in its turns. In order to evaluate the formula 𝜑 , then, a player chooses a set of assignment,
while its opponent chooses one assignment in that set where 𝜑 must hold. We shall use a flag
𝛼 ∈ {∃∀,∀∃}, called alternation flag, to keep track of which player is assigned to which level
of choice. If 𝛼 = ∃∀, Eloise chooses the set of assignments, while Abelard chooses one of those
assignments; if 𝛼 = ∀∃, the dual reasoning applies. Given a flag 𝛼 ∈ {∃∀,∀∃}, we denote by 𝛼

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

0:6 Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero

the dual flag, i.e., 𝛼 ∈ {∃∀,∀∃} with 𝛼 ≠ 𝛼 . The idea above is captured by the following notion
of hyperassignment, namely a non-empty set of non-trivial, i.e., non-empty, sets of assignments
defined over an arbitrary set P ⊆ AP:

HAsg≜
{
𝔛 ⊆ 2Asg(P) �� ∅ ∉ 𝔛 ≠ ∅ ∧ P ⊆ AP

}
.

Note that we require all the assignments contained in a hyperassignment to be defined on the
same atomic propositions, though the domains of assignments in different hyperassignments may
differ. By ap(𝔛) ⊆ AP we denote the set of atomic propositions over which the hyperassignment 𝔛
is defined. HAsg(P)≜

{
𝔛 ∈ HAsg

��𝔛 ⊆ 2Asg(P)} is the set of hyperassignments over the same set
of atomic propositions P, while the set whose hyperassignments have domains that include P is
HAsg⊆ (P)≜

{
𝔛 ∈ HAsg

��𝔛 ⊆ 2Asg⊆ (P)
}
.

𝔛1

X11

X12

X13

𝜒1 𝜒3 𝜒5

𝜒6 𝜒7 𝜒8

𝜒7 𝜒8 𝜒10

𝜒2 𝜒4

𝜒2 𝜒4

𝜒6 𝜒9

⊑

𝔛2

X21

X22

X23

𝜒2 𝜒4

𝜒6 𝜒9

𝜒1 𝜒9 𝜒11

Fig. 1. The preorder ⊑ on hyperassignments: for every X1𝑖 ∈ 𝔛1, there is a X2𝑗 ∈ 𝔛2 with X2𝑗 ⊆ X1𝑖 . More

than one set in 𝔛1 may be related to the same set in 𝔛2; there may be sets in 𝔛2 not related to any set in 𝔛1.

For any pair of hyperassignments 𝔛1,𝔛2 ∈ HAsg, we write 𝔛1 ⊑ 𝔛2 to express the fact that, for
all sets of assignments X1 ∈ 𝔛1, there is a set of assignments X2 ∈ 𝔛2 with X2 ⊆ X1. Obviously,
𝔛1 ⊆ 𝔛2 implies 𝔛1 ⊑ 𝔛2, which, in turn, implies ap(𝔛1) = ap(𝔛2). Figure 1 reports a graphical
representation of the relation ⊑. As usual, we write 𝔛1 ≡ 𝔛2 if both 𝔛1 ⊑ 𝔛2 and 𝔛2 ⊑ 𝔛1
hold true. It is clear that the relation ⊑ is both reflexive and transitive, hence it is a preorder.
Consequently, ≡ is an equivalence relation. In particular, we shall show (see Corollary 1) that ≡
captures the intuitive notion of equivalence between hyperassignments, in the sense that two
equivalent hyperassignments w.r.t. ≡ do satisfy the same formulae.
Our goal is to define a semantics for QPTL by providing a satisfaction relation between a

hyperassignment 𝔛 and a QPTL formula 𝜑 , w.r.t. a given interpretation of the players of 𝔛, i.e.,
w.r.t. an alternation flag 𝛼 ∈ {∃∀,∀∃}. Therefore, we shall have two satisfaction relations, namely
|=∃∀ and |=∀∃, depending on how we interpret the levels of the hyperassignment. The idea is to
capture the following intuition that relates, in a natural way, to the classic Tarskian semantics.
When the alternation flag 𝛼 is ∃∀, then a set of assignments is chosen existentially by Eloise and all
its assignments, chosen universally by Abelard, must satisfy 𝜑 . Conversely, when 𝛼 is ∀∃, then a set
of assignments is chosen universally by Abelard and at least one assignment, chosen existentially
by Eloise, must satisfy 𝜑 . Semantically, hyperassignments are similar to quasi-strategies [46].

We break down the presentation of the semantics by introducing three operations: the dualisation
swaps the role of the two players in a hyperassignment, allowing for connecting the two satisfaction
relations and a symmetric treatment of quantifiers later on; the partitioning deals with disjunction
and conjunction; finally, the extension directly handles quantifications.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

Good-for-Game QPTL: An Alternating Hodges Semantics 0:7

Let us consider the dualisation operator first. The idea is that, given a hyperassignment𝔛, the dual
hyperassignment 𝔛 exchanges the role of the two players w.r.t. 𝔛. This means that, if Eloise is the
first to choose in 𝔛, then her choice will be postponed in 𝔛 after that of Abelard. To ensure that, in
exchanging the order of choice for the two players, we do not alter the semantics of the underlying
game, we need to reshuffle the assignments in𝔛 so as to simulate the original dependencies between
the choices of the players. To this end, we introduce the set of choice functions for 𝔛 as follows,
whose definition implicitly assumes the axiom of choice:

Chc(𝔛)≜ {Γ : 𝔛 → Asg | ∀X ∈ 𝔛. Γ(X) ∈ X} .
Chc(𝔛) contains all the functions Γ that, for every set of assignments X in 𝔛, pick a specific
assignment Γ(X) in that set. Each such function simulates a possible choice of the second player
of 𝔛 depending on the choice of (the set of assignments chosen by) its first player. The dual
hyperassignment 𝔛, then, collects the images of the choice functions in Chc(𝔛). We, thus, obtain a
hyperassignment in which the choice order of the two players is inverted:

𝔛≜ {img(Γ) | Γ ∈ Chc(𝔛)} .
Consider the hyperassignment 𝔛 of Figure 2, where X1 = {𝜒11, 𝜒12}, X2 = {𝜒21, 𝜒22}, and

X3 = {𝜒3}. Every set of assignments in 𝔛 is obtained as the image of one of the four choice
functions Γ𝑖 ∈ Chc(𝔛), each choosing exactly one assignment from X1, one from X2, and one from
X3. Intuitively, in 𝔛 the strategy of the first player, say Eloise, can only choose the colour of the
final assignments (either red for X1, blue for X2, or green for X3), while the one for Abelard decides
which assignment of each colour will be picked. After dualisation, the two players exchange the
order in which they choose. Therefore, Abelard, starting first in 𝔛, will select one of the four choice
functions, which picks an assignment for each colour. Eloise, choosing second, by using her strategy
that selects the colour will give the final assignment. In other words, the original strategies of the
players encoded in the hyperassignment, as well as their dependencies, are preserved, regardless of
the swap of their role in the dual hyperassignment.

𝔛 =

X1 = {𝜒11, 𝜒12},
X2 = {𝜒21, 𝜒22},

X3 = {𝜒3}

 𝔛 =

img(Γ1) = {𝜒11, 𝜒21, 𝜒3},
img(Γ2) = {𝜒11, 𝜒22, 𝜒3},
img(Γ3) = {𝜒12, 𝜒21, 𝜒3},
img(Γ4) = {𝜒12, 𝜒22, 𝜒3}

Fig. 2. The dualisation of an hyperassignment.

The following proposition ensures that the dualisation operator enjoys an involution property,
similarly to the Boolean negation: by applying the dualisation twice, we obtain a hyperassignment
equivalent to the original one.

Proposition 1. 𝔛 ⊆ 𝔛 and 𝔛 ≡ 𝔛, for all 𝔛 ∈ HAsg.

Note that there is a clear analogy between the structure of hyperassignments with alternation
flag ∃∀ (resp., ∀∃) and the structure of DNF (resp., CNF) formulae, where the dualisation swaps
between two equivalent forms. The following lemma formally states that the dualisation swaps the
role of the two players while still preserving the original dependencies among their choices.

Lemma 1 (Dualization). The following equivalences hold true, for all QPTL formulae 𝜑 and hyperas-
signments 𝔛 ∈ HAsg⊆ (free(𝜑)).
(1) Statements 1a and 1b are equivalent:

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

0:8 Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero

(a) there exists a set of assignments X ∈ 𝔛 such that 𝜒 |= 𝜑 , for all assignments 𝜒 ∈ X;
(b) for all sets of assignments X ∈ 𝔛, it holds that 𝜒 |= 𝜑 , for some assignment 𝜒 ∈ X.

(2) Statements 2a and 2b are equivalent:
(a) for all sets of assignments X ∈ 𝔛, it holds that 𝜒 |= 𝜑 , for some assignment 𝜒 ∈ X;
(b) there exists a set of assignments X ∈ 𝔛 such that 𝜒 |= 𝜑 , for all assignments 𝜒 ∈ X.

The partition operator decomposes hyperassignments and is instrumental in capturing the
semantics of Boolean connectives. Given a hyperassignment 𝔛, the following set

par(𝔛)≜
{
(𝔛1,𝔛2) ∈ 2𝔛 × 2𝔛

��𝔛1 ⊎ 𝔛2 = 𝔛
}

collects all the possible partitions of 𝔛 into two disjoint parts, where ⊎ denotes the disjoint-union
operator. Assume that the two players of 𝔛 are interpreted according to the alternation flag
∀∃: Abelard chooses first and Eloise chooses second. The game-theoretic interpretation of the
disjunction requires Eloise to choose one of two disjuncts to be proven true. In our setting, then, in
order to satisfy 𝜑1 ∨𝜑2, Eloise has to show that, for each set of assignments chosen by Abelard, she
has a way to select one of the disjuncts 𝜑𝑖 in such a way that 𝜑𝑖 is satisfied by some assignment in
that set. This selection is summarised by one of the pairs (𝔛1,𝔛2) in par(𝔛), where 𝔛𝑖 collects the
sets of assignments for which the 𝑖-th disjunct is selected, with 𝑖 ∈ {1, 2}. A similar argument, with
the role of the two players reversed and switching the quantifications throughout, leads to a dual
interpretation for conjunction, where it is Abelard who chooses one of the two conjuncts to be
proven false. Observe that (𝔛1,𝔛2) might not be a pair of hyperassignments, as one of them could
be empty. This case is, however, properly taken care of by the semantics rules of the connectives.
The above intuition is made precise by the following lemma.

Lemma 2 (Boolean Connectives). The following equivalences hold true, for all QPTL formulae 𝜑1
and 𝜑2 and hyperassignments 𝔛 ∈ HAsg⊆ (P), with P≜ free(𝜑1) ∪ free(𝜑2).
(1) Statements 1a and 1b are equivalent:

(a) there exists a set of assignments X ∈ 𝔛 such that 𝜒 |= 𝜑1 ∧ 𝜑2, for all assignments 𝜒 ∈ X;
(b) for each bipartition (𝔛1,𝔛2) ∈ par(𝔛) of 𝔛, there exist an index 𝑖 ∈ {1, 2} and a set of
assignments X ∈ 𝔛𝑖 such that 𝜒 |= 𝜑𝑖 , for all assignments 𝜒 ∈ X.

(2) Statements 2a and 2b are equivalent:
(a) for all sets of assignments X ∈ 𝔛, it holds that 𝜒 |= 𝜑1 ∨ 𝜑2, for some assignment 𝜒 ∈ X;
(b) there exists a bipartition (𝔛1,𝔛2) ∈ par(𝔛) of 𝔛 such that, for all indexes 𝑖 ∈ {1, 2} and sets
of assignments X ∈ 𝔛𝑖 , it holds that 𝜒 |= 𝜑𝑖 , for some 𝜒 ∈ X.

Quantifications are taken care of by the extension operator. Let Fnc(P)≜Asg(P) → (N → B)
be the set of functors that maps assignments over P to temporal valuations. Essentially, these
objects play the role of Skolem functions in the non-compositional semantics. The extension of an
assignment 𝜒 ∈ Asg(P) w.r.t. a functor F ∈ Fnc(P) for an atomic proposition 𝑝 ∈ AP is defined as
ext(𝜒, F, 𝑝)≜ 𝜒 [𝑝 ↦→ F(𝜒)], which extends 𝜒 with 𝑝 by assigning to it the value F(𝜒) prescribed
by the functor F. The extension operation can then be lifted to sets of assignments X ⊆ Asg(P) in
the obvious way, i.e., we set ext(X, F, 𝑝)≜ {ext(𝜒, F, 𝑝) | 𝜒 ∈ X}. This operation embeds into X the
entire player strategy encoded by F. Finally, the extension of a hyperassignment 𝔛 ∈ HAsg(P) with
𝑝 is simply the set of extensions with 𝑝 of all its sets of assignments w.r.t. all possible functors over
the atomic propositions of 𝔛:

ext(𝔛, 𝑝)≜ {ext(X, F, 𝑝) | X ∈ 𝔛, F ∈ Fnc(ap(𝔛))} .
Intuitively, this operation embeds into 𝔛 all possible strategies, each one encoded by a functors F in
Fnc(ap(𝔛)), for choosing the value of 𝑝 at each time instant. The following lemma states that the

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

Good-for-Game QPTL: An Alternating Hodges Semantics 0:9

extension operator provides an adequate semantics for quantifications, where statement 1 considers
Eloise’s choices, when the player interpretation of the hyperassignment is ∃∀, and statement 2
takes care of Abelard’s choices, when the player interpretation is ∀∃.

Lemma 3 (Hyperassignment Extensions). The following equivalences hold true, for all QPTL for-
mulae 𝜑 , atomic propositions 𝑝 ∈ AP, and hyperassignments 𝔛 ∈ HAsg⊆ (free(𝜑) \ {𝑝}).
(1) Statements 1a and 1b are equivalent:

(a) there exists a set of assignments X ∈ 𝔛 such that 𝜒 |= ∃𝑝. 𝜑 , for all assignments 𝜒 ∈ X;
(b) there exists a set of assignments X ∈ ext(𝔛, 𝑝) such that 𝜒 |= 𝜑 , for all assignments 𝜒 ∈ X.

(2) Statements 2a and 2b are equivalent:
(a) for all sets of assignments X ∈ 𝔛, it holds that 𝜒 |= ∀𝑝. 𝜑 , for some assignment 𝜒 ∈ X;
(b) for all sets of assignments X ∈ ext(𝔛, 𝑝), it holds that 𝜒 |= 𝜑 , for some assignment 𝜒 ∈ X.

We can finally introduce the semantics for QPTL based on the novel notion of hyperassignment.

Definition 3 (Alternating Hodges Semantics). The alternating-Hodges-semantics rela-
tion 𝔛 |=𝛼 𝜑 is inductively defined as follows, for all QPTL formulae 𝜑 , hyperassignments 𝔛 ∈
HAsg⊆ (free(𝜑)), and alternation flags 𝛼 ∈ {∃∀,∀∃}.
(1) whenever𝜓 is an LTL formula:

(a) 𝔛 |=∃∀𝜓 if there exists a set of assignments X ∈ 𝔛 such that, for each assignment 𝜒 ∈ X, it
holds that 𝜒 |=

LTL
𝜓 ;

(b) 𝔛 |=∀∃ 𝜓 if, for all sets of assignments X ∈ 𝔛, there is an assignment 𝜒 ∈ X such that
𝜒 |=

LTL
𝜓 ;

(2) 𝔛 |=𝛼 ¬𝜙 if 𝔛 ̸ |=𝛼 𝜙 , i.e., it is not the case that 𝔛 |=𝛼 𝜙 ;
(3) (a) 𝔛 |=∃∀ 𝜙1 ∧ 𝜙2 if, for each bipartition (𝔛1,𝔛2) ∈ par(𝔛) of 𝔛, it holds that 𝔛1 ≠ ∅ and

𝔛1 |=∃∀𝜙1 or 𝔛2 ≠ ∅ and 𝔛2 |=∃∀𝜙2;
(b) 𝔛 |=∀∃𝜙1 ∧ 𝜙2 if 𝔛 |=∃∀𝜙1 ∧ 𝜙2;

(4) (a) 𝔛 |=∀∃𝜙1 ∨ 𝜙2 if there exists a bipartition (𝔛1,𝔛2) ∈ par(𝔛) of 𝔛 such that if 𝔛1 ≠ ∅ then
𝔛1 |=∀∃𝜙1 and if 𝔛2 ≠ ∅ then 𝔛2 |=∀∃𝜙2;

(b) 𝔛 |=∃∀𝜙1 ∨ 𝜙2 if 𝔛 |=∀∃𝜙1 ∨ 𝜙2;
(5) for all atomic propositions 𝑝 ∈ AP:

(a) 𝔛 |=∃∀∃𝑝. 𝜙 if ext(𝔛, 𝑝) |=∃∀𝜙 ;
(b) 𝔛 |=∀∃∃𝑝. 𝜙 if 𝔛 |=∃∀∃𝑝. 𝜙 ;

(6) for all atomic propositions 𝑝 ∈ AP:
(a) 𝔛 |=∀∃∀𝑝. 𝜙 if ext(𝔛, 𝑝) |=∀∃𝜙 ;
(b) 𝔛 |=∃∀∀𝑝. 𝜙 if 𝔛 |=∀∃∀𝑝. 𝜙 .

The base case (Item 1) for LTL formulae 𝜓 simply formalises the intuition about satisfaction
relative to the alternation flag: if 𝛼 = ∃∀, there exists a set of assignments whose elements satisfy
𝜓 in the Tarski sense; the dual applies when 𝛼 = ∀∃. Negation, in accordance with the classic
game-theoretic interpretation, is dealt with by simply exchanging the player interpretation of the
hyperassignment (Item 2). Observe that, from this semantic condition, it immediately follows that
either 𝔛 |=𝛼 𝜑 or 𝔛 |=𝛼 ¬𝜑 . In other words, the semantics does not allow for formulae with an
undetermined truth value. The semantics of the remaining Boolean connectives (Items 3a and 4a)
and quantifiers (Items 5a and 6a) is a direct application of Lemmata 2 and 3. Observe that swapping
between |=∃∀and |=∀∃ (Items 3b, 4b, 5b and 6b) is done according to Lemma 1 and it represents the
fundamental point where our approach departs from Hodges’ semantics [41, 42]. The above three
lemmata also imply the following theorem (whose proof is provided in Electronic Appendix A),

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

0:10 Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero

which formalises an adequacy principle that naturally reduces the two satisfiability relations of the
new semantics to the classic Tarskian satisfaction.

Theorem1 (Semantics Adequacy). For allQPTL formulae𝜑 and hyperassignments𝔛 ∈ HAsg⊆ (free(𝜑)):
(1) 𝔛 |=∃∀ 𝜑 iff there exists a set of assignments X ∈ 𝔛 such that 𝜒 |= 𝜑 , for all assignments 𝜒 ∈ X;
(2) 𝔛 |=∀∃ 𝜑 iff, for all sets of assignments X ∈ 𝔛, it holds that 𝜒 |= 𝜑 , for some assignment 𝜒 ∈ X.

From now on, as usual, we assume the Boolean connectives→ and↔ to be defined as 𝜑1 → 𝜑2 ≜
¬𝜑1 ∨𝜑2 and 𝜑1 ↔ 𝜑2 ≜(𝜑1 ∧𝜑2) ∨ (¬𝜑1 ∧¬𝜑2). The following two examples may help familiarise
with the new semantics.

Example 1. Let us consider theQPTL sentence𝜑 ≜∀𝑝. (𝜓𝑝 → ∃𝑞. (𝜓𝑞∧(𝑞 ↔ X𝑝))), with𝜓𝑝 ≜¬𝑝∧
X (G𝑝 ∨ G¬𝑝) and𝜓𝑞 ≜ G𝑞 ∨ G¬𝑞. The sentence 𝜑 can be viewed as the description of a very simple
game with two players, Abelard and Eloise. Abelard can only choose a truth value for 𝑝 that will hold
constant at any time instant except for time 0, where it is false regardless of his choice, in accordance
with 𝜓𝑝 . Eloise, instead, chooses a truth value for 𝑞 that will hold constant from time 0 onward, as
dictated by𝜓𝑞 . The LTL formula 𝑞 ↔ X𝑝 encodes the game objective, requiring that the truth value of
𝑝 at time 1 matches that of 𝑞 at time 0. Sentence 𝜑 , then, asks whether Eloise can respond with one of
her legal moves to every legal move by Abelard so that the objective is always met. By applying the
semantic rules given in Definition 3, we may obtain the following chain of semantic conditions:

(1) {{∅}} |=∀∃ 𝜑 ;
(2) {{𝜒𝑝 }, {𝜒𝑝 }, . . .} |=∀∃ 𝜓𝑝 → ∃𝑞. (𝜓𝑞 ∧ (𝑞 ↔ X 𝑝));
(3) {. . .} |=∀∃ ¬𝜓𝑝 and {{𝜒𝑝 }, {𝜒𝑝 }} |=∀∃ ∃𝑞. (𝜓𝑞 ∧ (𝑞 ↔ X𝑝));
(4) {{𝜒𝑝 , 𝜒𝑝 }} |=∃∀ ∃𝑞. (𝜓𝑞 ∧ (𝑞 ↔ X 𝑝));
(5) {{𝜒𝑝𝑞, 𝜒𝑝𝑞}, {𝜒𝑝𝑞, 𝜒𝑝𝑞}, {𝜒𝑝𝑞, 𝜒𝑝𝑞}, {𝜒𝑝𝑞, 𝜒𝑝𝑞}, . . .} |=∃∀ 𝜓𝑞 ∧ (𝑞 ↔ X𝑝).

where Step 3, according to the semantics of disjunction, derives from one of the possible, existentially
quantified, partitioning of the hyperassignment in Step 2. The steps above go as follows. Being 𝜑 a
sentence, it is satisfiable iff Step 1 holds true. By Rule 6a of Definition 3 on universal quantifications, we
derive Step 2, where 𝜒𝑝 ≜{𝑝 ↦→ ⊥⊤𝜔 } and 𝜒𝑝 ≜{𝑝 ↦→ ⊥𝜔 } are the only two assignments satisfying
the precondition𝜓𝑝 . The first assignment is obtained by extending ∅ by means of the constant functor
F⊥⊤ which returns false at time 0 and true at every future instant, i.e., 𝜒𝑝 = ext(∅, F⊥⊤, 𝑝). Similarly,
the second one is obtained by the constant functor F⊥ returning false at any time. The assignments
obtained by the uncountably many remaining functors are summarised by the ellipsis. Applying
Rule 4a, one can choose to split the hyperassignment into the following two parts: {. . .} containing
all the singleton sets of those assignments violating𝜓𝑝 and its complement {{𝜒𝑝 }, {𝜒𝑝 }}. On the first
hyperassignment we need to check ¬𝜓𝑝 , while on the second one the remaining part of the formula, as
stated in Step 3. Since {. . .} |=∀∃ ¬𝜓𝑝 holds by construction, Rule 5b applied to the second part leads to
Step 4, where we use the equality {{𝜒𝑝 , 𝜒𝑝 }} = {{𝜒𝑝 }, {𝜒𝑝 }}. Rule 5a on existential quantifications
allows, then, to derive Step 5, where 𝜒♭𝑞 ≜ 𝜒♭ [𝑞 ↦→ ⊤𝜔] and 𝜒♭𝑞 ≜ 𝜒♭ [𝑞 ↦→ ⊥𝜔], with ♭ ∈ {𝑝, 𝑝}. The
relevant sets of assignments in the hyperassignment at Step 5 are obtained as follows:

(a) {𝜒𝑝𝑞, 𝜒𝑝𝑞} = ext

(
{𝜒𝑝 , 𝜒𝑝 }, F⊤, 𝑞

)
, where F⊤ is the constant functor returning true at every time;

(b) {𝜒𝑝𝑞, 𝜒𝑝𝑞} = ext

(
{𝜒𝑝 , 𝜒𝑝 }, F𝑝 , 𝑞

)
, where F𝑝 (𝜒) returns at time 𝑖 the value of 𝑝 in 𝜒 at 𝑖 + 1;

(c) {𝜒𝑝𝑞, 𝜒𝑝𝑞} = ext

(
{𝜒𝑝 , 𝜒𝑝 }, F𝑝 , 𝑞

)
, where F𝑝 (𝜒) returns at time 𝑖 the dual value of 𝑝 in 𝜒 at 𝑖 + 1;

(d) {𝜒𝑝𝑞, 𝜒𝑝𝑞} = ext

(
{𝜒𝑝 , 𝜒𝑝 }, F⊥, 𝑞

)
, where F⊥ is the constant functor returning false at every time.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

Good-for-Game QPTL: An Alternating Hodges Semantics 0:11

At this point, since 𝜓𝑞 ∧ (𝑞 ↔ X 𝑝) is an LTL formula, Rule 1 of Definition 3 can be applied, thus
asking for a set of assignments containing only assignments that make 𝜓𝑞 ∧ (𝑞 ↔ X𝑝) true. Both
assignments in the doubleton {𝜒𝑝𝑞, 𝜒𝑝𝑞} satisfy the LTL formula𝜓𝑞 ∧ (𝑞 ↔ X 𝑝), which implies that
𝜑 is satisfiable, witnessing Eloise’s win.

Example 2. The simple game in the previous example can equivalently be expressed by the following
prenex-form sentence 𝜑 ′≜∀𝑝. ∃𝑞. (𝜓𝑝 → (𝜓𝑞 ∧ (𝑞 ↔ X 𝑝))), where an LTL formula is preceded by a
quantifier prefix. The semantic steps here are slightly different and somewhat simpler, since we assume
the classic semantics for temporal and Boolean operators within a pure LTL formula. In this case, by
applying the semantics, one would obtain the following chain of conditions:

(1) {{∅}} |=∀∃ 𝜑 ′;
(2) {{𝜒𝑝 }, {𝜒𝑝 }, . . .} |=∀∃ ∃𝑞. (𝜓𝑝 → (𝜓𝑞 ∧ (𝑞 ↔ X 𝑝)));
(3) {{𝜒𝑝 , 𝜒𝑝 , . . .}} |=∃∀ ∃𝑞. (𝜓𝑝 → (𝜓𝑞 ∧ (𝑞 ↔ X𝑝)));
(4) {{𝜒𝑝𝑞, 𝜒𝑝𝑞, . . .}, {𝜒𝑝𝑞, 𝜒𝑝𝑞, . . .}, {𝜒𝑝𝑞, 𝜒𝑝𝑞, . . .}, {𝜒𝑝𝑞, 𝜒𝑝𝑞, . . .}, . . .} |=∃∀ 𝜓𝑝 → (𝜓𝑞∧(𝑞↔X𝑝)).

As in Example 1, 𝜑 ′ is satisfiable iff Step 1 holds true and Step 2 is obtained by applying Rule 6a of
Definition 3 on universal quantifications, where the ellipsis in the hyperassignment is in place of all
those singletons of assignments not satisfying𝜓𝑝 . Steps 3 and 4 are due to Rules 5b and 5a on existential
quantifications. In particular, the innermost ellipses in the hyperassignment at Step 4 are again in place
of assignments not satisfying𝜓𝑝 , while the outermost ellipsis stands for all those sets of assignments not
satisfying𝜓𝑞 . Finally, it is clear that {𝜒𝑝𝑞, 𝜒𝑝𝑞, . . .} is the only set of assignments universally satisfying
the LTL formula𝜓𝑝 → (𝜓𝑞 ∧ (𝑞 ↔ X 𝑝)), as all the other sets have at least one assignment satisfying
𝜓𝑝 , but falsifying𝜓𝑞 or 𝑞 ↔ X𝑝 .

3 GOOD-FOR-GAME QPTL
The semantic framework introduced in the previous section allows us to encode behavioural
independence constraints among the quantified variables of QPTL. We thus obtain the logic GFG-
QPTL, an extension of QPTL able to express the behavioralness of quantifications over temporal
valuations.

3.1 Adding Behavioural Dependencies to QPTL
Given a set of assignmentsAsg(P) over some P ⊆ AP, a behavioural quantification w.r.t. a proposition
𝑝 ∈ P should choose, for each assignment 𝜒 ∈ Asg(P), a temporal valuation f : N→ B in such a
way that, intuitively, at each instant of time 𝑘 ∈ N, the value f (𝑘) of f at 𝑘 only depends on the
values 𝜒 (𝑝) (𝑡) of the temporal valuation 𝜒 (𝑝) at the instants of time 𝑡 ≤ 𝑘 ; this means that f (𝑘) is
independent of the values 𝜒 (𝑝) (𝑡) at any future instant 𝑡 > 𝑘 . To be more precise, consider two
assignments 𝜒1, 𝜒2 ∈ Asg(P) that may differ only on 𝑝 strictly after 𝑘 . Then, the functor F ∈ Fnc(P)
interpreting a quantification behavioural w.r.t. 𝑝 must return the same value at 𝑘 as a reply to both
𝜒1 and 𝜒2, i.e., F(𝜒1) (𝑘) = F(𝜒2) (𝑘); in other words, F(𝜒) (𝑘) cannot exploit the knowledge of the
values 𝜒 (𝑝) (𝑡), with 𝑡 > 𝑘 . An analogous concept has been introduced in SL [59]. A stronger notion
of behavioralness, similar to one reported by Gardy et al. [23], requires the functor F to satisfy the
above equality when 𝜒1 and 𝜒2 only (possibly) differ on 𝑝 for 𝑡 ≥ 𝑘 and leads to the concept of
strongly behavioural quantification. In game-theoretic terms, the interpretation of a behavioural
quantifier w.r.t. 𝑝 requires the corresponding player to choose the value of a proposition at each
round only based on the choices for 𝑝 made by the adversary up to that round. For a strongly
behavioural quantifier, instead, the adversary keeps its choice for 𝑝 at the current round hidden and
the player can only access the choices made for 𝑝 at previous rounds. Definitions 4 and 5 formalise
these fundamental concepts.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

0:12 Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero

Definition 4 (Assignment Distinguishability). Let 𝜒1, 𝜒2 ∈ Asg(P) be two assignments over
some set P ⊆ AP of propositions, 𝑝 ∈ P one of these propositions, and 𝑘 ∈ N a number. Then, 𝜒1
and 𝜒2 are (𝑝, 𝑘)-strict distinguishable (resp., (𝑝, 𝑘)-distinguishable), in symbols 𝜒1 ≈>𝑘

𝑝 𝜒2 (resp.,
𝜒1 ≈≥𝑘

𝑝 𝜒2), if the following properties hold:

(1) 𝜒1 (𝑞) = 𝜒2 (𝑞), for all atomic propositions 𝑞 ∈ P with 𝑞 ≠ 𝑝 ;
(2) 𝜒1 (𝑝) (𝑡) = 𝜒2 (𝑝) (𝑡), for all time instants 𝑡 ≤ 𝑘 (resp., 𝑡 < 𝑘).

The notion of (𝑝, 𝑘)-strict distinguishability (resp., (𝑝, 𝑘)-distinguishability) allows us to identify
all the assignments that can only differ on the proposition 𝑝 at some time instant 𝑡 > 𝑘 (resp., 𝑡 ≥ 𝑘).
Indeed, ≈>𝑘

𝑝 (resp., ≈≥𝑘
𝑝) is an equivalence relation on Asg(P), whose equivalence classes identify

those assignments precisely. A behavioural (resp., strongly-behavioural) functor must reply at time
𝑘 uniformly to all ≈>𝑘

𝑝 -equivalent (resp., ≈≥𝑘
𝑝 -equivalent) assignments.

Definition 5 (Behavioural Functor). Let F ∈ Fnc(P) be a functor over some set P ⊆ AP of
propositions and 𝑝 ∈ P one of these propositions. Then, F is behavioural (resp., strongly behavioural)
w.r.t. 𝑝 if F(𝜒1) (𝑘) = F(𝜒2) (𝑘), for all numbers 𝑘 ∈ N and pairs of ≈>𝑘

𝑝 -equivalent (resp., ≈≥𝑘
𝑝 -

equivalent) assignments 𝜒1, 𝜒2 ∈ Asg(P).

0 1 2 3 4 5
𝜒1 = { 𝑝 : ⊤ ⊥ ⊥ ⊤ ⊥ ⊤ · · · }
𝜒2 = { 𝑝 : ⊤ ⊥ ⊥ ⊤ ⊤ ⊥ · · · }
FA (𝜒1) = ⊥ ⊥ ⊤ ⊥ ⊤ ⊥ · · ·
FA (𝜒2) = ⊥ ⊥ ⊤ ⊤ ⊥ ⊤ · · ·
FB (𝜒1) = ⊥ ⊤ ⊤ ⊥ ⊤ ⊥ · · ·
FB (𝜒2) = ⊥ ⊤ ⊤ ⊥ ⊥ ⊤ · · ·
FS (𝜒1) = ⊤ ⊤ ⊥ ⊥ ⊤ ⊥ · · ·
FS (𝜒2) = ⊤ ⊤ ⊥ ⊥ ⊤ ⊤ · · ·

Fig. 3. Two ≈>3
𝑝 (resp., ≈≥4

𝑝) -equivalent assignments with one non-behavioural (FA), one behavioural (FB)

and one strongly-behavioural (FS) functor.

Example 3. Let 𝜒1 and 𝜒2 be two assignments over the singleton {𝑝} defined as reported in Figure 3. It
is clear that 𝜒1≈>3

𝑝 𝜒2, but 𝜒1 0
>4
𝑝 𝜒2, and so 𝜒1≈≥4

𝑝 𝜒2, but 𝜒1 0
≥5
𝑝 𝜒2. Also, consider the three functors

FA, FB, FS ∈ Fnc({𝑝}) defined as follows, for all hyperassignments 𝔛 ∈ Asg({𝑝}) and time instants
𝑡 ∈ N: FA (𝜒) (𝑡)≜ 𝜒 (𝑝) (𝑡+1); FB (𝜒) (𝑡)≜ 𝜒 (𝑝) (𝑡); FS (𝜒) (𝑡)≜⊤, if 𝑡 = 0, and FS (𝜒) (𝑡)≜ 𝜒 (𝑝) (𝑡−1),
otherwise. It is immediate to see that FB is behavioural, while FS is strongly behavioural. However,
FA does not enjoy any behavioural property, being defined as a future-dependent functor. Indeed,
FA (𝜒1) (3) ≠ FA (𝜒2) (3), even though 𝜒1 ≈>3

𝑝 𝜒2.

To capture in the logic the behavioural constraints on the functors, we extend QPTL with addi-
tional decorations for the quantifiers that express behavioural dependencies among the propositions
involved. The result is a new logic, called Good-for-Games QPTL, able to express in a natural way
game-theoretic concepts of Boolean games.

Definition 6 (GFG-QPTL Syntax). Good-for-Games QPTL (GFG-QPTL) is the set of formulae
built according to the following context-free grammar, where𝜓 ∈ LTL, 𝑝 ∈ AP, and PB, PS ⊆ AP:

𝜑 :=𝜓 | ¬𝜑 | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑 | ∃𝑝 :𝛩. 𝜑 | ∀𝑝 :𝛩. 𝜑 ; 𝛩 :=
〈B:PB
S:PS

〉
.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

Good-for-Game QPTL: An Alternating Hodges Semantics 0:13

A propositional quantifier of the form Q𝑝 :
〈B:PB
S:PS

〉
, with Q ∈ {∃,∀}, explicitly expresses a Q-

quantification over 𝑝 , i.e., a choice of a functor to interpret 𝑝 that is also behavioural w.r.t. all the
propositions in PB and strongly-behavioural w.r.t. those in PS.

