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Abstract—Unlike the Moon, the dark side of interval tempo-
ral logics is the one we usually see: their ubiquitous undecid-
ability. Identifying minimal undecidable interval logics is thus
a natural and important issue in the research agenda in the
area. The decidability status of a logic often depends on the
class of models (in our case, the class of interval structures)
in which it is interpreted. In this paper, we have identified
several new minimal undecidable logics amongst the fragments
of Halpern-Shoham logicHS, including the logic of theoverlaps
relation, over the classes of all and finite linear orders, aswell
as the logic of themeet and subinterval relations, over the class
of dense linear orders. Together with previous undecidability
results, this work contributes to delineate the border of the
dark side of interval temporal logics quite sharply.

Keywords-temporal logic; interval logic; undecidability.

I. I NTRODUCTION

Temporal reasoning plays a major role in computer sci-
ence. In the most standard approach, the basic temporal
entities are time points and temporal domains are represented
as ordered structures of time points. The interval reasoning
approach adopts another, arguably more natural, perspective
on time, according to which the primitive ontological entities
are time intervals instead of time points.

The tasks of representing and reasoning about time in-
tervals arises naturally in various fields of computer sci-
ence, artificial intelligence, and temporal databases, such as
theories of action and change, natural language processing,
and constraint satisfaction problems. Temporal logics with
interval-based semantics have also been proposed as a useful
formalism for the specification and verification of hardware
[1] and of real-time systems [2].

Interval temporal logics feature modal operators that
correspond to (binary) relations between intervals usually
known as Allen’s relations [3]. In [4], Halpern and Shoham
introduce a modal logic for reasoning about interval struc-
tures (HS), with a modal operator for each Allen’s relation.
HS is undecidable under very weak assumptions on the

class of interval structures [4]. In particular, undecidability
holds for any class of interval structures over linear orders
that contains at least one linear order with an infinite
ascending (or descending) sequence of points, thus including
the natural time flowsN,Z,Q, andR. For a long time, such
a sweeping undecidability result have discouraged attempts
for practical applications and further research on interval
logics. A renewed interest in the area has been recently
stimulated by the discovery of some interesting decidable
fragments ofHS [5], [6], [7], [8]. Gradually, the quest for
expressive decidable fragments ofHS has become one of
the main points of the current research agenda for interval
temporal logic. In this context, many fragments ofHS have
already been shown to be undecidable [9], [10], [11], [12].

In this paper, we contribute to delineate the boundary
between decidable and undecidableHS fragments by estab-
lishing new undecidability results. In particular, we exhibit
the first known case of a single-modalityHS fragment which
is undecidable in the class ofall linear orders, as well as
in the class of allfinite linear orders, strengthening previous
results [10], [11]. Moreover, most undecidability proofs for
interval logics hinge on the existence of a linear ordering
with an infinite sequence of points; here we show how to
relax such an assumption. For space reasons, the details
of proofs are mostly omitted; they can be found in [13],
together with a complete picture of the state-of-the-art onthe
classification ofHS fragments w.r.t. decidability of satisfia-
bility. The web page http://itl.dimi.uniud.it/content/logic-hs
also provides a collection of online tools that enable one
to verify the status (decidable/undecidable/unknown) of any
fragment ofHS w.r.t. the satisfiability problem, over various
classes of linear orders (all, dense, discrete, and finite).

II. PRELIMINARIES

Let D = 〈D,<〉 be a linearly ordered set. Aninterval
overD is an ordered pair[a, b], wherea, b ∈ D anda ≤ b.



Intervals of the form[a, a] are calledpoint intervals; if
these are excluded, the resulting semantics is calledstrict
interval semantics(non-strictotherwise). Our results hold in
either semantics. There are 12 different non-trivial relations
(excluding the equality) between two intervals in a linear
order, often calledAllen’s relations [3]: the six relations
depicted in Table I and their inverses. One can naturally
associate a modal operator〈X〉 with each Allen’s relation
RX . For each operator〈X〉, we denote by〈X〉 its transpose,
corresponding to the inverse relation.

Halpern and Shoham’s logicHS is a multi-modal logic
with formulae built over a setAP of propositional letters,
the propositional connectives∨ and¬, and a set of modal
unary operators associated with all Allen’s relations. For
each subset{RX1

, . . . , RXk
} of these relations, we define

the HS fragmentX1X2 . . .Xk, whose formulae are defined
by the grammar:

ϕ ::= p | π | ¬ϕ | ϕ ∨ ϕ | 〈X1〉ϕ | . . . | 〈Xk〉ϕ,

whereπ is a modal constant, true precisely at point intervals.
We omit π when it is definable in the language or when
the strict semantics is adopted. The other propositional
connectives, like∧ and →, and the dual modal operators
[X ] are defined as usual, e.g.,[X ]ϕ ≡ ¬〈X〉¬ϕ.

