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Abstract—Interval temporal logics are temporal logics that  offering a good balance between expressiveness and decid-
take time intervals, instead of time instants, as their primtive ability/complexity. A comparative analysis of the expiess
temporal entities. One of the most studied interval temporéa power of the variety of HS fragments naturally sets the
logics is Halpern and Shoham’s modal logic of time intervals . L .
(HS), which has a distinct modality for each binary relation s<_:e_ne for such a search. This _a_naIyS|s IS _far from being
between intervals over a linear order. AsHS turns out to be  trivial, because some HS modalities are definable in terms
undecidable over most classes of linear orders, the study of of others, and thus syntactically different fragments may
HS fragments, featuring a proper subset ofHS modalities, is  turn out to be equally expressive. To complicate matters,
a major item in the research agenda for interval temporal o gapility of a given subset of HS modalities to define a

logics. A characterization of HS fragments in terms of their i dalit d d the ol £l d
relative expressive power has been given for the class of all Specific modality may aepend on (he class of inear oraers

linear orders. Unfortunately, there is no easy way to diredy ~ in Which the logic is interpreted. Many classes of linear
transfer such a result to other meaningful classes of linear orders are of practical interest, including the class of all

orders. In this paper, we provide a complete classificationfo  |inear orders and the class of all dense (resp., discretts)fin
the expressiveness dfiS fragments over the class of (all) dense  |inear orders. as well as the linear order ®f (resp., Q
linear orders. . . Z, and N). In [8], Della Monica et al. gave a complete
_Keywords-Interval Temporal Logics; Expressive Power;  characterization of all expressively different subsetH&f
Bisimulations. modalities over all linear orders. Unfortunately, such a
l. INTRODUCTION classification cannot be easily transferred to any othesscla
N , , . ) of linear orders (proving a specific undefinability result
Interval reasoning naturally arises in various fields of ;mounts to providing a counterexample based on concrete
computer science and Al, ranging from hardware and réalyear orders belonging to the considered class). As a matte
time system verification to natural language processiognfr ot ¢act specific assumptions on the underlying linear csder
constraint satisfaction to planning [1], [2], [3], [4]. [5] give rise, in general, to different sets of inter-definapili
[6]. Interval temporal logics make it possible to auromateequations.
reasoning on interval structures over (linearly) ordereel d |, this paper, we give a complete classification of the

mains, where time intervals, rather than time instantsttere expressiveness of HS fragments overdahsdinear orders

primitive ontological entities. The variety of binary rétns  \ye assume strict semantics (excluding point intervals) and
between intervals in a linear order was first studied bye jgentify a correct and complete set of inter-definability
Allen [5], who investigated their use in systems for time o4, /ations’ among HS modalities. Undefinability results are

management and planni_ng. In [7], Halpern and Sh,0h"’m%ssentially based on counterexamples referring to thardine
introduced and systematically analyzed the (full) logic of 5, qar of R. However, the proposed constructions can be

Allen's relations, called HS, that features one modality fo 1, gified to deal with specific sub-classes of the class of
each Allen’s relation. In particular, they showed that HS ;| jense linear orders, e.g., the linear order@f As a

s highly unde_cidable over most classes 9f linear ordersgp result, we show that there are exactly 966 expressively
This result motivated the search for (syntactic) HS fragi®ien yigarent HS fragments over (all) dense linear orders (over
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Figure 1. Allen’s interval relations and the correspondif§ modalities.
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o[ Ik —p iff it is not the case thab\, [a, b] IF ;
y[a, 0] I oV iff M, [a,b]IF @ or M, [a,b] IF 4;
,[a, b] IF (X)) iff there exists an intervdk, d] such
that[a, b|Rx|c, d] and M, [c, d] I 1), for each modality
(X).
For everyp € AP and[a,b] € I(D), we say thafa, b] is a
p-interval if M, [a,b] Ik p. By M, [a,b] IV ¢, we mean that
it is not the case that/, [a, b] IF .

Formulae of HS can be interpreted in several interesting
classes of interval models over linear orders (in shorssea
of linear orders). Among them, we mention the following
ones:

a,

0
0
0

exclude equality, there are 12 different relations between . the class ofall linear orders;

two strict intervals in a linear order, often calle&len’s
relations [5]: the six relationsR4, Ry, Rg, Rg, Rp, and
Ro depicted in Figure 1 and the inverse ones, thaRig,=
(Rx)™ !, for eachX € {A,L,B,E, D, O}.

We treat interval structures as Kripke structures and

Allen’s relations as accessibility relations over themysth
associating a modalityX') with each Allen’s relationRx .
ForeachX € {4, L, B, E, D, O}, thetransposef modality
(X) is modality (X), corresponding to the inverse relation
RY of Rx.

A. Syntax

HS is a multi-modal logic with formulae built from
a finite, non-empty setd” of atomic propositions, the
propositional connectiveg and—, and a modality for each
Allen’s relation [7] . With every subse{Rx,,...,Rx,}
of these relations, we associate the fragmérX. . . . X, of
HS, whose formulae are defined by the grammar:

pu=plap Vel (Xe|. .. | (X,

« the class of (alldensdinear orders (i.e, those in which
for every pair of distinct points there exists at least one
point in between them — e.gQ, R);

« the class of (all)discretelinear order$ (i.e, those in
which every element, apart from the greatest element,
if it exists, has an immediate successor, and every
element, other than the least element, if it exists, has
an immediate predecessor — eN,,Z, Z + 7),

« the class of (all¥inite linear orders (i.e., those having
only finitely many points).

A formula ¢ of HS isvalid over a clas€ of linear orders,

denotedt¢ ¢, if it is true on every interval in every interval

model belonging t&. Two formulaegp andy areequivalent
relative to the clasg of linear orders, denoted =¢ v, if

ke ¢ ¢ 1.

C. Definability and expressiveness

The following definition formalizes the notion of defin-
ability of modalities in terms of others.

wherep € AP. The other propositional connectives and pefinition 1 (Inter-definability) A modality (X) of HS is

constants (e.g/4, —, andT) can be derived in the standard
way, as well as the dual modalities (e.gd]e = —~(A)—).

For a fragmentF = X; X, ... Xy and a modality X'), we
write (X) € F if X € {Xy,...,X}}. Given two fragments
F1 and Fy, we write /1y C Fy if (X) € Fp implies
(X) € Fo, for every modality(X). Finally, for a fragment
F = X1 X;... X, and a formulap, we write ¢ € F, or,
equivalently, we say thap is an F-formula, meaning that
© belongs to the language df.