To ease the notation, we may write Q𝛩𝑝. 𝜑 instead of Q𝑝 :𝛩. 𝜑 , write ⟨B : PB⟩ and ⟨S : PS⟩ for
〈B:PB
S:∅

〉
and

〈 B:∅
S:PS

〉
, respectively, and B and S instead of ⟨B : AP⟩ and ⟨S : AP⟩. We also omit the quantifier

specification
〈B:∅
S:∅
〉
, using Q𝑝. 𝜑 to denote Q𝑝 :

〈B:∅
S:∅
〉
. 𝜑 . Observe that the quantifier Q𝑝 , which is not

restricted, is equivalent to the corresponding QPTL quantifier. Finally, we may drop the curly
brackets for the sets PB and PS and write ⟨B : 𝑝, 𝑞⟩ instead of ⟨B : {𝑝, 𝑞}⟩.
We say that a GFG-QPTL formula is behavioural (resp., strongly-behavioural) if it is in prenex

form, its quantifier prefix does not contain duplicated variables (i.e., every variable is quantified
over at most once), and all its quantifier specifications are equal to B (resp., S). We call behavioral
GFG-QPTL the syntactic fragment of GFG-QPTL that considers behavioural GFG-QPTL formulae
only. We denote by Qn (resp., QnB) the set of (resp., behavioural) quantifier prefixes and by Θ the
set of quantifier specifications.
Given assignments 𝜒1, 𝜒2 ∈ Asg(P), we write 𝜒1 ∼𝑘

𝛩
𝜒2, for some 𝛩 =

〈B:PB
S:PS

〉
∈ Θ and 𝑘 ∈ N, if

one of the following conditions holds: (1) 𝜒1 = 𝜒2; (2) 𝜒1 ≈>𝑘
𝑝 𝜒2, for some 𝑝 ∈ PB; (3) 𝜒1 ≈≥𝑘

𝑝 𝜒2,
for some 𝑝 ∈ PS. We use ≈𝑘

𝛩
to denote the transitive closure of the reflexive and symmetric relation

∼𝑘
𝛩
.

Proposition 2. Let P ⊆ AP be a set of atomic propositions, 𝜒1, 𝜒2 ∈ Asg(P) two assignments,𝛩 ∈ Θ
a quantifier specification, and 𝑘 ∈ N a time instant. Then, 𝜒1 ≈𝑘

𝛩
𝜒2 iff the following hold true:

(1) 𝜒1 (𝑞) = 𝜒2 (𝑞), for all 𝑞 ∈ P \ (PB ∪ PS);
(2) 𝜒1 (𝑝) (𝑡) = 𝜒2 (𝑝) (𝑡), for all 𝑡 ≤ 𝑘 and 𝑝 ∈ (PB ∩ P) \ PS;
(3) 𝜒1 (𝑝) (𝑡) = 𝜒2 (𝑝) (𝑡), for all 𝑡 < 𝑘 and 𝑝 ∈ PS ∩ P.

0 1 2 3 4 5

𝜒1 =
{

𝑝 : ⊤ ⊥ ⊥ ⊤ ⊥ ⊤ · · · }
𝑞 : ⊥ ⊥ ⊤ ⊤ ⊥ ⊤ · · ·

𝜒2 =
{

𝑝 : ⊤ ⊥ ⊥ ⊤ ⊤ ⊥ · · · }
𝑞 : ⊥ ⊥ ⊤ ⊤ ⊥ ⊤ · · ·

𝜒3 =
{

𝑝 : ⊤ ⊥ ⊥ ⊤ ⊤ ⊥ · · · }
𝑞 : ⊥ ⊥ ⊤ ⊥ ⊤ ⊤ · · ·

Fig. 4. Three ≈3
𝛩
-equivalent assignments, with𝛩 ≜

〈B:𝑝
S:𝑞

〉
.

Example 4. Consider the three assignments 𝜒1, 𝜒2, and 𝜒3 over the doubleton {𝑝, 𝑞} depicted in
Figure 4. It is easy to see that 𝜒1 ≈>3

𝑝 𝜒2, as 𝜒1 (𝑞) = 𝜒2 (𝑞) and the first position at which the two
assignments differ on 𝑝 is 4; in addition, 𝜒2 ≈≥3

𝑞 𝜒3, since 𝜒2 (𝑝) = 𝜒3 (𝑝) and the first position at which
the two assignments differ on 𝑞 is 3. Therefore, taking 𝛩 ≜

〈B:𝑝
S:𝑞
〉
, we have 𝜒1 ∼3

𝛩
𝜒2 ∼3

𝛩
𝜒3, which

implies 𝜒1 ≈3
𝛩

𝜒3.

Given a set of propositions P ⊆ AP and a quantifier specification𝛩 ≜
〈B:PB
S:PS

〉
∈ Θ, we introduce

the set of𝛩 -functors Fnc𝛩 (P) ⊆ Fnc(P) containing exactly those F ∈ Fnc(P) that are behavioural
w.r.t. all the propositions in PB ∩ P and strongly behavioural w.r.t. those in PS ∩ P.

Example 5. Any
〈B:𝑝
S:𝑞
〉
-functor F replies to all assignments of Figure 4 uniformly, for all time instants

between 0 and 3 included. Indeed, F(𝜒1) (3) = F(𝜒2) (3), since 𝜒1 ≈>3
𝑝 𝜒2, being F behavioural w.r.t.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

0:14 Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero

𝑝 . Similarly, F(𝜒2) (3) = F(𝜒3) (3), since 𝜒2 ≈≥3
𝑞 𝜒3, being F strongly-behavioural w.r.t. 𝑞. Hence,

F(𝜒1) (3) = F(𝜒3) (3).
The following proposition ensures that the above example highlights a general phenomenon.

Proposition 3. If 𝜒1 ≈𝑘
𝛩

𝜒2 then F(𝜒1) (𝑘) = F(𝜒2) (𝑘), for all assignments 𝜒1, 𝜒2 ∈ Asg(P), quanti-
fier specifications𝛩 ∈ Θ, time instants 𝑘 ∈ N, and𝛩 -functors F ∈ Fnc𝛩 (P).

A compositional semantics for GFG-QPTL can be obtained by extending the alternating Hodges
semantics of QPTL reported in Definition 3 to account for the possible dependency constraints
associated with the quantifiers. To this end, we simply need to parameterise the extension operation
for hyperassignments with the corresponding specification of the behavioural dependencies:

ext𝛩 (𝔛, 𝑝)≜ {ext(X, F, 𝑝) | X ∈ 𝔛, F ∈ Fnc𝛩 (ap(𝔛))} .
Definition 7 (Alternating Hodges Semantics Revisited). The alternating-Hodges-semantics

relation 𝔛 |=𝛼 𝜑 is inductively defined as in Definition 3, for all but Items 5a and 6a that are modified,
respectively, as follows, for all propositions 𝑝 ∈ AP and quantifier specifications𝛩 ∈ Θ:
5a’) 𝔛 |=∃∀ ∃𝑝 :𝛩. 𝜙 if ext𝛩 (𝔛, 𝑝) |=∃∀𝜙 ;
6a’) 𝔛 |=∀∃ ∀𝑝 :𝛩. 𝜙 if ext𝛩 (𝔛, 𝑝) |=∀∃𝜙 .

Note that one could easily extend both the syntax and semantics of the quantifier specification〈B:PB
S:PS

〉
of GFG-QPTL in order to accommodate other types of (in)dependence constraints, like the

ones already studied in first-order logic of incomplete information [27, 38, 41, 55, 79]. It would
suffice to introduce suitable classes of functors and corresponding constructs, such as the dependence
atoms of dependence logic, whose semantics can be easily defined via hyperassignments.

For every GFG-QPTL formula 𝜑 and alternation flag 𝛼 ∈ {∃∀,∀∃}, we say that 𝜑 is 𝛼-satisfiable
if there exists a hyperassignment 𝔛 ∈ HAsg(free(𝜑)) such that 𝔛 |=𝛼 𝜑 . Also, 𝜑 𝛼-implies (resp., is
𝛼-equivalent to) a GFG-QPTL formula 𝜙 , in symbols 𝜑 ⇒𝛼 𝜙 (resp., 𝜑 ≡𝛼 𝜙), whenever free(𝜑) =
free(𝜙) and if 𝔛 |=𝛼 𝜑 then 𝔛 |=𝛼 𝜙 (resp., 𝔛 |=𝛼 𝜑 iff 𝔛 |=𝛼 𝜙), for all 𝔛 ∈ HAsg⊆ (free(𝜑)). Finally,
we say that 𝜑 is satisfiable if it is both ∃∀- and ∀∃-satisfiable, and write 𝜑 ⇒ 𝜙 (resp., 𝜑 ≡ 𝜙) if both
𝜑 ⇒∃∀𝜙 and 𝜑 ⇒∀∃𝜙 (resp., 𝜑 ≡∃∀𝜙 and 𝜑 ≡∀∃𝜙) hold.

At this point, let us consider some examples to provide insights on the expressive power of the
new logic.
Example 6. Let us consider again the QPTL pnf sentence 𝜑 ′ of Example 2. Obviously, Eloise cannot
win the game described by that sentence following a behavioural strategy, as she would need to
know at round 0 the opponent’s choice for 𝑝 at round 1. This is clearly reflected in the compositional
semantics. Indeed, the functor F𝑝 required to obtain the two satisfying assignments 𝜒𝑝𝑞 and 𝜒𝑝𝑞 is
clearly non-behavioural. Therefore, 𝜑 ′ is not realisable in the sense of Pnueli and Rosner [72], since the
functor F𝑝 cannot be implemented by any concrete transducer. This is confirmed by observing that if
we replace the two quantifiers with their behavioural counterparts, the resulting GFG-QPTL formula
𝜑 ′
B ≜∀B𝑝. ∃B𝑞. (𝜓𝑝 → (𝜓𝑞 ∧ (𝑞 ↔ X 𝑝)))), is no longer satisfiable. Indeed, the only behavioural

functors allowing for the satisfaction of𝜓𝑞 are F⊤ and F⊥. Therefore, semantic steps analogous to the
ones shown in Example 2 applied to 𝜑 ′

B would lead to {{𝜒𝑝𝑞, 𝜒𝑝𝑞, . . .}, {𝜒𝑝𝑞, 𝜒𝑝𝑞, . . .}, . . .} |=∃∀ 𝜓𝑝 →
(𝜓𝑞 ∧ (𝑞 ↔ X 𝑝)), where the sets of assignments are obtained as follows:

• {𝜒𝑝𝑞, 𝜒𝑝𝑞, . . .} = ext

(
{𝜒𝑝 , 𝜒𝑝 , . . .}, F⊤, 𝑞

)
;

• {𝜒𝑝𝑞, 𝜒𝑝𝑞, . . .} = ext

(
{𝜒𝑝 , 𝜒𝑝 , . . .}, F⊥, 𝑞

)
;

• the outer ellipsis . . . =
{
ext

(
{𝜒𝑝 , 𝜒𝑝 , . . .}, F, 𝑞

) ��� F ∈ FncB \ {F⊤, F⊥}
}
contains all the extensions

of {𝜒𝑝 , 𝜒𝑝 , . . .} w.r.t. the remaining behavioural functors.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

Good-for-Game QPTL: An Alternating Hodges Semantics 0:15

Clearly, each set of assignments in the outer ellipsis contains no assignment satisfying𝜓𝑞 . Each such
set also contains at least one assignment that does not satisfy 𝜓𝑝 . As a consequence, no set in the
outer ellipsis universally satisfies 𝜓𝑝 → (𝜓𝑞 ∧ (𝑞 ↔ X 𝑝)). Moreover, in the first set of assignments
{𝜒𝑝𝑞, 𝜒𝑝𝑞, . . .}, the assignment 𝜒𝑝𝑞 satisfies both 𝜓𝑝 and 𝜓𝑞 , but not 𝑞 ↔ X𝑝 . In the second set
{𝜒𝑝𝑞, 𝜒𝑝𝑞, . . .}, instead, the unsatisfying assignment is 𝜒𝑝𝑞 , for the same reason. This shows that 𝜑 ′

B is
unsatisfiable.

The previous example shows a satisfiableQPTL sentence whose behavioural counterpart becomes
unsatisfiable. The opposite may also occur, as the following example illustrates.

0 1
𝜒 ′

1 =
{

𝑞 : 𝑎 𝑏 · · ·
}

𝜒 ′
2 =

{
𝑞 : 𝑎 𝑏 · · ·

}
0 1

𝜒1 =
{

𝑝 : 𝑐 ∗ · · · }
𝑞 : 𝑎 𝑏 · · ·

𝜒2 =
{

𝑝 : 𝑐 ∗ · · · }
𝑞 : 𝑎 𝑏 · · ·

Fig. 5. Two schema assignments, with 𝑎, 𝑏, 𝑐 ∈ B, where 𝜒 ′1, 𝜒
′
2 ∈ Y, 𝜒1, 𝜒2 ∈ X ∈ extB ({Y}, 𝑝), 𝑏 denotes the

dual of 𝑏, and ∗ denotes a don’t-care value.

Example 7. Consider the QPTL sentence ∃𝑞.∀𝑝.𝜓 , with 𝜓 ≜𝑝 ↔ X𝑞, which allows for non-
behavioural functors/strategies. According to the classic Tarskian semantics of QPTL, the sentence
is unsatisfiable. In game-theoretic terms, indeed, Abelard can falsify 𝜓 by looking at the value of 𝑞
one instant in the future and choosing the opposite value as the present value for 𝑝 . By Theorem 1,
the sentence is unsatisfiable also under the alternating Hodges semantics. On the other hand, if we
require that the two players only use behavioural strategies, things may change. In particular, the two
GFG-QPTL sentences ∀B𝑝. ∃S𝑞.𝜓 and ∃B𝑞.∀B𝑝.𝜓 are both satisfiablew.r.t. the hyperassignment {{∅}}
regardless of the alternation flag, being {{∅}} self-dual. For the first one, it is enough to observe that the
strongly-behavioural functor FS of Example 3 allows to mimic any temporal valuation assigned to the
proposition 𝑝 one instant in the past, as required by the LTL property𝜓 . For the second one, we need to
show that, extB ({Y}, 𝑝) |=∀∃𝜓 , with Y = Asg({𝑞}). Now, let X ∈ extB ({Y}, 𝑝) be an arbitrary set of
assignments obtained by extending those in Y as prescribed by the behavioural restriction B associated
with the universal quantifier. Also, consider 𝜒1, 𝜒2 ∈ X as two of those assignments that differ on 𝑞 at
time 1, but are equal at time 0, i.e., 𝜒1 (𝑞) (0) = 𝜒2 (𝑞) (0), but 𝜒1 (𝑞) (1) ≠ 𝜒2 (𝑞) (1) (see Figure 5). Due
to the required behavioralness w.r.t. 𝑞 of the functors used in the extension of Y, we necessarily have
that 𝜒1 (𝑝) (0) = 𝜒2 (𝑝) (0). As a consequence, either 𝜒1 or 𝜒2 satisfies𝜓 , and thus extB ({Y}, 𝑝) |=∀∃𝜓 ,
as required by Item 1b of the semantics. In other words, Abelard cannot behaviourally falsify the
sentence, since he can no longer look at the value of 𝑞 in the future. Note that the sentence ∃B𝑞.∀B𝑝.𝜓
would not allow for encoding the same game in the classic (asymmetric) Hodges-like semantics, as in
this type of semantics it is impossible to restrict both the existential and the universal quantifiers at
the same time.

Example 8. Information leaks via quantification of unused variables is a well-known phenomenon in
IF [79]. The same occurs in GFG-QPTL. Consider a formula 𝜙 where 𝑝, 𝑞 ∈ free(𝜙), but 𝑢 ∉ free(𝜙).
Then, both the equivalences ∀𝑝. ∃𝑢. ∃B𝑞. 𝜙 ≡ ∀𝑝. ∃𝑞. 𝜙 and ∀𝑝. ∃B𝑞. 𝜙 ≡ ∀𝑝. ∃B𝑢. ∃B𝑞. 𝜙 do hold.
However, the equivalence ∀𝑝. ∃𝑞. 𝜙 ≡ ∀𝑝. ∃B𝑞. 𝜙 may fail in general. Indeed, an arbitrary functor G𝑞

for 𝑞 in ∀𝑝. ∃𝑞. 𝜙 can be simulated in ∀𝑝. ∃𝑢. ∃B𝑞. 𝜙 by the functors F𝑢 = G𝑞 , for 𝑢, and F𝑞 (𝜒) = 𝜒 (𝑢),
for 𝑞. Clearly, F𝑞 , being the identity on 𝑢, is behavioural. Intuitively, the unused non-behaviourally-
quantified proposition 𝑢 leaks information about the future of 𝑝 to 𝑞 even if the latter is behaviourally
quantified, as it can see the future of 𝑝 through the value of 𝑢 at the present time instant.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

0:16 Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero

The following example expands on the connection between GFG-QPTL and GFG-Automata
briefly mentioned in the introduction and shows that GFG-QPTL can express the property of being
good-for-game for an automaton.

Example 9. It is well known that QPTL is able to express any 𝜔-regular language [77]. This can be
proved by encoding the existence of an accepting run of an arbitrary nondeterministic Büchi word
automatonN into a formula 𝜑 ≜∃𝑠1 . . . ∃𝑠𝑘 .𝜓 , where free(𝜑) = {𝑝1, . . . , 𝑝𝑛} is the set of propositions
needed to encode the alphabet Σ of the recognised language L(N), the 𝑘 mutually exclusive fresh
atomic propositions 𝑠1, . . . , 𝑠𝑘 encode the set of states Q = {𝑞1, . . . , 𝑞𝑘 } of the automaton, and𝜓 is the
LTL formula encoding the transition function and the Büchi acceptance condition. Formally, {X} |=∃∀𝜑
iff LX ⊆ L(N), where LX is the set of 𝜔-words whose encodings over 𝑝1, . . . , 𝑝𝑛 are the assignments
in X. The behavioural GFG-QPTL formula 𝜑B ≜∃B𝑠1 . . . ∃B𝑠𝑘 .𝜓 identifies precisely the sublanguages
recognised byN when the nondeterminism is resolved in a good-for-gamemanner [33], i.e., {X} |=∃∀𝜑
iff (a) LX ⊆ L(N), (b) there exists a function 𝜎 : Σ∗ × Q → Q, choosing a successor state 𝜎 (𝑤,𝑞) of a
state 𝑞 ∈ Q based on the prefix𝑤 ∈ Σ∗ of the input words read up to that moment, and (c) for every
𝜔-word 𝑤 ∈ LX, there exists an accepting run 𝜌 ∈ Q𝜔 of N such that (𝜌)𝑖+1 = 𝜎 ((𝑤)≤𝑖 , (𝜌)𝑖), for
every time instant 𝑖 ∈ N. Intuitively, the function 𝜎 is a uniform strategy to resolve the nondeterminism
of the automaton and can be clearly modelled by means of behavioural functors. As a consequence, the
GFG-QPTL sentence ∀𝑝1 . . .∀𝑝𝑛 . (𝜑 ↔ 𝜑B) is satisfiable iff N is a good-for-game automaton.

3.2 Model-Theoretic Analysis
Let us proceed with an elementary model-theoretic analysis of GFG-QPTL, showing that it enjoys
several basic properties, like De Morgan laws, one would expect from a classical logic.

We start by observing the monotonicity of both the dualisation and extension operators w.r.t. the
preorder ⊑, a simple property that is a key tool in all subsequent statements.

Proposition 4. Let 𝔛1,𝔛2 ∈ HAsg be two hyperassignments with 𝔛1 ⊑ 𝔛2. Then, the following
properties hold true:

(1) 𝔛2 ⊑ 𝔛1;
(2) for every (𝔛′

2,𝔛
′′
2) ∈ par(𝔛2), there exists (𝔛′

1,𝔛
′′
1) ∈ par(𝔛1) such that𝔛′

1 ⊑ 𝔛′
2 and𝔛

′′
1 ⊑ 𝔛′′

2 ,
and, in addition, 𝔛′

2 = ∅ implies 𝔛′
1 = ∅ and 𝔛′′

2 = ∅ implies 𝔛′′
1 = ∅;

(3) ext𝛩 (𝔛1, 𝑝) ⊑ ext𝛩 (𝔛2, 𝑝), for every𝛩 ∈ Θ and 𝑝 ∈ AP.

The preorder ⊑ between hyperassignments captures the intuitive notion of satisfaction strength
w.r.t. GFG-QPTL formulae. Indeed, thanks to Item 1 of Definition 3, it holds that, if 𝔛1 ⊑ 𝔛2, the
hyperassignment 𝔛1 satisfies w.r.t. the ∃∀ (resp., ∀∃) semantics less (resp., more) LTL formulae than
the hyperassignment𝔛2, i.e., if𝔛1 (resp.,𝔛2) satisfies𝜓 , then𝔛2 (resp.,𝔛1) does as well. This property
can easily be lifted to arbitrary GFG-QPTL formulae, by a standard structural induction using the
monotonicity of the dualization and extension operators, as proven in Electronic Appendix B.

Theorem 2 (Hyperassignment Refinement). Let 𝜑 be a GFG-QPTL formula and 𝔛1,𝔛2 ∈ HAsg⊆
(free(𝜑)) two hyperassignments with 𝔛1 ⊑ 𝔛2. Then, 𝔛1 |=∃∀ 𝜑 implies 𝔛2 |=∃∀ 𝜑 and 𝔛2 |=∀∃ 𝜑
implies 𝔛1 |=∀∃𝜑 .

As an immediate consequence, we obtain the following result.

Corollary 1 (Hyperassignment Equivalence). Let 𝜑 be a GFG-QPTL formula and 𝔛1,𝔛2 ∈ HAsg⊆
(free(𝜑)) two hyperassignments with 𝔛1 ≡ 𝔛2. Then, 𝔛1 |=𝛼 𝜑 iff 𝔛2 |=𝛼 𝜑 .

A fundamental feature of the proposed alternating semantics is the duality between swapping the
players of a hyperassignment 𝔛, i.e., swapping the alternation flag, and swapping the choices of the

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

Good-for-Game QPTL: An Alternating Hodges Semantics 0:17

players, i.e., dualising 𝔛. Indeed, the following result states that dualising both the alternation flag 𝛼
and the hyperassignment preserves the truth of any formula. This also implies, as one might expect,
that double dualization has no effect either. The latter fact is also a consequence of the previous
corollary, since 𝔛 ≡ 𝔛, due to Proposition 1. The proof can be found in Electronic Appendix B.

Theorem 3 (Double Dualization). Let 𝜑 be a GFG-QPTL formula and 𝔛 ∈ HAsg⊆ (free(𝜑)) a
hyperassignment. Then, 𝔛 |=𝛼 𝜑 iff 𝔛 |=𝛼 𝜑 iff 𝔛 |=𝛼 𝜑 .

The duality property also grants that formulae satisfiability and equivalence do not depend on
the specific interpretation 𝛼 of hyperassignments: a positive answer for 𝛼 implies the same for 𝛼 .
This invariance corresponds to the intuition that Eloise and Abelard both agree on the true and
false formulae. Similarly, if 𝜑 is considered to be equivalent to, or to imply, some other property 𝜙
by Eloise, the same equivalence, or implication, holds for Abelard as well, and vice versa.

Corollary 2 (Interpretation Invariance). Let 𝜑 and 𝜙 be GFG-QPTL formulae. Then, 𝜑 is ∃∀-
satisfiable iff 𝜑 is ∀∃-satisfiable. Also, 𝜑 ⇒∃∀𝜙 iff 𝜑 ⇒∀∃𝜙 and 𝜑 ≡∃∀𝜙 iff 𝜑 ≡∀∃𝜙 .

Thanks to this invariance, the following Boolean laws hold.

Lemma 4 (Boolean Laws). Let 𝜑 , 𝜑1, 𝜑2 be GFG-QPTL formulae:
(1) 𝜑 ≡ ¬¬𝜑 ;
(2) 𝜑1 ∧ 𝜑2 ⇒ 𝜑1;
(3) 𝜑1 ⇒ 𝜑1 ∨ 𝜑2;
(4) 𝜑1 ∧ 𝜑2 ≡ 𝜑2 ∧ 𝜑1;
(5) 𝜑1 ∨ 𝜑2 ≡ 𝜑2 ∨ 𝜑1;
(6) 𝜑1 ∧ (𝜑 ∧ 𝜑2) ≡ (𝜑1 ∧ 𝜑) ∧ 𝜑2;
(7) 𝜑1 ∨ (𝜑 ∨ 𝜑2) ≡ (𝜑1 ∨ 𝜑) ∨ 𝜑2;
(8) 𝜑1 ∧ 𝜑2 ≡ ¬(¬𝜑1 ∨ ¬𝜑2);
(9) 𝜑1 ∨ 𝜑2 ≡ ¬(¬𝜑1 ∧ ¬𝜑2);
(10) ∃𝛩𝑝. 𝜑 ≡ ¬(∀𝛩𝑝.¬𝜑);
(11) ∀𝛩𝑝. 𝜑 ≡ ¬(∃𝛩𝑝.¬𝜑).

At present, it is not clear whether GFG-QPTL in its full generality enjoys, like QPTL, the pnf
property. The main problem, here, follows from the information-leak phenomenon reported in
Example 8. Indeed, in general, the equivalences (∃𝑝. 𝜙)∧𝜑 ≡ ∃𝑝. (𝜙∧𝜑) and (∀𝑝. 𝜙)∨𝜑 ≡ ∀𝑝. (𝜙∨𝜑)
fail, even when 𝑝 ∉ free(𝜑), as evidenced by the following example.

Example 10. Consider the formulae (∃𝑝. 𝜙) ∧ 𝜑 and ∃𝑝. (𝜙 ∧ 𝜑), where 𝜙 ≜⊤ and 𝜑 ≜∃B𝑟 . (𝑟 ↔
X𝑞) and the hyperassignment {{𝜒𝑞, 𝜒𝑞}}, where 𝜒𝑞 ≜{𝑞 ↦→ ⊥⊤𝜔 } and 𝜒𝑞 ≜{𝑞 ↦→ ⊥𝜔 }. Obviously,
{{𝜒𝑞, 𝜒𝑞}} ̸|=∃∀𝜑 . Indeed, every behavioral functor F ∈ FncB ({𝑞}) for 𝑟 would reply uniformly at time
0 to both assignments, i.e., F(𝜒𝑞) (0) = F(𝜒𝑞) (0). As a consequence, since 𝜒𝑞F (𝑟) (0) = 𝜒𝑞F (𝑟) (0), but
𝜒𝑞F (𝑞) (1) ≠ 𝜒𝑞F (𝑞) (1), either 𝜒𝑞F ≜ ext

(
𝜒𝑞, F, 𝑟

)
falsifies 𝑟 ↔ X𝑞 or 𝜒𝑞F ≜ ext

(
𝜒𝑞, F, 𝑟

)
does. This

immediately implies that {{𝜒𝑞, 𝜒𝑞}} ̸|=∃∀ (∃𝑝. 𝜙) ∧ 𝜑 .
On the other hand, {{𝜒𝑞, 𝜒𝑞}} |=∃∀∃𝑝. (𝜙 ∧ 𝜑). To see this, let us consider a non-behavioral func-

tor F𝑝 ∈ Fnc({𝑞}) such that F𝑝 (𝜒) (0) = 𝜒 (𝑞) (1). By the semantics of the existential quantifier,
{{𝜒𝑞, 𝜒𝑞}} |=∃∀ ∃𝑝. (𝜙 ∧ 𝜑) iff {XF𝑝

, . . .} |=∃∀ 𝜙 ∧ 𝜑 , where XF𝑝
≜ ext

(
{𝜒𝑞, 𝜒𝑞}, F𝑝 , 𝑝

)
and the el-

lipsis corresponds to set of assignments obtained by means of other functors. It is easily seen that
XF𝑝

= {𝜒𝑞𝑝 , 𝜒𝑞𝑝 }, for the two assignments 𝜒𝑞𝑝 and 𝜒𝑞𝑝 such that 𝜒𝑞𝑝 (𝑝) (0) = 𝜒𝑞𝑝 (𝑞) (1) = ⊤ and
𝜒𝑞𝑝 (𝑝) (0) = 𝜒𝑞𝑝 (𝑞) (1) = ⊥. By the semantics of conjunction, every bipartition (𝔛1,𝔛2) of {XF𝑝

, . . .}
must be such that: 𝜙 must be satisfied by 𝔛1 and 𝔛1 ≠ ∅ or 𝜑 is satisfied by 𝔛2 and 𝔛2 ≠ ∅. Since

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

0:18 Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero

𝜙 = ⊤, this condition is equivalent to requiring that the entire hyperassignment satisfies 𝜑 , i.e.,
{XF𝑝

, . . .} |=∃∀ 𝜑 . Consider now the behavioral functor F𝑟 ∈ F({𝑝, 𝑞}) that copies the value of 𝑝 in
𝑟 at each time instant, i.e., F𝑟 (𝜒) = 𝜒 (𝑝). Again by the semantics of existential quantifications, we
have that {XF𝑝

, . . .} |=∃∀ 𝜑 iff {XF𝑟
, . . .} |=∃∀ 𝑟 ↔ X𝑞, where XF𝑟

≜ ext

(
XF𝑝

, F𝑟 , 𝑟

)
= {𝜒𝑞𝑝𝑟 , 𝜒𝑞𝑝𝑟 },

with 𝜒𝑞𝑝𝑟 (𝑟) (0) = 𝜒𝑞𝑝 (𝑞) (1) = ⊤ and 𝜒𝑞𝑝𝑟 (𝑟) (0) = 𝜒𝑞𝑝 (𝑞) (1) = ⊥. Since both assignments satisfy
𝑟 ↔ X𝑞, we obtain that {{𝜒𝑞, 𝜒𝑞}} |=∃∀∃𝑝. (𝜙 ∧ 𝜑). Hence, (∃𝑝. 𝜙) ∧ 𝜑 . ∃𝑝. (𝜙 ∧ 𝜑).

A similar problem arises in IF due to signalling, if one allows quantifications depend on non-free
variables [55]. For the purposes of this work, however, we shall focus on pnf formulae whose
quantifier prefixes do not contain duplicated variables, since, as we shall show later on, behavioural
GFG-QPTL is powerful enough to express all 𝜔-regular languages, very much like QPTL.
We now introduce an operator on quantifier prefixes, called evolution, that, given an arbitrary

hyperassignment 𝔛 and one of its two interpretations 𝛼 , computes the result evl𝛼 (𝔛, ℘) of the
application to 𝔛 of all quantifiers Q𝛩𝑝 occurring in a prefix ℘ in that specific order. To this aim,
we need to introduce the notion of coherence of a quantifier symbol Q ∈ {∃,∀} w.r.t. an alternation
flag 𝛼 ∈ {∃∀,∀∃} as follows: Q is 𝛼-coherent if either 𝛼 = ∃∀ and Q = ∃ or 𝛼 = ∀∃ and Q = ∀.
Essentially, the evolution operator iteratively applies the semantics of quantifiers, as defined by
Items 5a’ and 6a’ of Definition 7 and Items 5b and 6b of Definition 3, for all the quantifiers Q𝛩𝑝
in the input prefix ℘. For a single quantifier, evl𝛼 (𝔛, Q𝛩𝑝) just corresponds to the𝛩 -extension of
𝔛 with 𝑝 , when Q is 𝛼-coherent. On the contrary, when Q is 𝛼-coherent, we need to dualise the
𝛩 -extension with 𝑝 of the dual of 𝔛.

evl𝛼 (𝔛, Q𝛩𝑝)≜

ext𝛩 (𝔛, 𝑝), if Q is 𝛼-coherent;

ext𝛩

(
𝔛, 𝑝

)
, otherwise.

The operator lifts naturally to an arbitrary quantification prefix ℘ ∈ Qn as follows: (1) evl𝛼 (𝔛, 𝜖)≜𝔛;
(2) evl𝛼 (𝔛, Q𝛩𝑝. ℘)≜ evl𝛼 (evl𝛼 (𝔛, Q𝛩𝑝), ℘). We also set evl𝛼 (℘)≜ evl𝛼 ({{∅}}, ℘).

It is easy to show that the evolution operator is monotone w.r.t. ⊑, by simply exploiting the
monotonicity of the dualisation and extension operators given in Proposition 4.

Proposition 5. Let 𝔛1,𝔛2 ∈ HAsg be two hyperassignments with 𝔛1 ⊑ 𝔛2 and ℘ ∈ Qn. Then, the
following holds true: evl𝛼 (𝔛1, ℘) ⊑ evl𝛼 (𝔛2, ℘).

By simple structural induction on a quantifier prefix ℘ ∈ Qn, we can show that a hyperassignment
𝔛 𝛼-satisfies a formula ℘𝜙 iff its 𝛼-evolution w.r.t. ℘ 𝛼-satisfies 𝜙 .

Lemma 5 (Prefix Evolution). Let ℘𝜙 be a GFG-QPTL formula with quantifier prefix ℘ ∈ Qn. Then,
𝔛 |=𝛼 ℘𝜙 iff evl𝛼 (𝔛, ℘) |=𝛼 𝜙 , for all hyperassignments 𝔛 ∈ HAsg(free(℘𝜙)).

4 QUANTIFICATION GAMES
The satisfiability problem for the behavioural fragment of GFG-QPTL can be solved by showing
the existence of a game, played by Eloise and Abelard, with the property that Eloise wins the
game iff the corresponding formula is indeed satisfiable. We provide here a general result, showing
that, for any behavioural quantifier prefix ℘ and Borelian property Ψ 1, there exists a game, called
quantification game, such that Eloise wins the game iff the hyperassignment obtained by evaluating
1By Borelian property we mean an arbitrary set of assignments (possibly, but non-necessarily, induced by an LTL formula
𝜓) corresponding to a set in the Borel hierarchy built upon a suitable Cantor topological space [68]; we recall that, starting
from the open sets in the space (e.g., eventuality properties, such as, those induced by LTL formulae of the form F𝑝), the
hierarchy is uniquely built by applying the operations of countable union, countable intersection, and complementation.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

Good-for-Game QPTL: An Alternating Hodges Semantics 0:19

the prefix, namely evl∃∀(℘), contains a set of assignments completely included in Ψ. The correctness
of this result depends, in turn, on the existence of canonical forms for the quantifier prefixes that
allow one to reduce the alternations to at most one.