Let I(D) be the set of all intervals overD. The semantics
of an interval-based temporal logic is given in terms of
interval modelsM = 〈D, V 〉, whereV : AP 7→ 2I(D) is
the valuation functionthat assigns to everyp ∈ AP the
set of intervalsV (p) over which it holds. Thetruth of a
formula over a given interval[a, b] in a modelM is defined
by structural induction on formulae:

• M, [a, b] 
 π iff a = b;
• M, [a, b] 
 p iff [a, b] ∈ V (p), for all p ∈ AP ;
• M, [a, b] 
 ¬ψ iff it is not the case thatM, [a, b] 
 ψ;
• M, [a, b] 
 ϕ ∨ ψ iff M, [a, b] 
 ϕ or M, [a, b] 
 ψ;
• M, [a, b] 
 〈Xi〉ψ iff there exists an interval[c, d] such

that [a, b] RXi
[c, d], andM, [c, d] 
 ψ,

Satisfiabilityis defined as usual.
The notion of sub-interval (contains) can be declined into

two variants, namely,proper sub-interval ([a, b] is a proper
sub-interval of[c, d] if c ≤ a, b ≤ d, and [a, b] 6= [c, d]),
and strict sub-interval (when bothc < a and b < d). Both
variants will play a central role in our technical results;
notice that by sub-interval we usually mean the proper one.

III. A SHORT SUMMARY OF UNDECIDABILITY RESULTS

In this section, we first summarize the main undecidability
results for fragments ofHS. Then, we state the main results
of this paper (Theorem III.1), which extend the previous
ones under two different aspects:(i) we prove a number of
new undecidability results for proper sub-fragments of logics
that were already known to be undecidable, and(ii) we
show how to adapt various existing undecidability proofs to
a more general class of linear orders. The first undecidability

〈A〉

〈L〉

〈B〉

〈E〉

〈D〉

〈O〉

[a, b]RA[c, d] ⇔ b = c

[a, b]RL[c, d] ⇔ b < c

[a, b]RB[c, d] ⇔ a = c, d < b

[a, b]RE [c, d] ⇔ b = d, a < c

[a, b]RD[c, d] ⇔ a < c, d < b

[a, b]RO[c, d] ⇔ a < c < b < d

a b

c d

c d

c d

c d

c d

c d

Table I
ALLEN ’ S INTERVAL RELATIONS AND THE CORRESPONDINGHS

MODALITIES .

result, for fullHS, was obtained by Halpern and Shoham [4].
Since then, several other results have been published, starting
from Lodaya [14], that proved the undecidability of the
fragmentBE, when interpreted over dense linear orders,
or, alternatively, over〈ω,<〉, where infinite intervals are
allowed. In [9], Bresolin at al. proved the undecidability
of a number of interesting fragments, such asAD∗E∗,
AD∗O, AD∗B∗, AD∗O, BE, BE, andBE, where, for each
X ∈ {A, L,B,E,D,O}, X∗ denotes eitherX or X. In [10],
the undecidability of all (HS-)extensions of the fragmentO
(and thus ofO), except for those with the modalities〈L〉 and
〈L〉, has been proved when interpreted in any class of linear
orders with at least one infinite ascending (or descending) se-
quence. In [11], the one-modality fragmentO alone has been
proved undecidable, but assuming discreteness. Recently,
Marcinkowski et al. have first shown the undecidability of
B∗D∗ on finite and discrete linear orders [15], and, then,
strengthened that result to the one-modality fragmentsD and
D [12].

Here, we first extend and complete the results from [10],
[11] by providing an undecidability proof that assumes
neither discreteness nor the presence of an infinite sequence.
Second, we strengthen the undecidability results given in [9]
by (i) proving that the logicsB∗E∗ are undecidable over the
class of finite linear orders, and (ii) by showing that the weak
fragmentsA∗D∗ are undecidable with respect to all relevant
classes of linear orders. As a consequence, we obtain a
very sharp characterization of the decidability/undecidability
border for the family ofHS-fragments, as the undecidability
for the mentioned logics holds over the class of all finite
linear orders as well as over the classical orders based on
N, Z, Q, andR.