B. Models and semantics

The (strict) semantics of HS is given in termsioferval
modelsM = (I(D), V), whereD is a linear order[(D) is
the set of all (strict) intervals ovéd, andV is avaluation
functionV : AP — 2™ which assigns to every atomic
propositionp € AP the set of intervald/(p) on whichp
holds. Thetruth of a formula on a given intervdk, b] in
an interval modelVM is defined by structural induction on
formulae as follows:

e M, la,b] I piff [a,b] € V(p), for eachp € AP;

definablein an HS fragmentF relative to a clasg of linear
orders, denoted X) <¢ F, if (X)p =¢ ¢ for someF-
formula) over the atomic propositiop, for somep € AP.
In such a case, the equivalen¢&)p =¢ ¢ is called an
inter-definability equatior{or simply inter-definability for
(X) in F relative toC. We write (X) 4 ¢F if (X) is not
definable inF overC.

Notice that smaller classes of linear orders inherit the
inter-definabilities holding for larger classes of lineaders.
Formally, if C; andC, are classes of linear orders such that
C; C Csq, then all inter-definabilities holding far, are also
valid for C;. However, more inter-definabilities can possibly
hold for C;. On the other hand, undefinability results for
C; hold also forCs. In the rest of the paper, we will omit
the class of linear orders when it is clear from the context

lin the literature, these are sometimes calledakly discretelinear
orders, in opposition to the so-callestrongly discreteones, where, for
every pair of distinct points, there are only finitely manyinte in between
them — e.g.N, Z.



(e.g., we will simply say(X)p = ¢ and (X) < F instead %i _ Egigg % j%
of (X)p =¢ ¢ and(X) <¢ F, respectively). (O)p = (E)(B)p (0) <IBE
It is known from [7] that, in the strict semantics, all (O)p = (BY(E)p (O)<iBE
HS modalities are definable in the fragment containing (D)p = (E)(B)p (D)<BE
modalities(A), (B), and(E), and their transposésl), (B), (D)p = (E)(B)p_ (D)<BE
- atri e ; otri (L)p = (B)[EB)(E)p (L) <BE
and (E). (In the non-strict semantics, including non-strict (Typ = (BY[B)(E(B)p (T) <BE
intervals and defined accordingly, the four modalit{és), Table |

<E>’ <B>’ and<E> Slflfﬁce’ as ShOWF.] n [9]) In thIS paper’ we THE COMPLETE SET OF OPTIMAL INTERDEFINABILITIES FOR THE
compare and classify the expressiveness of all HS fragments CLASS OF ALL LINEAR ORDERS

relative to the class of all dense linear orders. Formady, |
F1 and F; be any pair of such fragments. We say that:
e Fo is at least as expressive a5, denotedF; < Fo,

if each modality(X) € F; is definable infy; D. The problem

« J1 is strictly less expressivenan 7, (or, equivalently,  As we already pointed out, every subset of the set of the
J> is strictly more expressivéhan /), denoted”1 < 12 modalities corresponding to Allen’s relations givesris
Fa, if F1 2 F, holds butF; < F; does not; to a logic, namely, a fragment of HS. There @€ (the

« F1 and F, are equally expressiveor, expressively cardinality of the powerset of the set of modalities) such
equivalen), denoted?; = 7, if both 73 < 7 and  fragments. Due to possible inter-definabilities of modkesit

F» = F1 hold; in terms of other ones, not all these fragments are ex-

« F1 and F, are expressively incomparahledenoted pressively different. The problem we consider here is the
F1 # Fo, if neither 71 < F» nor 7> < F hold. problem of obtaining a complete classification of all HS

Now, it is possible to define the notion of optimal inter- fragments with respect to their expressive power over the
definability, as follows. class of (all) dense linear orders. In other words, given two

Definition 2 (Optimal inter-definability) A definability ~HS fragmentsFy, 7>, we want to be able to decide how

(X) < F is optimal if (X) < F' for any fragmentF’ such they relate to each other with respect to expressiveneas (th
that F/ < F. is, whetherF; is strictly less expressive thai,, Fi is

strictly more expressive thaf,, F; and.F, are expressively
In order to show non-definability of a given modality in an equivalent, or7, and %, are incomparable).
HS fragment, we use a standard technique in modal logic, |n order to do so, all we need to do is to provide
based on the notion dfisimulationand the invariance of the complete set of optimal inter-definabilities between HS
modal formulae with respect to bisimulations (see, e.@,[1 modalities. Indeed, provided with such a set, it is immesliat
[11]). Let 7 be an HS fragment. AiF-bisimulation between  to decide which relation exists between any two given

two interval models) = (I(D), V) and M’ = (I(D'),V")  fragments with respect to their expressive power.
over AP is a relationZ C I(D) x I(D') satisfying the

following properties: The class of all linear orders.The problem we address in
« local condition Z-related intervals satisfy the same this paper has been solved for the class of all linear orders
atomic propositions indP; in [8], where the complete set of optimal inter-definaksti
« forward condition if [a,b]Z[a’,t'] and [a,b]Rx[c,d] in Table | has been identified. All the bisimulations used
for some(X) € F, then there exists sonje/,d'] such in [8] to solve the problem for the class of all linear
that [o/,b'| Rx |, d'] and][c,d]Z[¢, d']; orders are based on dense structures, apart from those for

« backward condition if [a,b]Z[a’,V'] and [o/,b|Rx (L) and (L), which are based on discrete structures. As a
[/, d'] for some(X) € F, then there exists sonie, d] consequence, the above results for all modalities (Bt

such thatla, b|Rx[c,d] and[c, ] Z[¢', d']. and (L) immediately extend to all classes of dense linear
The important property of bisimulations used here is thaorders. In what follows, we identify a new set of optimal
any F-bisimulation preserves the truth afl formulae inF,  inter-definabilities holding fo(L) and (L) over classes of

that is, if ([a,b], [a/,b]) € Z and Z is an F-bisimulation, ~dense linear orders, and we prove it to be complete (for the

then [a,b] and [a/, V'] satisfy exactly the same formulae Modalities(L) and(L)).
in F. Thus, in order to prove that a modalityX') is not
definable inF, it suffices to construct a pair of interval
modelsM = (I(D), V) and M’ = (I(D’), V'), and anF- From now on, we focus our attention on the class of all
bisimulation Z between them, relating a pair of intervals dense linear orders, and we provide bisimulations based on
[a,b] € I(D) and[d’, '] € I(D'), such thatM/, [a,b] IF (X)p,  R.However, itis possible to extend our results to sub-cksse
while M’,[a’, ] I (X)p. In this case, we say that breaks of the class of all dense linear orders (that might not inelud
(X). R), by providing bisimulations based on different (suitgble