4.1 Quantification Game for Sentences
To define the quantification game, we first need a few preliminary notions.

Given a set 𝑆 , we use as usual 𝑆∗ (resp., 𝑆𝜔) to denote the set of finite (resp. infinite) sequences
over the alphabet 𝑆 , and 𝑆∞ = 𝑆∗ ∪ 𝑆𝜔 . For 𝜋 ∈ 𝑆∗ and 𝑖 ∈ N, we use (𝜋)𝑖 , (𝜋)≤𝑖 , fst(𝜋), and lst(𝜋),
to denote, respectively, the 𝑖-th element of 𝜋 , the prefix of 𝜋 up to index 𝑖 included, the first (0-th)
element of 𝜋 , and, finally, the last element of 𝜋 .
A two-player turn-based arena A = ⟨PsE, PsA, 𝑣𝐼 ,Mv⟩ is a tuple where (1) PsE and PsA are the

disjoint sets (i.e. PsE ∩ PsA = ∅) of positions of Eloise and Abelard, a.k.a. Player and Opponent,
respectively, with Ps≜ PsE ∪ PsA denoting the set of all positions, (2) 𝑣𝐼 ∈ Ps is the initial position,
and (3) Mv ⊆ Ps × Ps is the binary relation describing all possible moves such that ⟨Ps,Mv⟩ is a
sinkless directed graph. A path 𝜋 ∈ Pth ⊆ Ps∞ is a finite or infinite sequence of positions compatible
with the move relation, i.e., ((𝜋)𝑖 , (𝜋)𝑖+1) ∈ Mv, for all 𝑖 ∈ [0, |𝜋 | − 1); it is initial if |𝜋 | > 0 and
fst(𝜋) = 𝑣𝐼 . A history for player 𝛼 ∈ {E, A} is a finite initial path 𝜌 ∈ Hst𝛼 ⊆ Pth ∩ (Ps∗ · Ps𝛼)
terminating in an 𝛼-position. A play 𝜋 ∈ Play ⊆ Pth ∩ Ps𝜔 is just an infinite initial path. A strategy
for player 𝛼 ∈ {E, A} is a function 𝜎𝛼 ∈ Str𝛼 ⊆ Hst𝛼 → Ps mapping each 𝛼-history 𝜌 ∈ Hst𝛼 to a
position 𝜎𝛼 (𝜌) ∈ Ps compatible with the move relation, i.e., (lst(𝜌) , 𝜎𝛼 (𝜌)) ∈ Mv. A path 𝜋 ∈ Pth
is compatible with a pair of strategies (𝜎E, 𝜎A) ∈ StrE × StrA if, for all 𝑖 ∈ [0, |𝜋 | − 1), it holds that
(𝜋)𝑖+1 = 𝜎E ((𝜋)≤𝑖), if (𝜋)𝑖 ∈ PsE, and (𝜋)𝑖+1 = 𝜎A ((𝜋)≤𝑖), otherwise. As one may expect, we say
that a path is compatible with a strategy 𝜎E ∈ StrE if it is compatible with the pair of strategies
(𝜎E, 𝜎A) ∈ StrE×StrA, for some strategy 𝜎A ∈ StrA. The play function play : StrE×StrA → Play returns,
for each pair of strategies (𝜎E, 𝜎A) ∈ StrE × StrA, the unique play play(𝜎E, 𝜎A) ∈ Play compatible
with them.

A game ⅁ = ⟨A,Ob,Wn⟩ is a tuple whereA is an arena, Ob ⊆ Ps is the set of observable positions,
and Wn ⊆ Ob𝜔 is the set of observable sequences that are winning for Eloise; the complement
Wn≜Ob𝜔 \ Wn is winning for Abelard. The observation function obs : Pth → Ob∞associates with
each path 𝜋 ∈ Pth the ordered sequence𝑤 ≜ obs(𝜋) ∈ Ob∞of all observable positions occurring in
it. In other words,𝑤 is the maximal subsequence of 𝜋 that contains only positions in Ob. Formally,
there exists a monotone bijection f : [0, |𝑤 |) →

{
𝑗 ∈ [0, |𝜋 |)

�� (𝜋) 𝑗 ∈ Ob
}
satisfying the equality

(𝑤)𝑖 = (𝜋)f (𝑖) , for all 𝑖 ∈ [0, |𝑤 |). Eloise (resp., Abelard) wins the game if she (resp., he) has a
strategy 𝜎E ∈ StrE (resp, 𝜎A ∈ StrA) such that, for all adversary strategies 𝜎A ∈ StrA (resp., 𝜎E ∈ StrE),
the corresponding play play(𝜎E, 𝜎A) induces an observation sequence obs(play(𝜎E, 𝜎A)) belonging
(resp., not belonging) to Wn. Notice that, even if the winning conditions are defined on a subset
of observable positions, here we only consider perfect-information games, since strategies have,
instead, full knowledge of the entire set of histories.
Martin’s determinacy theorem [56, 57] states that all games whose winning condition is a

Borel set in the Cantor topological space of infinite words [68] are determined, i.e., one of the
two players necessarily wins the game. To ensures that the quantification game we are about to
define is indeed determined, we require a form of Borelian condition that can be applied to sets of
assignments. This determinacy requirement is crucial here, since it is tightly connected with the fact
that GFG-QPTL does not allow for undetermined formulae. To this end, let Val≜AP⇀B denote
the set of Boolean valuations for sets of propositions and Val(P)≜ {b ∈ Val | dom(b) = P} the set
of valuations for propositions in P ⊆ AP. Also, #(b)≜ |dom(b) |. We can now define a bijection
between sets of assignments over P and languages of infinite words over the alphabet Val(P). Let

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

0:20 Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero

wrd : Asg(P) → Val(P)𝜔 be the word function mapping each assignment 𝜒 ∈ Asg(P) to the word
𝑤 ≜wrd(𝜒) ∈ Val(P)𝜔 satisfying the equality 𝜒 (𝑝) (𝑡) = (𝑤)𝑡 (𝑝), for all 𝑝 ∈ P and 𝑡 ∈ N. Clearly
wrd is a bijection. Now, every property Ψ ⊆ Asg(P), i.e., every set of assignments, uniquely induces
the language of infinite words wrd(Ψ)≜ {wrd(𝜒) | 𝜒 ∈ Ψ} ⊆ Val(P)𝜔 over the alphabet Val(P).
Thus, Ψ is said to be Borelian (resp., regular) if the language wrd(Ψ) is a Borel (resp., regular) set.

∅

⊥
𝑝1

⊥
𝑝1

⊥
𝑝2

· · · b1

· · ·
...

⊥

⊥
𝑝1

⊤
𝑝2

· · ·

· · ·
b 𝑗

⊤⊥

⊤
𝑝1

⊤
𝑝1

⊥
𝑝2

· · ·

· · ·
...

⊥

⊤
𝑝1

⊤
𝑝2

· · ·

· · · b𝑛

⊤

⊤

Fig. 6. Quantification game for the sentence ℘ = ∃B𝑝1 .∀B𝑝2 . ∃B𝑝3 · · · . Eloise owns the circled positions,

while Abelard the squared ones. From the total-valuation positions b1, . . . , b𝑛 , with 𝑛 = 2 |ap(℘) | , Abelard
moves to the initial position with empty evaluation.

Given a behavioural sentence ℘𝜓 , let L(𝜓) ⊆ Asg(ap(℘)) denote the set of assignments satisfying
the LTL formula𝜓 . The quantification game ⅁𝜓℘≜⅁L(𝜓)

℘ is defined in Construction 1 and exemplified
in Figure 6. Recall that we assume that the prefix ℘ does not contain duplicates, namely every
variable is quantified over at most once in the prefix. The positions of the game are (partial)
valuations of the propositions in ℘ and each position belongs to the player corresponding to the
first quantifier in the prefix whose proposition is not defined at that position. The initial position of
the game contains the empty valuation and in the example of Figure 6 belongs to Eloise, since she is
the first to play in ℘. Obviously, the game features an infinite number of rounds. Each round begins
with the empty valuation and ends in a total valuation, after the players have chosen (jointly) a
value for all the propositions. A move in the round corresponds to a player choosing a value for
the next proposition in the prefix ℘. Take, for instance, position b ≜{𝑝1 ↦→ ⊥} in the figure, where
the first proposition 𝑝1 has been already assigned value ⊥ by Eloise. From that position, Abelard
first chooses a Boolean value, say ⊤, for the next proposition 𝑝2 in the prefix. Then he moves to the
position b ′≜{𝑝1 ↦→ ⊥, 𝑝2 ↦→ ⊤}, corresponding to the valuation b [𝑝2 ↦→ ⊤], obtained by extending
b with the value chosen for 𝑝2. Position b ′ belongs to Eloise, since the next quantifier ∃𝑝3 in the
prefix is existential. The last positions belong to Abelard and, from there, he can only move back to
the starting position for the next turn. By sampling any infinite sequence of rounds of the games at
the positions with total valuations, namely the observable positions, we obtain an infinite word𝑤
corresponding to some assignment 𝜒 ≜wrd

−1(𝑤). Then, 𝑤 is winning for Eloise iff 𝜒 belongs to
Ψ≜ L(𝜓) (i.e., 𝜒 |= 𝜓), while it is winning for Abelard otherwise. This intuition is formalised by
the following construction.

Construction 1 (Quantification Game I). For every behavioral quantifier prefix ℘ ∈ QnB and prop-
erty Ψ ⊆ Asg(ap(℘)), the game ⅁Ψ

℘≜
〈
A℘,Ob,Wn

〉
with arena A℘≜ ⟨PsE, PsA, 𝑣𝐼 ,Mv⟩ is defined as

prescribed in the following:

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

Good-for-Game QPTL: An Alternating Hodges Semantics 0:21

• the set of positions Ps ⊂ Val contains exactly those valuations b ∈ Val of the propositions in ap(℘)
that are quantified in the prefix (℘)<#(b) of ℘ having length #(b) i.e., dom(b) = ap

(
(℘)<#(b)

)
;

• the set of Eloise’s positions PsE ⊆ Ps only contains the valuations b ∈ Ps for which the proposition
quantified in ℘ at index #(b) is existentially quantified, i.e., (℘)#(b) = ∃B𝑝 , for some 𝑝 ∈ ap(℘);

• the initial position 𝑣𝐼 ≜∅ is just the empty valuation;
• the move relation Mv ⊆ Ps × Ps contains exactly those pairs of valuations (b1, b2) ∈ Ps × Ps
such that:
– b1 ⊆ b2

2 and #(b2) = #(b1) + 1, or
– b1 ∈ Val(ap(℘)) and b2 = ∅;

• the set of observable positions Ob≜Val(ap(℘)) precisely contains the valuations of all the
propositions in ℘;

• the winning condition induced by the property Ψ is the language of infinite words Wn≜wrd(Ψ)
over Val(ap(℘)).

The game ⅁𝜓℘above essentially provides a game-theoretic version of the semantics of behavioural
quantifications. The correctness of the game is established by the following theorem.
Theorem 4 (Game-Theoretic Semantics I). A behavioural GFG-QPTL sentence ℘𝜓 , with𝜓 ∈ LTL,
is satisfiable (resp., unsatisfiable) iff Eloise (resp., Abelard) wins ⅁𝜓℘.

The proof of this result is split into the following three steps. First, for an arbitrary behavioural
quantifier prefix ℘, we provide two syntactic transformations, C∃∀(℘) and C∀∃ (℘), called canoni-
calisations, which allow one to reduce a behavioural GFG-QPTL sentence 𝜑 = ℘𝜓 to the sentences
C∃∀(℘)𝜓 and C∀∃ (℘)𝜓 featuring at most a single alternation of quantifiers. Second, in Theorem 5,
we connect the winner of the game ⅁𝜓℘with the satisfiability of one of the normal forms C∃∀(℘)𝜓
and C∀∃ (℘)𝜓 , showing also that C∃∀(℘)𝜓 implies C∀∃ (℘)𝜓 . Finally, in Theorem 6, we prove that
the original sentence 𝜑 is equisatisfiable with the two normal forms.

Let us start with the definition of the two prefix canonicalisations based on the following syntactic
quantifier-swap operations. Consider, e.g., the formula∀B𝑝. ∃B𝑞. 𝜙 . A naïve quantifier-swap operator
would simply swap the two quantifiers that, in game-theoretic terms, corresponds to swapping
the choices of the two players, which allows Abelard to see Eloise’s move at the current round.
To balance this additional power, we restrict the universal quantifier to be strictly behavioural,
thus preventing Abelard from reading Eloise’s choice. This leads to the formula ∃B𝑞.∀⟨

B:AP
S:𝑞 ⟩𝑝.𝜓 . A

symmetric swap operation would transform the formula ∃B𝑞.∀B𝑝. 𝜙 into∀B𝑝. ∃⟨
B:AP
S:𝑝 ⟩𝑞. 𝜙 . Essentially,

the swap operation exchanges the positions of two adjacent dual behavioural quantifiers and
restricts the inner one to be strongly behaviouralw.r.t. the proposition of the outer one. By iteratively
swapping adjacent quantifiers and adjusting the quantifier specification accordingly, we can reduce
the quantifier alternation to at most one, still preserving the dependencies in the quantifications at
each instant of time.

For technical convenience we use a vector notation for the quantifier prefixes:

Q�⃗� �⃗� . 𝜙 ≜ Q(�⃗�)0 (�⃗�)0. · · · Q(�⃗�)𝑘 (�⃗�)𝑘 . 𝜙,
where |�⃗� | = |�⃗� | = 𝑘 + 1. We omit the vector symbol in �⃗� if this is just a sequence of B or S
specifications and consider �⃗� as sets of propositions when convenient. We also define in a natural
way the union of two quantifier specifications as follows:〈

B : PB1

S : PS1

〉
∪
〈
B : PB2

S : PS2

〉
≜
〈B:PB1∪PB2
S:PS1∪PS2

〉
.

2As usual, b1 ⊆ b2 denotes the inclusion between functions, i.e., dom(b1) ⊆dom(b2) and b1 (𝑥) =b2 (𝑥) , for all 𝑥 ∈dom(b1) .

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

0:22 Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero

Given a behavioural quantifier prefix ℘ ∈ QnB, the two syntactic transformations C∃∀(·) and
C∀∃ (·) yield the single-alternation prefixes C∃∀(℘) and C∀∃ (℘), by applying all the quantifier swap
operations at once. More specifically, the function C∃∀(·) provides an ∃∀-prefix, where all existential
quantifiers precede the universal ones, while C∀∃ (·) gives us the the dual ∀∃-prefix.

For the definition of C∃∀(·), we observe that every behavioural quantifier prefix ℘ can be written
in the following form:

℘ = ∃B�⃗�0. (∀B�⃗�𝑖 . ∃B�⃗�𝑖)𝑘𝑖=1.∀B�⃗�𝑘+1,

for some 𝑘 ∈ N and vectors �⃗�𝑖 , with 𝑖 ∈ [0, 𝑘], and �⃗�𝑖 , with 𝑖 ∈ [1, 𝑘 + 1], where |�⃗�𝑖 |, |�⃗�𝑖 | ≥ 1, for all
𝑖 ∈ [1, 𝑘]. For a quantifier prefix ℘ we then define

C∃∀(℘)≜(∃B�⃗�𝑖)𝑘𝑖=0 . (∀�⃗�𝑖 �⃗�𝑖)𝑘+1
𝑖=1 ,

where �⃗�𝑖 is a vector, for every 𝑖 ∈ [1, 𝑘 + 1], whose components are defined as (�⃗�𝑖) 𝑗 ≜ B ∪
⟨S : �⃗�𝑖 · · · �⃗�𝑘⟩, for all 𝑗 ∈ [0, |�⃗�𝑖 |).
The definition of C∀∃ (·) is analogous. First, we write a prefix ℘ in the form:

℘ = ∀B�⃗�0. (∃B�⃗�𝑖 .∀B�⃗�𝑖)𝑘𝑖=1. ∃B�⃗�𝑘+1,

for some 𝑘 ∈ N and vectors �⃗�𝑖 , with 𝑖 ∈ [0, 𝑘], and �⃗�𝑖 , with 𝑖 ∈ [1, 𝑘 + 1], where |�⃗�𝑖 |, |�⃗�𝑖 | ≥ 1, for all
𝑖 ∈ [1, 𝑘]. Then, we define

C∀∃ (℘)≜(∀B�⃗�𝑖)𝑘𝑖=0. (∃�⃗�𝑖 �⃗�𝑖)𝑘+1
𝑖=1 ,

where �⃗�𝑖 is a vector, for every 𝑖 ∈ [1, 𝑘 + 1], whose components are defined as (�⃗�𝑖) 𝑗 ≜ B ∪〈
S : �⃗�𝑖 · · · �⃗�𝑘

〉
, for all 𝑗 ∈ [0, |�⃗�𝑖 |).

Example 11. Consider the behavioural quantifier prefix ℘ = ∀B𝑝. ∃B𝑞 𝑟 .∀B𝑠 . ∃B𝑡 . The correspond-
ing ∃∀ canonical-form is C∃∀(℘) = ∃B𝑞 𝑟 𝑡 .∀𝛩𝑝

𝑝.∀𝛩𝑠

𝑠 , where 𝛩𝑝≜
〈 B:AP
S:𝑞 𝑟 𝑡

〉
and 𝛩𝑠≜

〈B:AP
S:𝑡

〉
. The ∀∃

canonical-form prefix is, instead, C∀∃ (℘) = ∀B𝑝 𝑠. ∃𝛩𝑞 𝑟 . ∃B𝑡 , where𝛩 ≜
〈B:AP
S:𝑠

〉
.

For the second part of the proof of Theorem 4, we need to connect the winner of ⅁𝜓℘with
the satisfiability of (one among) C∃∀(℘)𝜓 and C∀∃ (℘)𝜓 . This also corresponds to showing that
C∃∀(℘)𝜓 ⇒ C∀∃ (℘)𝜓 . To this end, we exploit the 𝜔-regularity of LTL languages, which ensures
that the game is Borelian.

Theorem 5 (Quantification Game I). For each behavioural quantification prefix ℘ ∈ QnB and
Borelian property Ψ ⊆ Asg(ap(℘)), the game ⅁Ψ

℘ satisfies the following two properties:
1) if Eloise wins then E ⊆ Ψ, for some E ∈ evl∃∀(C∀∃ (℘));
2) if Abelard wins then E ⊈ Ψ, for all E ∈ evl∃∀(C∃∀(℘)).

The idea of the proof is to extract from a winning strategy of Eloise (resp., Abelard) a vector F⃗
of functors, one for each proposition associated with that player, witnessing the existence (resp.,
non-existence) of a set E of assignments that satisfies the property Ψ. More precisely, assume
Eloise has a strategy 𝜎 to win the game and let ∀B�⃗� . ∃�⃗� �⃗� = C∀∃ (℘) be the ∀∃ canonical-form of ℘.
Then, thanks to the bijection between plays 𝜋 and assignments 𝜒 , we can operate as follows, for
every round 𝑘 and existential proposition 𝑞𝑖 in �⃗�: given Abelard’s choices up to round 𝑘 in 𝜋 , we
can extract, from Eloise’s response for 𝑞𝑖 in 𝜎 , the response to 𝜒 at time 𝑘 of the functor F𝑖 in F⃗.
As a consequence, for all 𝜒 ∈ Asg(�⃗�) chosen by Abelard, Eloise’s response corresponding to the
extension of 𝜒 with F⃗ on �⃗� satisfies, i.e., belongs to, the property Ψ. The witness E is precisely the
set of all those extensions. An analogous argument applies to Abelard for the ∃∀ canonical-form.
Notice that F⃗ meets the specification �⃗� thanks to the alternation of the players prescribed by ℘ in

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

Good-for-Game QPTL: An Alternating Hodges Semantics 0:23

each round of ⅁Ψ
℘. A detailed proof is provided in Electronic Appendix C. The following result is

now immediate.

Corollary 3 (Quantification Game I). For every behavioural GFG-QPTL sentence ℘𝜓 , with𝜓 ∈ LTL,
the game ⅁𝜓℘ satisfies the following two properties:
1) if Eloise (resp., Abelard) wins then C∀∃ (℘)𝜓 is satisfiable (resp., C∃∀(℘)𝜓 is unsatisfiable);
2) if C∃∀(℘)𝜓 is satisfiable (resp., C∀∃ (℘)𝜓 is unsatisfiable) then Eloise (resp., Abelard) wins.

Proof. Item 1 immediately follows from Item 1 of Definition 3, Lemma 5 and the two items
of Theorem 5. For Item 2, instead, let us assume that C∃∀(℘)𝜓 is satisfiable (resp., C∀∃ (℘)𝜓 is
unsatisfiable). Thanks to Item 1 of Definition 3 and Lemma 5, if {{∅}} |=∃∀C∃∀(℘)𝜓 (resp., {{∅}} ̸|=∃∀

C∀∃ (℘)𝜓), then E ⊆ Ψ≜ L(𝜓), for some E ∈ evl∃∀(C∃∀(℘)) = evl∃∀({{∅}}, C∃∀(℘)) (resp., E ⊈ Ψ,
for all E ∈ evl∃∀(C∀∃ (℘)) = evl∃∀({{∅}}, C∀∃ (℘))). Thus, by Item 2 (resp., Item 1) of Theorem 5, it
follows that Abelard (resp., Eloise) loses the game ⅁𝜓℘, which means, by determinacy, that Eloise
(resp., Abelard) wins. Recall that ⅁𝜓℘ is determined, since its winning condition is Borelian [56]. □

The final step establishes the equisatisfiability of a behavioural GFG-QPTL sentence ℘𝜓 with its
two canonical forms C∃∀(℘)𝜓 and C∀∃ (℘)𝜓 .

Theorem 6 (Sentence Canonical Forms). For every behavioural GFG-QPTL sentence ℘𝜓 , with
𝜓 ∈ LTL, it holds that ℘𝜓 , C∃∀(℘)𝜓 , and C∀∃ (℘)𝜓 are equisatisfiable.

Towards the proof, we can derive the chain of implications C∀∃ (℘)𝜓 ⇒ ℘𝜓 ⇒ C∃∀(℘)𝜓 by
exploiting the following property of the evolution function. Specifically, this asserts a total ordering
w.r.t. the preorder ⊑ between a behavioural quantifier prefix ℘ and its two canonical forms C∃∀(℘)
and C∀∃ (℘), which can be proved by induction on the structure of ℘.

Proposition 6. evl𝛼 (𝔛, C𝛼 (℘)) ⊑ evl𝛼 (𝔛, ℘) ⊑ evl𝛼 (𝔛, C𝛼 (℘)), for all hyperassignments 𝔛 ∈ HAsg
and behavioral quantifier prefixes ℘ ∈ QnB, with ap(℘) ∩ ap(𝔛) = ∅.

Proof of Theorem 6. From Proposition 6, Lemma 5, and Theorem 2, the chain of implications
C∀∃ (℘)𝜓 ⇒ ℘𝜓 ⇒ C∃∀(℘)𝜓 easily follows. Indeed, by Lemma 5, we have that (1) ℘𝜓 is satisfiable
iff evl∃∀(℘) |=∃∀𝜓 , (2) C∃∀(℘)𝜓 is satisfiable iff evl∃∀(C∃∀(℘)) |=∃∀𝜓 , and (3) C∀∃ (℘)𝜓 is satisfi-
able iff evl∃∀(C∀∃ (℘)) |=∃∀𝜓 . Now, by Proposition 6, it holds that evl∃∀(C∀∃ (℘)) ⊑ evl∃∀(℘) ⊑
evl∃∀(C∃∀(℘)). Therefore, by Theorem 2, we have that if C∀∃ (℘)𝜓 is satisfiable then ℘𝜓 is satisfiable
too, which, in turn, implies that C∃∀(℘)𝜓 is satisfiable as well. To complete the proof, we need to
show that, if C∃∀(℘)𝜓 is satisfiable, then also C∀∃ (℘)𝜓 is satisfiable. This fact is, however, a direct
consequence of Corollary 3. □

We can finally prove of the main result of this subsection, namely Theorem 4.

Proof of Theorem 4. We want to prove that ℘𝜓 is satisfiable (resp., unsatisfiable) iff Eloise
(resp., Abelard) wins ⅁𝜓℘. For the if-direction, by Item 1 of Corollary 3, if Eloise (resp, Abelard)
wins the game then C∀∃ (℘)𝜓 is satisfiable (resp., C∃∀(℘)𝜓 is unsatisfiable). However, this implies
that ℘𝜓 is satisfiable (resp., unsatisfiable), thanks to Theorem 6. For the only-if-direction, if ℘𝜓 is
satisfiable (resp., unsatisfiable) then C∃∀(℘)𝜓 is satisfiable (resp., C∀∃ (℘)𝜓 is unsatisfiable), again
due to Theorem 6. However, this implies, in turn, that Eloise (resp., Abelard) wins the game, thanks
to Item 2 of Corollary 3. □

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

0:24 Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero

4.2 Quantification Game for Formulae
The game defined in the previous section can easily be adapted to deal with the satisfiability problem
for behavioural GFG-QPTL as shown in the next section. Solving the model-checking problem
requires, however, a generalisation of Theorem 4, connecting a suitable game with the satisfaction
of an arbitrary behavioural formula w.r.t. a hyperassignment 𝔛. We can prove such a property
under the assumption that 𝔛 is well-behaved, i.e., 𝔛 is the evolution of a Borelian set of assignments
X w.r.t. some behavioural prefix ℘̃. The Borelian requirement is again connected to determinacy of
the underlying game. The behavioural requirement, instead, allows for a simple proof that leverages
the quantification game for sentences directly. At this stage, it is not clear whether the property
actually holds for arbitrary Borelian hyperassignments. In the model-checking procedure provided
later on, however, both properties are satisfied.
To formalise the two assumptions above, we introduce the notion of generator for a hyperas-

signment 𝔛 ∈ HAsg as a pair
〈
℘̃,X

〉
consisting of (1) a behavioural quantification prefix ℘̃ ∈ QnB

and (2) a Borelian set of assignments ∅ ≠ X ⊆ Asg(ap(𝔛) \ ap
(
℘̃
)
) such that 𝔛 = evl∃∀({X}, ℘̃). A

hyperassignment 𝔛 ∈ HAsg is Borelian behavioural if there is a generator for it.
The new quantification game is defined w.r.t. a quantification-game schema that comprises the

input hyperassignment 𝔛, the quantification prefix ℘ describing how the players alternate in the
game, and the Borelian property Ψ corresponding to the desired goal.

Definition 8 (Quantification-Game Schema). A quantification-game schema is a tuple
𝔔≜ ⟨𝔛, ℘,Ψ⟩, where (1) 𝔛 ∈ HAsg is Borelian behavioural, (2) ℘ ∈ QnB is a behavioural quan-
tification prefix, (3) Ψ ⊆ Asg(ap(℘) ∪ ap(𝔛)) is Borelian, and (4) ap(℘) ∩ ap(𝔛) = ∅.

The idea behind the game-theoretic construction reported below is quite simple. Given a generator〈
℘̃,X

〉
for a behavioural hyperassignment 𝔛, we force the two players to simulate the given 𝔛 by

playing according to the prefix ℘̃, once Abelard has arbitrarily chosen the values of the atomic
propositions �⃗� over which the set of assignments X is defined. Since evl∃∀(∀�⃗�) = {Asg(�⃗�)}
and X ⊆ Asg(�⃗�), it is clear that evl∃∀(∀�⃗�) ⊑ {X} and, by the monotonicity property stated in
Proposition 5, we have that evl∃∀(∀�⃗� . ℘̃) ⊑ 𝔛 = evl∃∀({X}, ℘̃) . Thus, if Eloise wins the game, she
can ensure a given temporal property, i.e., 𝔛 |=∃∀℘𝜓 . Notice, however, that we gave Abelard the
freedom to cheat and choose arbitrary values for �⃗� . Thus, in principle, Eloise could be able to satisfy
the property while losing the game, since Abelard can choose assignments over �⃗� that do not
belong to X. To remedy this, we add all those assignments to Eloise’s winning set, thus deterring
Abelard from cheating.

Construction 2 (Quantification Game II). For a quantification-game schema𝔔≜ ⟨𝔛, ℘,Ψ⟩, we say
that ⅁ is a𝔔-game if there is a generator

〈
℘̃,X

〉
for 𝔛 such that ⅁≜⅁Ψ̂

℘̂
, where

• ℘̂≜∀�⃗� . ℘̃. ℘ and
• Ψ̂≜Ψ ∪

{
𝜒 ∈ Asg(P)

�� 𝜒 ↾𝑝 ∉ X
}
,

with �⃗� ≜ ap(𝔛) \ ap
(
℘̃
)
and P≜ ap(℘) ∪ ap(𝔛).

The quantification-game schema for a formula ℘𝜓 , with𝜓 ∈ LTL, and a hyperassignment 𝔛 is
the tuple𝔔𝔛

℘𝜓
≜ ⟨𝔛, ℘, L(𝜓)⟩. We can now generalise Theorem 4 to formulae.

Theorem 7 (Game-Theoretic Semantics II). 𝔛 |=∃∀℘𝜓 (resp., 𝔛 ̸ |=∃∀℘𝜓) iff Eloise (resp., Abelard)
wins every 𝔔𝔛

℘𝜓
-game, for all behavioural GFG-QPTL formulae ℘𝜓 , with 𝜓 ∈ LTL, and Borelian

behavioural hyperassignments 𝔛 ∈ HAsg(free(℘𝜓)).

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

Good-for-Game QPTL: An Alternating Hodges Semantics 0:25

The proof of the above result follows an approach similar to the one described in the previous
subsection for Theorem 4 and uses the following result, proven in Electronic Appendix C, which
generalises Theorem 5 to formulae.

Theorem 8 (Quantification Game II). Every 𝔔-game ⅁, for some quantification-game schema
𝔔≜ ⟨𝔛, ℘,Ψ⟩, satisfies the following two properties:
1) if Eloise wins then E ⊆ Ψ, for some E ∈ evl∃∀(𝔛, C∀∃ (℘));
2) if Abelard wins then E ⊈ Ψ, for all E ∈ evl∃∀(𝔛, C∃∀(℘)).

The connection between the quantification game and the satisfaction problem w.r.t. a hyperas-
signment is stated by the following result.

Corollary 4 (Quantification Game II). For every behavioural GFG-QPTL formula ℘𝜓 , with𝜓 ∈ LTL,
and Borelian behavioural hyperassignments 𝔛 ∈ HAsg(free(℘𝜓)), every 𝔔𝔛

℘𝜓
-game satisfies the

following two properties:

1) if Eloise (resp., Abelard) wins then 𝔛 |=∃∀C∀∃ (℘)𝜓 (resp., 𝔛 ̸ |=∃∀C∃∀(℘)𝜓);
2) if 𝔛 |=∃∀C∃∀(℘)𝜓 (resp., 𝔛 ̸ |=∃∀C∀∃ (℘)𝜓) then Eloise (resp., Abelard) wins.

Proof. Let ⅁ be an arbitrary𝔔𝔛
℘𝜓
-game. Item 1 immediately follows from Item 1 of Definition 3,

Lemma 5 and the two items of Theorem 8. For Item 2, instead, let us assume that 𝔛 |=∃∀C∃∀(℘)𝜓
(resp., 𝔛 ̸ |=∃∀C∀∃ (℘)𝜓). Thanks to Item 1 of Definition 3 and Lemma 5, it holds that E ⊆ Ψ≜ L(𝜓),
for some E ∈ evl∃∀(𝔛, C∃∀(℘)) (resp., E ⊈ Ψ, for all E ∈ evl∃∀(𝔛, C∀∃ (℘))). Thus, by Item 2 (resp.,
Item 1) of Theorem 8, it follows that Abelard (resp., Eloise) loses the game ⅁, which means, by
determinacy, that Eloise (resp., Abelard) wins. □

Corollary 4, together with Proposition 6, lifts Theorem 6 to formulae as follows.

Theorem 9 (Formula Canonical Forms). For every behavioural GFG-QPTL formula ℘𝜓 , with𝜓 ∈
LTL, it holds that 𝔛 |=𝛼 ℘𝜓 iff 𝔛 |=𝛼 C∃∀(℘)𝜓 iff 𝔛 |=𝛼 C∀∃ (℘)𝜓 , for all Borelian behavioural
hyperassignments 𝔛 ∈ HAsg(free(℘𝜓)).

Proof. We focus on the statement for 𝛼 = ∃∀, as the case 𝛼 = ∀∃ can be easily derived from the
previous one by observing that, thanks to the Boolean laws of Lemma 4, (a)𝔛 |=∀∃ ℘𝜓 iff𝔛 ̸ |=∃∀℘¬𝜓 ,
(b)𝔛 |=∃∀C∃∀(℘)𝜓 iff𝔛 ̸ |=∀∃ C∀∃ (℘)¬𝜓 , and (c)𝔛 |=∀∃ C∃∀(℘)𝜓 iff𝔛 ̸ |=∃∀C∀∃ (℘)¬𝜓 . As done in the
proof of Theorem 6, one chain of implication – if 𝔛 |=∃∀C∀∃ (℘)𝜓 then 𝔛 |=∃∀℘𝜓 and if 𝔛 |=∃∀℘𝜓
then 𝔛 |=∃∀C∃∀(℘)𝜓 – is an immediate consequence of Proposition 6, Lemma 5, and Theorem 2.
Indeed, by Lemma 5, we have that (1) 𝔛 |=∃∀ ℘𝜓 iff evl∃∀(𝔛, ℘) |=∃∀ 𝜓 , (2) 𝔛 |=∃∀ C∃∀(℘)𝜓 iff
evl∃∀(𝔛, C∃∀(℘)) |=∃∀𝜓 , and (3) 𝔛 |=∃∀C∀∃ (℘)𝜓 iff evl∃∀(𝔛, C∀∃ (℘)) |=∃∀𝜓 . Now, by Proposition 6,
it holds that evl∃∀(𝔛, C∀∃ (℘)) ⊑ evl∃∀(𝔛, ℘) ⊑ evl∃∀(𝔛, C∃∀(℘)). Therefore, by Theorem 2, we
have that 𝔛 |=∃∀C∀∃ (℘)𝜓 implies 𝔛 |=∃∀℘𝜓 , which, in turn, implies 𝔛 |=∃∀C∃∀(℘)𝜓 . The converse
implication – if 𝔛 |=∃∀C∃∀(℘)𝜓 then 𝔛 |=∃∀C∀∃ (℘)𝜓 – is a direct consequence of Corollary 4. □

The previous theorem allows us to obtain a proof for Theorem 7.

Proof of Theorem 7. Given an arbitrary𝔔𝔛
℘𝜓
-game ⅁, we want to prove that 𝔛 |=∃∀℘𝜓 (resp.,

𝔛 ̸ |=∃∀℘𝜓) holds true iff Eloise (resp., Abelard) wins ⅁. For the if-direction, by Item 1 of Corollary 4,
if Eloise (resp, Abelard) wins ⅁ then 𝔛 |=∃∀C∀∃ (℘)𝜓 (resp., 𝔛 ̸ |=∃∀C∃∀(℘)𝜓). However, this implies
that 𝔛 |=∃∀℘𝜓 (resp., 𝔛 ̸ |=∃∀℘𝜓), thanks to Theorem 9. For the only-if-direction, if 𝔛 |=∃∀℘𝜓 (resp.,
𝔛 ̸ |=∃∀℘𝜓) then 𝔛 |=∃∀ C∃∀(℘)𝜓 (resp., 𝔛 ̸ |=∃∀ C∀∃ (℘)𝜓) holds true, again due to Theorem 9. This
implies, in turn, that Eloise (resp., Abelard) wins ⅁, thanks to Item 2 of Corollary 4. □

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

0:26 Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero

5 DECISION PROBLEMS, EXPRESSIVENESS & SUCCINCTNESS
The results of the previous section can be exploited to solve optimally the decision problems
for behavioural GFG-QPTL. More specifically, we can use the game of Constructions 1 for the
satisfiability problem, and the game of Constructions 2 for the model-checking one. We also discuss
the expressiveness relationship between QPTL and behavioural GFG-QPTL, showing, by means of
a classic encoding of automata into logic, that they have the same expressive power, though QPTL

is non-elementarily more succinct than behavioural GFG-QPTL.