Theorem III.1. The satisfiability problem for theHS frag-
mentsO, O, A∗D∗, B∗E∗ is undecidable in any class of
linear orders that contains, for eachn > 0, at least one
linear order with length greater thann.

Due to space constraints, we only detail the case ofO.
First, we show how to relax the discreteness hypothesis;



then, we provide the changes needed to relax the hypothesis
about the existence of at least one infinite sequence in the
model. We refer the reader to [13] for full details.

IV. U NDECIDABILITY OF O

A. Intuition

As in [10], [11], our undecidability proof is based on a
reduction from the so-called Octant Tiling Problem (OTP).
This is the problem of establishing whether a given finite
set of tile typesT = {t1, . . . , tk} can tile the second octant
of the integer planeO = {(i, j) : i, j ∈ N ∧ 0 ≤ i ≤ j}.
For every tile typeti ∈ T , let right(ti), left(ti), up(ti),
and down(ti) be the colors of the corresponding sides
of ti. To solve the problem, one must find a function
f : O → T such thatright(f(n,m)) = left(f(n+ 1,m))
and up(f(n,m)) = down(f(n,m + 1)). By exploiting
an argument similar to the one used in [16] to prove the
undecidability of the Quadrant Tiling Problem, it can be
shown that the Octant Tiling Problem is undecidable too.
Given an instance OTP(T ), whereT is a finite set of tiles
types, we build anO-formulaΦT in such a way thatΦT is
satisfiable if and only ifT tiles O. The proof is similar
to that of other undecidability results forHS fragments,
but not readily derivable from those. It is based on the
undecidability proof ofO in the class of discrete linear
orders [11]. The essential difference here concerns dropping
the discreteness assumption, which turns out to be rather
non-trivial, and it leads to a very general and elegant proofof
the undecidability ofO, structured as follows. First, we focus
on the (sub)setG[a,b] of all and only those intervals that are
reachable in the language ofO from a given starting interval
[a, b], by defining a suitableglobal operator [G]. Then,
we set the tiling framework by forcing the existence of a
unique infinite chain ofu-intervals (i.e., intervals satisfying a
designated propositionu) on the underlying linear ordering;
the elements of suchu-chainwill be used as cells to arrange
the tiling, and we will define in the language a derived
modality to capture exactly the nextu-interval from the
current one. Third, we encode the octant by means of a
unique infinite sequence ofId-intervals (Id-chain), each one
of them representing a row of the octant. AnId-interval is
composed by a sequence ofu-intervals; eachu-interval is
used either to represent a part of the plane or to separate
two consecutive rows; in the former case it is labelled
with tile, in the latter case it is labelled with∗. Fourth,
by setting suitable propositions, we encode theabove-and
right-neighborrelations, which connect each tile in a row of
the octant with, respectively, the one immediately above it
and the one immediately at its right, if any. The encoding of
such relations must be done in respect of thecommutativity
property(Def. IV.1 below). Throughout, if two tilest1 andt2
are connected by the above-neighbor (resp., right-neighbor)
relation, we say thatt1 is above-connected(resp., right-
connected) to t2, and similarly fortile-intervals (when they

encode tiles of the octant that are above- or right-connected,
respectively).

Definition IV.1 (commutativity property). Given two tile-
intervals[c, d] and[e, f ], if there exists atile-interval[d1, e1],
such that[c, d] is right-connected to[d1, e1] and [d1, e1] is
above-connected to[e, f ], then there exists also atile-interval
[d2, e2] such that[c, d] is above-connected to[d2, e2] and
[d2, e2] is right-connected to[e, f ].

B. Technical details in the infinite case

Let [a, b] be any interval of length at least 2 (i.e., such
that there exists at least one pointc with a < c < b). We
defineG[a,b] as the set of all and only those intervals[c, d]
of length at least 2 such thatc > a, d > b. Accordingly, the
modality [G], defined as[G]p ≡ p∧ [O]p∧ [O][O]p, refers to
all and only intervals inG[a,b]. Because all formulae that we
will use in the encoding will be prefixed with〈O〉, [O], or
[G], hereafter we only refer to intervals inG[a,b]; all others
will be irrelevant.