IIl. THE CLASS OF ALL DENSE LINEAR ORDERS



(L)p = (0)({O) T A [OKD)(O)p) (L)<ADO Algorithm 1 Maz = mazFragNonDefOp(Def, (X))
(L)p = (O)({O)T A [OKD){O)p) (L)<iDO input parameters:
(Lyp = (B)[D](B){(D)(B)p (L)<BD - Def: list of inter-definabilities
(L)p = (B)[D](E)(D)(E)p (L)<ED - (X): modality
(L)p = (0)[E](0)(O)p (L)<EEO output paraneters:
(LYp = (O)[B](0)(O)p (LY<iBO - Maz: list of maximal fragments not definingX') according toDe f
(L)p = (0)({O)T A [OK(B)(0O)(O)p) (L)<BO 1. Maz < ()
(L)p = (0)Y((O)T A [O](E){O){O)p) (L)<IEO 2: for all HS fragmentF do
(LYp = (O)[O][L]{O){O)p (LY<ILO 3. F <+ addDefinableOperators(F, Def)
(L)p = (O)[O][LI(O)(O)p (L)<LO 4 if (X) ¢ F then
5 add < true
Table i _ 6 for all 71 € Maz do
A SET OF INTERDEFINABILITY EQUATIONS FOR (L) AND (L) OVER 7 if =< F; then
THE CLASS OF ALL DENSE LINEAR ORDERS 8: add « false
9: else if F; < F then
10 remove(Mazx, F1)
11 if add then

) ] 12 add(Maz, F)
dense linear orders. In what follows, we first prove that &@abl 13: return Max

Il depicts a set of inter-definabilities for the operatdrfs
and (L) (Lemma 1). Then, we show that the union of all

equations for(Z) and (L) shown in Table | and Table Il g it that is, to prove that Table | and Table Il depict a
constitutes the complete set of optimal inter-definabiiti  ¢omplete set of optimal inter-definabilities for the operat

for those operators (Theorem 1). (L). This means that we cannot defijé) by means of
Lemma 1. Table Il depicts a set of inter-definabilities for @ny other optimal equation. It is immediate to verify, by
the operators(L) and (L). symmetry, that the same result holds for the operéafor

) o ] ) As a first step, we need to identify all maximal HS
Proof: Notice that it is enough to verify the inter- fragments not containing, as definable (according to the
definability equations relative td), as those forL) follow  jnter-definabilities of Table | and Table 1), the operator
by symmetry. Here we only give the proof for the first (1) Gijven the large number of inter-definabilities, it is not
equation. The other proofs proceed analogously and argmediate to detect all such fragments. For this purpose, we
omitted. (See the Appendix for full details.) used a tool based on the pseudo-code presented in Algorithm
Firstly, suppose that\/, [a,b] I (L)p for an interval 1. The algorithm takes as input a lite f of known inter-
[a,b] in a model M. We want to prove thatV/,[a,b] |- definabilities and a modalit{X ), and it returns the lisb/ ax
(O)(O)T A [OD)(O)p) holds as well. ByM, [a,b] I-  of maximal fragments that are not capable to defif@
(L)p, it follows that there exists an interval, d] in M such  according to the definabilities iPe f. For each HS fragment
thatb < candM, [c,d] It p. Consider an interval’, |, with 7 (line 2), the algorithm proceeds as follows. First (lineiB),
a < a’ < b (the existence of such a poiatis guaranteed by computes the fragmer which is expressively equivalent
the density of the linear order). It is such thatb|Roa’.c]  to F but whose language also explicitly includes all the
and it satisfies: modalities that are included only as definableZn(e.g.,
« (O)T, as[a’,c]Rolb,d], and it computesALBED from ABE). Next (line 4), if modality
« [O)(D)(O)p, as every intervale, f], with [a',cJRo  (X) does not belong to the language &% then F is a
e, f], is such that < ¢ < f. Thus, by density, there potential candidate to be part of the output litaz. So,
exists an intervale’, f'] such thatle, f|[Rple/, f'] and  its expressive power is compared (lines 6-10) to the one of
e, f'|Rolc, d], which implies M, [e, f] I (D){O)p,  the elements currently belonging fdaz and it is added

which, in turn, impliesM, [/, ¢] IF [O](D){(O)p. to it if and only if there is no fragment id/ax which is
Hence, M, [d’,c] IF (O)T A [O](D){O)p and M,[a,b] I  at least as expressive & (lines 7-8 and 11-12). Finally,
(OY({O)T A [OK{D){(O)p). the algorithm removes fromd/ax every fragment that is

Secondly, let us assume that, [a,b] IF (O)((O)T A strictly less expressive thah (lines 9-10), before returning
[O]{D){O)p) for an intervalla, b] in a modell. That means the desired list of fragmentd/ax (line 13).
that there exists an intervat, d] such that[a, b]Ro|c, d] The algorithm, run on the list of inter-definabilities in
and that (i) M,c,d] IF (O)T, and thus there exists a Table | and Table Il, and on modalityL) as input pa-
pointe > d, and (i) M, [c,d] I+ [O](D){O)p. The interval  rameters, returned the three maximal fragmedBEDO,
[b, €] is such thafc, d|Ro b, €], and thus, by(ii), it satisfies BEDALEDO, and BALBEDO. In the light of the inter-
(D){O)p. Therefore, there exists an intervif, g] such  definabilities in Table I, we can replace these three fragsen
that[b, e] Rp[f, g], and ap-interval [h, 7] with [f, g|Ro[h,i].  with equivalent fragments featuring the smallest set of
Sinceh > b, we conclude thafl/, [a, b] IF (L)p. B modalities, namelyOBEO, BEAED, and BABE, respec-
The rest of the paper is devoted to establishing our maitively. Now, in order to establish the optimality of the set




of inter-definabilities, for each such fragmeht we provide

an F-bisimulation that breakéL). In what follows, thanks

to the next proposition, in our proofs we can safely assume
that for each intervala,b] and Allen’s relationRy, there
exists an intervalc, d] such thatja, b|Rx|c, d].

Proposition 1. Let D be a dense linear order without least
and greatest elements, and Igt, ] € I(D). Then, there
exists an intervale, d] € I(D) such that[a, b]Rx]c, d], for

eachX € {A,L,B,E,D,0,A,L,B,E,D,O}.

A. An OBEO-bisimulation that breakgL)

Consider the two interval model®/ and M’, defined as
M = M = (I(R),V), whereV(p) = {[—a,a] | a € R}
(observe that no intervdk, d], with ¢ > 0, satisfiesp).
Moreover, letZ = {([a,b],[a’,V']) | —a ~ band —a' ~
b’ for some ~¢€ {<,=,>1}} (see Figure 2).