5.1 Decision Procedures
The first step in deciding the satisfiability problem is to derive from a behavioral sentence 𝜑 = ℘𝜓

a parity game [14, 65] that is won by Eloise iff 𝜑 is satisfiable. To do that, we first construct
a deterministic parity automaton D𝜓 for the LTL formula 𝜓 , by combining the Vardi-Wolper
construction [81] with the Safra-like translation from Büchi to parity acceptance condition [69].
We then compute the synchronous product of the arena A℘ of Construction 1 with D𝜓 , where the
automaton component changes state only when Abelard takes a move starting from an observable
position containing full valuation of the propositions. Such valuation is read by the transition
function ofD𝜓 to determine its successor state. The resulting game simulates both the quantification
game and the automaton, so that Eloise wins iff the play satisfies 𝜓 . This result, formally stated
below, is proven in Electronic Appendix D.

Theorem 10 (Satisfiability Game). For every behavioral GFG-QPTL sentence 𝜑 there is a parity
game, with 22O(|𝜑 |)

positions and 2O(|𝜑 |) priorities, won by Eloise iff 𝜑 is satisfiable.

We can then obtain an upper bound on the complexity of the problem from the fact that parity
games can be solved in time polynomial in the number of positions and exponential in that of
the priorities [13, 15, 87]. For the lower bound, instead, we observe that the reactive synthesis
problem [72] of an LTL formula 𝜓 can be reduced to the satisfiability of a sentence of the form
∀B�⃗� . ∃B�⃗�.𝜓 , where �⃗� and �⃗� denote, respectively, the input and output signals of the desired system.

Theorem 11 (Satisfiability Complexity). The satisfiability problem for behavioral GFG-QPTL sen-
tences is 2ExpTime-complete.

As to the (universal) model-checking problem, given a Kripke structure K , we ask whether
K |= 𝜑 , in the sense that 𝔛K |=∃∀ 𝜑 holds, where 𝔛K ≜{{𝜒 ∈ Asg(ap(K)) |wrd(𝜒) ∈ L(K)}}
is the hyperassignment obtained by collecting all the assignments 𝜒 ∈ Asg(ap(K)) over the
propositions of K for which the infinite word wrd(𝜒) belongs to the 𝜔-language L(K) generated
by K . Since L(K) is an 𝜔-regular language, 𝔛K is clearly a Borelian behavioral hyperassignment.
As a consequence, Construction 2 applies. Thus, we can adopt the same synchronous product
described above between the arena of the game and the union of the two automata D𝜓 and NK ,
where D𝜓 is obtained from the formula 𝜓 , while NK is a co-safety automaton of size linear in
|K |, recognising the complement of L(K). Observe that one may also consider the dual notion of
existential model-checking, which asks whether K |= 𝜑 in the sense of 𝔛K |=∀∃ 𝜑 , which can be
solved analogously.

Theorem 12 (Model-Checking Game). For every Kripke structure K and behavioral GFG-QPTL
formula 𝜑 , with free(𝜑) ⊆ ap(K), there is a parity game, with 22O(|𝜑 |) · |K | positions and 2O(|𝜑 |)

priorities, won by Eloise iff K |= 𝜑 .

Upper bounds w.r.t. both formula and model complexity, and the lower bound w.r.t. formula
complexity, are proved as in the case of the satisfiability problem. As far as the model complexity is
concerned, the lower bound can be naturally derived by reducing from reachability games [43].

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

Good-for-Game QPTL: An Alternating Hodges Semantics 0:27

Theorem 13 (Model-Checking Complexity). Themodel-checking problem for behavioralGFG-QPTL
has a 2ExpTime-complete formula complexity and a PTime-complete model complexity.

5.2 Expressive Power
We conclude the work by discussing the expressive power of the behavioral fragment ofGFG-QPTL,
showing that it precisely corresponds to the 𝜔-regular languages. Similarly to Example 9, consider
an arbitrary deterministic parity automaton D with 𝑘 states over an alphabet 2P, with P ⊆ AP.

Via a standard encoding of the transition function and the acceptance condition, we can construct
an LTL formula𝜓 , over the set of propositions P∪{𝑠1, . . . , 𝑠𝑘 }, such that the existential projection on
P of the language L(𝜓) coincides with the language L(D) recognised byD. SinceD is deterministic,
this projection is clearly behavioral. Hence, the behavioral GFG-QPTL formula ∃B𝑠1 . . . ∃B𝑠𝑘 .𝜓 is
∃∀-satisfied by the hyperassignment

{
wrd

−1(L(D))
}
. Since every QPTL formula can be translated

into an equivalent nondeterministic Büchi automaton [78], which in turn can be determinised into a
parity one [69], we obtain that for everyQPTL formula there is an equivalent behavioralGFG-QPTL
formula. The converse holds as well. Indeed, the satisfiability game ⅁𝜑 can be transformed into a
isomorphic alternating parity word automaton A𝜑 , in the usual way, which can then be reduced to
a nondeterministic parity automaton N𝜑 with an exponential blow-up [66]. The emptiness of N𝜑

can then be encoded into a QPTL sentence. A similar reasoning applies also to formulae.

Theorem 14 (Expressiveness). QPTL and behavioral GFG-QPTL are equi-expressive.

Clearly, QPTL is also non-elementary more succinct than behavioral GFG-QPTL. Indeed, the
satisfiability problem for QPTL sentences with alternation of quantifiers 𝑘 is non-elementary in k,
precisely (𝑘 − 1)-ExpSpace-complete [78], while behavioral GFG-QPTL is decidable in 2ExpTime,
so no elementary reduction exists.

Theorem 15 (Succinctness). QPTL is non-elementary more succinct than behavioral GFG-QPTL.

6 DISCUSSION
We have introduced a novel semantics for QPTL extending in a non-trivial way Hodges’ team
semantics for Hintikka and Sandu’s logic of imperfect information IF. On the one hand, the new
semantic setting can express games with both symmetric and asymmetric restrictions on the players.
On the other hand, it allows for encoding behavioral constraints on the quantified propositions,
connecting the underlying logic with the game-theoretic notion of behavioral strategies. Based
on this semantics, the extension of QPTL with constraints on the functional dependencies among
propositions, called GFG-QPTL, has surprisingly interesting properties. For one, its behavioral
fragment enables reducing the solution of two-player zero-sum games to the decision problems for
the logic. Indeed, the deep connection with behavioral strategies ensures that satisfiable formulae
of the logic express linear time properties that can always be realised by means of actual strategies.
This fragment also enjoys good computational properties, being 2ExpTime-complete for both
satisfiability and model-checking. It is also very expressive, being equivalent to, though less succinct
than, QPTL, hence able to describe all 𝜔-regular properties. Second, the behavioral semantics also
bears a connection to good-for-game automata, allowing to naturally express the property of being
a GFG automata, the significance of which is probably worth investigating further.
To the best of our knowledge, this is the first attempt to provide a compositional account of

behavioral constraints. We believe the generality and flexibility of the semantic settings opens up
the possibility of a systematic investigation of the impact of this type of constraints in quantified
temporal logics, such asQCTL [20, 52], Substructure Temporal Logic [3, 4], HyperLTL/CTL* [10, 12,
16, 17, 19], Coordination Logic [18], and Strategy Logic [9, 59, 60]. For Strategy Logic, in particular,

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

0:28 Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero

the known satisfiability results are limited to specific fragments and the corresponding decision
procedures crucially rely on the behavioural nature of those specific fragments [2, 58]. Being able
to devise a behavioural semantics for the full language could very well lead to a fully decidable
version of important fragments of that logic.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for the many suggestions which helped
to considerably improve the earlier version of the manuscript.

This work was partially supported by the GNCS 2020 project “Strategic Reasoning and Automatic
Synthesis of Multi-Agent Systems (Ragionamento Strategico e Sintesi Automatica di Sistemi Multi-
Agente)”.

REFERENCES
[1] S. Abramsky, J. Kontinen, J.A. Väänänen, and H. Vollmer. 2016. Dependence Logic: Theory and Applications. Springer.
[2] E. Acar, M. Benerecetti, and F. Mogavero. 2019. Satisfiability in Strategy Logic Can Be Easier than Model Checking. In

AAAI Press19. AAAI Press, 2638–2645.
[3] M. Benerecetti, F. Mogavero, and A. Murano. 2013. Substructure Temporal Logic. In Logic in Computer Science’13. IEEE

Computer Society, 368–377.
[4] M. Benerecetti, F. Mogavero, and A. Murano. 2015. Reasoning About Substructures and Games. Transactions On

Computational Logic 16, 3 (2015), 25:1–46.
[5] A. Blass and Y. Gurevich. 1986. Henkin Quantifiers and Complete Problems. Annals of Pure and Applied Logic 32, 1

(1986), 1–16.
[6] U. Boker and K. Lehtinen. 2019. Good for Games Automata: From Nondeterminism to Alternation. In Concurrency

Theory’19 (LIPIcs 140, Vol. 140). Leibniz-Zentrum fuer Informatik, 19:1–19.
[7] S.R. Buss. 1998. Handbook of Proof Theory. Elsevier.
[8] K. Chatterjee, T.A. Henzinger, and N. Piterman. 2007. Strategy Logic. In Concurrency Theory’07 (LNCS 4703). Springer,

59–73.
[9] K. Chatterjee, T.A. Henzinger, and N. Piterman. 2010. Strategy Logic. Information and Computation 208, 6 (2010),

677–693.
[10] M.R. Clarkson, B. Finkbeiner, M. Koleini, K.K. Micinski, M. Rabe, and C. Sánchez. 2014. Temporal Logics for Hyper-

properties. In Principles of Security and Trust’14 (LNCS 8414). Springer, 265–284.
[11] M.R. Clarkson and F.B. Schneider. 2010. Hyperproperties. Journal of Compututer Security 18, 6 (2010), 1157–1210.
[12] N. Coenen, B. Finkbeiner, C. Hahn, and J. Hofmann. 2019. The Hierarchy of Hyperlogics. In Logic in Computer Science’19.

IEEE Computer Society, 1–13.
[13] E.A. Emerson and C.S. Jutla. 1988. The Complexity of Tree Automata and Logics of Programs (Extended Abstract). In

Foundation of Computer Science’88. IEEE Computer Society, 328–337.
[14] E.A. Emerson and C.S. Jutla. 1991. Tree Automata, muCalculus, and Determinacy. In Foundation of Computer Science’91.

IEEE Computer Society, 368–377.
[15] E.A. Emerson, C.S. Jutla, and A.P. Sistla. 1993. On Model-Checking for Fragments of muCalculus. In Computer Aided

Verification’93 (LNCS 697). Springer, 385–396.
[16] B. Finkbeiner and C. Hahn. 2016. Deciding Hyperproperties. In Concurrency Theory’16 (LIPIcs 59). Leibniz-Zentrum

fuer Informatik, 13:1–14.
[17] B. Finkbeiner, M.N. Rabe, and C. Sánchez. 2015. Algorithms for Model Checking HyperLTL and HyperCTL*. In

Computer Aided Verification’15 (LNCS 9206). Springer, 30–48.
[18] B. Finkbeiner and S. Schewe. 2010. Coordination Logic. In Computer Science Logic’10 (LNCS 6247). Springer, 305–319.
[19] B. Finkbeiner and M. Zimmermann. 2016. The First-Order Logic of Hyperproperties. In Symposium on Theoretical

Aspects of Computer Science’17 (LIPIcs 66). Leibniz-Zentrum fuer Informatik, 30:1–14.
[20] T. French. 2001. Decidability of Quantified Propositional Branching Time Logics. In Advances in Artificial Intelligence’01

(LNCS 2256). Springer, 165–176.
[21] P. Fritz and J. Goodman. 2017. Counting Incompossibles. Mind 126, 504 (2017), 1063–1108.
[22] D. Gale and F.M. Stewart. 1953. Infinite Games with Perfect Information. In Contributions to the Theory of Games

(vol. II). Vol. 28. Princeton University Press, 245–266.
[23] P. Gardy, P. Bouyer, and N. Markey. 2018. Dependences in Strategy Logic. In Symposium on Theoretical Aspects of

Computer Science’18 (LIPIcs 96). Leibniz-Zentrum fuer Informatik, 34:1–15.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

Good-for-Game QPTL: An Alternating Hodges Semantics 0:29

[24] P. Gardy, P. Bouyer, and N. Markey. 2020. Dependences in Strategy Logic. Theoretical Computer Science 64, 3 (2020),
467–507.

[25] G. De Giacomo and G. Perelli. 2021. Behavioral QLTL. Technical Report. arXiv.
[26] E. Grädel, W. Thomas, and T. Wilke. 2002. Automata, Logics, and Infinite Games: A Guide to Current Research. Springer.
[27] E. Grädel and J.A. Väänänen. 2013. Dependence and Independence. Studia Logica 101, 2 (2013), 399–410.
[28] J. Gutierrez, P. Harrenstein, and M. Wooldridge. 2013. Iterated Boolean Games. In International Joint Conference on

Artificial Intelligence’13. International Joint Conference on Artificial Intelligence’ & AAAI Press, 932–938.
[29] J. Gutierrez, P. Harrenstein, and M. Wooldridge. 2015. Iterated Boolean Games. Information and Computation 242

(2015), 53–79.
[30] H. Heikkilä and J.A. Väänänen. 1994. Reflection of Long Game Formulas. Mathematical Logic Quarterly 40, 3 (1994),

381–392.
[31] L. Hella. 1989. Definability Hierarchies of Generalized Quantifiers. Annals of Pure and Applied Logic 43, 3 (1989),

235–271.
[32] L. Henkin. 1961. Some Remarks on Infinitely Long Formulas. In Infinistic Methods’61. Pergamon Press, 167–183.
[33] T.A. Henzinger and N. Piterman. 2006. Solving Games Without Determinization. In Computer Science Logic’06 (LNCS

4207). Springer, 395–410.
[34] J. Hintikka. 1973. Logic, Language-Games and Information: Kantian Themes in the Philosophy of Logic. Oxford University

Press.
[35] J. Hintikka. 1973. Quantifiers vs. Quantification Theory. Dialectica 27, 3-4 (1973), 329–358.
[36] J. Hintikka. 1997. Lingua Universalis vs. Calculus Ratiocinator: An Ultimate Presupposition of Twentieth-Century

Philosophy. Springer.
[37] J. Hintikka and V. Rantala. 1976. A New Approach to Infinitary Languages. Annals of Mathematical Logic 10, 1 (1976),

95–115.
[38] J. Hintikka and G. Sandu. 1989. Informational Independence as a Semantical Phenomenon. In International Congress on

Logic, Methodology, and Philosophy of Science’89. Elsevier, 571–589.
[39] J. Hintikka and G. Sandu. 1997. Game-Theoretical Semantics. In Handbook of Logic and Language. North-Holland &

Elsevier, 361–410.
[40] W. Hodges. 1997. A Shorter Model Theory. Cambridge University Press.
[41] W. Hodges. 1997. Compositional Semantics for a Language of Imperfect Information. Logic Journal of the IGPL 5, 4

(1997), 539–563.
[42] W. Hodges. 1997. Some Strange Quantifiers. In Structures in Logic and Computer Science: A Selection of Essays in Honor

of A. Ehrenfeucht. Springer, 51–65.
[43] N. Immerman. 1981. Number of Quantifiers is Better Than Number of Tape Cells. Journal of Computer and System

Science 22, 3 (1981), 384–406.
[44] L. Kaiser. 2011. Logic and Games on Automatic Structures - Playing with Quantifiers and Decompositions. Springer.
[45] B. Khoussainov and A. Nerode. 2001. Automata Theory and Its Applications. Birkhauser.
[46] P.G. Kolaitis. 1985. Game Quantification. In Handbook of Model-Theoretic Logics. Springer, 365–421.
[47] A. Krebs, A. Meier, J. Virtema, and M. Zimmermann. 2018. Team Semantics for the Specification and Verification of

Hyperproperties. In Mathematical Foundations of Computer Science’18 (LIPIcs 117). Leibniz-Zentrum fuer Informatik,
10:1–16.

[48] D.M. Kreps, P. Milgrom, J. Roberts, and R. Wilson. 1982. Rational Cooperation in the Finitely Repeated Prisoners’
Dilemma. Journal of Economic Theory 27, 2 (1982), 245–252.

[49] H.W. Kuhn. 1950. Extensive Games. Proceedings of the National Academy of Sciences 36, 1 (1950), 570–576.
[50] H.W. Kuhn. 1953. Extensive Games and the Problem of Information. In Contributions to the Theory of Games (vol. II).

Vol. 28. Princeton University Press, 193–216.
[51] A. Kuusisto. 2015. A Double Team Semantics for Generalized Quantifiers. Journal of Logic, Language, and Information

24, 2 (2015), 149–191.
[52] F. Laroussinie and N. Markey. 2014. Quantified CTL: Expressiveness and Complexity. Logical Methods in Computer

Science 10, 4 (2014), 1–45.
[53] K. Lorenz. 1968. Dialogspiele als Semantische Grundlage von Logikkalkülen. Archiv für Mathematische Logik und

Grundlagenforschung 11 (1968), 32–55.
[54] P. Lorenzen. 1961. Ein Dialogisches Konstruktivitätskriterium. In Symposium on Foundations of Mathematics’59. Polish

Scientific Publishers, 193–200.
[55] A.L. Mann, G. Sandu, and M. Sevenster. 2011. Independence-Friendly Logic - A Game-Theoretic Approach. Cambridge

University Press.
[56] A.D. Martin. 1975. Borel Determinacy. Annals of Mathematics 102, 2 (1975), 363–371.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

0:30 Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero

[57] A.D. Martin. 1985. A Purely Inductive Proof of Borel Determinacy. In Recursion Theory’82 (Symposia in Pure Mathe-
matics’42). American Mathematical Society and Association for Symbolic Logic, 303–308.

[58] F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi. 2012. What Makes ATL* Decidable? A Decidable Fragment of
Strategy Logic. In Concurrency Theory’12 (LNCS 7454). Springer, 193–208.

[59] F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi. 2014. Reasoning About Strategies: On the Model-Checking Problem.
Transactions On Computational Logic 15, 4 (2014), 34:1–42.

[60] F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi. 2017. Reasoning About Strategies: On the Satisfiability Problem.
Logical Methods in Computer Science 13, 1:9 (2017), 1–37.

[61] F. Mogavero, A. Murano, and L. Sauro. 2013. On the Boundary of Behavioral Strategies. In Logic in Computer Science’13.
IEEE Computer Society, 263–272.

[62] F. Mogavero, A. Murano, and L. Sauro. 2014. A Behavioral Hierarchy of Strategy Logic. In Computational Logic in
Multi-Agent Systems’14 (LNCS 8624). Springer, 148–165.

[63] F. Mogavero, A. Murano, and M.Y. Vardi. 2010. Reasoning About Strategies. In Foundations of Software Technology and
Theoretical Computer Science’10 (LIPIcs 8). Leibniz-Zentrum fuer Informatik, 133–144.

[64] A.W. Mostowski. 1984. Regular Expressions for Infinite Trees and a Standard Form of Automata. In Symposium on
Computation Theory’84 (LNCS 208). Springer, 157–168.

[65] A.W. Mostowski. 1991. Games with Forbidden Positions. Technical Report. University of Gdańsk, Gdańsk, Poland.
[66] D.E. Muller and P.E. Schupp. 1995. Simulating Alternating Tree Automata by Nondeterministic Automata: New Results

and New Proofs of Theorems of Rabin, McNaughton, and Safra. Theoretical Computer Science 141, 1-2 (1995), 69–107.
[67] R.B. Myerson. 1991. Game Theory: Analysis of Conflict. Harvard University Press.
[68] D. Perrin and J. Pin. 2004. Infinite Words. Elsevier.
[69] N. Piterman. 2006. From Nondeterministic Buchi and Streett Automata to Deterministic Parity Automata. In Logic in

Computer Science’06. IEEE Computer Society, 255–264.
[70] A. Pnueli. 1977. The Temporal Logic of Programs. In Foundation of Computer Science’77. IEEE Computer Society, 46–57.
[71] A. Pnueli. 1981. The Temporal Semantics of Concurrent Programs. Theoretical Computer Science 13 (1981), 45–60.
[72] A. Pnueli and R. Rosner. 1989. On the Synthesis of a Reactive Module. In Principles of Programming Languages’89.

Association for Computing Machinery, 179–190.
[73] G. Sandu. 1993. On the Logic of Informational Independence and its Applications. Journal of Philosophical Logic 22

(1993), 29–60.
[74] G. Sandu and J. Hintikka. 2001. Aspects of Compositionality. Journal of Logic, Language, and Information 10, 1 (2001),

49–61.
[75] G. Sandu and J.A. Väänänen. 1992. Partially Ordered Connectives. Mathematical Logic Quarterly 38, 1 (1992), 361–372.
[76] R. Selten. 1975. Reexamination of the Perfectness Concept for Equilibrium Points in Extensive Games. International

Journal of Game Theory 4, 1 (1975), 25–55.
[77] A.P. Sistla. 1983. Theoretical Issues in the Design and Verification of Distributed Systems. Ph.D. Dissertation. Harvard

University, Cambridge, MA, USA.
[78] A.P. Sistla, M.Y. Vardi, and P. Wolper. 1987. The Complementation Problem for Büchi Automata with Applications to

Temporal Logic. Theoretical Computer Science 49 (1987), 217–237.
[79] J.A. Väänänen. 2007. Dependence Logic: A New Approach to Independence Friendly Logic. London Mathematical Society

Student Texts, Vol. 70. Cambridge University Press.
[80] J. van Heijenoort. 1967. From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931. Harvard University Press.
[81] M.Y. Vardi and P. Wolper. 1986. An Automata-Theoretic Approach to Automatic Program Verification. In Logic in

Computer Science’86. IEEE Computer Society, 332–344.
[82] M.Y. Vardi and P. Wolper. 1986. Automata-Theoretic Techniques for Modal Logics of Programs. Journal of Computer

and System Science 32, 2 (1986), 183–221.
[83] J. Virtema, J. Hofmann, B. Finkbeiner, J. Kontinen, and F. Yang. 2021. Linear-Time Temporal Logic with Team Semantics:

Expressivity and Complexity. In Foundations of Software Technology and Theoretical Computer Science’21 (LIPIcs 213).
Leibniz-Zentrum fuer Informatik, 52:1–17.

[84] J. von Neumann. 1928. Zur Theorie der Gesellschaftsspiele. Math. Ann. 100, 1 (1928), 295–320.
[85] J. von Neumann and O. Morgenstern. 1944. Theory of Games and Economic Behavior. Princeton University Press.
[86] P. Wolfe. 1955. The Strict Determinateness of Certain Infinite Games. Pacific Journal of Mathemantics 5 (1955), 841–847.
[87] W. Zielonka. 1998. Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees.

Theoretical Computer Science 200, 1-2 (1998), 135–183.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

Good-for-Game QPTL: An Alternating Hodges Semantics 0:31

ELECTRONIC APPENDIX
A PROOFS OF SECTION 2

Proposition 1. 𝔛 ⊆ 𝔛 and 𝔛 ≡ 𝔛, for all 𝔛 ∈ HAsg.

Proof. To begin with, we show that 𝔛 ⊆ 𝔛. By definition of 𝔛, for every X ∈ 𝔛 there is a
function ΓX ∈ Chc(𝔛) such that X =

{
ΓX (X)

��X ∈ 𝔛
}
. Now, consider an arbitrary X ∈ 𝔛 and define

Γ as: Γ(X) = ΓX (X) for every X ∈ 𝔛. Notice that Γ(X) ∈ X, for every X ∈ 𝔛, and thus Γ ∈ Chc
(
𝔛

)
.

Therefore, we have that
{
Γ(X)

���X ∈ 𝔛

}
∈ 𝔛. To conclude the proof, we are left to show that{

Γ(X)
���X ∈ 𝔛

}
= X holds as well. First, observe that Γ(X) = ΓX (X) ∈ X holds for every X ∈ 𝔛, im-

plying
{
Γ(X)

���X ∈ 𝔛

}
⊆ X. In order to show the converse inclusion (

{
Γ(X)

���X ∈ 𝔛

}
⊇ X), consider

an arbitrary 𝜒 ∈ X and a function ΓX𝜒
∈ Chc(𝔛) such that ΓX𝜒

(X) = 𝜒 . Let X𝜒 ≜
{
ΓX𝜒

(X)
��X ∈ 𝔛

}
.

It holds that X𝜒 ∈ 𝔛. Since Γ(X𝜒) = ΓX𝜒
(X) = 𝜒 , we have that 𝜒 ∈

{
Γ(X)

���X ∈ 𝔛

}
and, since 𝜒 was

chosen arbitrarily, we conclude
{
Γ(X)

���X ∈ 𝔛

}
⊇ X.

Observe that, straightforwardly, 𝔛 ⊆ 𝔛 implies 𝔛 ⊑ 𝔛.
Let us turn now to proving 𝔛 ⊑ 𝔛. Let X ∈ 𝔛. By definition of 𝔛, there is a function Γ

X
∈ Chc

(
𝔛

)
such that X =

{
Γ

X
(X)

���X ∈ 𝔛

}
. Towards a contradiction, assume that for every X ∈ 𝔛 there

is 𝜒X ∈ X \ X. Let us define Γ as Γ(X) = 𝜒X for every X ∈ 𝔛. Notice that Γ ∈ Chc(𝔛). Thus,
X≜ {𝜒X | X ∈ 𝔛} ∈ 𝔛 and X ∩ X = ∅. However, Γ

X
(X) ∈ X ∩ X, thus rising a contradiction. □

Lemma 1 (Dualization). The following equivalences hold true, for all QPTL formulae 𝜑 and hyperas-
signments 𝔛 ∈ HAsg⊆ (free(𝜑)).
(1) Statements 1a and 1b are equivalent:

(a) there exists a set of assignments X ∈ 𝔛 such that 𝜒 |= 𝜑 , for all assignments 𝜒 ∈ X;
(b) for all sets of assignments X ∈ 𝔛, it holds that 𝜒 |= 𝜑 , for some assignment 𝜒 ∈ X.

(2) Statements 2a and 2b are equivalent:
(a) for all sets of assignments X ∈ 𝔛, it holds that 𝜒 |= 𝜑 , for some assignment 𝜒 ∈ X;
(b) there exists a set of assignments X ∈ 𝔛 such that 𝜒 |= 𝜑 , for all assignments 𝜒 ∈ X.

Proof. (1𝑎 ⇒ 1𝑏) By 1𝑎, there is X ∈ 𝔛 such that 𝜒 |= 𝜑 holds for every 𝜒 ∈ X. By definition
of 𝔛, for every X ∈ 𝔛 there is ΓX such that ΓX (X) ∈ X and X = {ΓX (X) : X ∈ 𝔛}; by 1𝑎,
ΓX (X) |= 𝜑 ; since, in addition, ΓX (X) ∈ X, the thesis holds.

(1𝑏 ⇒ 1𝑎) By 1𝑏, for every X ∈ 𝔛 there is 𝜒X ∈ X such that 𝜒X |= 𝜑 . Consider the function

Γ ∈ Chc
(
𝔛

)
defined as: Γ(X) = 𝜒X, for every X ∈ 𝔛. By definition of 𝔛, we have that

{Γ(X) : X ∈ 𝔛} ∈ 𝔛. By Proposition 1, it holds 𝔛 ⊑ 𝔛, which means that there is X ∈ 𝔛, with
X ⊆ {Γ(X) : X ∈ 𝔛}. Since, by construction, Γ(X) |= 𝜑 for every X ∈ 𝔛, the thesis holds.

(2𝑎 ⇔ 2𝑏) By statement 1 of this lemma, we have that 1𝑎 is false if and only if 1𝑏 is false (not 1𝑎 ⇔
not 1𝑏, for short). By instantiating, in this last equivalence, 𝜑 with ¬𝜑 , we have 1𝑎′ ⇔ 1𝑏 ′,
where 1𝑎′ and 1𝑏 ′ are abbreviations for, respectively:
– for all sets of assignments X ∈ 𝔛, there exists an assignment 𝜒 ∈ X such that 𝜒 ̸ |= ¬𝜑 ;

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

0:32 Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero

– there exists a set of assignments X ∈ 𝔛 such that, for all assignments 𝜒 ∈ X, it holds that
𝜒 ̸ |= ¬𝜑 .

By applying semantics of negation, it is straightforward to see that 1𝑎′ and 1𝑏 ′ correspond to
2𝑎 and 2𝑏, respectively, hence the thesis follows. □

Lemma 2 (Boolean Connectives). The following equivalences hold true, for all QPTL formulae 𝜑1
and 𝜑2 and hyperassignments 𝔛 ∈ HAsg⊆ (P), with P≜ free(𝜑1) ∪ free(𝜑2).
(1) Statements 1a and 1b are equivalent:

(a) there exists a set of assignments X ∈ 𝔛 such that 𝜒 |= 𝜑1 ∧ 𝜑2, for all assignments 𝜒 ∈ X;
(b) for each bipartition (𝔛1,𝔛2) ∈ par(𝔛) of 𝔛, there exist an index 𝑖 ∈ {1, 2} and a set of
assignments X ∈ 𝔛𝑖 such that 𝜒 |= 𝜑𝑖 , for all assignments 𝜒 ∈ X.

(2) Statements 2a and 2b are equivalent:
(a) for all sets of assignments X ∈ 𝔛, it holds that 𝜒 |= 𝜑1 ∨ 𝜑2, for some assignment 𝜒 ∈ X;
(b) there exists a bipartition (𝔛1,𝔛2) ∈ par(𝔛) of 𝔛 such that, for all indexes 𝑖 ∈ {1, 2} and sets
of assignments X ∈ 𝔛𝑖 , it holds that 𝜒 |= 𝜑𝑖 , for some 𝜒 ∈ X.

Proof. (1𝑎 ⇒ 1𝑏) Let X ∈ 𝔛 be such that 𝜒 |= 𝜑1 ∧ 𝜑2 holds for every 𝜒 ∈ X and consider an
arbitrary pair (𝔛1,𝔛2) ∈ par(𝔛). Since (𝔛1,𝔛2) is a partition of 𝔛, either X ∈ 𝔛1 or X ∈ 𝔛2:
in the former case, let 𝑖 = 1; in the latter, let 𝑖 = 2. Since X ∈ 𝔛𝑖 and 𝜒 |= 𝜑𝑖 holds for every
𝜒 ∈ X, the thesis holds.

(1𝑏 ⇒ 1𝑎) Consider �̊� = {X ∈ 𝔛 : ∀𝜒 ∈ X . 𝜒 |= 𝜑1} and the pair (𝔛1 ≜𝔛 \ �̊�,𝔛2 ≜ �̊�) ∈ par(𝔛).
Observe that, by definition of 𝔛1, there is no X ∈ 𝔛1 such that 𝜒 |= 𝜑1 holds for every 𝜒 ∈ X.
Thus, by 1𝑏, there must exist X ∈ 𝔛2 such that 𝜒 |= 𝜑2 holds for every 𝜒 ∈ X. By definition of
𝔛2, it also holds that 𝜒 |= 𝜑1 for every 𝜒 ∈ X, hence the thesis.

(2𝑎 ⇔ 2𝑏) By statement 1 of this lemma, we have that 1𝑎 is false if and only if 1𝑏 is false (not 1𝑎 ⇔
not 1𝑏, for short). By instantiating, in this last equivalence, 𝜑1 with ¬𝜑1 and 𝜑2 with ¬𝜑2, we
have 1𝑎′ ⇔ 1𝑏 ′, where 1𝑎′ and 1𝑏 ′ are abbreviations for, respectively:
– for all sets of assignments X ∈ 𝔛, there exists an assignment 𝜒 ∈ X such that 𝜒 ̸ |= ¬𝜑1∧¬𝜑2;
– there exists a pair of hyperassignments (𝔛1,𝔛2) ∈ par(𝔛) such that, for all indexes 𝑖 ∈ {1, 2}
and sets of assignments X ∈ 𝔛𝑖 , there exists an assignment 𝜒 ∈ X for which it holds that
𝜒 ̸ |= ¬𝜑𝑖 .

By applying the semantics of negation and the classical De Morgan’s laws on the semantic
rules, it is straightforward to see that 1𝑎′ and 1𝑏 ′ correspond to 2𝑎 and 2𝑏, respectively, hence
the thesis. □

Lemma 3 (Hyperassignment Extensions). The following equivalences hold true, for all QPTL for-
mulae 𝜑 , atomic propositions 𝑝 ∈ AP, and hyperassignments 𝔛 ∈ HAsg⊆ (free(𝜑) \ {𝑝}).
(1) Statements 1a and 1b are equivalent:

(a) there exists a set of assignments X ∈ 𝔛 such that 𝜒 |= ∃𝑝. 𝜑 , for all assignments 𝜒 ∈ X;
(b) there exists a set of assignments X ∈ ext(𝔛, 𝑝) such that 𝜒 |= 𝜑 , for all assignments 𝜒 ∈ X.

(2) Statements 2a and 2b are equivalent:
(a) for all sets of assignments X ∈ 𝔛, it holds that 𝜒 |= ∀𝑝. 𝜑 , for some assignment 𝜒 ∈ X;
(b) for all sets of assignments X ∈ ext(𝔛, 𝑝), it holds that 𝜒 |= 𝜑 , for some assignment 𝜒 ∈ X.

Proof. (1𝑎 ⇒ 1𝑏) Let X ∈ 𝔛 be such that 𝜒 |= ∃𝑝.𝜑 holds for every 𝜒 ∈ X. By semantics
(Def. 2, item 3a), for every 𝜒 ∈ X, there is a temporal function f𝜒 ∈ N → B such that
𝜒 [𝑝 ↦→ f𝜒] |= 𝜑 . Let F ∈ Fnc(ap(𝔛)) be such that F(𝜒) = f𝜒 for every 𝜒 ∈ X and let
XF = {𝜒 [𝑝 ↦→ F(𝜒)] : 𝜒 ∈ X}. Since XF ∈ ext(𝔛, 𝑝) and 𝜒 |= 𝜑 holds for every 𝜒 ∈ XF, the
thesis holds.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

Good-for-Game QPTL: An Alternating Hodges Semantics 0:33

(1𝑏 ⇒ 1𝑎) Let XF ∈ ext(𝔛, 𝑝) be such that 𝜒 |= 𝜑 holds for every 𝜒 ∈ XF. By definition of ext(𝔛, 𝑝),
there are X ∈ 𝔛 and F ∈ Fnc(ap(𝔛)) such that XF = {𝜒 [𝑝 ↦→ F(𝜒)] : 𝜒 ∈ X}. Clearly, by
semantics (Def. 2, item 3a), 𝜒 |= ∃𝑝.𝜑 holds for every 𝜒 ∈ X, hence the thesis follows.