Definition of the u-chain. The definition of theu-chain is
the most difficult step in our construction, due to the extreme
weakness of the language. This part represents the main
difference with [11]: while there the definition of theu-chain
hinges on the discreteness assumption, here we need to force
its existence by means of a completely new approach. It in-
volves three, related, aspects:(i) the existence of an infinite
sequence ofu-intervals[b0, b′0], [b1, b

′
1], . . . , [bi, b

′
i], . . ., with

b ≤ b0 andb′i = bi+1 for eachi ∈ N; (ii) the existence of an
interleaved auxiliary chain[c0, c′0], [c1, c

′
1], . . . , [ci, c

′
i], . . .,

where bi < ci < b′i, bi+1 < c′i < b′i+1, and c′i = ci+1

for eachi ∈ N, composed byk-intervals (each one of them
overlapping exactly oneu-chain), used to make it possible
for us to reach the ‘next’u-interval from the current one (see
Fig. 1); (iii) guaranteeing that both chains are unique. This
third aspect is the most difficult one. To obtain uniqueness,
we show that under certain conditions the language ofO

can express properties of proper sub-intervals, which is
quite surprising for a fragment so (apparently) weak. In
particular, we show that wheneverp is disjointly-bounded
(see Def. IV.3 below), it is possible to express properties
such as “for each interval[a, b], if [a, b] satisfiesp then no
proper sub-interval of[a, b] satisfiesp”.

u u u u u u u
b0 b1 b2 b3 b4 b5 b6 b7

k k k k k k k

c0 c1 c2 c3 c4 c5 c6 c7

Figure 1. Encoding of theu-chain.

LetM be a model over the setAP of propositional letters,
and let [a, b] be our starting interval (which automatically
defines the universeG[a,b]).



Definition IV.2. The propositionsp, q ∈ AP are said to be
disjoint if, for every pair of intervals〈[c, d], [e, f ]〉 such that
[c, d] satisfiesp and [e, f ] satisfiesq, eitherd ≤ e or f ≤ c

(i.e., [c, d] ∩ [e, f ] = ∅). The propositionq is calleddisjoint
consequentof p if p and q are disjoint and anyp-interval
is followed by aq-interval, that is, for each interval[c, d] ∈
G[a,b] that satisfiesp, there exists an interval[e, f ] ∈ G[a,b],
with e ≥ d, that satisfiesq.

Definition IV.3. The propositionp is said to bedisjointly-
bounded inG[a,b] (w.r.t. a disjoint consequentq) if: (i)
[a, b] neither satisfiesp nor overlaps ap-interval, that is,
p (possibly) holds only over intervals[c, d], with c ≥ b; (ii)
p-intervals do not overlap each other, that is, there do not
exist two intervals[c, d] and[e, f ] satisfyingp and such that
c < e < d < f ; (iii) p has a disjoint consequentq.

Now, whenever we can prove that a certain propositionp is
is disjointly-bounded inG[a,b] w.r.t. a disjoint consequentq,
we may set an auxiliary propositioninsidep in such a way
that it is true over all proper sub-intervals (inG[a,b]) of p-
intervals; after that, by simply asserting thatinsidep-intervals
and p-intervals cannot overlap each other, we will be able
to guarantee thatp-intervals are never proper sub-intervals
of other p-intervals. To defineinsidep for the (disjointly
bounded) letterp, we exploit the existence of its disjoint
consequenceq, plus an auxiliary proposition−→p , which we
make true over intervals starting inside ap-interval and
ending outside it and inside aq-interval.

[G](p → [O](〈O〉q → −→p )) (1)

[G](¬p ∧ [O](〈O〉q → −→p ) → insidep) (2)

[G]((insidep → ¬〈O〉p) ∧ (p→ ¬〈O〉insidep)) (3)

Lemma IV.4. LetM be a model,[a, b] be an interval over
M , andp, q ∈ AP two propositions such thatp is disjointly-
bounded inG[a,b] w.r.t. q. If M, [a, b] 
 (1)∧ (2)∧ (3), then,
in G[a,b], there are nop-intervals properly contained in other
p-intervals.

Proof: Suppose, by contradiction, that there exist two
intervals [c, d] and [e, f ] (belonging toG[a,b]) satisfying p
and such that[e, f ] is sub-interval of[c, d]. By definition of
sub-interval, we have thatc < e or f < d. Without loss
of generality, let us suppose thatc < e (the other case is
analogous). Since[e, f ] ∈ G[a,b], then there exists a point in
betweene andf , say ite′. The interval[c, e′] is a sub-interval
of [c, d]. Moreover, it cannot satisfyp, since it overlaps the
p-interval [e, f ] (and p is a propositional letter disjointly-
bounded in〈M, [a, b]〉). By (1) and by the fact thatq is a
disjoint consequent ofp, each interval starting in between
c and d, and ending inside aq-interval, satisfies−→p . Thus,
[c, e′] satisfies¬p and[O](〈O〉q → −→p ). By (2), it must also
satisfy insidep. But this contradicts (3), hence the thesis.