Lemma 2. Z is a OBEO-bisimulation.

Proof: Local condition. Consider a paif|[a, b], [a’, b'])
of Z-related intervals. The following chain of double impli-
cations hold:M, [a, b] IF p iff —a = b iff (by the definition
of Z2) —a' =¥ iff M,[d,V']IF p.

Forward condition. Consider the three intervalf,b],
[a', V'], and[c, d] such that[a,b]Z[a’,b'] and [a,b]Rx|c, d]
for someX € {O, B, E,O}. We need to exhibit an interval
[¢,d'] such that[a’,V'|Rx[c,d'] and [c,d|Z][c,d]. We
distinguish three cases.
e If —a > band—d > ¥, then, as a preliminary step,
we show that the following facts holdi) a« < 0 and
a’ < 0; (i) |a|] > |b] and|a’| > |V'|. We only show
the proofs fora < 0 and |a| > |b] and we omit the
ones fora’ < 0 and|a’| > |b], which are analogous.
As for the former claim above, it is enough to observe
that, if « > 0, thena > 0 > —a > b, which implies
b < a, leading to a contradiction with the fact that ]
is an interval (thus < b). Notice that, as an immediate
consequence, we have that = —a holds. As for the
latter claim above, firstly we suppose, by contradiction,
that|a| = |b| holds. Then—a = |a| = |b| holds and this
implies eithe = —a, contradicting the hypothesis that
—a > b, orb = qa, contradicting the fact thdt, b] is an
interval. Secondly, we suppose, again by contradiction,
that|a| < |b] holds. Then, by the former claim, we have
that 0 < —a = |a| < |b| holds, which impliesh # 0.
Now, we show that botlh < 0 andb > 0 lead to a
contradiction. Ifb < 0, then|b| = —b, and thus it holds
—a < —b, which amounts ta: > b, contradicting the
fact that|a, b] is an interval. Ifb > 0, then|b| = b, and
thus it holds—a < b, which contradicts the hypothesis
that —a > b. This proves the two claims above. Now,
we distinguish the following sub-cases.
— If X = O, then|c,d] is such thata < ¢ < b < d.
We distinguish the following cases.

* If —c > d, then take some’ such that’ < ¢’ <
—|b'| < 0 (notice also that’ < —|b'| < ¥’ triv-
ially holds), andd’ such thab’ < d’ < || = —¢’
(the existence of such points, d’ is guaranteed
by the density ofR). The interval[¢’, d’] is such
that[a’,b'|Ro[c/,d'] and[c,d]Z[c, d'].

x If —c = d, then take some’ such thats’ < ¢’ <
—|¥'| <0, andd’ = —¢’ (the existence of such a
point ¢’ is guaranteed by the density Bf). The
interval [¢, d’'] is such thatla’,b'|Ro|¢’,d'] and
[e,d)Z[c, d'].

x If —c < d, then takec’ such thate’ < ¢ <
—|¥'| < 0, and anyd’ > —c (the existence of
such a point’ is guaranteed by the density &j.
The intervalc’, d'] is such thatia’,b'|Ro[c, d']
and|e, d|Z[¢, d'].

—If X = B, then|e,d] is such thata = ¢ < b < d.
We distinguish the cases below.

x If —c > d, then takec’ = o/ andd’ such that
b < d < —a = — (the existence of such a
point d’ is guaranteed by the density B). The
interval [¢’, d'] is such thatla’,b'| Rz[¢/,d'] and
[e,d)Z][¢, d'].

x If —c = d, then takec’ = ¢’ andd’ = —c/(=
—a’ > V). The interval [¢/,d’] is such that
[a',V|Rg[c,d'] and[c,d]|Z[c, d'].

x If —c < d, then takec = o and anyd >
—d(= —d > V). The interval[¢/,d’] is such
that[a’,V'|R5(c’,d'] and[c,d|Z[c, d'].

- If X = E, then|e,d] is such thate < a < b = d.
Notice that|c] = —c¢ > —a = |a| holds, because
¢ <a<0. Thus—c > —a > b = d also holds.
Then, taked’ = V' and any¢’ < o’. We have that
—c > —d' >V =d. Theintervalc, d'] is therefore
such thatla’, V'|Rg[¢/,d'] and[c,d|Z[¢, d'].

—If X = O, then|e,d] is such thate < a < d < b.
Notice that|c] = —c¢ > —a = |a| holds, because
¢ <a<0. Thus—c > —a > b > d also holds.
Then, take some@’ such thate’ < d’ < V' and any
¢ < d' (the existence of such a poidtis guaranteed
by the density ofR). Thus, it holds—¢ > —a’ >
b > d'. The interval[c,d’] is therefore such that
[a’,V|Rg[c,d'] and[c,d]|Z[c, d'].

If —a = b and —da’ = ¥/, then we have that < 0

(resp.,a’ < 0) andb > 0 (resp.,b’ > 0). Indeed, if

a > 0 held, thenb = —a < 0 < a would also hold,

contradicting the fact thdt, b] is an interval (and thus

b > a). Froma < 0 and—a = b, it immediately follows

thatb > 0. The facts that’ < 0 andd’ > 0 can be

shown analogously. Notice also that, frora = b and

—a’ =V, it follows that|a| = |b| and|a’| = |b'|. Now,

we distinguish the following sub-cases.

— If X = O, then|c,d] is such thata < ¢ < b < d.
Notice that—c < |¢| < |a] = |b] = b < d holds.



Figure 2. OBEO-bisimulation.

Then, takec’ = 0 and anyd > (> 0). We
have that-¢’ < d'. The intervall¢/,d'] is such that
[@',V|Ro[c,d'] andc,d]|Z[, d'].

- If X = B, then|e,d] is such thata = ¢ < b < d.
Notice that—c < |¢| = |a| = |b] = b < d holds.
Then, takec’ = o’ and anyd’ > b'. We have that
—c = —d’ =¥ < d. The interval[¢/,d'] is such
that[a’, V| R5(c,d'] and[c,d]Z[c, d'].

- If X = E, then[e,d] is such thate < a < b = d.
Notice that|c| = —c¢ > —a = |a| holds, because
¢ <a<0. Thus—c > —a = b = d also holds.
Then, taked’ = V' and anyc¢ < o/. We have that
—c > —d’ =V = d. The interval[c/,d'] is such
that[a’, V| Rg(c’,d'] andc,d|Z[c, d'].