(2𝑎 ⇔ 2𝑏) By statement 1 of this lemma, we have that 1𝑎 is false if and only if 1𝑏 is false (not 1𝑎 ⇔
not 1𝑏, for short). By instantiating, in this last equivalence, 𝜑 with ¬𝜑 , we have 1𝑎′ ⇔ 1𝑏 ′,
where 1𝑎′ and 1𝑏 ′ are abbreviations for, respectively:
– for all sets of assignments X ∈ 𝔛, there exists an assignment 𝜒 ∈ X such that 𝜒 ̸ |= ∃𝑝.¬𝜑 ;
– for all sets of assignments X ∈ ext(𝔛, 𝑝), there exists an assignment 𝜒 ∈ X such that
𝜒 ̸ |= ¬𝜑 .

By applying semantics of negation and duality of ∃ and ∀, it is straightforward to see that
1𝑎′ and 1𝑏 ′ correspond to 2𝑎 and 2𝑏, respectively, hence the thesis. □

Next, we prove Theorem 1. Here is the graph of dependency presenting the lemmata and
propositions used for this proof, an edge meaning that the source is directely cited in the proof of
the target.

Theorem 1

Lemma 1

Lemma 2

Lemma 3

Proposition 1

Theorem1 (Semantics Adequacy). For allQPTL formulae𝜑 and hyperassignments𝔛 ∈ HAsg⊆ (free(𝜑)):
(1) 𝔛 |=∃∀ 𝜑 iff there exists a set of assignments X ∈ 𝔛 such that 𝜒 |= 𝜑 , for all assignments 𝜒 ∈ X;
(2) 𝔛 |=∀∃ 𝜑 iff, for all sets of assignments X ∈ 𝔛, it holds that 𝜒 |= 𝜑 , for some assignment 𝜒 ∈ X.

Proof. Both claims 1 and 2 are proved together, by induction on the structure of the formula.
(base case) If 𝜑 ∈ LTL, then the claims immediately follows from the semantics (Definition 3,

item 1).
(inductive step) If 𝜑 = ¬𝜓 , then we have, by semantics, 𝔛 |=𝛼 𝜑 if and only if 𝔛 ̸ |=𝛼 𝜓 . If 𝛼 = ∃∀,

then, by inductive hypothesis, it is not the case that for every X ∈ 𝔛 there is 𝜒 ∈ X such that
𝜒 |= 𝜓 , which amounts to say that there is X ∈ 𝔛 such that for every 𝜒 ∈ X it holds 𝜒 ̸ |= 𝜓 ,
from which the thesis follows. If, instead, 𝛼 = ∀∃, then, by inductive hypothesis, there is no
X ∈ 𝔛 such that for every 𝜒 ∈ X it holds 𝜒 |= 𝜓 , which amounts to say that for every X ∈ 𝔛

there is 𝜒 ∈ X such that 𝜒 ̸ |= 𝜓 , from which the thesis follows.
If 𝜑 = 𝜑1 ∧ 𝜑2 and 𝛼 = ∃∀, then we have, by semantics, 𝔛 |=𝛼 𝜑 if and only if for every
(𝔛1,𝔛2) ∈ par(𝔛) it holds true that 𝔛1 ≠ ∅ and 𝔛1 |=𝛼 𝜑1 or it holds true that 𝔛2 ≠ ∅ and
𝔛2 |=𝛼 𝜑2. By inductive hypothesis, this amounts to say that for every (𝔛1,𝔛2) ∈ par(𝔛)
there is 𝑖 ∈ {1, 2} and X ∈ 𝔛𝑖 such that for every 𝜒 ∈ X it holds 𝜒 |= 𝜑𝑖 . The thesis follows
from Lemma 2, item 1.
If 𝜑 = 𝜑1 ∧ 𝜑2 and 𝛼 = ∀∃, then we have, by semantics, 𝔛 |=𝛼 𝜑 if and only if 𝔛 |=𝛼 𝜑 . By
proceeding as before, i.e., by applying semantics, inductive hypothesis, and Lemma 2, item 1,
we have that there is X ∈ 𝔛 such that for every 𝜒 ∈ X it holds 𝜒 |= 𝜑 . The thesis follows from
Lemma 1, item 2.
If 𝜑 = 𝜑1 ∨ 𝜑2 and 𝛼 = ∀∃, then we have, by semantics, 𝔛 |=𝛼 𝜑 if and only if there is
(𝔛1,𝔛2) ∈ par(𝔛) such that 𝔛1 ≠ ∅ implies 𝔛1 |=𝛼 𝜑1 and 𝔛2 ≠ ∅ implies 𝔛2 |=𝛼 𝜑2. By
inductive hypothesis, this amounts to say that there is (𝔛1,𝔛2) ∈ par(𝔛) such that for every
𝑖 ∈ {1, 2} and X ∈ 𝔛𝑖 there is 𝜒 ∈ X for which it holds 𝜒 |= 𝜑𝑖 . The thesis follows from
Lemma 2, item 2.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

0:34 Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero

If 𝜑 = 𝜑1 ∨ 𝜑2 and 𝛼 = ∃∀, then we have, by semantics, 𝔛 |=𝛼 𝜑 if and only if 𝔛 |=𝛼 𝜑 .
By proceeding as before, i.e., by applying semantics, inductive hypothesis, and Lemma 2,
item 2, we have that for every X ∈ 𝔛 there is 𝜒 ∈ X such that 𝜒 |= 𝜑 . The thesis follows from
Lemma 1, item 1.
If 𝜑 = ∃𝑝.𝜓 and 𝛼 = ∃∀, then we have, by semantics, 𝔛 |=𝛼 𝜑 if and only if ext(𝔛, 𝑝) |=𝛼𝜓 .
By inductive hypothesis, this amounts to say that there is X ∈ ext(𝔛, 𝑝) such that for every
𝜒 ∈ X it holds 𝜒 |= 𝜓 . The thesis follows from Lemma 3, item 1.
If 𝜑 = ∃𝑝.𝜓 and 𝛼 = ∀∃, then we have, by semantics, 𝔛 |=𝛼 𝜑 if and only if 𝔛 |=𝛼 𝜑 . By
proceeding as before, i.e., by applying semantics, inductive hypothesis, and Lemma 3, item 1,
we have that there is X ∈ 𝔛 such that for every 𝜒 ∈ X it holds 𝜒 |= 𝜑 . The thesis follows from
Lemma 1, item 2.
If 𝜑 = ∀𝑝.𝜓 and 𝛼 = ∀∃, then we have, by semantics, 𝔛 |=𝛼 𝜑 if and only if ext(𝔛, 𝑝) |=𝛼𝜓 .
By inductive hypothesis, this amounts to say that for every X ∈ ext(𝔛, 𝑝) there is 𝜒 ∈ X such
that 𝜒 |= 𝜓 . The thesis follows from Lemma 3, item 2.
If 𝜑 = ∀𝑝.𝜓 and 𝛼 = ∃∀, then we have, by semantics, 𝔛 |=𝛼 𝜑 if and only if 𝔛 |=𝛼 𝜑 . By
proceeding as before, i.e., by applying semantics, inductive hypothesis, and Lemma 3, item 2,
we have that for every X ∈ 𝔛 there is 𝜒 ∈ X such that 𝜒 |= 𝜑 . The thesis follows from
Lemma 1, item 1. □

B PROOFS OF SECTION 3
Proposition 2. Let P ⊆ AP be a set of atomic propositions, 𝜒1, 𝜒2 ∈ Asg(P) two assignments,𝛩 ∈ Θ
a quantifier specification, and 𝑘 ∈ N a time instant. Then, 𝜒1 ≈𝑘

𝛩
𝜒2 iff the following hold true:

(1) 𝜒1 (𝑞) = 𝜒2 (𝑞), for all 𝑞 ∈ P \ (PB ∪ PS);
(2) 𝜒1 (𝑝) (𝑡) = 𝜒2 (𝑝) (𝑡), for all 𝑡 ≤ 𝑘 and 𝑝 ∈ (PB ∩ P) \ PS;
(3) 𝜒1 (𝑝) (𝑡) = 𝜒2 (𝑝) (𝑡), for all 𝑡 < 𝑘 and 𝑝 ∈ PS ∩ P.

Proof. Assume 𝜒1 ≈𝑘
𝛩

𝜒2. Because ≈𝑘
𝛩
is the transitive closure of ∼𝑘

𝛩
, we have 𝜒1 = 𝜒 (1) ∼𝑘

𝛩

𝜒 (2) ∼𝑘
𝛩
. . . ∼𝑘

𝛩
𝜒 (𝑟) = 𝜒2, for some 𝜒 (1), . . . , 𝜒 (𝑟), with 𝑟 ∈ N \ {0} (observe that 𝜒1 = 𝜒2 if 𝑟 = 1).

We prove, by induction on 𝑟 , that items 1–3 hold. If 𝑟 = 1, then the claim follows trivially. Let
𝑟 > 1. Since 𝜒 (1) ∼𝑘

𝛩
𝜒 (2), we have that 1–3 hold when instantiated with 𝜒 (1) and 𝜒 (2), by Definition 4.

Moreover, by inductive hypothesis, 1–3 hold when instantiated with 𝜒 (2) and 𝜒 (𝑟). The claim follows
by transitivity of 1–3.
Now, in order to prove the converse direction, assume that items 1–3 hold. Let {𝑝1, . . . , 𝑝𝑟 } be

an enumeration of PB ∪ PS and define 𝜒 (1)≜ 𝜒1 and 𝜒 (𝑖+1)≜ 𝜒 (𝑖)[𝑝𝑖 ↦→ 𝜒2 (𝑝𝑖)] for 𝑖 ∈ [1, . . . , 𝑟].
It is not difficult to convince oneself that 𝜒1 = 𝜒 (1) ∼𝑘

𝛩
𝜒 (2) ∼𝑘

𝛩
. . . ∼𝑘

𝛩
𝜒 (𝑟+1) = 𝜒2 holds, hence

𝜒1 ≈𝑘
𝛩

𝜒2. □

Proposition 3. If 𝜒1 ≈𝑘
𝛩

𝜒2 then F(𝜒1) (𝑘) = F(𝜒2) (𝑘), for all assignments 𝜒1, 𝜒2 ∈ Asg(P), quanti-
fier specifications𝛩 ∈ Θ, time instants 𝑘 ∈ N, and𝛩 -functors F ∈ Fnc𝛩 (P).

Proof. Assume 𝜒1 ≈𝑘
𝛩

𝜒2, i.e., 𝜒1 = 𝜒 (1) ∼𝑘
𝛩

𝜒 (2) ∼𝑘
𝛩

. . . ∼𝑘
𝛩

𝜒 (𝑟) = 𝜒2, for some 𝜒 (1), . . . , 𝜒 (𝑟),
with 𝑟 ∈ N \ {0} (observe that 𝜒1 = 𝜒2 if 𝑟 = 1).

We prove, by induction on 𝑟 , that F(𝜒1) (𝑘) = F(𝜒2) (𝑘). If 𝑟 = 1, then the claim follows trivially.
Let 𝑟 > 1. Since 𝜒 (1) ∼𝑘

𝛩
𝜒 (2) and F ∈ Fnc𝛩 (P), we have that F(𝜒 (1)) (𝑘) = F(𝜒 (2)) (𝑘). Moreover, by

inductive hypothesis, F(𝜒 (2)) (𝑘) = F(𝜒 (𝑟)) (𝑘). The claim follows by transitivity. □

Proposition 4. Let 𝔛1,𝔛2 ∈ HAsg be two hyperassignments with 𝔛1 ⊑ 𝔛2. Then, the following
properties hold true:

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

Good-for-Game QPTL: An Alternating Hodges Semantics 0:35

(1) 𝔛2 ⊑ 𝔛1;
(2) for every (𝔛′

2,𝔛
′′
2) ∈ par(𝔛2), there exists (𝔛′

1,𝔛
′′
1) ∈ par(𝔛1) such that𝔛′

1 ⊑ 𝔛′
2 and𝔛

′′
1 ⊑ 𝔛′′

2 ,
and, in addition, 𝔛′

2 = ∅ implies 𝔛′
1 = ∅ and 𝔛′′

2 = ∅ implies 𝔛′′
1 = ∅;

(3) ext𝛩 (𝔛1, 𝑝) ⊑ ext𝛩 (𝔛2, 𝑝), for every𝛩 ∈ Θ and 𝑝 ∈ AP.

Proof. Proof of point (1). Assume 𝔛1 ⊑𝔛2and let X2 ∈ 𝔛2. We have to show that there exists
X1 ∈ 𝔛1 such that X1 ⊆ X2. By 𝔛1 ⊑ 𝔛2, there is a function 𝑓 : 𝔛1 → 𝔛2, such that 𝑓 (X1) ⊆ X1. By
definition of 𝔛2, we have that X2 = img(Γ2) for some Γ2 ∈ Chc(𝔛2).
Now, define Γ1 as Γ1 (X1)≜ Γ2 (𝑓 (X1)) for every X1 ∈ 𝔛1. Clearly, Γ1 ∈ Chc(𝔛1), as Γ1 (X1) =

Γ2 (𝑓 (X1)) ∈ 𝑓 (X1) ⊆ X1, for each X1 ∈ 𝔛1, and thus img(Γ1) ∈ 𝔛1. The thesis follows from the
fact that img(Γ1) ⊆ img(Γ2) = X2.
Proof of point (2). Assume 𝔛1 ⊑ 𝔛2 and let (𝔛′

2 ,𝔛
′′
2) ∈ par(𝔛2). We have to show that there

exists (𝔛′
1 ,𝔛

′′
1) ∈ par(𝔛1) such that 𝔛′

1 ⊑ 𝔛
′
2and 𝔛

′′
1 ⊑ 𝔛

′′
2 . By 𝔛1 ⊑ 𝔛2, there is a function

𝑓 : 𝔛1 → 𝔛2, such that 𝑓 (X1) ⊆ X1 for each X1 ∈ 𝔛1. Consider 𝔛
′
1≜

{
X ∈ 𝔛1

�� 𝑓 (X) ∈ 𝔛
′
2
}
and

𝔛
′′
1≜

{
X ∈ 𝔛1

�� 𝑓 (X) ∈ 𝔛
′′
2
}
. For any X′

1 ∈ 𝔛
′
1 , it holds that 𝑓 (X

′
1) ⊆ X′

1 . By definition of 𝔛′
1, it also

holds that 𝑓 (X′
1) ∈ 𝔛

′
2 . Hence 𝔛

′
1⊑𝔛

′
2. Furthermore, it is immediate to see that 𝔛′

2= ∅ ⇒ 𝔛
′
1= ∅. The

same reasoning holds for 𝔛′′
1⊑𝔛

′′
2. Thus, the thesis is proven.

Proof of point (3). Assume 𝔛1 ⊑𝔛2and let X′
1 ∈ ext𝛩 (𝔛1, 𝑝). We have to show that there exists

X′
2 ∈ ext𝛩 (𝔛2, 𝑝) such that X′

2 ⊆ X′
1. By definition of ext𝛩 (𝔛1, 𝑝), we have that X′

1= ext(X1, F, 𝑝) for
some X1 ∈ 𝔛1 and F ∈ Fnc𝛩 (ap(𝔛1)). By 𝔛1 ⊑ 𝔛2 and X1 ∈ 𝔛1, we have that there is X2 ∈ 𝔛2 such
that X2 ⊆ X1.

It clearly holds that ext(X2, F, 𝑝) ⊆ ext(X1, F, 𝑝). The thesis follows, since ext(X2, F, 𝑝) ∈ ext𝛩 (𝔛2, 𝑝).
□

Next, we prove Theorem 2. Here is the graph of dependency presenting the only proposition
used for this proof.

Theorem 2Proposition 4

Theorem 2 (Hyperassignment Refinement). Let 𝜑 be a GFG-QPTL formula and 𝔛1,𝔛2 ∈ HAsg⊆
(free(𝜑)) two hyperassignments with 𝔛1 ⊑ 𝔛2. Then, 𝔛1 |=∃∀ 𝜑 implies 𝔛2 |=∃∀ 𝜑 and 𝔛2 |=∀∃ 𝜑
implies 𝔛1 |=∀∃𝜑 .

Proof. Assume 𝔛1 ⊑𝔛2. Thus, there is a function 𝑓 : 𝔛1 → 𝔛2, such that 𝑓 (X1) ⊆ X1 for every
X1 ∈ 𝔛1. The claim is proved by induction on the structure of the formula and the alternation flags.
More precisely, we consider, as a basis for the induction, a well-founded preorder ⪯ over the set of
pairs {⟨𝜑, 𝛼⟩ | 𝜑 is a GFG-QPTL formula and 𝛼 ∈ {∃∀,∀∃}}, such that ⟨𝜑, 𝛼⟩ ⪯ ⟨𝜑 ′, 𝛼 ′⟩ if and only
if 𝜑 is a subformula of 𝜑 ′ or one of the following holds:

• 𝜑 = 𝜑 ′ = 𝜓1 ∧𝜓2, 𝛼 = ∃∀, and 𝛼 ′ = ∀∃,
• 𝜑 = 𝜑 ′ = 𝜓1 ∨𝜓2, 𝛼 = ∀∃, and 𝛼 ′ = ∃∀,
• 𝜑 = 𝜑 ′ = ∃𝑝 :𝛩.𝜓 , 𝛼 = ∃∀, and 𝛼 ′ = ∀∃,
• 𝜑 = 𝜑 ′ = ∀𝑝 :𝛩.𝜓 , 𝛼 = ∀∃, and 𝛼 ′ = ∃∀.

(base case) If 𝜑 ∈ LTL, then the claim immediately follows from the semantics (Definition 3, item 1).
(inductive step) – (𝜑 = ¬𝜓) We have, by semantics, 𝔛1 |=∃∀ 𝜑 if and only if 𝔛1 ̸ |=∀∃ 𝜓 . By inductive

hypothesis, this implies 𝔛2 ̸ |=∀∃ 𝜓 , which, by semantics, amounts to 𝔛2 |=∃∀ 𝜑 .
On the other hand, we also have, by semantics, 𝔛2 |=∀∃ 𝜑 if and only if 𝔛2 ̸ |=∃∀ 𝜓 . By
inductive hypothesis, this implies 𝔛1 ̸ |=∃∀ 𝜓 , which, by semantics, amounts to 𝔛1 |=∀∃ 𝜑 .

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

0:36 Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero

– (𝜑 = 𝜑1 ∧𝜑2) We have, by semantics, 𝔛1 |=∃∀ 𝜑 if and only if for every (𝔛′
1,𝔛

′′
1) ∈ par(𝔛1) it

holds true that𝔛′
1≠ ∅ and𝔛′

1 |=
∃∀𝜑1 or it holds true that𝔛

′′
1 ≠ ∅ and𝔛′′

1 |=
∃∀𝜑2. This implies

that 𝔛1 ≠ ∅ and so 𝔛2 ≠ ∅. Consider (𝔛′
2,𝔛

′′
2) ∈ par(𝔛2). By Proposition 4, there exists

(𝔛′
1,𝔛

′′
1) ∈ par(𝔛1) such that 𝔛′

1 ⊑ 𝔛
′
2, 𝔛

′′
1 ⊑ 𝔛

′′
2 , 𝔛

′
2 = ∅ ⇒ 𝔛′

1 = ∅, and 𝔛′′
2 = ∅ ⇒ 𝔛′′

1 = ∅.
Because (𝔛′

2,𝔛
′′
2) ∈ par(𝔛2), it holds true that 𝔛′

2 ≠ ∅ or 𝔛′′
2 ≠ ∅. Since 𝔛1 |=∃∀ 𝜑 , by

inductive hypothesis, it holds true that 𝔛′
1 ≠ ∅ and 𝔛

′
2 |=

∃∀𝜑1 or it holds true that 𝔛
′′
1 ≠ ∅

and 𝔛′′
2 |=

∃∀𝜑2. Finally, since 𝔛′
2 = ∅ ⇒ 𝔛′

1 = ∅, if 𝔛′
2 = ∅, then 𝔛

′′
2 ≠ ∅ and 𝔛′′

2 |=
∃∀𝜑2, and,

similarly, if 𝔛′′
2 = ∅, then 𝔛

′
2≠ ∅ and 𝔛′

2 |=
∃∀𝜑1. So, it holds true that 𝔛

′
2≠ ∅ and 𝔛′

2 |=
∃∀𝜑1

or it holds true that 𝔛′′
2 ≠ ∅ and 𝔛′′

2 |=
∃∀𝜑2, which, by semantics, amounts to 𝔛2 |=∃∀ 𝜑 .

On the other hand, we also have, by semantics, 𝔛2 |=∀∃ 𝜑 if and only if 𝔛2 |=∃∀ 𝜑 . By
inductive hypothesis and Proposition 4, this implies 𝔛1 |=∃∀ 𝜑 , which, by semantics,
amounts to 𝔛1 |=∀∃ 𝜑 .

– (𝜑 = 𝜑1∨𝜑2) We have, by semantics,𝔛2 |=∀∃ 𝜑 if and only if there is (𝔛′
2,𝔛

′′
2) ∈ par(𝔛2) such

that 𝔛′
2≠ ∅ implies 𝔛′

2 |=
∀∃𝜑1 and 𝔛

′′
2 ≠ ∅ implies 𝔛′′

2 |=
∀∃𝜑2. By Proposition 4, there exists

(𝔛′
1,𝔛

′′
1) ∈ par(𝔛1) such that 𝔛′

1 ⊑ 𝔛
′
2, 𝔛

′′
1 ⊑ 𝔛

′′
2 , 𝔛

′
2 = ∅ ⇒ 𝔛′

1 = ∅, and 𝔛′′
2 = ∅ ⇒ 𝔛′′

1 = ∅.
By inductive hypothesis, 𝔛′

2 |=
∀∃ 𝜑1 implies 𝔛′

1 |=
∀∃ 𝜑1 and 𝔛

′′
2 |=∀∃ 𝜑2 implies 𝔛′′

1 |=∀∃ 𝜑2.
Therefore, 𝔛1 |=∀∃ 𝜑 holds.
On the other hand, we also have, by semantics, 𝔛1 |=∃∀ 𝜑 if and only if 𝔛1 |=∀∃ 𝜑 . By
inductive hypothesis and Proposition 4, this implies 𝔛2 |=∀∃ 𝜑 , which, by semantics,
amounts to 𝔛2 |=∃∀ 𝜑 .

– (𝜑 = ∃𝑝 :𝛩.𝜓) We have, by semantics, 𝔛1 |=∃∀ 𝜑 if and only if ext𝛩 (𝔛1, 𝑝) |=∃∀ 𝜓 . By
inductive hypothesis and Proposition 4, this implies ext𝛩 (𝔛2, 𝑝) |=∃∀𝜓 , which, by semantics,
amounts to 𝔛2 |=∃∀ 𝜑 .
On the other hand, we also have, by semantics, 𝔛2 |=∀∃ 𝜑 if and only if 𝔛2 |=∃∀ 𝜑 . By
inductive hypothesis and Proposition 4, this implies 𝔛1 |=∃∀ 𝜑 , which, by semantics,
amounts to 𝔛1 |=∀∃ 𝜑 .

– (𝜑 = ∀𝑝 :𝛩.𝜓) We have, by semantics, 𝔛2 |=∀∃ 𝜑 if and only if ext𝛩 (𝔛2, 𝑝) |=∀∃ 𝜓 . By
inductive hypothesis and Proposition 4, this implies ext𝛩 (𝔛1, 𝑝) |=∀∃𝜓 , which, by semantics,
amounts to 𝔛1 |=∀∃ 𝜑 .
On the other hand, we also have, by semantics, 𝔛1 |=∃∀ 𝜑 if and only if 𝔛1 |=∀∃ 𝜑 . By
inductive hypothesis and Proposition 4, this implies 𝔛2 |=∀∃ 𝜑 , which, by semantics,
amounts to 𝔛2 |=∃∀ 𝜑 . □

Next, we prove Theorem 3. Here is the graph of dependency presenting the lemma, proposition,
corollary and theorem used for this proof. The ellipsis symbolizing dependencies already presented
in a previous graph.

Theorem 3

Theorem 2

Lemma 1

Corollary 1

Proposition 1

. . .

Theorem 3 (Double Dualization). Let 𝜑 be a GFG-QPTL formula and 𝔛 ∈ HAsg⊆ (free(𝜑)) a
hyperassignment. Then, 𝔛 |=𝛼 𝜑 iff 𝔛 |=𝛼 𝜑 iff 𝔛 |=𝛼 𝜑 .

Proof. The fact that

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

Good-for-Game QPTL: An Alternating Hodges Semantics 0:37

𝔛 |=𝛼 𝜑 iff 𝔛 |=𝛼 𝜑 (Thm. 3a)

immediately follows from 𝔛 ≡ 𝔛 (Proposition 1) and Corollary 1.
We now turn to proving that 𝔛 |=𝛼 𝜑 iff 𝔛 |=𝛼 𝜑 , for all 𝔛 ∈ HAsg⊆ (free(𝜑)). The proof is done

by structural induction on the formula.
• If 𝜑 ∈ LTL, then the claim follows immediately from the semantics and Lemma 1.
• If 𝜑 = ¬𝜓 , then we have: 𝔛 |=𝛼 𝜑

sem.⇔ 𝔛 ̸ |=𝛼𝜓
ind.hp.
⇔ 𝔛 ̸ |=𝛼 𝜓

sem.⇔ 𝔛 |=𝛼 𝜑 .
• If 𝜑 = 𝜑1 ∧ 𝜑2, then we have:
– 𝔛 |=∃∀ 𝜑

sem.⇔ 𝔛 |=∃∀ 𝜑
Thm. 3a⇔ 𝔛 |=∃∀ 𝜑 ; and

– 𝔛 |=∀∃ 𝜑
sem.⇔ 𝔛 |=∃∀ 𝜑 .

• If 𝜑 = 𝜑1 ∨ 𝜑2, then we have:
– 𝔛 |=∃∀ 𝜑

sem.⇔ 𝔛 |=∀∃ 𝜑 ; and
– 𝔛 |=∀∃ 𝜑

sem.⇔ 𝔛 |=∀∃ 𝜑
Thm. 3a⇔ 𝔛 |=∀∃ 𝜑 .

• If 𝜑 = ∃𝑝 :𝛩.𝜓 , then we have:
– 𝔛 |=∃∀ 𝜑

sem.⇔ 𝔛 |=∃∀ 𝜑
Thm. 3a⇔ 𝔛 |=∃∀ 𝜑 ; and

– 𝔛 |=∀∃ 𝜑
sem.⇔ 𝔛 |=∃∀ 𝜑 .

• If 𝜑 = ∀𝑝 :𝛩.𝜓 , then we have:
– 𝔛 |=∃∀ 𝜑

sem.⇔ 𝔛 |=∀∃ 𝜑 ;
– 𝔛 |=∀∃ 𝜑

sem.⇔ 𝔛 |=∀∃ 𝜑
Thm. 3a⇔ 𝔛 |=∀∃ 𝜑 . □

Lemma 4 (Boolean Laws). Let 𝜑 , 𝜑1, 𝜑2 be GFG-QPTL formulae:
(1) 𝜑 ≡ ¬¬𝜑 ;
(2) 𝜑1 ∧ 𝜑2 ⇒ 𝜑1;
(3) 𝜑1 ⇒ 𝜑1 ∨ 𝜑2;
(4) 𝜑1 ∧ 𝜑2 ≡ 𝜑2 ∧ 𝜑1;
(5) 𝜑1 ∨ 𝜑2 ≡ 𝜑2 ∨ 𝜑1;
(6) 𝜑1 ∧ (𝜑 ∧ 𝜑2) ≡ (𝜑1 ∧ 𝜑) ∧ 𝜑2;
(7) 𝜑1 ∨ (𝜑 ∨ 𝜑2) ≡ (𝜑1 ∨ 𝜑) ∨ 𝜑2;
(8) 𝜑1 ∧ 𝜑2 ≡ ¬(¬𝜑1 ∨ ¬𝜑2);
(9) 𝜑1 ∨ 𝜑2 ≡ ¬(¬𝜑1 ∧ ¬𝜑2);
(10) ∃𝛩𝑝. 𝜑 ≡ ¬(∀𝛩𝑝.¬𝜑);
(11) ∀𝛩𝑝. 𝜑 ≡ ¬(∃𝛩𝑝.¬𝜑).

Proof. Thanks to Corollary 2, it suffices to prove the equivalence for ≡𝛼 for some 𝛼 ∈ {∃∀,∀∃}.
Let 𝜑 be a QPTL formula and 𝔛 ∈ HAsg(free(𝜑)) a hyperassignment.

1) From 𝔛 |=∃∀ ¬¬𝜑 , applying the semantics twice leads to 𝔛 |=∃∀ 𝜑 .
2) If 𝔛 |=∃∀ 𝜑1 ∧ 𝜑2 then by semantics, the partition (𝔛1 ≜𝔛,𝔛2 ≜ ∅) proves that 𝔛 |=∃∀ 𝜑1.
3) If 𝔛 |=∀∃ 𝜑1 then, by considering the partition (𝔛1 ≜𝔛,𝔛2 ≜ ∅) it follows that 𝔛 |=∀∃ 𝜑1 ∨𝜑2.

4-5) Remark that if (𝔛1, 𝔛2) ∈ par(𝔛), then (𝔛2, 𝔛1) ∈ par(𝔛).
6-7) Remark that every 3-partition can be obtained by bi-partitioning twice. Furthermore, the

second partitioning can be performed on the first part or the second part equivalently. Thus,
by applying this idea to the semantics rules, the two points hold.

8) By semantics, 𝔛 |=∃∀ 𝜑1 ∧ 𝜑2 means that for all partition (𝔛1,𝔛2) ∈ par(𝔛) it holds (𝔛1 ≠ ∅
and 𝔛1 |=∃∀𝜑1) or (𝔛2 ≠ ∅ and 𝔛2 |=∃∀𝜑2). Then, by applying 1) and the semantics rule of
negation consecutively in each term of the disjunction, it results that for all (𝔛1,𝔛2) ∈ par(𝔛)

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

0:38 Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero

it holds (𝔛1 ≠ ∅ and 𝔛1 ̸ |=∀∃ ¬𝜑1) or (𝔛2 ≠ ∅ and 𝔛2 ̸ |=∀∃ ¬𝜑2) which is the semantic of
𝔛 ̸ |=∀∃ ¬𝜑1 ∨ ¬𝜑2, hence 𝔛 |=∃∀ ¬(¬𝜑1 ∨ ¬𝜑2). Since all transformations are equivalences,
the reverse path holds.

9) By semantics, 𝔛 |=∀∃ 𝜑1 ∨ 𝜑2 means that there is a partition (𝔛1,𝔛2) ∈ par(𝔛) such that
(𝔛1 ≠ ∅ implies 𝔛1 |=∀∃ 𝜑1) and (𝔛2 ≠ ∅ implies 𝔛2 |=∀∃ 𝜑2). Then, by applying 1) and
the semantics rule of negation consecutively in each term of the conjunction, it results that
there is (𝔛1,𝔛2) ∈ par(𝔛) such that (𝔛1 ≠ ∅ implies 𝔛1 ̸ |=∃∀ ¬𝜑1) and (𝔛2 ≠ ∅ implies
𝔛2 ̸ |=∃∀¬𝜑2) which is the semantics for 𝔛 ̸ |=∃∀ ¬𝜑1 ∧¬𝜑2, hence 𝔛 |=∀∃ ¬(¬𝜑1 ∧¬𝜑2). Since
all transformations are equivalences, the reverse path holds.

10) By semantics, 𝔛 |=∃∀ ∃𝑝 :𝛩.𝜓 means that ext𝛩 (𝔛, 𝑝) |=∃∀ 𝜓 . Then by applying the point
1) and the semantics rule for negation consecutively, it results that ext𝛩 (𝔛, 𝑝) ̸|=∀∃ ¬𝜓 .
We now introduce the universal quantifier using the semantics rule associated and obtain
𝔛 ̸ |=∀∃ ∀𝑝 :𝛩.¬𝜓 which is the semantics for 𝔛 |=∃∀ ¬∀𝑝 :𝛩.¬𝜓 . Since all transformations
are equivalences, the reverse path holds.

11) By semantics, 𝔛 |=∀∃ ∀𝑝 :𝛩.𝜓 means that ext𝛩 (𝔛, 𝑝) |=∀∃ 𝜓 . Then by applying the point
1) and the semantics rule for negation consecutively, it results that ext𝛩 (𝔛, 𝑝) ̸|=∃∀ ¬𝜓 .
We now introduce the existential quantifier using the semantics rule associated and obtain
𝔛 ̸ |=∃∀ ∃𝑝 :𝛩.¬𝜓 which is the semantics for 𝔛 |=∀∃ ¬∃𝑝 :𝛩.¬𝜓 . Since all transformations
are equivalences, the reverse path holds. □

Proposition 5. Let 𝔛1,𝔛2 ∈ HAsg be two hyperassignments with 𝔛1 ⊑ 𝔛2 and ℘ ∈ Qn. Then, the
following holds true: evl𝛼 (𝔛1, ℘) ⊑ evl𝛼 (𝔛2, ℘).

Proof. The proof proceeds by induction on the length of the quantification prefix ℘.
(base case) If ℘ = Y, then we have evl𝛼 (𝔛1, ℘) = 𝔛1 ⊑ 𝔛2 = evl𝛼 (𝔛2, ℘).
(inductive step) If ℘ = Q𝛩𝑝.℘′ , then we distinguish two cases.

– If 𝛼 and Q are coherent, then we have evl𝛼 (𝔛1, ℘) = evl𝛼 (ext𝛩 (𝔛1, 𝑝) , ℘′) and evl𝛼 (𝔛2, ℘) =
evl𝛼 (ext𝛩 (𝔛2, 𝑝) , ℘′). By Proposition 4, 𝔛1 ⊑ 𝔛2 implies ext𝛩 (𝔛1, 𝑝) ⊑ ext𝛩 (𝔛2, 𝑝) and, by
inductive hypothesis, evl𝛼 (ext𝛩 (𝔛1, 𝑝) , ℘′) ⊑ evl𝛼 (ext𝛩 (𝔛2, 𝑝) , ℘′), hence the thesis.

– If𝛼 and Q are not coherent, thenwe have evl𝛼 (𝔛1, ℘) = evl𝛼 (ext𝛩
(
𝔛1, 𝑝

)
, ℘′) and evl𝛼 (𝔛2, ℘) =

evl𝛼 (ext𝛩
(
𝔛2, 𝑝

)
, ℘′). By Proposition 4,𝔛1 ⊑ 𝔛2 implies ext𝛩

(
𝔛1, 𝑝

)
⊑ ext𝛩

(
𝔛2, 𝑝

)
, and, by

inductive hypothesis, evl𝛼 (ext𝛩
(
𝔛1, 𝑝

)
, ℘′) ⊑ evl𝛼 (ext𝛩

(
𝔛2, 𝑝

)
, ℘′), hence the thesis. □

Lemma 5 (Prefix Evolution). Let ℘𝜙 be a GFG-QPTL formula with quantifier prefix ℘ ∈ Qn. Then,
𝔛 |=𝛼 ℘𝜙 iff evl𝛼 (𝔛, ℘) |=𝛼 𝜙 , for all hyperassignments 𝔛 ∈ HAsg(free(℘𝜙)).