From now on, given a propositionp disjointly-bounded
w.r.t. to a disjoint consequentq, we usenon-sub(p, q) to

denote the formula(1)∧(2)∧(3), and expressing the global
property that nop-interval is sub-interval of anotherp-
interval. By means of the following formulae, we force the
letter u1, u2, k1, andk2 to be disjointly-bounded.

¬u ∧ ¬k ∧ [O](¬u ∧ ¬k) (4)

[G]((u ↔ u1 ∨ u2) ∧ (k ↔ k1 ∨ k2)

∧ (u1 → ¬u2) ∧ (k1 → ¬k2))
(5)

[G]((u1 → [O](¬u ∧ ¬k2))∧(u2 → [O](¬u ∧ ¬k1))) (6)

[G]((k1 → [O](¬k ∧ ¬u1))∧(k2 → [O](¬k ∧ ¬u2))) (7)

[G]((〈O〉u1 → ¬〈O〉u2) ∧ (〈O〉k1 → ¬〈O〉k2)) (8)

[G]((u1 → 〈O〉k1) ∧ (k1 → 〈O〉u2)

∧ (u2 → 〈O〉k2) ∧ (k2 → 〈O〉u1))
(9)

(4) ∧ . . . ∧ (9) (10)

Lemma IV.5. Let M be a model, and[a, b] and interval
overM such thatM, [a, b] 
 (10). Thenu1, u2, k1, andk2
are disjointly-bounded.

Finally, to build the u-chain, we state the following
formulae, wherefirst is used to identify the first interval
of the chain.

〈O〉〈O〉(u1 ∧ first) (11)

[G](u ∨ k → [O]¬first ∧ [O][O]¬first) (12)

[G]((first → u1) ∧ (first → [O][O]¬first)) (13)
non-sub(u1, k1) ∧ non-sub(u2, k2)

∧ non-sub(k1, u2) ∧ non-sub(k2, u1)
(14)

[G](u ∨ k → [O]〈O〉(u ∨ k)) (15)

(11) ∧ . . . ∧ (15) (16)

Lemma IV.6. LetM be a model and[a, b] an interval over
M such thatM, [a, b] 
 (10) ∧ (16). Then:

(a) there exists an infinite sequence ofu-intervals
[b0, b

′
0], [b1, b

′
1], . . . , [bi, b

′
i], . . ., with b ≤ b0, b′i = bi+1

for eachi ∈ N, and such thatM, [b0, b
′
0] 
 first,

(b) there exists an infinite sequence ofk-intervals
[c0, c

′
0], [c1, c

′
1], . . . , [ci, c

′
i], . . . such thatbi < ci < b′i,

bi+1 < c′i < b′i+1, and c′i = ci+1 for eachi ∈ N, and
(c) every other interval[c, d] ∈ G[a,b] satisfies neither ofu,

k, or first, unlessc > bi for everyi ∈ N.

Within this framework, the operator〈Xu〉, used either to
reach the firstu-interval of theu-chain or to step from any
givenu-interval to the next one in the sequence, is definable:

〈Xu〉ϕ≡(¬u∧〈O〉〈O〉(first∧ϕ))∨(u∧〈O〉(k∧〈O〉(u∧ϕ)))

Definition of the Id-chain. In order to define theId-chain,



we make use of the following set of formulae:

¬Id ∧ ¬〈O〉Id ∧ [G](Id → ¬〈O〉Id) (17)
〈Xu〉(∗ ∧ 〈Xu〉(tile ∧ Id ∧ 〈Xu〉∗

∧ [G](∗ → 〈Xu〉(tile ∧ 〈Xu〉tile))))
(18)

[G]((u ↔ ∗ ∨ tile) ∧ (∗ → ¬tile)) (19)

[G](∗ → 〈O〉(k ∧ 〈O〉Id)) (20)

[G](Id → 〈O〉(k ∧ 〈O〉∗)) (21)

[G]((u → ¬〈O〉Id) ∧ (Id → ¬〈O〉u)) (22)

[G](〈O〉∗ → ¬〈O〉Id) (23)

non-sub(Id, k) (24)

(17) ∧ . . . ∧ (24) (25)