—If X = O, then[e,d] is such thate < a < d < b.
Notice that|c] = —¢ > —a = |a| holds, because
¢ <a<0. Thus—c > —a = b > d also holds.
Then, taked’ = 0 and anyc < a'(< 0). We
have that-¢' > d'. The intervall¢/,d'] is such that
[a',V]|Rs[c,d'] and[c,d] Z[c, d'].
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Figure 3. BEAED-bisimulation.

Proof: It is immediate to check thdt-4, —2]Z[—4, 2].
Moreover, it holds that M,[—-4,-2] |+ (L)p (as
M,[-1,1] It p) and M’,[—4,2] IF —=(L)p (as no interval
[c,d], with ¢ > 0, satisfiesp). Thus, the thesis immediately
follows from Lemma 2, becausg is anOBEO-bisimulation
that breaks L). [ |

B. A BEAED-bisimulation that breakgL)

In order to define 8EAED-bisimulation that breakéL),
we will make use of the functioff : R — {x e R | z < 1},
defined as follows.

o ={ 771

if x <1
if z>1

o If —a < b and —a’ < ¥, then the proof proceeds In particular, we use the properties ffstated by the next

symmetrically to the case whena > b and—a’ > ¥'.

lemma, whose straightforward proof is omitted. (See the

More precisely, the argument used there for modalitieAPPendix for full details.)

(O) and (E) applies now to modalitie$O) and (B),
and vice versa. (See the Appendix for full details.)

Backward condition. Since the relationZ is symmetric,

Lemma 3. f is a monotonically increasing bijection from
R to {z € R|z < 1} such thatf(z) < = for everyx € R.

the forward condition implies the backward condition, as The bisimulation that breakd.) is defined as follows. We

follows. Consider a pair([a,b], [a’,b']) of Z-related in-
tervals and an intervalc’,d’'] such that[a’,V'|Rx|[c,d'],
for some X € {O,B,E,O}. We need to find an in-
terval [c,d] such that[a,b]|Rx|[c,d] and [¢,d]Z[¢/,d']. By
symmetry, ([a/,b'],[a,b]) € Z, as well. By the forward
condition, we know that for every interv@’, d’'] such that
[a,b'|Rx|¢,d'], for someX € {O, B, E,O}, there exists
an intervallc, d] such that[a, b|Rx|c,d] and [/, d'|Z[c, d].

consider two interval model8/ and M’, defined asM =
M’ = (I(R), V), whereV (p) = {[a,b] | a = f(b)} and let
Z = {([a,b],[a',V]) | a ~ f(b),a’ ~ f(V') for some ~e
{<,=,>}} (see Figure 3).

Lemma 4. Z is a BEAED-bisimulation.

Proof: Local condition. Consider a pait|[a, b], [a’, b])
of Z-related intervals. The following chain of double impli-

By symmetry[c,d]Z|¢',d’] also holds, hence the backward cations holds), [a, b] I p iff a = f(b) iff (by the definition
condition is fulfilled, too. m of 2)d =f{)iff M' [ V]IFp.
It can be easily checked that the given proof of Lemma

still works if we substituted for R. 2Forward condition. Consider the three intervalgs, b,

[a’, V'], and[e, d] such that[a,b]Z[d’,b'] and [a,b]Rx]c, d]
Corollary 1. The modality (L) is not definable in the for some X € {B,E, A, E,D}. We need to exhibit an
fragmentOBEO (and in any of its sub-fragments) over the interval [/, d’] such thatla’, '|Rx ¢/, d’] and[e,d]Z[¢, d'].
class of all dense linear orders. We distinguish three cases.



o If a > f(b) andd’ > f(¥'), then we distinguish the

following sub-cases.

—If X = B, then|c,d] is such thate = ¢ < d <

b. By the monotonicity off, we have thatf(d) <

f(b) < a = c¢. Moreover, by the monotonicity of

f, for every interval[c/,d’], with [¢/,V'|Rp[c,d'],

f(d') < ¢ holds, and thusc, d|Z[¢', d'].

If X = E, then|c,d] is such thatu < ¢ < b = d.

Thus, f(d) = f(b) < a < c. For every interval

[, d'], with [a,b'|Rg[c,d'], f(d') < ¢ holds, and

thus|[c,d|Z[c, d].

If X = A, then|c,d] is such thate < d = a.

Now, if ¢ < f(d) = f(a), then, by the definition

of f and Lemma 3, there exists a point such

that ¢ < f(a’) < «'. Thus, the intervald,d’],
with d’ = «/, is such that[a’,t'|R4[c/,d'] and

[c,d]Z[c,d']. If ¢ = f(d) = f(a), then taked =

f(a’) < . The interval [¢/,d'], with d a,

is such that[a’,b'|R4[c',d'] and [¢,d]Z[c,d']. If

¢ > f(d) = f(a), then, by the density oR,

the definition of f, and Lemma 3, there exists a

point ¢ such thatf(a’) < ¢ < a/. The interval

[, d'], with &' = ', is such that[a’,b'|R;[c, d']

andlc, d|Z[d,d'].

If X = E, then|c,d] is such thate < a < b = d.

There are three possibilities.df< f(d), then, by the

definition of f, there exists a point’ such that’ <

f(t') < d. Thus, the intervalc’, d'], with d' = V', is

such that(a’, 0’| Rg[c/,d'] and [¢c,d]Z[c',d']. If ¢ =

f(d), then the intervalc’, d'], with ' =¥’ and¢’ =

f(d'),is such thafa’, b'| R%[c', d'] and[c, d] Z[c', d'].

If ¢ > f(d), then, by the density dR, , there exists

a pointc’ such thatf (') < ¢/ < ¢/, and the interval

[, d'], with d’ = V', is such thafa’, b'| R5[c’, d'] and

[e,d|Z[c,d'].

If X =D, then|c,d] is such thate < a < b < d.

If ¢ < f(d), then, takec’ = f(a’) and anyd’ > v'.

The intervallc’,d'] is such thafa’, '] R5[c’, d'] and

[e,d|Z[d,d']. If ¢ = f(d) (resp.,c > f(d)), then,

by the density ofR and the monotonicity and the

surjectivity of f, there exist two points, d’ such that

d<d <V <d andd = f(d') (resp.,c > f(d)).

Thus, the intervalc’, d'] is such thafa’, b'| R[c’, d']

and|e,d|Z[c, d'].

o If a < f(b) andd’ < f(¥'), then we distinguish the

following sub-cases.

— If X = B, then]c,d] is such thata = ¢ < d < b.
Now, if ¢ < f(d) (resp.,c = f(d), ¢ > f(d)), then,
by the density ofR and by the monotonicity and
the surjectivity off, there exists a point’ such that
a < d <V andd < f(d) (resp.,a’ = f(d),
a’ > f(d"). Thus, the intervalc’, d'], with ¢/ = o/,
is such thafa’,v'|Rp[c’,d'] and[c,d]|Z[¢, d].