Proof. The proof is done by induction on the quantifier prefix ℘.
(base case) If ℘ = Y the claim is trivial.
(inductive step) If ℘ = ∃𝛩𝑝. ℘′:

– If𝛼 is coherentwith the first quantifier (𝛼 = ∃∀) then by semantics rule,𝔛 |=∃∀∃𝛩𝑝. ℘′.𝜓 ⇔
ext𝛩 (𝔛, 𝑝) |=∃∀ ℘′.𝜓 . We can apply the inductive hypothesis with ext𝛩 (𝔛, 𝑝) result-
ing in evl∃∀(ext𝛩 (𝔛, 𝑝) , ℘′) |=∃∀ 𝜓 which, by definition of the operator evl results in
evl∃∀(𝔛, ∃𝛩𝑝. ℘′) |=∃∀𝜓 .

– If 𝛼 is not coherent with the first quantifier (𝛼 = ∀∃) then by semantics rule twice, 𝔛 |=∀∃

∃𝛩𝑝. ℘′.𝜓 ⇔ 𝔛 |=∃∀ ∃𝛩𝑝. ℘′.𝜓 ⇔ ext𝛩

(
𝔛, 𝑝

)
|=∃∀ ℘′.𝜓 . By Theorem 3, ext𝛩

(
𝔛, 𝑝

)
|=∀∃

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

Good-for-Game QPTL: An Alternating Hodges Semantics 0:39

℘′.𝜓 and then, by inductive hypothesis, evl∀∃ (ext𝛩
(
𝔛, 𝑝

)
, ℘′) |=∀∃𝜓 . Finally, by definition

of evl operator, evl∀∃ (𝔛, ∃𝛩𝑝. ℘′) |=∀∃𝜓 .
If ℘ = ∀𝛩𝑝. ℘′, the proofs when 𝛼 is coherent with the first quantifier and when it is not are
the same as the first inductive case (by replacing ∀∃ with ∃∀ and vice versa). □

C PROOFS OF SECTION 4
Now, we showcase the graph of dependency for Theorem 4, presenting the lemma, corollary and
theorem used for the proof in the main paper.

Theorem 4Theorem 3 Lemma 5 Corollary 3. . .

In order to provide the missing proofs of Theorems 5 and 8 and Proposition 6, in this appendix we
shall also need to prove the auxiliary Propositions 7, 8, 9, 10, 11, 12, 13, and 14 and to introduce, later
on, the notion of normal evolution function and a refinement of the order between hyperassignments.

Proposition 7. Let𝔛 ∈ HAsg(P) be a hyperassignment over P ⊆ AP,𝛩 ∈ Θ a quantifier specification,
𝑝 ∈ AP \ P an atomic proposition, and Ψ ⊆ Asg(P ∪ {𝑝}) a set of assignments. There exists a set of
assignments W ∈ evl𝛼 (𝔛, Q𝛩𝑝) such that W ⊆ Ψ iff the following conditions hold true:

1) there exist F ∈ Fnc𝛩 (P) and X ∈ 𝔛 such that ext(X, F, 𝑝) ⊆ Ψ, whenever 𝛼 and Q are coherent;
2) for all F ∈ Fnc𝛩 (P), there is X ∈ 𝔛 such that ext(X, F, 𝑝) ⊆ Ψ, whenever 𝛼 and Q are not coherent.

Proof. We consider the two conditions separately.
• [1] If 𝛼 and Q are coherent, by definition of evolution function, we have

evl𝛼 (𝔛, Q𝛩𝑝) = ext𝛩 (𝔛, 𝑝) = {ext(X, F, 𝑝) | X ∈ 𝔛, F ∈ Fnc𝛩 (ap(𝔛))} .

Thus, for every set of assignments W ⊆ Asg(P∪{𝑝}), it holds that W ∈ evl𝛼 (𝔛, Q𝛩𝑝) iff there
exists a𝛩 -functor F ∈ Fnc𝛩 (P) and a set of assignments X ∈ 𝔛 such that W = ext(X, F, 𝑝).
Hence, Condition 1 immediately follows.

• [2] If 𝛼 and Q are not coherent, by definition of evolution function, we have

evl𝛼 (𝔛, Q𝛩𝑝) = ext𝛩

(
𝔛, 𝑝

)
=

{
img(Γ)

��� Γ ∈ Chc
(
ext𝛩

(
𝔛, 𝑝

))}
.

Thus, for every set of assignments W ⊆ Asg(P∪{𝑝}), it holds that W ∈ evl𝛼 (𝔛, Q𝛩𝑝) iff there
exists a choice function Γ ∈ Chc

(
ext𝛩

(
𝔛, 𝑝

))
such thatW = img(Γ) =

{
Γ(Z)

���Z ∈ ext𝛩

(
𝔛, 𝑝

)}
.

This means that W ⊆ Ψ iff Γ(Z) ∈ Ψ, for all Z ∈ ext𝛩

(
𝔛, 𝑝

)
. Now, it is clear that there ex-

ists a choice function Γ ∈ Chc
(
ext𝛩

(
𝔛, 𝑝

))
such that Γ(Z) ∈ Ψ, for all Z ∈ ext𝛩

(
𝔛, 𝑝

)
iff, for every Z ∈ ext𝛩

(
𝔛, 𝑝

)
=

{
ext(Y, F, 𝑝)

���Y ∈ 𝔛, F ∈ Fnc𝛩 (P)
}
, there exists 𝜒Z ∈ Z

such that 𝜒Z ∈ Ψ. The latter property, however, means that, for every F ∈ Fnc𝛩 (P)
and Y ∈ 𝔛 = {img(Λ) | Λ ∈ Chc(𝔛)}, there exists 𝜒F,Y ∈ ext(Y, F, 𝑝) such that 𝜒F,Y ∈ Ψ,
which in turn can be written as, for every F ∈ Fnc𝛩 (P) and Λ ∈ Chc(𝔛), there exists
𝜒F,Λ ∈ ext(img(Λ) , F, 𝑝) = ext({Λ(X) | X ∈ 𝔛} , F, 𝑝) such that 𝜒F,Λ ∈ Ψ. Now, notice that
𝜒F,Λ ∈ ext({Λ(X) | X ∈ 𝔛} , F, 𝑝) iff there exists X ∈ 𝔛 such that 𝜒F,Λ = ext(Λ(X), F, 𝑝).
Thus, up to this point, we have shown that the following two properties are equivalent:
– there exists W ∈ evl𝛼 (𝔛, Q𝛩𝑝) such that W ⊆ Ψ;
– for all F ∈ Fnc𝛩 (P) and Λ ∈ Chc(𝔛), there exists X ∈ 𝔛 such that ext(Λ(X), F, 𝑝) ∈ Ψ.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

0:40 Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero

Now, by deHerbrandizing 3 the universal quantification ofΛw.r.t. the existential quantification
of X in the last item and recalling that Λ(X) ∈ X, we obtain that, for all F ∈ Fnc𝛩 (P), there
exists X ∈ 𝔛 such that ext(𝜒, F, 𝑝) ∈ Ψ, for all 𝜒 ∈ X. But this means that, for all F ∈ Fnc𝛩 (P),
there exists X ∈ 𝔛 such that ext(X, F, 𝑝) ⊆ Ψ, as required by Condition 2. □

Next, we prove Theorem 5. Here is the graph of dependency presenting the proposition used for
the proof in the main paper.

Theorem 5Proposition 7

Theorem 5 (Quantification Game I). For each behavioural quantification prefix ℘ ∈ QnB and
Borelian property Ψ ⊆ Asg(ap(℘)), the game ⅁Ψ

℘ satisfies the following two properties:
1) if Eloise wins then E ⊆ Ψ, for some E ∈ evl∃∀(C∀∃ (℘));
2) if Abelard wins then E ⊈ Ψ, for all E ∈ evl∃∀(C∃∀(℘)).

Proof. Let ⅁Ψ
℘be the game defined as prescribed in Construction 1. Obviously, this is a Borelian

game, due to the hypothesis on the property Ψ.
Before continuing, first observe that, thanks to the specific structure of the game, every history 𝜌 ·

𝑣 ∈ Hst𝛼 is bijectively correlated with the sequence of positions obs(𝜌) ·𝑣 ∈ Ob∗ ·Ps𝛼 , for any player
𝛼 ∈ {E, A}. In other words, the functions 𝚥𝛼 : Hst𝛼 → Ob∗ · Ps𝛼 defined as 𝚥𝛼 (𝜌 · 𝑣)≜ obs(𝜌) · 𝑣 are
bijective. Thanks to this observation, it is thus immediate to show that, for each strategy 𝜎E ∈ StrE,
there is a unique function 𝜎E : Ob∗ · PsE → Ps and, vice versa, for each function 𝜎E : Ob∗ · PsE → Ps,
there is a unique strategy 𝜎E ∈ StrE such that

𝜎E (𝚥E (𝜌)) = 𝜎E (𝜌), for all histories 𝜌 ∈ HstE .

Similarly, for each strategy 𝜎A ∈ StrA, there is a unique function 𝜎A : Ob∗ · PsA → Ps and, vice versa,
for each function 𝜎A : Ob∗ · PsA → Ps, there is a unique strategy 𝜎A ∈ StrA satisfying the equality

𝜎A (𝚥A (𝜌)) = 𝜎A (𝜌), for all histories 𝜌 ∈ HstA .

We can now proceed with the proof of the two properties.
• [1] Since Eloise wins the game, she has a winning strategy, i.e., there is 𝜎E ∈ StrE such
that obs(play(𝜎E, 𝜎A)) ∈ Wn, for all 𝜎A ∈ StrA. We want to prove that there exists E ∈
evl∃∀(C∀∃ (℘)) such that E ⊆ Ψ.
First, recall that C∀∃ (℘) = ∀B�⃗� . ∃�⃗� �⃗�, for some vectors of atomic propositions �⃗�, �⃗� ∈ AP∗and
quantifier specifications �⃗� ∈ Θ |𝑞 | . Moreover, thanks to Proposition 7, the following claim can
be proved by induction on the number of existential variables.

Claim 1. E ⊆ Ψ, for some E ∈ evl∃∀(C∀∃ (℘)), iff there exists a vector of functors F⃗ ∈ Fnc
�⃗�
(�⃗�)

such that ext
(
𝜒, F⃗, �⃗�

)
∈ Ψ, for all assignments 𝜒 ∈ Asg(�⃗�).

Proof. As previously observed, C∀∃ (℘) = ∀B�⃗� . ∃�⃗� �⃗�, for some vectors �⃗�, �⃗� ∈ AP∗and �⃗� ∈ Θ |𝑞 | .
Thus, evl∃∀(C∀∃ (℘)) = evl∃∀(∀B�⃗� . ∃�⃗� �⃗�) = evl∃∀(evl∃∀(∀B�⃗�), ∃�⃗� �⃗�) = evl∃∀({Asg(�⃗�)}, ∃�⃗� �⃗�).
At this point, the proof proceeds by induction on the length of the vector �⃗�. If |�⃗� | = 0, there is
nothing really to prove, as the thesis follows immediately from the fact that evl∃∀(C∀∃ (℘)) =
{Asg(�⃗�)}. Let us now consider the case |�⃗� | > 0 and split both �⃗� and �⃗� as follows: �⃗� = �⃗�′ ·𝑞 and

3The Herbrandization process [7, 80] is the dual of the well known Skolemization process and transforms a logic formula of
the form ∃𝑥∀𝑦.𝜓 (𝑥, 𝑦) into the equivalent (higher-order) formula ∀F∃𝑥.𝜓 (𝑥, F(𝑥)) , where F is the Herbrand function for
the universally-quantified variable 𝑦. The deHerbrandizing process is the inverse transformation from ∀F∃𝑥.𝜓 (𝑥, F(𝑥)) to
∃𝑥∀𝑦.𝜓 (𝑥, 𝑦) . Note that here the process is applied at the meta level of the proof.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

Good-for-Game QPTL: An Alternating Hodges Semantics 0:41

�⃗� = �⃗� ′ ·𝛩 . Obviously, evl∃∀(C∀∃ (℘)) = evl∃∀(evl∃∀({Asg(�⃗�)}, ∃�⃗� ′
�⃗�′), ∃𝛩𝑞). Now, by Item 1

of Proposition 7, E ⊆ Ψ, for some E ∈ evl∃∀(C∀∃ (℘)), iff there exist a functor F ∈ Fnc𝛩 (�⃗� · �⃗�′)
and a set X ∈ evl∃∀({Asg(�⃗�)}, ∃�⃗� ′

�⃗�′) such that ext(X, F, 𝑞) ⊆ Ψ. The latter inclusion can be
rewritten as X ⊆ prj(Ψ, F, 𝑞), where prj(Ψ, F, 𝑞)≜

{
𝜒 ∈ Asg(�⃗� · �⃗�′)

��
ext(𝜒, F, 𝑞) ∈ Ψ

}
. At this

point, by the inductive hypothesis applied to the inclusion X ⊆ prj(Ψ, F, 𝑞), for some X ∈
evl∃∀({Asg(�⃗�)}, ∃�⃗� ′

�⃗�′), we obtain that E ⊆ Ψ, for some E ∈ evl∃∀(C∀∃ (℘)), iff there exist a
functor F ∈ Fnc𝛩 (�⃗� ·�⃗�′) and a vector of functors F⃗′ ∈ Fnc

�⃗� ′ (�⃗�) such that ext
(
Asg(�⃗�), F⃗′, �⃗�′

)
⊆

prj(Ψ, F, 𝑞). The latter inclusion can now be rewritten as ext

(
ext

(
Asg(�⃗�), F⃗′, �⃗�′

)
, F, 𝑞

)
⊆

Ψ. To conclude the proof, the vector of functors F⃗ ∈ Fnc
�⃗�
(�⃗�) is obtained by juxtaposing

the vector F⃗′ with the functor F∗ ∈ Fnc𝛩 (�⃗�) obtained by composing F with F⃗
′ as follows:

F
∗(𝜒)≜ F(ext

(
𝜒, F⃗′, �⃗�′

)
). □

Due to the above characterisation of the existence of a set E ∈ evl∃∀(C∀∃ (℘)) such that E ⊆ Ψ,
the thesis can be proved by defining a suitable vector of functors F⃗ ∈ Fnc

�⃗�
(�⃗�).

Consider an arbitrary assignment 𝜒 ∈ Asg(�⃗�) and define the function 𝜎A
𝜒: Ob∗ · PsA → Ps

as follows, for all finite sequences of observable positions𝑤 ∈ Ob∗ and Abelard’s positions
b ∈ PsA:

𝜎A
𝜒(𝑤 · b)≜

{
∅, if b ∈ Ob;
b [𝑥 ↦→ 𝜒 (𝑥) (|𝑤 |)], otherwise;

where 𝑥 ∈ �⃗� is the atomic proposition at position #(b) in the prefix ℘, i.e., (℘)#(b) = ∀B𝑥 .
Due to the bijective correspondence previously described, there is a unique strategy 𝜎A𝜒 ∈
StrA such that 𝜎A𝜒(𝜌) = 𝜎A

𝜒(𝚥A (𝜌)), for all histories 𝜌 ∈ HstA. Obviously, the induced play
𝜋 𝜒≜ play(𝜎E, 𝜎A𝜒) is won by Eloise, i.e.,𝑤 𝜒≜ obs(𝜋 𝜒) ∈ Wn.
Thanks to all the infinite sequences 𝑤 𝜒, one for each assignment 𝜒 ∈ Asg(�⃗�), we can now
define every component (⃗F)𝑖 of the vector of functors F⃗ ∈ (Fnc(�⃗�)) |𝑞 | as follows, for all
instants of time 𝑡 ∈ N, where 𝑖 ∈ [0, |�⃗� |):

(⃗F)𝑖 (𝜒) (𝑡)≜ (𝑤 𝜒)𝑡 ((�⃗�)𝑖).

It is not too hard to show that, by construction, this functor complies with the vector �⃗� of
quantifier specifications.

Claim 2. F⃗ ∈ Fnc
�⃗�
(�⃗�).

At this point, for all assignments 𝜒 ∈ Asg(�⃗�), let 𝜒
F⃗
≜ ext

(
𝜒, F⃗, �⃗�

)
. We can argue that 𝜒

F⃗
∈

Ψ. Indeed, by construction of the strategy 𝜎A
𝜒 and the vector of functors F⃗, it holds that

𝜒
F⃗
(𝑥) (𝑡) = (𝑤 𝜒)𝑡 (𝑥), for all instants of time 𝑡 ∈ N and atomic propositions 𝑥 ∈ �⃗� · �⃗�. Hence,

wrd(𝜒
F⃗
) = 𝑤 𝜒, which implies 𝜒

F⃗
∈ Ψ, since𝑤 𝜒 ∈ Wn.

• [2] Since Abelard wins the game, he has a winning strategy, i.e., there is 𝜎A ∈ StrA such that
obs(play(𝜎E, 𝜎A)) ∉ Wn, for all 𝜎E ∈ StrE. We want to prove that, for all E ∈ evl∃∀(C∃∀(℘)),
it holds that E ⊈ Ψ.
First, recall that C∃∀(℘) = ∃B�⃗�.∀�⃗� �⃗� , for some vectors of atomic propositions �⃗�, �⃗� ∈ AP∗and
quantifier specifications �⃗� ∈ Θ |𝑝 | . Moreover, thanks to Proposition 7, the following claim
can be proved by induction on the number of universal variables.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

0:42 Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero

Claim 3. E ⊈ Ψ, for all E ∈ evl∃∀(C∃∀(℘)), iff there exists a vector of functors G⃗ ∈ Fnc
�⃗�
(�⃗�)

such that ext
(
𝜒, G⃗, �⃗�

)
∉ Ψ, for all assignments 𝜒 ∈ Asg(�⃗�).

Proof. For technical convenience, we prove the counter-positive version of the statement:
E ⊆ Ψ, for some E ∈ evl∃∀(C∃∀(℘)), iff, for all vectors of functors G⃗ ∈ Fnc

�⃗�
(�⃗�), it holds that

ext

(
Asg(�⃗�), G⃗, �⃗�

)
∩ Ψ ≠ ∅. As previously observed, C∃∀(℘) = ∃B�⃗�.∀�⃗� �⃗� , for some vectors

�⃗�, �⃗� ∈ AP∗and �⃗� ∈ Θ |𝑝 | . Thus, evl∃∀(C∃∀(℘)) = evl∃∀(∃B�⃗�.∀�⃗� �⃗�) = evl∃∀(evl∃∀(∃B�⃗�),∀�⃗� �⃗�) =
evl∃∀({{𝜒} | 𝜒 ∈Asg(�⃗�)},∀�⃗� �⃗�). At this point, the proof proceeds by induction on the length
of the vector �⃗� . If |�⃗� | = 0, there is nothing really to prove, as the thesis follows imme-
diately from the fact that evl∃∀(C∃∀(℘)) = {{𝜒} | 𝜒 ∈ Asg(�⃗�)}. Let us now consider the
case |�⃗� | > 0 and split both �⃗� and �⃗� as follows: �⃗� = �⃗� ′ · 𝑝 and �⃗� = �⃗� ′ · 𝛩 . Obviously,
evl∃∀(C∃∀(℘)) = evl∃∀(evl∃∀({{𝜒} | 𝜒 ∈ Asg(�⃗�)} ,∀�⃗� ′

�⃗� ′),∀𝛩𝑝). Now, by Item 2 of Proposi-
tion 7, E ⊆ Ψ, for some E ∈ evl∃∀(C∃∀(℘)), iff, for all functors G ∈ Fnc𝛩 (�⃗� · �⃗� ′), there exists a
set X ∈ evl∃∀({{𝜒} | 𝜒 ∈ Asg(�⃗�)} ,∀�⃗� ′

�⃗� ′) such that ext(X,G, 𝑝) ⊆ Ψ. The latter inclusion can
be rewritten as X ⊆ prj(Ψ,G, 𝑝), where prj(Ψ,G, 𝑝)≜

{
𝜒 ∈ Asg(�⃗� · �⃗� ′)

��
ext(𝜒,G, 𝑝) ∈ Ψ

}
. At

this point, by the inductive hypothesis applied to the inclusion X ⊆ prj(Ψ,G, 𝑝), for some
X ∈ evl∃∀({{𝜒} | 𝜒 ∈ Asg(�⃗�)} ,∀�⃗� ′

�⃗� ′), we obtain that E ⊆ Ψ, for some E ∈ evl∃∀(C∃∀(℘)),
iff for all functors G ∈ Fnc𝛩 (�⃗� · �⃗� ′) and vectors of functors G⃗

′ ∈ Fnc
�⃗� ′ (�⃗�), it holds

that ext
(
Asg(�⃗�), G⃗′, �⃗� ′

)
∩ prj(Ψ,G, 𝑝) ≠ ∅. The latter inequality can now be rewritten

as ext
(
ext

(
Asg(�⃗�), G⃗′, �⃗� ′

)
,G, 𝑝

)
∩ Ψ ≠ ∅. To conclude the proof, it is enough to observe

that the vectors of functors G⃗ ∈ Fnc
�⃗�
(�⃗�) can always be obtained by juxtaposing the vec-

tors G⃗
′ with the functors G

∗ ∈ Fnc𝛩 (�⃗�) obtained by composing G with G⃗
′ as follows:

G
∗(𝜒)≜G(ext

(
𝜒, G⃗′, �⃗� ′

)
). □

Due to the above characterisation of non-existence of a set E ∈ evl∃∀(C∃∀(℘)) such that
E ⊆ Ψ, the thesis can be proved by defining a suitable vector of functors G⃗ ∈ Fnc

�⃗�
(�⃗�).

Consider an arbitrary assignment 𝜒 ∈ Asg(�⃗�) and define the function 𝜎E
𝜒: Ob∗ · PsE → Ps

as follows, for all finite sequences of observable positions 𝑤 ∈ Ob∗ and Eloise’s positions
b ∈ PsE:

𝜎E
𝜒(𝑤 · b)≜ b [𝑥 ↦→ 𝜒 (𝑥) (|𝑤 |)],

where 𝑥 ∈ �⃗� is the atomic proposition at position #(b) in the prefix ℘, i.e., (℘)#(b) = ∃B𝑥 .
Due to the bijective correspondence previously described, there is a unique strategy 𝜎E𝜒 ∈
StrE such that 𝜎E𝜒(𝜌) = 𝜎E

𝜒(𝚥E (𝜌)), for all histories 𝜌 ∈ HstE. Obviously, the induced play
𝜋 𝜒≜ play(𝜎E𝜒, 𝜎A) is won by Abelard, i.e.,𝑤 𝜒≜ obs(𝜋 𝜒) ∉ Wn.
Thanks to all the infinite sequences 𝑤 𝜒, one for each assignment 𝜒 ∈ Asg(�⃗�), we can now
define every component (G⃗)𝑖 of the vector of functors G⃗ ∈ (Fnc(�⃗�)) |𝑝 | as follows, for all
instants of time 𝑡 ∈ N, where 𝑖 ∈ [0, |�⃗� |):

(G⃗)𝑖 (𝜒) (𝑡)≜ (𝑤 𝜒)𝑡 ((�⃗�)𝑖).

It is not too hard to show that, by construction, this functor complies with the vector �⃗� of
quantifier specifications.

Claim 4. G⃗ ∈ Fnc
�⃗�
(�⃗�).

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

Good-for-Game QPTL: An Alternating Hodges Semantics 0:43

At this point, for all assignments 𝜒 ∈ Asg(�⃗�), let 𝜒
G⃗
≜ ext

(
𝜒, G⃗, �⃗�

)
. We can argue that

𝜒
G⃗
∉ Ψ. Indeed, by construction of the strategy 𝜎E𝜒 and the vector of functors G⃗, it holds that

𝜒
G⃗
(𝑥) (𝑡) = (𝑤 𝜒)𝑡 (𝑥), for all instants of time 𝑡 ∈ N and atomic propositions 𝑥 ∈ �⃗� · �⃗� . Hence,

wrd(𝜒
G⃗
) = 𝑤 𝜒, which implies 𝜒

G⃗
∉ Ψ, since𝑤 𝜒 ∉ Wn. □

The two conditions stated in Proposition 7 allow us to introduce a different, but equivalent (in
terms of the equivalence relation ≡ between hyperassignments), definition of evolution function
that we call normal, in symbols nevl. This new notion will be useful to show important properties
that would be, otherwise, much more cumbersome to prove by appealing directly to the original
definition of the evolution function evl.

nevl𝛼 (𝔛, Q𝛩𝑝)≜
{
ext𝛩 (𝔛, 𝑝), if Q is 𝛼-coherent;
{ext(ð, 𝑝) | ð ∈ Fnc𝛩 (ap(𝔛)) → 𝔛}, otherwise;

where ext(ð, 𝑝)≜⋃ {ext(ð(F), F, 𝑝) | F ∈ dom(ð)}. Intuitively, w.r.t. evl, we just modified the non
𝛼-coherent case, in order to avoid the double application of the dualization function, by replacing
this with a choice of a selection map ð ∈ Fnc𝛩 (ap(𝔛)) → 𝔛 selecting, in fact, for each𝛩 -functor
F ∈ Fnc𝛩 (ap(𝔛)), a set of assignments ð(F) ∈ 𝔛.

The new evolution operator lifts naturally to an arbitrary quantification prefix ℘ ∈ Qn as follows:
(1) nevl𝛼 (𝔛, 𝜖)≜𝔛; (2) nevl𝛼 (𝔛, Q𝛩𝑝. ℘)≜ nevl𝛼 (nevl𝛼 (𝔛, Q𝛩𝑝), ℘). As we have done for evl, we
also set nevl𝛼 (℘)≜ nevl𝛼 ({{∅}}, ℘).

Example 12. Consider the quantifier ∃𝑞 and the hyperassignment 𝔛 = {X1,X2} with X𝑖 = {𝜒𝑖 },
where 𝑖 ∈ {1, 2} and 𝜒1 ≜{𝑝 ↦→ ⊤𝜔 } and 𝜒2 ≜{𝑝 ↦→ ⊥𝜔 }. Since ∃𝑞 is ∃∀-coherent, we have

nevl∃∀(𝔛, ∃𝑞) = ext(𝔛, 𝑞) .
On the other hand, ∃𝑞 is not ∀∃-coherent, thus

nevl∀∃ (𝔛, ∃𝑞) = {ext(ð, 𝑞) | ð ∈ Fnc(ap(𝔛)) → 𝔛} .
For instance, consider ð0 : Fnc𝛩 (ap(𝔛)) → 𝔛 defined as follows:

ð0 (F)≜
{

X1, if F(𝜒1) (0) = ⊤
X2, otherwise.

Intuitively, the selection function ð0 bipartitions the functors according to the value that they assign to
𝜒1 at time 0, by associating each functor with one of the two sets of assignments, X1 or X2. We thus
have

ext(ð0, 𝑞) =
⋃

{ext(ð0 (F), F, 𝑞) | F ∈ Fnc𝛩 (ap(𝔛))}

=
⋃

{ext(X1, F, 𝑞) | F ∈ Fnc𝛩 (ap(𝔛)), F(𝜒1) (0) = ⊤} ∪⋃
{ext(X2, F, 𝑞) | F ∈ Fnc𝛩 (ap(𝔛)), F(𝜒1) (0) = ⊥}.

Proposition 8. If 𝔛1 ≡ 𝔛2 then nevl𝛼 (𝔛1, Q
𝛩𝑝) ≡ evl𝛼 (𝔛2, Q

𝛩𝑝), for all hyperassignments 𝔛1,𝔛2 ∈
HAsg, quantifier symbols Q ∈ {∃,∀}, quantifier specifications 𝛩 ∈ Θ, and atomic propositions
𝑝 ∈ AP \ ap(𝔛).

Proof. The proof proceeds by a case analysis on the coherence of 𝛼 and Q.
• [Q is𝛼-coherent] By definition, nevl𝛼 (𝔛1, Q

𝛩𝑝)=ext𝛩 (𝔛1, 𝑝) and evl𝛼 (𝔛2, Q
𝛩𝑝)=ext𝛩 (𝔛2, 𝑝).

Since 𝔛1 ≡ 𝔛2, by Proposition 4, it holds that ext𝛩 (𝔛1, 𝑝) ≡ ext𝛩 (𝔛2, 𝑝), which conclude this
case of the proof.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

0:44 Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero

• [Q is not 𝛼-coherent] By definition, nevl𝛼 (𝔛1, Q
𝛩𝑝) = {ext(ð, 𝑝) | ð ∈ Fnc𝛩 (ap(𝔛1)) → 𝔛1}

and evl𝛼 (𝔛2, Q
𝛩𝑝) = ext𝛩

(
𝔛2, 𝑝

)
. We now prove the two inclusions nevl𝛼 (𝔛1, Q

𝛩𝑝) ⊑
evl𝛼 (𝔛2, Q

𝛩𝑝) and nevl𝛼 (𝔛1, Q
𝛩𝑝) ⊒ evl𝛼 (𝔛2, Q

𝛩𝑝) separately.
– [⊑] To prove nevl𝛼 (𝔛1, Q

𝛩𝑝) ⊑ evl𝛼 (𝔛2, Q
𝛩𝑝), we need to show that, for any Ψ ∈ nevl𝛼 (𝔛1,

Q𝛩𝑝) there is WΨ ∈ evl𝛼 (𝔛2, Q
𝛩𝑝) such that WΨ ⊆ Ψ. Obviously, for any Ψ ∈ nevl𝛼 (𝔛1,

Q𝛩𝑝), it holds that Ψ = ext(ð, 𝑝) =
⋃ {ext(ð(F), F, 𝑝) | F ∈ dom(ð)}, for some selection

function ð ∈ Fnc𝛩 (ap(𝔛1)) → 𝔛1. This means that, for every F ∈ Fnc𝛩 (ap(𝔛1)), there
is XF ≜ð(F) ∈ 𝔛1 such that ext(XF, F, 𝑝) ⊆ Ψ. Now, by Item 2 of Proposition 7, there
exists W1 ∈ evl𝛼 (𝔛1, Q

𝛩𝑝) such that W1 ⊆ Ψ. Since, thanks to Proposition 5, 𝔛1 ≡ 𝔛2
implies evl𝛼 (𝔛1, Q

𝛩𝑝) ≡ evl𝛼 (𝔛2, Q
𝛩𝑝), we have that there is W2 ∈ evl𝛼 (𝔛2, Q

𝛩𝑝) such that
W2 ⊆ W1 ⊆ Ψ. Finally, by setting WΨ ≜W2, we obtain what is required.

– [⊒] To prove nevl𝛼 (𝔛1, Q
𝛩𝑝) ⊒ evl𝛼 (𝔛2, Q

𝛩𝑝), we need to show that, for any Ψ ∈ evl𝛼 (𝔛2,

Q𝛩𝑝) there is WΨ ∈ nevl𝛼 (𝔛1, Q
𝛩𝑝) such that WΨ ⊆ Ψ. By instantiating W with Ψ in

Proposition 7, since W = Ψ ∈ evl𝛼 (𝔛2, Q
𝛩𝑝), from Item 2 we derive that, for all F ∈

Fnc𝛩 (ap(𝔛2)), there is XF2 ∈ 𝔛2 such that ext(XF2, F, 𝑝) ⊆ Ψ. Now, since 𝔛1 ≡ 𝔛2, there
is XF1 ∈ 𝔛1 such that XF1 ⊆ XF2, which in turn implies ext(XF1, F, 𝑝) ⊆ ext(XF2, F, 𝑝) ⊆ Ψ.
At this point, define the selection map ð ∈ Fnc𝛩 (ap(𝔛1)) → 𝔛1 as follows: ð(F)≜XF1, for
every F ∈ Fnc𝛩 (ap(𝔛1)) = Fnc𝛩 (ap(𝔛2)). Clearly, by setting WΨ ≜ ext(ð, 𝑝), both WΨ =⋃ {ext(ð(F), F, 𝑝) | F ∈ dom(ð)} ⊆ Ψ and WΨ ∈ nevl𝛼 (𝔛1, Q

𝛩𝑝) holds true, as required.
This concludes the proof of the second and last case. □

The following examples is meant to show how the normal 𝛼-evolution function for non-coherent
quantifier simulates the 𝛼-evolution function for the same quantifier.

Example 13. The function ð0 of Example 12 can be viewed as a choice function on ext

(
𝔛, 𝑞

)
. First,

recall that 𝔛 = {X12} with X12 = {𝜒1, 𝜒2} and let X̊ ∈ ext

(
𝔛, 𝑞

)
. Then, there is F ∈ Fnc(ap(𝔛)) such

that X̊ = ext(X12, F, 𝑞). If we define a choice function Γ ∈ Chc
(
ext

(
𝔛, 𝑞

))
so that

Γ(X̊) = Γ(ext(X12, F, 𝑞)) =
{
𝜒1 [𝑞 ↦→ F(𝜒1)], if F(𝜒1) (0) = ⊤,
𝜒2 [𝑞 ↦→ F(𝜒2)], otherwise,

it is straightforward to see that ext(ð0, 𝑞) = img(Γ) ∈ evl∀∃ (𝔛, ∃𝑞).
Proposition 9. If𝔛1 ≡ 𝔛2 then nevl𝛼 (𝔛1, ℘) ≡ evl𝛼 (𝔛2, ℘), for all hyperassignments𝔛1,𝔛2 ∈ HAsg
and quantifier prefixes ℘ ∈ Qn, with ap(𝔛) ∩ ap(℘) = ∅.
Proof. The proof proceeds by simple induction on the length of the quantification prefix ℘.
• [Base case ℘ = Y] nevl𝛼 (𝔛1, Y) = 𝔛1 ≡ 𝔛2 = evl𝛼 (𝔛2, Y).
• [Inductive case ℘ = Q𝛩𝑝. ℘′] By definition, we have nevl𝛼 (𝔛1, Q

𝛩𝑝. ℘′) = nevl𝛼 (nevl𝛼 (𝔛1,

Q𝛩𝑝), ℘′) and evl𝛼 (𝔛2, Q
𝛩𝑝. ℘′) = evl𝛼 (evl𝛼 (𝔛2, Q

𝛩𝑝), ℘′). Now, by Proposition 8, nevl𝛼 (𝔛1,

Q𝛩𝑝) ≡ evl𝛼 (𝔛2, Q
𝛩𝑝), since𝔛1 ≡ 𝔛2. Thus, the thesis follows by a straightforward application

of the inductive hypothesis. □

In the following, by ΘB we denote the set of behavioural quantifier specifications, i.e., quantifier
specifications of the form B ∪ ⟨S : PS⟩ for some set of atomic propositions PS ⊆ AP.

Proposition 10. evl𝛼 (𝔛, Q
B
𝑝. Q𝛩∪⟨S:𝑝 ⟩𝑞) ⊑ evl𝛼 (𝔛, Q𝛩𝑞. Q

B
𝑝), for all hyperassignments 𝔛 ∈ HAsg,

𝛼-coherent quantifier symbols Q ∈ {∃,∀}, quantifier specifications𝛩 ∈ ΘB, and atomic propositions
𝑝, 𝑞 ∈ AP \ ap(𝔛).

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

Good-for-Game QPTL: An Alternating Hodges Semantics 0:45

Proof. Due to the specific definition of the normal evolution function nevl𝛼 (𝔛, ℘), and by
exploiting Proposition 9, the following claim can be shown.