—If X = FE, then]c,d] is such thata < ¢ < b = d.

Now, if ¢ < f(d) (resp.,c = f(d), ¢ > f(d)), then,
by the density ofR, there exists a point’ such that
a < <bandd < f(t') (resp.,c = f(V'),
cd > f(b')). Thus, the intervalc’, d’], with d' =¥/,
is such thafa’, | Rg[c’,d'] and|c,d|Z[¢, d'].
If X = A, then the same argument of the case when
a> f(b) anda’ > f(b') (and X = A) applies.
If X = E, then|e,d] is such thate < a < b = d.
Thus,c < a < f(b) = f(d). For every interval
[, d'], with [a/,b'|Rz[¢,d'], it holds ¢ < f(d'),
and thuslc, d|Z[¢, d'].
If X = D, then|e,d] is such thate < a < b < d.
Thus, by the monotonicity off, it holds thatc <
a < f(b) < f(d). For every intervallc,d'], with
[a’,b'|Rp[c/,d'], it holds, by the monotonicity of,
thatd < f(d'), and thusc,d|Z[c, d'].
o If a = f(b) anda’ = f(V'), then we distinguish the
following sub-cases.

—If X = B, then|e¢,d] is such thate = ¢ < d <
b. Thus, by the monotonicity off, it holds that
f(d) < f(b) = a = c. For every intervalc’,d'],
with [¢/, b'|Rp[c¢, d'], by the monotonicity off, we
have thatf(d') < ¢/, and thusc, d|Z[¢/, d'].

—If X = E, then[e,d] is such thate < ¢ < b =
d. Thus,c > a = f(b) = f(d) holds. For every
interval [¢/, d'], with [¢,V'|RE[¢,d'], we have that
¢ > f(d'), and thugc, d]Z|¢, d'].

— If X = A, then the same argument of the case when
a > f(b) anda’ > f(b') (and X = A) applies.

- If X = E, then|e,d] is such thate < a < b = d.
Thus,c < a = f(b) = f(d). For every interval
[, d'], with [a’, V| Rg[c’, d'], ¢ < f(d') holds, and
thus|c,d|Z[c, d'].

—If X = D, then|c,d] is such thatt < a < b < d.
Thus, by the monotonicity off, it holds thate <
a = f(b) < f(d). For every intervallc, d’'], with
[a’,b'|Rp[c, d'], by the monotonicity off, we have
thatd < f(d'), and thugc,d|Z[c, d'].

Backward condition. The backward condition can be im-
mediately verified by observing that the forward condition
is satisfied and tha¥ is a symmetric relation. ]

As in the case of Lemma 2, it can be easily checked that
the proof of Lemma 4 still works if we substitug for R.

Corollary 2. The modality (L) is not definable in the
fragmentBEAED (and in any of its sub-fragments) over the
class of all dense linear orders.

Proof: It is immediate to check thai—1,0]Z][0,1]
(as f(0) = —1 and f(1) = 0). Moreover, it holds that
M,[-1,0] - (L)p (as M, [0.5,2] IF p becausef(2) = 0.5)
and M’,[0,1] I+ =(L)p (as no intervallc, d], with ¢ > 1,
satisfiegp because is not in the image of for eachc > 1).
Thus, the thesis immediately follows from Lemma 4. m



C. ABABE-bisimulation that breakgL)

Consider the two interval modeld/ and M’, defined
as M = (I(R),V) and M’ = (I(R),V’), respectively,
where V(p) = {[a,b] | a,b € Qora,b € R\ Q} and
V'ip) = {[d,V/] | o/ < 0Oand(a’,b' € Qord,b €
R\ Q)}. Moreover, letZ = {([a,b],[a',V]) | ¢/ < —1
and M, [a,b] IF p iff M’ [a’, 0] IF p}.

Lemma 5. Z is a BABE-bisimulation.

Proof: Local condition. The local condition follows
immediately from the definition of.

Forward condition. Consider a pain[a, b], [a’,b']) of Z-
related intervals. By definition of, it holds thata’ < —1
(and thusa’ < 0). Let X € {B, A, B, E}. For every interval
[/, d'], with [a’, ¥'|Rx[c/, d'], it holds that?’ < —1 (and thus
¢ < 0). Let Q = R\ Q. By density and unboundedness
of Q and Q, there exist(i) an interval[c”,d”], such that
[a/,b'|Rx[¢",d"], with ¢’,d" € Q or ¢',d" € Q, and
(#4) an interval[c””’, d"'], such thafa’, b'|Rx[c"”, d"], with
A" €S, d" €§ for someS,S € {Q,Q}, with S # §'.
Therefore, for everylc,d] such that[a,b]Rx|c,d], there
exists|c¢, d'] such thafa’,b'|Rx[c¢/,d'] and[c,d])Z|[c,d'].

Backward condition. In order to check the backward con-

dition, it is possible to use an argument which is analogous

to the one used for checking the forward condition. m

Unlike the cases of Lemma 2 and Lemma 4, the proof of [3]

Lemma 5 cannot be immediately transferredtoHowever,
it can be easily adapted by providing a partition®fn two
setsQ; andQs which are both dense Q.

Corollary 3. The modality (L) is not definable in the
fragment BABE (and in any of its sub-fragments) over
classes of dense linear orders.

Proof: It is immediate to check that-1,0]Z[—1,0].
Moreover, it holds thab/, [—1,0] IF (L)p (asM, [0,1] IF p)
and M’,[-1,0] IF =(L)p (as no intervalc, d], with ¢ > 0,
satisfiegp in M’). Thus, the thesis immediately follows from
Lemma 5. ]

Theorem 1. Table | and Table Il depict a complete set of
optimal inter-definabilities for the modalit{Z).

Proof: Suppose that there exists an optimal inter-
definability for (L) which is not listed in Table | or Table
II. Let us denote by(L) < F such an inter-definability7

must be a (not necessarily strict) fragment of one of the

fragments returned by Algorithm 1 (i.eQBEO, BEAED,
and BABE), as such an algorithm returns the set of all
maximal HS fragments not containing the modalify), as
definable according to the inter-definabilities of Table tlan
Table Il. Then, by Corollaries 1-3,L) is not definable by
F, yielding a contradiction. ]

IV. CONCLUSIONS

In this paper, we have extended the results in [8] to
obtain the optimal set of inter-definabilities among all rabd
operators in HS over the class of all dense linear orders.
More precisely, we have provided a characterization of the
relative expressive power of all interval logics definalde a
fragments of HS in the particular case of dense structures,
and we have found out that there are exactly 966 expres-
sively different fragments. Such a classification has a rermb
of important applications, such as, for example, allowing
one to properly identify the (small) set of HS fragments for
which the decidability of the satisfiability problem is ktih
open problem.