Claim 5. The following two properties are equivalent:

• evl𝛼 (𝔛, Q
B
𝑝. Q𝛩∪⟨S:𝑝 ⟩𝑞) ⊑ evl𝛼 (𝔛, Q𝛩𝑞. Q

B
𝑝);

• for all (𝛩 ∪ ⟨S : 𝑝⟩)-functors J ∈ Fnc𝛩∪⟨S:𝑝 ⟩ (ap(𝔛) ∪ {𝑝}), functions ð ∈ FncB (ap(𝔛)) → 𝔛,
and behavioural functors G ∈ FncB (ap(𝔛) ∪ {𝑞}), there exists a𝛩 -functor F ∈ Fnc𝛩 (ap(𝔛))
and a set of assignments X ∈ 𝔛 such that ext(ext(X, F, 𝑞) ,G, 𝑝) ⊆ ext(ext(ð, 𝑝) , J, 𝑞).

Proof. By Proposition 9, the inclusion evl𝛼 (𝔛, Q
B
𝑝. Q𝛩∪⟨S:𝑝 ⟩𝑞) ⊑ evl𝛼 (𝔛, Q𝛩𝑞. Q

B
𝑝) is equivalent

to the inclusion nevl𝛼 (𝔛, Q
B
𝑝. Q𝛩∪⟨S:𝑝 ⟩𝑞) ⊑ nevl𝛼 (𝔛, Q𝛩𝑞. Q

B
𝑝), which in turn means that, for all sets

W1 ∈ nevl𝛼 (𝔛, Q
B
𝑝. Q𝛩∪⟨S:𝑝 ⟩𝑞), there exists a set W2 ∈ nevl𝛼 (𝔛, Q𝛩𝑞. Q

B
𝑝) such that W2 ⊆ W1. Now,

by definition of normal evolution function, we have that

nevl𝛼 (𝔛, Q
B
𝑝. Q𝛩∪⟨S:𝑝 ⟩𝑞) = ext𝛩∪⟨S:𝑝 ⟩ ({ext(ð, 𝑝) | ð ∈ FncB (ap(𝔛)) → 𝔛} , 𝑞)

and
nevl𝛼 (𝔛, Q𝛩𝑞. Q

B
𝑝) = {ext(ð, 𝑝) | ð ∈ FncB (ap(𝔛) ∪ {𝑞}) → ext𝛩 (𝔛, 𝑞)} .

Thus, every setW1 is equal to ext(ext(ð, 𝑝) , J, 𝑞), for some (𝛩∪⟨S : 𝑝⟩)-functor J ∈ Fnc𝛩∪⟨S:𝑝 ⟩ (ap(𝔛)
∪ {𝑝}) and selection function ð ∈ FncB (ap(𝔛)) → 𝔛, while every set W2 is equal to ext(ð′, 𝑝), for
some selection function ð′ ∈ FncB (ap(𝔛) ∪ {𝑞}) → ext𝛩 (𝔛, 𝑞). As a consequence, the previous
property concerning the inclusion W2 ⊆ W1 can be equivalently rewritten as follows: for all
(𝛩 ∪ ⟨S : 𝑝⟩)-functors J ∈ Fnc𝛩∪⟨S:𝑝 ⟩ (ap(𝔛) ∪ {𝑝}) and selection functions ð ∈ FncB (ap(𝔛)) → 𝔛,
there exists a selection function ð′ ∈ FncB (ap(𝔛) ∪ {𝑞}) → ext𝛩 (𝔛, 𝑞) such that ext(ð′, 𝑝) ⊆
ext(ext(ð, 𝑝) , J, 𝑞). Since, ext(ð′, 𝑝) = ⋃ {ext(ð′(G),G, 𝑝) |G ∈ FncB (ap(𝔛) ∪ {𝑞})}, the inclusion
ext(ð′, 𝑝) ⊆ ext(ext(ð, 𝑝) , J, 𝑞) is equivalent to ext(ð′(G),G, 𝑝) ⊆ ext(ext(ð, 𝑝) , J, 𝑞), for all be-
havioural functors G ∈ FncB (ap(𝔛) ∪ {𝑞}). Hence, up to this point, we have proved that the
following two properties are equivalent:

• evl𝛼 (𝔛, Q
B
𝑝. Q𝛩∪⟨S:𝑝 ⟩𝑞) ⊑ evl𝛼 (𝔛, Q𝛩𝑞. Q

B
𝑝);

• for all (𝛩∪⟨S : 𝑝⟩)-functors J ∈ Fnc𝛩∪⟨S:𝑝 ⟩ (ap(𝔛)∪{𝑝}) and functions ð ∈ FncB (ap(𝔛)) → 𝔛,
there exists a function ð′ ∈ FncB (ap(𝔛) ∪ {𝑞}) → ext𝛩 (𝔛, 𝑞) such that, for all behavioural
functors G ∈ FncB (ap(𝔛) ∪ {𝑞}), it holds that ext(ð′(G),G, 𝑝) ⊆ ext(ext(ð, 𝑝) , J, 𝑞).

Now, by deSkolemizing the existential quantification of ð′ w.r.t. the universal quantification ofG, the
second point is equivalent to the following: for all (𝛩∪⟨S : 𝑝⟩)-functors J ∈ Fnc𝛩∪⟨S:𝑝 ⟩ (ap(𝔛)∪{𝑝}),
functions ð ∈ FncB (ap(𝔛)) → 𝔛, and behavioural functors G ∈ FncB (ap(𝔛) ∪ {𝑞}), there exists a
set Y ∈ ext𝛩 (𝔛, 𝑞) such that ext(Y,G, 𝑝) ⊆ ext(ext(ð, 𝑝) , J, 𝑞). Finally, to obtain what is required
by the statement of the claim, it is enough to observe that every set Y is equal to ext(X, F, 𝑞), for
some𝛩 -functor F ∈ Fnc𝛩 (ap(𝔛)) and set X ∈ 𝔛. □

Thanks to the given characterisation, we can now show that the inclusion evl𝛼 (𝔛, Q
B
𝑝. Q𝛩∪⟨S:𝑝 ⟩𝑞) ⊑

evl𝛼 (𝔛, Q𝛩𝑞. Q
B
𝑝) actually holds true by proving the existence of a suitable functor F and set of

assignments X, in dependence of the functors J and G and the selection map ð, that satisfy the
inclusion ext(ext(X, F, 𝑞) ,G, 𝑝) ⊆ ext(ext(ð, 𝑝) , J, 𝑞). In order to define such a functor F, let us
inductively construct, for every given assignment 𝜒 ∈ Asg(ap(𝔛)), the following infinite fami-
lies of assignments {𝑎𝜒𝑡 ∈ Asg(ap(𝔛) ∪ {𝑝})}𝑡 ∈N, Boolean values {𝑣 𝜒𝑡 ∈ B}𝑡 ∈N, and assignments
{𝑏𝜒

𝑡 ∈ Asg(ap(𝔛) ∪ {𝑞})}𝑡 ∈N, indexed by the time instants:
• [Base step 𝑡 = 0] as base step, we choose 𝑎𝜒0 ∈ Asg(ap(𝔛) ∪ {𝑝}) as an arbitrary assignment
for which the equality 𝑎

𝜒

0 ↾ ap(𝔛) = 𝜒 holds true, the Boolean value 𝑣 𝜒0 ∈ B as J(𝑎𝜒0) (0), i.e.,

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

0:46 Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero

𝑣
𝜒

0 ≜ J(𝑎𝜒0) (0), and 𝑏
𝜒

0 ∈ Asg(ap(𝔛) ∪ {𝑞}) as an arbitrary assignment with 𝑏
𝜒

0 ↾ ap(𝔛) = 𝜒

such that, at time 0 on the variable 𝑞, assumes 𝑣 𝜒0 as value, i.e., 𝑏
𝜒

0(𝑞) (0) = 𝑣
𝜒

0;
• [Inductive step 𝑡 > 0] as inductive step, we derive the assignment 𝑎𝜒𝑡 ∈ Asg(ap(𝔛) ∪ {𝑝})
from G(𝑏𝜒

𝑡−1), i.e., 𝑎
𝜒

𝑡 ≜ 𝜒 [𝑝 ↦→ G(𝑏𝜒

𝑡−1)], and the Boolean value 𝑣 𝜒𝑡 ∈ B from J(𝑎𝜒𝑡) (𝑡), i.e.,
𝑣
𝜒

𝑡 ≜ J(𝑎𝜒𝑡) (𝑡); moreover, we choose 𝑏𝜒

𝑡 ∈ Asg(ap(𝔛) ∪ {𝑞}) as an arbitrary assignment with
𝑏
𝜒

𝑡 ↾ ap(𝔛) = 𝜒 such that, on the variable 𝑞, is equal to 𝑏𝜒

𝑡−1up to time 𝑡 excluded and assumes
𝑣
𝜒

𝑡 as value at time 𝑡 , i.e., 𝑏𝜒

𝑡 (𝑞) (ℎ) = 𝑏
𝜒

𝑡−1(𝑞) (ℎ), for all ℎ ∈ [0, 𝑡), and 𝑏𝜒

𝑡 (𝑞) (𝑡) = 𝑣
𝜒

𝑡 .
The above inductive construction can be schematically summarised as follows, where, for every
𝑡 ∈ N, both g𝑡 and j𝑡 are temporal assignments, i.e., functions of the form g𝑡 , j𝑡 ∈ N→ B:

𝑎
𝜒

0 ≜ 𝜒 [𝑝 ↦→ g0], for some g0; 𝑣
𝜒

0 ≜ J(𝑎𝜒0) (0); 𝑏
𝜒

0 ≜ 𝜒 [𝑞 ↦→ j0], for some j0 with j0 (0) = 𝑣
𝜒

0 ;

𝑎
𝜒
𝑡 ≜ 𝜒 [𝑝 ↦→ G(𝑏𝜒

𝑡−1)]; 𝑣
𝜒
𝑡 ≜ J(𝑎𝜒𝑡) (𝑡); 𝑏

𝜒
𝑡 ≜ 𝜒 [𝑞 ↦→ j𝑡], for some j𝑡 such that, for all ℎ ∈ [0, 𝑡],

j𝑡 (ℎ) =
{
j𝑡−1 (ℎ), if ℎ < 𝑡 ;
𝑣
𝜒
𝑡 , if ℎ = 𝑡 .

Thanks to the infinite family of Boolean values {𝑣 𝜒𝑡 ∈ B}𝑡 ∈N, one for each assignment 𝜒 ∈
Asg(ap(𝔛)), we can define the functor F ∈ Fnc(ap(𝔛)) as follows, for every instant of time 𝑡 ∈ N:

F(𝜒) (𝑡)≜ 𝑣
𝜒

𝑡 .

It is easy to show that this functor complies with the quantifier specification𝛩 , since the functor J,
from which F is derived, is compliant with the quantifier specification𝛩 ∪ ⟨S : 𝑝⟩.

Claim 6. F ∈ Fnc𝛩 (ap(𝔛)).

Before continuing, let us first introduce the functor H ∈ Fnc(ap(𝔛)) as follows, for every
assignment 𝜒 ∈ Asg(ap(𝔛)):

H(𝜒)≜ ext(ext(𝜒, F, 𝑞) ,G, 𝑝) (𝑝).

It is not hard to verify that such a functor is behavioural, since F is𝛩 -compliant andG is behavioural.

Claim 7. H ∈ FncB (ap(𝔛)).

At this point, consider the set of assignments X≜ð(H). Thanks to the specific definitions of the
two functors F and H, the following claim can be proved.

Claim 8. ext(ext(X, F, 𝑞) ,G, 𝑝) ⊆ ext(ext(X,H, 𝑝) , J, 𝑞).

Now, it is obvious that ext(X,H, 𝑝) ⊆ ext(ð, 𝑝), due to the definition of the latter and the choice
of the set X, which immediately implies ext(ext(X,H, 𝑝) , J, 𝑞) ⊆ ext(ext(ð, 𝑝) , J, 𝑞). Therefore,
ext(ext(X, F, 𝑞) ,G, 𝑝) ⊆ ext(ext(ð, 𝑝) , J, 𝑞), which concludes the proof. □

Proposition 11. evl𝛼 (𝔛, Q
B
�⃗� . Q�⃗�∪⟨S:𝑝⟩�⃗�) ⊑ evl𝛼 (𝔛, Q�⃗� �⃗�. Q

B
�⃗�), for all hyperassignments 𝔛 ∈ HAsg,

𝛼-coherent quantifier symbols Q ∈ {∃,∀}, vectors of quantifier specifications �⃗� ∈ Θ∗
B, and vectors of

atomic propositions �⃗�, �⃗� ∈ (AP \ ap(𝔛))∗, with |�⃗� | = |�⃗� |.

Proof. The proof of the statements proceeds by combining two independent inductions. In
particular, we first show, by exploiting Proposition 10 via an induction on the length of the vector

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

Good-for-Game QPTL: An Alternating Hodges Semantics 0:47

of atomic propositions �⃗� , that evl𝛼 (𝔛, Q
B
�⃗� . Q𝛩∪⟨S:𝑝⟩𝑞) ⊑ evl𝛼 (𝔛, Q𝛩𝑞. Q

B
�⃗�). Indeed, one can easily

verify the correctness of the following chain of equalities/inequalities:

evl𝛼 (𝔛, Q
B
�⃗� . Q

B
𝑝. Q𝛩∪⟨S:𝑝𝑝⟩𝑞) = evl𝛼 (evl𝛼 (𝔛, Q

B
�⃗�), QB𝑝. Q(𝛩∪⟨S:𝑝⟩)∪⟨S:𝑝 ⟩𝑞) (1a)

⊑ evl𝛼 (evl𝛼 (𝔛, Q
B
�⃗�), Q𝛩∪⟨S:𝑝⟩𝑞. QB𝑝) (1b)

= evl𝛼 (evl𝛼 (𝔛, Q
B
�⃗� . Q𝛩∪⟨S:𝑝⟩𝑞), QB𝑝) (1c)

⊑ evl𝛼 (evl𝛼 (𝔛, Q𝛩𝑞. Q
B
�⃗�), QB𝑝) (1d)

= evl𝛼 (𝔛, Q𝛩𝑞. Q
B
�⃗� . Q

B
𝑝) . (1e)

Steps 1a, 1c, and 1e are due to the definition of evolution function of a quantifier prefix, Step 1b is due
to Proposition 10 applied to the outer evolution function, and, finally, Step 1d is just an application of
the inductive hypothesis to the inner evolution function combined with the monotonicity property
of Proposition 5.
At this point, by exploiting what we have just derived via an induction on the length of the

vector of atomic propositions �⃗�, we can prove the correctness of the statement by means of the
following chain of equalities/inequalities:

evl𝛼 (𝔛, Q
B
�⃗� . Q�⃗�∪⟨S:𝑝⟩�⃗�. Q𝛩∪⟨S:𝑝⟩𝑞) = evl𝛼 (evl𝛼 (𝔛, Q

B
�⃗� . Q�⃗�∪⟨S:𝑝⟩�⃗�), Q𝛩∪⟨S:𝑝⟩𝑞) (2a)

⊑ evl𝛼 (evl𝛼 (𝔛, Q�⃗� �⃗�. Q
B
�⃗�), Q𝛩∪⟨S:𝑝⟩𝑞) (2b)

= evl𝛼 (evl𝛼 (𝔛, Q�⃗� �⃗�), Q
B
�⃗� . Q𝛩∪⟨S:𝑝⟩𝑞) (2c)

⊑ evl𝛼 (evl𝛼 (𝔛, Q�⃗� �⃗�), Q𝛩𝑞. Q
B
�⃗�) (2d)

= evl𝛼 (𝔛, Q�⃗� �⃗�. Q𝛩𝑞. Q
B
�⃗�). (2e)

Steps 2a, 2c, and 2e are due to the definition of evolution function of a quantifier prefix, Step 2b
is just an application of the inductive hypothesis to the inner evolution function combined with
the monotonicity property of Proposition 5, and, finally, Step 2d is due to the previously proved
inequality evl𝛼 (𝔛, Q

B
�⃗� . Q𝛩∪⟨S:𝑝⟩𝑞) ⊑ evl𝛼 (𝔛, Q𝛩𝑞. Q

B
�⃗�) applied to the outer evolution function. □

Towards the proof of Proposition 6, we show the following more general result.

Proposition 12. Let𝔛 ∈ HAsg be an hyperassignment and ℘, ℘1, ℘2, ℘3 ∈ QnB behavioral quantifier
prefixes, such that ℘ = ℘1. ℘2. ℘3 and ap(℘) ∩ ap(𝔛) = ∅. Then, it holds that evl𝛼 (𝔛, C𝛼 (℘)) ⊑
evl𝛼 (𝔛, ℘1. C𝛼 (℘2). ℘3) ⊑ evl𝛼 (𝔛, ℘) ⊑ evl𝛼 (𝔛, ℘1 . C𝛼 (℘2). ℘3) ⊑ evl𝛼 (𝔛, C𝛼 (℘)).

Proof. We separately prove the two chains of inequalities forming the statement, namely
evl𝛼 (𝔛, C𝛼 (℘)) ⊑ evl𝛼 (𝔛, ℘1 . C𝛼 (℘2). ℘3) ⊑ evl𝛼 (𝔛, ℘) and evl𝛼 (𝔛, ℘) ⊑ evl𝛼 (𝔛, ℘1. C𝛼 (℘2). ℘3) ⊑
evl𝛼 (𝔛, C𝛼 (℘)), by using different technical expedients.

• [evl𝛼 (𝔛, C𝛼 (℘)) ⊑ evl𝛼 (𝔛, ℘1. C𝛼 (℘2). ℘3) ⊑ evl𝛼 (𝔛, ℘)] To prove that the first chain of in-
equalities holds, let us fix awell-founded preorder ⪯ over the set of triples of quantifier prefixes
T =

{
⟨℘1, ℘2, ℘3⟩ ∈ QnB × QnB × QnB

�� ℘ = ℘1. ℘2 . ℘3
}
defined as follows: ⟨℘1, ℘2, ℘3⟩ ⪯〈

℘′
1, ℘

′
2, ℘

′
3
〉
iff ℘′

2 = ℘𝑙 · ℘2 · ℘𝑟 , for some ℘𝑙 , ℘𝑟 ∈ QnB, i.e., ℘2 is a (not necessarily proper) in-
fix of ℘′

2. Notice that, given the definition of the set T , the relation ⟨℘1, ℘2, ℘3⟩ ⪯
〈
℘′

1, ℘
′
2, ℘

′
3
〉

also implies ℘1 = ℘′
1 ·℘𝑙 and ℘3 = ℘𝑟 ·℘′

3. In addition, let us introduce C𝛼 (𝑇) as an abbreviation
for ℘1 . C𝛼 (℘2). ℘3, given an arbitrary triple𝑇 = ⟨℘1, ℘2, ℘3⟩ ∈ T . Now, to show that the chain
of inequalities holds true, it is enough to prove that evl𝛼 (𝔛, C𝛼 (𝑇 ′)) ⊑ evl𝛼 (𝔛, C𝛼 (𝑇)), for all
𝑇,𝑇 ′ ∈ T with 𝑇 ⪯ 𝑇 ′. The proof shall proceed by structural induction on the preorder ⪯.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

0:48 Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero

– [Base case 𝑇 = 𝑇 ′] Obviously C𝛼 (𝑇) = C𝛼 (𝑇 ′). Thus, the property trivially holds, as
evl𝛼 (𝔛, C𝛼 (𝑇 ′)) = evl𝛼 (𝔛, C𝛼 (𝑇)).

– [Inductive case𝑇 ≺ 𝑇 ′] Since𝑇 ≺ 𝑇 ′, there necessarily exists a triple𝑇 ′′ =
〈
℘′′

1 , ℘
′′
2 , ℘

′′
3
〉
∈

T such that𝑇 ≺ 𝑇 ′′ ⪯ 𝑇 ′ and either (a) ℘1 = ℘′′
1 . Q

B𝑝 , ℘′′
2 = QB𝑝. ℘2, and ℘3 = ℘′′

3 , or (b) ℘1 =

℘′′
1 , ℘

′′
2 = ℘2. Q

B𝑝 , and ℘3 = QB𝑝. ℘′′
3 , for some quantifier symbol Q ∈ {∃,∀} and atomic propo-

sition 𝑝 ∈ AP. By inductive hypothesis, it holds that evl𝛼 (𝔛, C𝛼 (𝑇 ′)) ⊑ evl𝛼 (𝔛, C𝛼 (𝑇 ′′)).
Thus, to conclude, we need to show that evl𝛼 (𝔛, C𝛼 (𝑇 ′′)) ⊑ evl𝛼 (𝔛, C𝛼 (𝑇)). If C𝛼 (𝑇) =

C𝛼 (𝑇 ′′), there is nothing really to prove, as evl𝛼 (𝔛, C𝛼 (𝑇 ′′)) = evl𝛼 (𝔛, C𝛼 (𝑇)). Hence, let
us assume C𝛼 (𝑇) ≠ C𝛼 (𝑇 ′′). The proof now proceeds with the following case analysis.
(a) [℘1 = ℘′′

1 . Q
B𝑝, ℘′′

2 = QB𝑝. ℘2, and ℘3 = ℘′′
3] First observe that Q is 𝛼-coherent. If this

were not the case, indeed, we would have had C𝛼 (℘′′
2) = C𝛼 (QB𝑝. ℘2) = QB𝑝. C𝛼 (℘2),

which in turn would have implied C𝛼 (𝑇 ′′) = ℘′′
1 . C𝛼 (℘′′

2). ℘′′
3 = ℘′′

1 . C𝛼 (QB𝑝. ℘2). ℘′′
3 =

℘′′
1 . Q

B𝑝. C𝛼 (℘2). ℘′′
3 = ℘1. C𝛼 (℘2). ℘3,= C𝛼 (𝑇), contradicting the previous assumption

C𝛼 (𝑇) ≠ C𝛼 (𝑇 ′′). Both C𝛼 (℘2) and C𝛼 (℘′′
2) are prefix canonicalisation, featuring at most

one quantifier alternation starting with a 𝛼-coherent quantifier Q. Specifically, these
can be written as C𝛼 (℘2) = Q

B
�⃗�. Q�⃗��⃗� and C𝛼 (℘′′

2) = C𝛼 (QB𝑝. ℘2) = Q
B
�⃗�. QB∪⟨S:𝑞⟩𝑝. Q�⃗��⃗� , for

some vectors of atomic propositions �⃗� and �⃗� , and a vector of quantifiers specifications
�⃗� ∈ Θ∗

Bwith |�⃗� | = |⃗𝑟 |. At this point, the induction proof terminates by checking the
following chain of equalities/inequalities:

evl𝛼 (𝔛, C𝛼 (𝑇 ′′)) = evl𝛼 (𝔛, ℘′′
1 . C𝛼 (℘′′

2). ℘′′
3) (3a)

= evl𝛼 (evl𝛼 (evl𝛼 (𝔛, ℘′′
1), C𝛼 (℘′′

2)), ℘′′
3) (3b)

= evl𝛼 (evl𝛼 (evl𝛼 (𝔛, ℘′′
1), Q

B
�⃗�. QB∪⟨S:𝑞⟩𝑝. Q�⃗��⃗�), ℘′′

3) (3c)

= evl𝛼 (evl𝛼 (evl𝛼 (𝔛, ℘′′
1), Q

B
�⃗�. QB∪⟨S:𝑞⟩𝑝), Q�⃗��⃗� . ℘′′

3) (3d)

⊑ evl𝛼 (evl𝛼 (evl𝛼 (𝔛, ℘′′
1), QB𝑝. Q

B
�⃗�), Q�⃗��⃗� . ℘′′

3) (3e)

= evl𝛼 (evl𝛼 (evl𝛼 (𝔛, ℘′′
1), QB𝑝. Q

B
�⃗�. Q�⃗��⃗�), ℘′′

3) (3f)

= evl𝛼 (evl𝛼 (evl𝛼 (𝔛, ℘′′
1 . Q

B𝑝), QB�⃗�. Q�⃗��⃗�), ℘′′
3) (3g)

= evl𝛼 (evl𝛼 (evl𝛼 (𝔛, ℘1), C𝛼 (℘2)), ℘3) (3h)
= evl𝛼 (𝔛, ℘1 . C𝛼 (℘2). ℘3) (3i)
= evl𝛼 (𝔛, C𝛼 (𝑇)) . (3j)

Step 3e is due to Proposition 11 applied to evl𝛼 (evl𝛼 (𝔛, ℘′′
1), Q

B
�⃗�. QB∪⟨S:𝑞⟩𝑝) combined

with Proposition 5. All the other steps are just immediate consequences of the definition
of evolution function and the structure of both the quantifier prefixes ℘′′

1 , ℘
′′
2 , and ℘′′

3 ,
and the canonical forms C𝛼 (𝑇) and C𝛼 (𝑇 ′′).

(b) [℘1 = ℘′′
1 , ℘

′′
2 = ℘2. Q

B𝑝, and ℘3 = QB𝑝. ℘′′
3] Similarly to the previous case, from

C𝛼 (𝑇) ≠ C𝛼 (𝑇 ′′), one can derive that Q is 𝛼-coherent. Consequently, C𝛼 (℘2) and C𝛼 (℘′′
2)

can be written as C𝛼 (℘2) = QB⃗𝑞. Q
�⃗�
�⃗� and C𝛼 (℘′′

2) = C𝛼 (℘2. Q
B𝑝) = QB⃗𝑞. QB𝑝. Q

�⃗� ′
�⃗� , for

some vectors of atomic propositions �⃗� and �⃗� , and vectors of quantifiers specifications
�⃗�, �⃗� ′ ∈ Θ∗

Bwith |�⃗� | = |�⃗� ′ | = |⃗𝑟 | and𝛩 ′ = �⃗� ∪ ⟨S : 𝑝⟩. At this point, the induction proof
terminates by checking the following chain of equalities/inequalities:

evl𝛼 (𝔛, C𝛼 (𝑇 ′′)) = evl𝛼 (𝔛, ℘′′
1 . C𝛼 (℘′′

2). ℘′′
3) (4a)

= evl𝛼 (evl𝛼 (evl𝛼 (𝔛, ℘′′
1), C𝛼 (℘′′

2)), ℘′′
3) (4b)

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

Good-for-Game QPTL: An Alternating Hodges Semantics 0:49

= evl𝛼 (evl𝛼 (evl𝛼 (𝔛, ℘′′
1), QB�⃗�. QB𝑝. Q

�⃗� ′
�⃗�), ℘′′

3) (4c)

= evl𝛼 (evl𝛼 (evl𝛼 (𝔛, ℘′′
1 . Q

B�⃗�), QB𝑝. Q�⃗�
′
�⃗�), ℘′′

3) (4d)

⊑ evl𝛼 (evl𝛼 (evl𝛼 (𝔛, ℘′′
1 . Q

B�⃗�), Q�⃗��⃗� . QB𝑝), ℘′′
3) (4e)

= evl𝛼 (evl𝛼 (evl𝛼 (𝔛, ℘′′
1), QB�⃗�. Q

�⃗�
�⃗� . QB𝑝), ℘′′

3) (4f)

= evl𝛼 (evl𝛼 (evl𝛼 (𝔛, ℘′′
1), QB�⃗�. Q

�⃗�
�⃗�), QB𝑝. ℘′′

3) (4g)
= evl𝛼 (evl𝛼 (evl𝛼 (𝔛, ℘1), C𝛼 (℘2)), ℘3) (4h)
= evl𝛼 (𝔛, ℘1. C𝛼 (℘2). ℘3) (4i)
= evl𝛼 (𝔛, C𝛼 (𝑇)) . (4j)

Step 4e is due to Proposition 11 applied to evl𝛼 (evl𝛼 (𝔛, ℘′′
1 . Q

B⃗𝑞), QB𝑝. Q�⃗�
′
�⃗�) combined

with Proposition 5. All the other steps are just immediate consequences of the definition
of evolution function and the structure of both the quantifier prefixes ℘′′

1 , ℘
′′
2 , and ℘′′

3 ,
and the canonical forms C𝛼 (𝑇) and C𝛼 (𝑇 ′′).

• [evl𝛼 (𝔛, ℘) ⊑ evl𝛼 (𝔛, ℘1. C𝛼 (℘2). ℘3) ⊑ evl𝛼 (𝔛, C𝛼 (℘))] In order to show that the second
chain of inequalities holds as well, we first state the following two simple auxiliary results,
one regarding a duality property between the two syntactic canonicalisations of a quantifier
prefix and the other concerning the dualization of the evolution function.

Claim 9. C𝛼 (℘) = C𝛼 (℘), for all quantifier prefixes ℘ ∈ Qn.

Claim 10. evl𝛼 (𝔛, ℘) ≡ evl𝛼 (𝔛, ℘), for all hyperassignments𝔛 ∈ HAsg and quantifier prefixes
℘ ∈ Qn.
Proof. The proof proceeds by induction on the length of ℘.
– [Base step ℘ = Y] evl𝛼 (𝔛, Y) = 𝔛 = evl𝛼 (𝔛, Y).
– [Inductive step ℘ = Q𝛩𝑝. ℘′] First notice that ℘ = Q

𝛩
𝑝. ℘′ and observe that, thanks to the

definition of evolution function and the inductive hypothesis, the following holds true:

evl𝛼 (𝔛, ℘) = evl𝛼 (evl𝛼 (𝔛, Q𝛩𝑝), ℘′) ≡ evl𝛼 (evl𝛼 (𝔛, Q𝛩𝑝), ℘′).
Let us now distinguish two cases based on the coherence of 𝛼 and Q.
∗ [Q is 𝛼-coherent]

evl𝛼 (𝔛, ℘) ≡ evl𝛼 (evl𝛼 (𝔛, Q𝛩𝑝), ℘′) (5a)

= evl𝛼 (ext𝛩 (𝔛, 𝑝), ℘′) (5b)

≡ evl𝛼 (ext𝛩
(
𝔛, 𝑝

)
, ℘′) (5c)

= evl𝛼 (evl𝛼 (𝔛, Q
𝛩
𝑝), ℘′) (5d)

= evl𝛼 (𝔛, Q
𝛩
𝑝. ℘′) (5e)

= evl𝛼 (𝔛, ℘) (5f)
Step 5b and 5d are due to the definition of evolution function over a single quantifier,
for the cases when 𝛼 and Q are coherent and non-coherent, respectively. Step 5c is just a
simple consequence of Propositions 1, 4, and 5. Finally, Step 5e is given by the definition
of evolution function for quantifier prefixes.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

0:50 Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero

∗ [Q is not 𝛼-coherent]

evl𝛼 (𝔛, ℘) ≡ evl𝛼 (evl𝛼 (𝔛, Q𝛩𝑝), ℘′) (6a)

= evl𝛼 (ext𝛩
(
𝔛, 𝑝

)
, ℘′) (6b)

≡ evl𝛼 (ext𝛩
(
𝔛, 𝑝

)
, ℘′) (6c)

= evl𝛼 (evl𝛼 (𝔛, Q
𝛩
𝑝), ℘′) (6d)

= evl𝛼 (𝔛, Q
𝛩
𝑝. ℘′) (6e)

= evl𝛼 (𝔛, ℘) (6f)

Step 6b and 6d are due to the definition of evolution function over a single quantifier,
for the cases when 𝛼 and Q are non-coherent and coherent, respectively. Step 6c is just a
simple consequence of Propositions 1 and 5. Finally, Step 6e is given by the definition of
evolution function for quantifier prefixes. □

In the first item of this proof, we have proved that evl𝛼 (𝔛, C𝛼 (℘)) ⊑ evl𝛼 (𝔛, ℘1. C𝛼 (℘2). ℘3) ⊑
evl𝛼 (𝔛, ℘) holds true for every 𝔛 ∈ HAsg and ℘, ℘1, ℘2, ℘3 ∈ QnB, with ℘ = ℘1 . ℘2. ℘3.
By instantiating 𝔛 and ℘ with 𝔛 and ℘, and observing that ℘ = ℘1. ℘2. ℘3, we obtain
evl𝛼 (𝔛, C𝛼 (℘)) ⊑ evl𝛼 (𝔛, ℘1 . C𝛼 (℘2). ℘3) ⊑ evl𝛼 (𝔛, ℘). Now, thanks to Claims 9 and 10
above, we obtain evl𝛼 (𝔛, C𝛼 (℘)) ⊑ evl𝛼 (𝔛, ℘1. C𝛼 (℘2). ℘3) ⊑ evl𝛼 (𝔛, ℘), as shown in the
following two chains of equivalences/inequalities:

evl𝛼 (𝔛, C𝛼 (℘)) ≡ evl𝛼 (𝔛, C𝛼 (℘)) (7a)

= evl𝛼 (𝔛, C𝛼 (℘)) (7b)

⊑ evl𝛼 (𝔛, ℘1. C𝛼 (℘2). ℘3) (7c)

= evl𝛼 (𝔛, ℘1. C𝛼 (℘2) . ℘3) (7d)

= evl𝛼 (𝔛, ℘1. C𝛼 (℘2) . ℘3) (7e)

≡ evl𝛼 (𝔛, ℘1. C𝛼 (℘2). ℘3). (7f)

evl𝛼 (𝔛, ℘1 . C𝛼 (℘2). ℘3) ≡ evl𝛼 (𝔛, ℘1. C𝛼 (℘2). ℘3) (7g)

= evl𝛼 (𝔛, ℘1. C𝛼 (℘2) . ℘3) (7h)

= evl𝛼 (𝔛, ℘1. C𝛼 (℘2) . ℘3) (7i)

⊑ evl𝛼 (𝔛, ℘) (7j)

≡ evl𝛼 (𝔛, ℘). (7k)

At this point, thanks to Propositions 1 and 4, we derive evl𝛼 (𝔛, ℘) ⊑ evl𝛼 (𝔛, ℘1. C𝛼 (℘2). ℘3) ⊑
evl𝛼 (𝔛, C𝛼 (℘)) from evl𝛼 (𝔛, C𝛼 (℘)) ⊑ evl𝛼 (𝔛, ℘1. C𝛼 (℘2). ℘3) ⊑ evl𝛼 (𝔛, ℘). □

The following proposition is now an immediate consequence of the above result.

Proposition 6. evl𝛼 (𝔛, C𝛼 (℘)) ⊑ evl𝛼 (𝔛, ℘) ⊑ evl𝛼 (𝔛, C𝛼 (℘)), for all hyperassignments 𝔛 ∈ HAsg
and behavioral quantifier prefixes ℘ ∈ QnB, with ap(℘) ∩ ap(𝔛) = ∅.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

Good-for-Game QPTL: An Alternating Hodges Semantics 0:51

At this point, we have proven everything used in the proof of Theorem 6 from the main paper.
Here is the graph of dependency presenting the propositions used for this proof.

Theorem 6

Proposition 1

Proposition 4

Proposition 5

Proposition 12

Proposition 6

Proposition 7

Proposition 8

Proposition 9

Proposition 10

Proposition 11

For the next proposition, given a set of assignments Y and a set of atomic propositions P ⊆ AP,
we introduce the notation Y \P ≜ {𝜒 ∈ Asg(ap(Y) \ P) | ∃𝜒 ′ ∈ Y. 𝜒 ⊆ 𝜒 ′}. We also use the notation
Y\𝑝 , with 𝑝 ∈ ap(Y), as a shortcut for Y\{𝑝 } .