A natural question that arises is: how do the inter-
definabilities change when other classes of linear orders ar
considered? Interesting (open) cases include, amongspther
the class of all discrete linear orders and the class of all
finite linear orders.
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APPENDIX

Full proof of Lemma 1.

Proof: Notice that it is enough to verify the inter-

definability equations relative t¢L), as the others follow
by symmetry.

e (L)p = (0)({O)T A [O){D){O)p). Firstly, suppose
that M, [a,b] IF (L)p for an intervalla,b] in a model
M. We want to prove thai\/, [a,b] IF (O >(< )T
[O](D){O)p) holds as well. ByM, [a,b] I+ (L)p, |t
follows that there exists an intervéd, d] in M such
thatb < candM, [, d] I p. Consider an interval/, c],
with ¢ < @’ < b (the existence of such a point is
guaranteed by the density of the linear order). It is such
that [a, b]Roa’, ¢] and it satisfies:
- (0)T, asld’,c]Ro[b,d], and
— [O)(D){O)p, as every intervale,
le, f], is such thate < ¢ < f. Thus, by
density, there exists an intervéd’, f/| such that
le, f1Rple, f'] and [¢/, f'|Ro[e, d], which implies
M,le, f] = (D){(O)p, which, in turn, implies
M, [d, ] IF [O]{D){O)p.
Hence, M,[a',c] I+ (O)T A [O](D){O)p and
M, [a,b] IF (O)((O) T A [OKD)(O)p).
Secondly, let us assume thaf, [a,b] IF (O)({O)T A
[O](D){O)p) for an interval [a,b] in a model
M. That means that there exists an interyald]
such that [a,b]Ro[c,d] and that (i) M,[c,d] Ik
(O)T, and thus there exists a poirt > d, and
(i1) M,le,d] IF [O](D){O)p. The interval [b,e] is
such that[c,d]Ro[b,e], and thus, by(ii), it sat-
isfies (D)(O)p. Therefore, there exists an interval
[f,g] such that[b,e]Rp[f,g], and ap-interval [h, ]
with [f,g]Ro[h,i]. Since h > b, we conclude that
M, [a,b] Ik (L)p.
(LYp = (B)[D)(B){D)(B)p. Suppose thad/, [a, b] I-
(Lyp for an interval [a,b] in a model M. Thus,
there exists an intervallc,d] in M such that
b < ¢ and M,[c,d] = p. It can be easily
checked thafa, b]Rza, c|. We show thatla, ¢| satis-
fies [D ]<B><D)<B)p First, every intervale, f], with
[a,c]Rple, f] is such that < c. Let us consider the in-
terval [e, d] First, we observe thdt, f]Rzle, d] holds.
Moreover, by the density af/, there eX|sts a point’,
with ¢ < d' < d, such thatle,d|Rp[c,d’] holds and
[c,d'] satisfies(B)p. Thus, M, [e, f] I+ (B){D)(B)p,
hence the thesis.
Now, suppose that/, [a,b] IF (B)[D](B)(D){(B)p for
an intervalla, b] in a modelM. That means that there
exists a point > b such that the intervdh, c] satisfies
[D](B)(D)(B)p. As a particular instance of the latter
formula, every intervale, f] such thath < e < f < ¢
(the existence of such an interv@al f] is guaranteed
by the density ofA/) must satisfy(B)(D)(B)p which

f], with [a/, ¢|Ro

means that there exists a poigt > f such that
M,[e,g] I+ (D)(B)p, which implies, in turn, the
existence of two points, i, with e < h < i < g,
such thatM, [h,i] IF p. Sinceh > b, we have that
M, [a,b] I (L)p.
(L)p = (O)[E](0){O)p. Suppose thalf, [a, ] I (L}p
for an interval[a, b] in @ modelM . Thus, there exists an
interval [¢,d] in M such thath < ¢ and M, [¢,d] IF p.
Consider the intervala’, c|, with ¢ < o' < b (the
existence of such a poiatis guaranteed by the density
of M). It holds that[a,b]Rola’,c]. We prove that
M,[d,c] IF [E](O){O)p. Indeed, for every interval
[e, c], with [a’, c|REle, c], by the density ofM, there
exist a pointf, with e < f < ¢, and a pointg, with
¢ < g < d, such that the intervalf, g] satisfies(O)p as
[f,g]Rolc,d]. Thus,M, e, c] I- (O)(O)p, M,[da’,c] IF
[E](0){O)p, and M, [a, ] I (O)[E}{O){O)p.
Now, suppose thad/, [a,b] IF (O)[E](O){O)p for an
interval [a,b] in a model M. That means that there
exists an intervallc,d] such that[a,b]Rolc,d] and
M, [c,d] IF [E){O){O)p. As a particular instance, the
interval [e, d], for somee such thath < e < d (the
existence of such a pointis guaranteed by the density
of M), satisfies(O)(O)p, that implies the existence of
an interval[f, g], with f > e(> b), satisfyingp. It
immediately follows thatM, [a, b] I (L)p.
(Lyp = (0)((O)T A [0)(B){0)(O)p). Suppose that
M, [a,b] I+ (L)p for an interval[a,b] in a model M.
Thus, there exists an intervat,d] in M such that
b < ¢ and M, [¢,d] I p. Consider the intervala’, ¢],
with a < @’ < b (the existence of such a poiatis
guaranteed by the density 8f). This interval is such
that [a,b]Rola’, ¢] and it satisfies:
— (O)T, as[d’, |]Ro[b, d], and
— [O{B){(O){O)p, as every intervalle, f], with
[a',c]Role, f], is such thate < ¢ < f. Thus,
the interval [e, ¢] is such thatle, f|Rgle, c], and,
by the density ofM, there exists an interval, h]
such thatle, c|Ro[g, h] and[g, h|Ro[c, d]. This im-
plies M, [e,c] IF (O){O)p, which, in turn, implies
M, [d, e} I [O)(B){O)(O)p.
Hence, M,[d,c] I+ (O)T A [O](B){(O){O)p and
M, [a,b] IF (O)((O) T A [OI(B)(O)(O)p).
Now, suppose thatM,[a,b] I+ {(O)Y((O)T A
[O](B)(0){O)p) for an intervala,b] in a model M.
That means that there exists an interiall] such that
and that(i) [a,b]Role,d], (i1) M,[c,d] IF (O)T, and
thus there exists a point > d, and (iii) M, [c,d] IF
[O](B){0O){O)p. By the density ofM, there exists a
pointe, with b < e < d. The intervalle, f] is such that
[e,d]Role, f], and thus, by itenfiii) above, it satisfies
(B){0){O)p, which implies the existence of an interval
[g,R], with g > e(> b), satisfyingp. It immediately



follows that M, [a, b] IF (L)p.

e (L)p = (O)[O][L]{(O){O)p. Suppose thah/, [a,b] IF
(L)p for an interval [a,b] in a model M. Thus,
there exists an intervak, d] in M such thatd < ¢
and M, [c,d] I+ p. Consider the intervala’, ¢], with
a < a < b (the existence of such a point is
guaranteed by the density aff). This interval is
such thafa, b]Rola’, c] and it satisfie$O][L](O)(O)p.
Indeed, every intervale, f], with [a’,c]Role, f], is
such thate < c¢. Thus, every intervalg, k], with
le, f]Rtlg, h], satisfies(O)(O)p (by the density of},
there existg < i« < h andc¢ < j < d such that
both [g, h|Ro i, j] and [i, j]Rolc, d] hold). Thus, we
have thatM, [a’,c] IF [O][L]{O)(O)p, which implies
M, [a,b] I+ (O)[O][Z){0)(O)p. ~
Now, suppose thab/, [a,b] IF (O)[O][L]{O){O)p for
an intervalla, b] in a modelM. That means that there
exists an intervallc,d] such that[a,b|Ro[c,d] and
M, [e,d] I+ [O][L}{O){O)p. As a particular instance,
by the density and the unboundednessidf there
exists an intervale, f], such thath < e < d < f and

M, e, f] IF [L]{O){O)p, which, in its turn, together

with the density assumption, implies the existence of

an interval[g, h], with b < g < h < e, that satisfies
(0){(O)p. Thus, there exists an intervél, j], with
1 > g(> b), which satisfieg. It immediately follows
that M, [a, b] IF (L)p.
[ |
Last case of the proof of Lemma 2.
Proof:

If —a < band-d < ¥, then the following facts hold:
(1) b > 0 (otherwise,—a < b < 0 would hold, which
implies @ > 0 > b, contradicting the fact thajiz, b] is an
interval), (i7) |b] = b (this follows directly fromb > 0),
and (i#i) |a| < |b| (otherwise,|a| > |b] = b would hold,
which implies either > b, contradicting the fact thdt, ]
is an interval, or—a > b, contradicting the hypothesis that
—a < b). Now, we distinguish the following sub-cases.

« If X =0, then[e,d] is such thatt < a < d < b. We
distinguish the cases below.

—If —¢ < d, then take somel’ and ¢’ such that
la'| < d < || = and -d < ¢ < || =
—c (the existence of pointg’,d’ is guaranteed by
the density ofR). The interval[¢/,d’] is such that
[a',V|Rg[c',d'] and[c,d]Z[c, d'].

— If —¢ =d, then take somé@’ such thatla’| < d’ <
['| =¥ andc¢’ = —d’ (the existence of such a point
d' is guaranteed by the density &). The interval
[, d']is such thafa’, V'] R5(c’, d'] and[c,d] Z|c, d'].

— If —¢ > d, then take somé’ and¢’ such thatla’| <
d < V| =b andd < —d’ (the existence of points
c,d' is guaranteed by the density &). The interval
[, d'] is such thafa’, V'] R5[c’, d'] and[c, d] Z[c', d'].

o If X = F, then|c,d] is such thatt < a < b = d. We
distinguish the following cases.

— If —¢ < d, then taked’ = b’ and some”’ such that
—d' < ¢ < d (the existence of such a point is
guaranteed by the density &). The intervall¢/, d’|
is such thafa’, b'| Ri[c’, d'] and[c,d]|Z[c, d'].

— If —c=d, then taked’ =¥ andd’ = —d'(= —b' <
a’). The intervall¢’, d'] is such thafa’, V| Rz, d']
andl[c,d|Z|¢, d'].

—If —¢ > d, then taked’ = V' and anyd <
—d'(= =V < d). The interval[¢/,d’] is such that
o, V|Rg[d,d'] and[c,d]|Z[c, d'].

o If X = B, then|e,d] is such thata = ¢ < b < d.
Notice that—d < —b < a = ¢. Then, taked = a’
and anyd’ > v'. It holds thate’ = o’ > -V > —d'.
The interval ¢/, d'] is such thatld’, b'|R5[¢’,d'] and
[e,d)Z][, d'].

o If X = O, then|c,d] is such thata < ¢ < b < d.
Notice that—d < —b < a < ¢. Then, take some’
such thate’ < ¢ < ¥’ (the existence of such a poiat
is guaranteed by the density &) and anyd’ > ¥'. It
holds thate’ > o’ > —b’ > —d’. The intervall¢/, d'] is
such thatla’, V| Rol[¢’,d'] and|[ec,d]|Z|¢, d'].

[ |
Proof of Lemma 3.

Proof: Let f': {r e R| 2 <1} > {z € R |z <0}
andf”" :{z eR|ax>1} > {z€eR|0<z <1} be
defined asf’(z) = = — 1 and f”(z) = 1 — 1, respectively.
Clearly, f’ and f” are bijective functions. Moreover, it is
easy to verify thaif’ and f”” are such that (i) they are mono-
tonically increasing and (iif’'(x) < z (resp.,f” (z) < z) for
everyx € domf’ (resp.,z € domf”). Observe thatomf’
anddomyf” (resp.,codomf’ andcodomyf”) partitiondomf
(resp,codomy).

Clearly, f is well defined. To verify that it is an injection,
considerz,z’ € R, with x # «'. If z,2/ < 1 (resp.,
xz, 2’ > 1), it holds f(x) = f'(z) # f'(a') = f(2')
(resp., f(z) = ["(z) # ["(a') = f(z), as f' (resp.,
f") is an injection; ifz < 1 andz’ > 1, then it holds
f(z) = f'(x) # f'(x) = f(«'), as the codomains of’
and f” are disjoint sets. Surjectivity of follows from the
surjectivity of f/ and f”. Thus f is bijection. To prove
that it is monotonically increasing, considerz’ € R, with
x<a Mz <1(resp.x,z’ > 1), itholdsf(z) < f(z'),
as f’ (resp.,f"”) is monotonically increasing; if < 1 and
z’' > 1, then it holdsf(x) < f(2'), as every element in the
image of /’ is less than every element in the image 4t
Finally, from the fact thatf’(x) < « for everyz € R, with
z <1, and thatf”(z) < = for everyz € R, with z > 1, it
follows f(z) < = for everyz € R. [ |