Proposition 13. Let 𝔛 ∈ HAsg(P) be a hyperassignment over P ⊆ AP and ℘ ∈ Qn a quantifier
prefix, with ap(℘)∩P = ∅. Then, for all sets of assignments Y ∈ evl𝛼 (𝔛, ℘), it holds that Y\ap(℘) ⊆

⋃
𝔛.

Proof. The proof proceeds by induction on the length of the quantification prefix ℘.
• [Base case ℘ = Y] evl𝛼 (𝔛, Y) = 𝔛, thus, the property follows trivially.
• [Base case ℘ = Q𝛩𝑝 with Q 𝛼-coherent] Since evl𝛼 (𝔛, ℘) = ext𝛩 (𝔛, 𝑝), there exist X ∈ 𝔛

and F ∈ Fnc𝛩 (ap(𝔛)) such that Y = ext(X, F, 𝑝). Thus, Y\𝑝 = X ⊆ ⋃
𝔛, hence the thesis.

• [Base case ℘ = Q𝛩𝑝 with Qnot𝛼-coherent] In this case, we have evl𝛼 (𝔛, Q𝛩𝑝) = ext𝛩

(
𝔛, 𝑝

)
.

Let Y ∈ ext𝛩

(
𝔛, 𝑝

)
. By definition of dualization, there is Γ ∈ Chc

(
ext𝛩

(
𝔛, 𝑝

))
such that

img(Γ) = Y. Then, for every F ∈ Fnc𝛩 (ap(𝔛)) and every X ∈ 𝔛, there is 𝜒X,F ∈ ext(X, F, 𝑝)
such that Y =

{
𝜒X,F

���X ∈ 𝔛 ∧ F ∈ Fnc𝛩 (ap(𝔛))
}
. Then for every 𝜒X,F, there is 𝜒 ′

X,F ∈ X

such that 𝜒X,F = 𝜒 ′
X,F [𝑝 ↦→ F(𝜒 ′

X,F)]. Naturally, Y\ap(℘) =
{
𝜒 ′

X,F

���X ∈ 𝔛 ∧ F ∈ Fnc𝛩 (ap(𝔛))
}
.

However, X ∈ 𝔛 and then 𝜒 ′
X,F ∈

⋃
𝔛. Hence Y\ap(℘) ⊆

⋃
𝔛.

• [Inductive case ℘ = ℘′. Q𝛩𝑝] By the inductive hypothesis, we have that Z\ap(℘′) ⊆ ⋃
𝔛,

for all Z ∈ evl𝛼 (𝔛, ℘′). Consequently, (⋃ evl𝛼 (𝔛, ℘′))\ap(℘′) =
⋃(evl𝛼 (𝔛, ℘′)\ap(℘′)) ⊆

⋃
𝔛.

Now, by definition of evolution function, we have that evl𝛼 (𝔛, ℘) = evl𝛼 (evl𝛼 (𝔛, ℘′), Q𝛩𝑝).
Again by the inductive hypothesis, Y\𝑝 ⊆ ⋃

evl𝛼 (𝔛, ℘′), since Y ∈ evl𝛼 (evl𝛼 (𝔛, ℘′), Q𝛩𝑝).
Hence, Y\ap(℘) = (Y\𝑝)\ap(℘′) ⊆ (⋃ evl𝛼 (𝔛, ℘′))\ap(℘′) ⊆

⋃
𝔛, as expected. □

We now define a refinement of the order ⊑ between two hyperassignments 𝔛1,𝔛2 ∈ HAsg, with
ap(𝔛1) = ap(𝔛2), w.r.t. a set of assignments X ⊆ Asg(P) over some P ⊆ AP as follows: 𝔛1 ⊑X 𝔛2 if,
for every X1 ∈ 𝔛1, there is X2 ∈ 𝔛2 such that X2 \ {𝜒 ∈ Asg | 𝜒 ↾P ∈ X} ⊆ X1.

Proposition 14. Let 𝔛1,𝔛2 ∈ HAsg be two hyperassignments with 𝔛1 ⊑X 𝔛2, for some set of
assignments X ⊆ Asg(P) over a set of atomic propositions P ⊆ AP. Then, the following hold true:
evl𝛼 (𝔛1, ℘) ⊑X evl𝛼 (𝔛2, ℘), for all ℘ ∈ Qn with ap(𝔛1) ∩ ap(℘) = ap(𝔛2) ∩ ap(℘) = ∅.

Proof. The proof proceeds by induction on the length of ℘.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

0:52 Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero

• [Base step ℘ = Y] evl𝛼 (𝔛1, Y) = 𝔛1 ⊑X 𝔛2 = evl𝛼 (𝔛2, Y).
• [Inductive step ℘ = Q𝛩𝑝. ℘′] Let us distinguish two cases based on whether Q is or not
𝛼-coherent.
– [Q is 𝛼-coherent] Since 𝛼 and Q are coherent, evl𝛼 (𝔛𝑖 , ℘) = evl𝛼 (ext𝛩 (𝔛𝑖 , 𝑝) , ℘′), for
all 𝑖 ∈ {1, 2}. We can now focus on showing that ext𝛩 (𝔛1, 𝑝) ⊑X ext𝛩 (𝔛2, 𝑝) holds
true, as the thesis follows by applying the inductive hypothesis. Since ext𝛩 (𝔛𝑖 , 𝑝) =

{ext(X𝑖 , F𝑖 , 𝑝) | X𝑖 ∈ 𝔛𝑖 , F𝑖 ∈ Fnc𝛩 (ap(𝔛𝑖))}, we have to prove that, for every X1 ∈ 𝔛1 and
F1 ∈ Fnc𝛩 (ap(𝔛1)), there exist X2 ∈ 𝔛2 and F2 ∈ Fnc𝛩 (ap(𝔛2)) such that ext(X2, F2, 𝑝) \
{𝜒 ∈ Asg | 𝜒 ↾P ∈ X} ⊆ ext(X1, F1, 𝑝). Now, it is easy to see that such a property can be
satisfied by choosing F2 ≜ F1, since Fnc𝛩 (ap(𝔛1)) = Fnc𝛩 (ap(𝔛2)), and 𝔛2 ≜ f (𝔛1), where
f : 𝔛1 → 𝔛2 is a witness for the inclusion 𝔛1 ⊑X 𝔛2.

– [Q is not 𝛼-coherent] Since 𝛼 and Q are not coherent, by Propositions 5 and 9, it holds
that evl𝛼 (𝔛𝑖 , ℘) = evl𝛼 (evl𝛼 (𝔛𝑖 , Q

𝛩𝑝), ℘′) ≡ evl𝛼 (nevl𝛼 (𝔛𝑖 , Q
𝛩𝑝), ℘′), for all 𝑖 ∈ {1, 2}.

As done in the previous case, we can now focus on showing that nevl𝛼 (𝔛1, Q
𝛩𝑝) ⊑X

nevl𝛼 (𝔛2, Q
𝛩𝑝) holds true, as the thesis follows by applying the inductive hypothesis.

Since nevl𝛼 (𝔛𝑖 , Q
𝛩𝑝) = {ext(ð𝑖 , 𝑝) | ð𝑖 ∈ Fnc𝛩 (ap(𝔛𝑖)) → 𝔛𝑖 }, we have to prove that,

for every ð1 ∈ Fnc𝛩 (ap(𝔛1)) → 𝔛1, there exists ð2 ∈ Fnc𝛩 (ap(𝔛2)) → 𝔛2 such
that ext(ð2, 𝑝) \ {𝜒 ∈ Asg | 𝜒 ↾P ∈ X} ⊆ ext(ð1, 𝑝). To this end, let us define a function
g : (Fnc𝛩 (ap(𝔛1)) → 𝔛1) → (Fnc𝛩 (ap(𝔛2)) → 𝔛2) as follows: g(ð1) (F)≜ f (ð1 (F)),
for every ð1 ∈ Fnc𝛩 (ap(𝔛1)) → 𝔛1 and F ∈ Fnc𝛩 (ap(𝔛1)) = Fnc𝛩 (ap(𝔛2)), where
f : 𝔛1 → 𝔛2 is a witness for the inclusion 𝔛1 ⊑X 𝔛2. Clearly, it holds that g(ð1) (F) \
{𝜒 ∈ Asg | 𝜒 ↾P ∈ X} ⊆ ð1 (F). Thus, the required property can be satisfied by choosing
ð2 ≜ g(ð1), since ext(g(ð1), 𝑝) \ {𝜒 ∈ Asg | 𝜒 ↾P ∈ X} ⊆ ext(ð1, 𝑝) holds true. □

Next, we prove Theorem 8. Here is the graph of dependency presenting the theorem and the
propositions used for this proof.

Theorem 8

Theorem 5

Proposition 5

Proposition 9

Proposition 12

Proposition 13

Proposition 14

. . .

. . .

. . .

. . .

Theorem 8 (Quantification Game II). Every 𝔔-game ⅁, for some quantification-game schema
𝔔≜ ⟨𝔛, ℘,Ψ⟩, satisfies the following two properties:
1) if Eloise wins then E ⊆ Ψ, for some E ∈ evl∃∀(𝔛, C∀∃ (℘));
2) if Abelard wins then E ⊈ Ψ, for all E ∈ evl∃∀(𝔛, C∃∀(℘)).

Proof. First of all, recall that the game ⅁𝔔 of Construction 2 is obtained directly from the game
⅁Ψ̂
℘̂
of Construction 1, by defining the set of assignments ℘̂ and the quantifier prefix Ψ̂ as follows:

• ℘̂≜∀�⃗� . ℘̃. ℘ and
• Ψ̂≜Ψ ∪

{
𝜒 ∈ Asg(P)

�� 𝜒 ↾𝑝 ∉ X
}
,

with �⃗� ≜ ap(𝔛) \ ap
(
℘̃
)
and P≜ ap(℘) ∪ ap(𝔛).

We can now proceed with the proof of the two properties.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

Good-for-Game QPTL: An Alternating Hodges Semantics 0:53

• [1] If Eloise wins the game, by Item 1 of Theorem 5, there exists a set of assignments
Ê ∈ evl∃∀(C∀∃ (℘̂)) such that Ê ⊆ Ψ̂. Thanks to Propositions 5 and 12, we can show that
evl∃∀(C∀∃ (℘̂)) ⊑ evl∃∀(𝔛, C∀∃ (℘)). Indeed,

evl∃∀(C∀∃ (℘̂)) = evl∃∀(C∀∃ (∀�⃗� . ℘̃. ℘)) (8a)
⊑ evl∃∀(∀�⃗� . ℘̃. C∀∃ (℘)) (8b)
= evl∃∀(evl∃∀(evl∃∀(∀�⃗�), ℘̃), C∀∃ (℘)) (8c)
= evl∃∀(evl∃∀({Asg(�⃗�)}, ℘̃), C∀∃ (℘)) (8d)
⊑ evl∃∀(evl∃∀({X}, ℘̃), C∀∃ (℘)) (8e)
= evl∃∀(𝔛, C∀∃ (℘)), (8f)

where Step 8b is due to Proposition 12, Step 8d to the equality evl∃∀(∀�⃗�) = {Asg(�⃗�)}, and
Step 8e is derived from Proposition 5, thanks to the fact that {Asg(�⃗�)} ⊑ {X}. Now, due
to the definition of the ordering ⊑ between hyperassignments, it follows that evl∃∀(C∀∃ (℘̂)) ⊑
evl∃∀(𝔛, C∀∃ (℘)) necessarily implies the existence of a set of assignments E∈evl∃∀(𝔛, C∀∃ (℘))
such that E ⊆ Ê. Therefore, E ⊆ Ψ̂. At this point, we can prove that E ⊆ Ψ, since Ψ̂ = Ψ ∪{
𝜒 ∈ Asg(P)

�� 𝜒 ↾𝑝 ∉ X
}
and E∩

{
𝜒 ∈ Asg(P)

�� 𝜒 ↾𝑝 ∉ X
}
= ∅. Indeed, E ∈ evl∃∀(𝔛, C∀∃ (℘)) =

evl∃∀({X}, ℘̃. C∀∃ (℘)) and, by Proposition 13, it follows that E\𝑝 ⊆ X.
• [2] If Abelard wins the game, by Item 2 of Theorem 5, it holds that Ê ⊈ Ψ̂, for all sets of
assignments Ê ∈ evl∃∀(C∃∀(℘̂)). It is easy to observe that {X} ⊑X {Asg(�⃗�)}, since Asg(�⃗�) \{
𝜒 ∈ Asg

��� 𝜒 ↾𝑝 ∈ X
}
= Asg(�⃗�) \

{
𝜒 ∈ Asg

�� 𝜒 ↾𝑝 ∉ X
}
= X. Thus, thanks to Propositions 12

and 14, we can show that evl∃∀(𝔛, C∃∀(℘)) ⊑X evl∃∀(C∃∀(℘̂)). Indeed,

evl∃∀(𝔛, C∃∀(℘)) = evl∃∀(evl∃∀({X}, ℘̃), C∃∀(℘)) (9a)
⊑X evl∃∀(evl∃∀({Asg(�⃗�)}, ℘̃), C∃∀(℘)) (9b)
= evl∃∀(evl∃∀(evl∃∀(∀�⃗�), ℘̃), C∃∀(℘)) (9c)
= evl∃∀(∀�⃗� . ℘̃. C∃∀(℘)) (9d)
⊑ evl∃∀(C∃∀(∀�⃗� . ℘̃. ℘)) (9e)
= evl∃∀(C∃∀(℘̂)), (9f)

where Step 9b is due to Proposition 14, thanks to the fact that {X} ⊑X {Asg(�⃗�)}, Step 9c to the
equality evl∃∀(∀�⃗�) = {Asg(�⃗�)}, and Step 9e is derived from Proposition 12. Now, due to the
definition of the ordering ⊑X between hyperassignments, it follows that evl∃∀(𝔛, C∃∀(℘)) ⊑X
evl∃∀(C∃∀(℘̂)) necessarily implies the non existence of a set of assignments E ∈ evl∃∀(𝔛,
C∃∀(℘)) such that E ⊆ Ψ̂. Indeed, assume towards a contradiction that there is E ∈ evl∃∀(𝔛,
C∃∀(℘)) such that E ⊆ Ψ̂. By the above inclusion, there is Ê ∈ evl∃∀(C∃∀(℘̂)) such that Ê \{
𝜒 ∈ Asg

��� 𝜒 ↾𝑝 ∈ X
}
⊆ E ⊆ Ψ̂. Since Ê ∩

{
𝜒 ∈ Asg

��� 𝜒 ↾𝑝 ∈ X
}
⊆

{
𝜒 ∈ Asg(P)

�� 𝜒 ↾𝑝 ∉ X
}
⊆

Ψ̂, we have that Ê ⊆ Ψ̂, which contradicts the fact that Abelard wins the game. Hence, E ⊈ Ψ̂
holds, for all E ∈ evl∃∀(𝔛, C∃∀(℘)), which implies that E ⊈ Ψ, being Ψ ⊆ Ψ̂. □

Now, we have proven everything that is used for the proof of Theorem 9 from the main paper.
Here is the graph of dependency presenting the lemma, the propositions, the corollaries and
theorems used for this proof.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

0:54 Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero

Theorem 9

Theorem 2

Theorem 3

Theorem 8

Proposition 6

Corollary 2

Corollary 4

Lemma 4

. . .

. . .

. . .

. . .

And finally, we have proven everything that is used for the proof of Theorem 7 from the main
paper. Here is the graph of dependency presenting the corollary and the theorem used for this
proof.

Theorem 7

Theorem 9

Corollary 4

. . .

. . .

D PROOFS OF SECTION 5
The following theorem relies on both the notions of parity game and parity automaton [14, 64, 65]
(see also [26, 45]). Parity games are perfect-information two-player turn-based games of infinite
duration, usually played on finite directed graphs. Their vertices, called positions, are labelled by
natural numbers, called priorities, and are assigned to one of two players, namely 0 and 1. The
game starts at a given position and, during its evolution, players can take a move (an outgoing
edge) only at their own positions. The moves selected by the players induce an infinite sequence of
vertices, called play. If the maximal priority of the vertices occurring infinitely often in the play is
even, then the play is winning for player 0, otherwise, player 1 takes it all. Similarly, the states of a
(non-deterministic) parity automaton are labelled with natural numbers (priorities) and an infinite
word given in input is accepted by the automaton iff there exists a run induced by such a word, for
which the maximal priority seen infinitely often along it has even parity.

Theorem 10 (Satisfiability Game). For every behavioral GFG-QPTL sentence 𝜑 there is a parity
game, with 22O(|𝜑 |)

positions and 2O(|𝜑 |) priorities, won by Eloise iff 𝜑 is satisfiable.

Proof. Let 𝜑 = ℘𝜓 be a behavioral GFG-QPTL sentence with ℘ a quantification prefix and
𝜓 an LTL formula. Additionally, let Ψ≜ {𝜒 ∈ Asg(ap(℘)) | 𝜒 |= 𝜓 }. The idea of the proof is to
construct a parity game ⅁𝜑 that is equivalent to the game ⅁𝜓℘≜⅁Ψ

℘≜
〈
A𝜓

℘,Ob𝜓℘,Wn𝜓℘
〉
defined in

Construction 1, whereA𝜓
℘≜

〈
PsE℘,𝜓, PsA℘,𝜓, 𝑣𝐼℘,𝜓,Mv℘,𝜓

〉
. Intuitively, ⅁𝜑 simulates the synchronous

product of arena A𝜓
℘with the deterministic automaton D𝜓 recognising models of 𝜓 , where D𝜓

changes state only when Abelard takes a move starting from an observable position containing full
valuation of the propositions. Such valuation determines the successor state.

The deterministic automaton D𝜓 recognising models of𝜓 can be obtained in a standard way, by
first constructing a non-deterministic Büchi automaton 𝐴𝜓 that recognises models of𝜓 , using the
Vardi-Wolper construction [81], and then by determinising 𝐴𝜓 (via a Safra-like determinisation
procedure [69]) into an equivalent deterministic parity automaton D𝜓 = ⟨𝑄,𝑞0, Σ, 𝛿,Acc⟩, where

• 𝑄 is the finite set of states,
• 𝑞0 ∈ 𝑄 is the initial state,
• Σ = Val(ap(℘)) is the alphabet,

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

Good-for-Game QPTL: An Alternating Hodges Semantics 0:55

• 𝛿 : 𝑄 × Σ → 𝑄 is the transition function,
• Acc : 𝑄 → N is the parity condition.

Now, the parity game ⅁𝜑 associated with 𝜑 is a pair ⅁𝜑 ≜
〈
A𝜑 ,Wn𝜑

〉
, where:

• A𝜑 ≜ ⟨PsE𝜑, PsA𝜑, 𝑣𝐼 𝜑,Mv𝜑⟩ is the arena;
• the set of positions P𝜑S ≜ PsE𝜑⊎PsA𝜑 = 𝑄×(PsE℘,𝜓∪PsA℘,𝜓) contains exactly the pairs consisting
of a state of the automaton D𝜓 and a valuation b ∈ Val which is a position of ⅁𝜓℘;

• the set of Eloise’s positions PsE𝜑 ⊆ P𝜑

S only contains the positions (𝑞, b) ∈ P𝜑

S where b is an
Eloise’s position in ⅁𝜓℘;

• the initial position 𝑣𝐼
𝜑≜(𝑞0,∅) is just the initial state of D𝜓 paired with the initial state of

⅁𝜓℘;
• the move relationMv𝜑 ⊆ P𝜑S × P𝜑S contains exactly those pairs of positions ((𝑞1, b1), (𝑞2, b2)) ∈

P𝜑S × P𝜑S such that:
– (b1, b2) is a move in ⅁𝜓℘;
– if b2 = ∅ then 𝑞2 = 𝛿 (𝑞1, b1), otherwise, 𝑞1 = 𝑞2;

• the winning condition Wn𝜑 is deduced from the accepting condition of the automaton D𝜓 .
More precisely, the priority of a position (𝑞, b) ∈ P𝜑S is defined as the priority Acc(𝑞) of 𝑞, i.e.,
Wn𝜑 ((𝑞, b)) = Acc(𝑞) for all (𝑞, b) ∈ P𝜑S.

We want to show that there is a strategy for Eloise to win ⅁𝜑 if and only if there is a strategy for
her to win ⅁𝜓℘.

Towards the definition of a correspondence between Eloise’s strategies in ⅁𝜑 and Eloise’s strate-
gies in ⅁𝜓℘, we define now a bijection 𝑓 between initial paths on ⅁𝜑 (denoted Pthinit (⅁𝜑)) and initial
paths on⅁𝜓℘(denoted Pthinit (⅁𝜓℘)). Given two sets 𝑆, 𝑆 ′ and a pair (𝑥,𝑦) ∈ 𝑆×𝑆 ′, we let proj1 (𝑥,𝑦) = 𝑥

and proj2 (𝑥,𝑦) = 𝑦, that is, functions proj1 and proj2 return the first and the second element of their
argument, respectively. Furthermore, we denote by 𝜏 ⊙ 𝜋 ≜((𝜏)0, (𝜋)0) ((𝜏)1, (𝜋)1) . . . the pairing
product of two sequences. Let 𝜋 ∈ Pthinit (⅁𝜑), with 𝜋 , be an initial path on ⅁𝜑 . Function 𝑓 maps
𝜋 into the initial path on ⅁𝜓℘obtained by projecting on the second component of each position of
𝜋 , that is, 𝑓 (𝜋) = ⟨proj2 ((𝜋)𝑖)⟩𝑖∈[0, |𝜋 |) . The fact that 𝑓 is a bijection, as stated in Corollary 5, is an
immediate consequence of the following claim.

Claim 11. For every initial path 𝜋 ∈ Pthinit (⅁𝜓℘) there is exactly one sequence of automaton states
𝜏 ∈ 𝑄∞ such that |𝜋 | = |𝜏 | and 𝜏 ⊙ 𝜋 ∈ Pthinit (⅁𝜑).

Proof. The claim follows from the fact that, according to the definition of Mv𝜑, the first com-
ponent of each position of a path on ⅁𝜑 is univocally determined by the second component of
that position and by the previous position in the path (the fact that D𝜓 is deterministic plays an
important role in this). More formally, 𝜏 is constructed inductively as: (𝜏)0 = 𝑞0 is the initial state
of D𝜓 and, for 𝑖 ∈ N, with 𝑖 > 0:

(𝜏)𝑖 =
{

(𝜏)𝑖−1 if (𝜋)𝑖 ≠ ∅
𝛿 ((𝜏)𝑖−1, (𝜋)𝑖−1) if (𝜋)𝑖 = ∅

Clearly, 𝜏 ⊙ 𝜋 ∈ Pthinit (⅁𝜑) since 𝜋 is a path on ⅁𝜓℘and 𝜏 closely follow the move relationMv𝜑. It
is also easy to see that for any other 𝜏 ′ ∈ 𝑄∞, with 𝜏 ′ ≠ 𝜏 , it holds that 𝜏 ′ ⊙ 𝜋 ∉ Pthinit (⅁𝜑). Indeed,
assume, towards a contradiction, that 𝜏 ′ ⊙ 𝜋 ∈ Pthinit (⅁𝜑), and let 𝑖 be the smallest index such
that (𝜏)𝑖 ≠ (𝜏 ′)𝑖 . If 𝑖 = 0, then ((𝜏 ′)𝑖 , (𝜋)𝑖) is not the initial position of ⅁𝜓℘, thus contradicting the
assumption; if 𝑖 > 0 and (𝜋)𝑖 ≠ ∅, we have: (𝜏)𝑖 = (𝜏)𝑖−1 = (𝜏 ′)𝑖−1, which implies (𝜏 ′)𝑖−1 ≠ (𝜏 ′)𝑖 ,
and thus (((𝜏 ′)𝑖−1, (𝜋)𝑖−1), ((𝜏 ′)𝑖 , (𝜋)𝑖)) is not a move of ⅁𝜑 , according Mv𝜑, and the assumption

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

0:56 Dylan Bellier, Massimo Benerecetti, Dario Della Monica, and Fabio Mogavero

is contradicted; finally, if 𝑖 > 0 and (𝜋)𝑖 = ∅, we have (𝜏)𝑖 = 𝛿 ((𝜏)𝑖−1, (𝜋)𝑖−1) = 𝛿 ((𝜏 ′)𝑖−1, (𝜋)𝑖−1),
which implies (𝜏 ′)𝑖 ≠ 𝛿 ((𝜏 ′)𝑖−1, (𝜋)𝑖−1), and the assumption is contradicted once again, since
(((𝜏 ′)𝑖−1, (𝜋)𝑖−1), ((𝜏 ′)𝑖 , (𝜋)𝑖)) is not a move of ⅁𝜑 for any (𝜏 ′)𝑖 ≠ 𝛿 ((𝜏 ′)𝑖−1, (𝜋)𝑖−1), according
Mv𝜑. □

Corollary 5. Function 𝑓 : Pthinit (⅁𝜑) → Pthinit (⅁𝜓℘) is a bijection.

We define now a bijection^ from strategies (for both Eloise (E) and Abelard (A)) in ⅁𝜑 to strategies
in ⅁𝜓℘. For 𝛼 ∈ {E, A}, let Hst𝛼 (⅁𝜑) and Hst𝛼 (⅁𝜓℘) be the sets of histories for 𝛼 (i.e., the sets of finite
initial paths terminating in an 𝛼-position) in ⅁𝜑 and ⅁𝜓℘, respectively, and let Str𝛼 (⅁𝜑) and Str𝛼 (⅁𝜓℘)
be the sets of strategies for player𝛼 in⅁𝜑 and⅁𝜓℘, respectively. Observe thatHst𝛼 (⅁𝜑) ⊆ Pthinit (⅁𝜑)
and Hst𝛼 (⅁𝜓℘) ⊆ Pthinit (⅁𝜓℘). We define ^ : Str𝛼 (⅁𝜑) → Str𝛼 (⅁𝜓℘) as follows: for every 𝜎 ∈ Str𝛼 (⅁𝜑)
and every history 𝜌 ∈ Hst𝛼 (⅁𝜓℘), we set ^ (𝜎) (𝜌) = proj2 (𝜎 (𝑓 −1 (𝜌))). Intuitively, ^ (𝜎) acts like 𝜎
restricted to the second component of positions.

Claim 12. Function ^ : Str𝛼 (⅁𝜑) → Str𝛼 (⅁𝜓℘) is a bijection.

Proof. In order to see that ^ is injective, we show that 𝜎 ≠ 𝜎 ′ implies ^ (𝜎) ≠ ^ (𝜎 ′), for every
𝜎, 𝜎 ′ ∈ Str𝛼 (⅁𝜑). Let 𝜎, 𝜎 ′ ∈ Str𝛼 (⅁𝜑) and let 𝜌 ∈ Hst𝛼 (⅁𝜑) be such that 𝜎 (𝜌) ≠ 𝜎 ′(𝜌). We first
prove that proj2 (𝜎 (𝜌)) ≠ proj2 (𝜎 ′(𝜌)). Let 𝜌 = 𝜌 (𝑞, b) with 𝜌 potentially empty. Let 𝜎 (𝜌) = (𝑞★, b★)
with 𝑞★ = 𝑞 if b★ ≠ ∅ and 𝑞★ = 𝛿 (𝑞, b) otherwise. Toward contradiction, suppose that proj2 (𝜎 (𝜌)) =
proj2 (𝜎 ′(𝜌)) = b★. Then, by definition, proj1 (𝜎 (𝜌)) = proj1 (𝜎 ′(𝜌)) = 𝑞★ and then 𝜎 (𝜌) = 𝜎 (𝜌 ′)
which is a contradiction. Then, we have ^ (𝜎) (𝑓 (𝜌)) = proj2 (𝜎 (𝜌)) ≠ proj2 (𝜎 ′(𝜌)) = ^ (𝜎 ′) (𝑓 (𝜌)),
and therefore ^ (𝜎) ≠ ^ (𝜎 ′).

In order to show that ^ is surjective as well, let 𝜎 ∈ Str𝛼 (⅁𝜓℘). We build a strategy 𝜎 ′ ∈ Str𝛼 (⅁𝜑)
such that ^ (𝜎 ′) = 𝜎 . Intuitively, 𝜎 ′ returns a pair (a position in ⅁𝜑) whose second component is cho-
sen according to the output of strategy 𝜎 in ⅁𝜓℘, and whose first component is univocally determined
(thanks to Claim 11) by the choice of the second component and the argument history. Formally,
for every 𝜌 ∈ Hst𝛼 (⅁𝜓℘) we denote by ext (𝜌) the initial path of ⅁𝜓℘obtained by appending to 𝜌 the
output the strategy 𝜎 on 𝜌 itself, i.e., ext (𝜌) = 𝜌 · 𝜎 (𝜌); notice that 𝑓 −1 (ext (𝜌)) ∈ Pthinit (⅁𝜑). Thus,
we define 𝜎 ′ as: 𝜎 ′(𝜌)≜ lst

(
𝑓 −1 (ext (𝑓 (𝜌)))

)
, for every history 𝜌 ∈ Hst𝛼 (⅁𝜑). It is not difficult to

see that ^ (𝜎 ′) = 𝜎 : indeed, it holds that ^ (𝜎 ′) (𝜌) = proj2 (𝜎 ′(𝑓 −1 (𝜌))) = proj2 (lst
(
𝑓 −1 (ext (𝜌))

)
) =

proj2 (lst
(
𝑓 −1 (𝜌 · 𝜎 (𝜌))

)
) = 𝜎 (𝜌), for every 𝜌 ∈ Hst𝛼 (⅁𝜓℘). This concludes the proof. □

The next claim states that the bijection ^ preserves the possible plays resulting from the applica-
tion of a strategy by Eloise in ⅁𝜑 and its image in ⅁𝜓℘, modulo the correspondence between plays of
⅁𝜑 and ⅁𝜓℘established by the bijection 𝑓 . Let Play(⅁𝜑) be the set of plays of ⅁𝜑 .

Claim 13. 𝜋 is compatible with 𝜎 iff 𝑓 (𝜋) is compatible with ^ (𝜎), for every 𝜎 ∈ StrE (⅁𝜑) and
𝜋 ∈ Play(⅁𝜑).

Proof. It is easy to verify that a play 𝜋 ∈ Play(⅁𝜑) is compatible with a pair of strategies
(𝜎E, 𝜎A) ∈ StrE (⅁𝜑) × StrA (⅁𝜑) if and only if 𝑓 (𝜋) is compatible with (^ (𝜎E), ^ (𝜎A)). The thesis
immediately follows. □

As a final ingredient in our proof, we establish a correspondence 𝑔 between plays of ⅁𝜑 that
are won by Eloise and models of 𝜓 , recognised by D𝜓 . Function 𝑔 : Play(⅁𝜑) → Val(ap(℘))𝜔 is
defined as: 𝑔(𝜋)≜ obs(𝑓 (𝜋)) for every 𝜋 ∈ Play(⅁𝜑). The correctness of such a correspondence is
stated in the next claim.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

Good-for-Game QPTL: An Alternating Hodges Semantics 0:57

Claim 14. 𝜋 is won by Eloise in ⅁𝜑 iff 𝑔(𝜋) is recognised by D𝜓 , for every 𝜋 ∈ Play(⅁𝜑).

Proof. By the definition of ⅁𝜑 , if we restrict a play 𝜋 ∈ Play(⅁𝜑) to those position (𝑞, b) ∈ P𝜑

S
where b ∈ Val(ap(℘)) (thus discharging partial valuations, which do not assign a truth value to all
propositions occurring in 𝜓), we obtain a sequence 𝜋 ′ that encodes to the unique run of D𝜓 on
𝑓 (𝜋), where the sequence (𝜋 ′) |1 of first components of each position (i.e., (𝜋 ′) |1 ≜⟨proj1 ((𝜋 ′)𝑖)⟩𝑖∈N)
corresponds to the states visited by the automaton while reading the word (𝜋 ′) |2 corresponding to
the sequence of second components of the positions in 𝜋 ′ (i.e., (𝜋 ′) |2 ≜⟨proj2 ((𝜋 ′)𝑖)⟩𝑖∈N – recall that
D𝜓 is deterministic). Importantly, notice that such word (𝜋 ′) |2 is exactly 𝑔(𝜋). Additionally, observe
that the projections of 𝜋 and 𝜋 ′ on the first component of each position, i.e., (𝜋) |1 ≜⟨proj1 ((𝜋)𝑖)⟩𝑖∈N
and (𝜋 ′) |1 respectively, are equal if we ideally merge together consecutive occurrences of the same
state. This means that, since the winning condition Wn𝜑 of ⅁𝜑 mimics the acceptance condition
Acc of D𝜓 , the sequence of priorities corresponding to 𝜋 is the same as the one corresponding to
the run 𝜋 ′ of D𝜓 on 𝑔(𝜋). Therefore, 𝑔(𝜋) is recognised by D𝜓 if and only if run 𝜋 ′ is accepting if
and only if play 𝜋 is won by Eloise. □

Finally, from Claim 13 and the following one, whose proof makes use of Claim 14, it follows that
there is a strategy for Eloise to win ⅁𝜑 if and only if there is a strategy for her to win ⅁𝜓℘. Thanks to
this last equivalence and to Theorem 4 we conclude that for every behavioral GFG-QPTL sentence
𝜑 there is a parity game won by Eloise if and only if 𝜑 is satisfiable.

Claim 15. 𝜋 is won by Eloise in ⅁𝜑 iff 𝑓 (𝜋) is won by Eloise in ⅁𝜓℘, for every 𝜋 ∈ Play(⅁𝜑).

Proof. Consider a play 𝜋 ∈ Play(⅁𝜑). Thanks to Claim 14, we know that 𝜋 is won by Eloise iff
𝑔(𝜋) is accepted by D𝜓 which means that wrd−1(𝑔(𝜋)) |= 𝜓 , which, in turn, is equivalent to say
that 𝑔(𝜋) ∈ Wn𝜓℘= wrd(Ψ), that is, 𝑓 (𝜋) is won by Eloise in ⅁𝜓℘, since 𝑔(𝜋) = obs(𝑓 (𝜋)). □

The automaton 𝐴𝜓 has a size exponential in the size of 𝜓 [82]. The procedure to transform it
into a deterministic parity automaton adds one exponential [69]; thus |D𝜓 | = 22O(|𝜓 |) . It is easy to
see the number of positions of the quantification game is O

(
2 |℘ |) . Thus, we conclude that game

⅁𝜑 we have just defined has size in O
(
2 |℘ | · 22O(|𝜓 |)

)
= 22O(|𝜑 |) . The game has the same number of

priorities as the automaton D𝜓 which is in 2O(|𝜓 |) . □

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: .

	Abstract
	1 Introduction
	2 Alternating Hodges Semantics
	2.1 Quantified Propositional Temporal Logic
	2.2 A New Semantics for QPTL

	3 Good-for-Game QPTL
	3.1 Adding Behavioural Dependencies to QPTL
	3.2 Model-Theoretic Analysis

	4 Quantification Games
	4.1 Quantification Game for Sentences
	4.2 Quantification Game for Formulae

	5 Decision Problems, Expressiveness & Succinctness
	5.1 Decision Procedures
	5.2 Expressive Power

	6 Discussion
	References
	A Proofs of Section 2
	B Proofs of Section 3
	C Proofs of Section 4
	D Proofs of Section 5