Lemma IV.7. Let M, [a, b] 
 (10) ∧ (16) ∧ (25) and let
b ≤ b01 < c01 < b11 < . . . < bk1−1

1 < ck1−1
1 < bk1

1 = b02 <

c02 = ck1

1 < b12 < . . . < bk2

2 = b03 < . . . be the sequence of
points, defined by Lemma IV.6, such that[bij, b

i+1
j ] satisfies

u and [cij , c
i+1
j ] satisfiesk for eachj ≥ 1, 0 ≤ i < kj . Then,

for eachj ≥ 1, we have:
(a) M, [b0j , b

1
j ] 
 ∗;

(b) M, [bij , b
i+1
j ] 
 tile for each0 < i < kj ;

(c) M, [b1j , b
0
j+1] 
 Id;

(d) k1 = 2, kl > 2 for eachl > 1;
and no other interval[c, d] ∈ G[a,b] satisfies∗ (resp., tile,
Id), unlessc > bij for eachi, j > 0.

Above-neighbor relation. We proceed now with the en-
coding of the above-neighbor relation (Fig. 2), by means of
which we connect eachtile-interval with its vertical neighbor
in the octant (e.g.,t22 with t23 in Fig. 2). For technical reasons,
we need to distinguish betweenbackwardandforward rows
of O using the propositionsbw and fw: we label eachu-
interval with bw (resp., fw) if it belongs to a backward
(resp., forward) row (formulae (26)-(27)). Intuitively, the
tiles belonging to forward rows ofO are encoded in as-
cending order, while those belonging to backward rows are
encoded in descending order (the tiling is encoded in a zig-
zag manner). In particular, this means that the left-mosttile-
interval of a backward level encodes the last tile of that row
(and not the first one) inO. Let α, β ∈ {bw, fw}, with
α 6= β:

〈Xu〉bw ∧ [G]((u ↔ bw ∨ fw) ∧ (bw → ¬fw)) (26)

[G]((α∧¬〈Xu〉∗ → 〈Xu〉α)∧(α∧〈Xu〉∗ → 〈Xu〉β)) (27)

(26) ∧ (27) (28)

Lemma IV.8. If M, [a, b] 
 (10) ∧ (16) ∧ (25) ∧ (28),
then the sequence of points defined in Lemma IV.7 is such
that M, [bij , b

i+1
j ] 
 bw if and only if j is an odd number,

and M, [bij , b
i+1
j ] 
 fw if and only j is an even number.

Furthermore, we have that no other interval[c, d] ∈ G[a,b]

satisfiesbw or fw, unlessc > bij for eachi, j > 0.

a)

t1
1

t1
2

t2
2

t1
3

t2
3

t3
3

t1
4

t2
4

t3
4

t4
4

t1
5

t2
5

t3
5

t4
5

t5
5

bw

fw

bw

fw

bw

b)

last last last last

∗ t11 ∗ t12 t22 ∗ t33 t23 t13 ∗ t14 t24 t34 t44

︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷
bw fw bw fw

Figure 2. Encoding of the above-neighbor relation.

We make use of such an alternation between backward
and forward rows to correctly encode the above-neighbor
relation. We constrain eachup rel-interval starting from a
backward (resp., forward) row not to overlap any other
up rel-interval starting from a backward (resp., forward)
row. The structure of the encoding is shown in Fig. 2, where
up rel-intervals starting inside forward (resp., backward)
rows are placed one inside the other. Consider, for instance,
how the 3rd and 4th level of the octant are encoded in
Fig. 2b. The1st tile-interval of the3rd level (t33) is connected
to the second from lasttile-interval of the4th level (t34), the
2nd tile-interval of the3rd level (t23) is connected to the third
from lasttile-interval of the4th level (t24), and so on. Notice
that, in forward (resp., backward) level, the last (resp., first)
tile-interval has notile-intervals above-connected to it, in
order to constrain each level to have exactly onetile-interval
more than the previous one (thesetile-intervals are labeled
with last).

Formally, we define the above-neighbor relation as fol-
lows. If [bij, b

i+1
j ] is a tile-interval belonging to a for-

ward (resp., backward) row, then we say that it is above-
connected to thetile-interval [bj+2−i

j+1 , b
j+2−i+1
j+1 ] (resp.,

[bj+2−i−1
j+1 , b

j+2−i
j+1 ]). To do so, we label withup rel the

interval [cij , c
j+2−i
j+1 ] (resp., [cij , c

j+2−i−1
j+1 ]). Moreover, we

distinguish betweenup rel-intervals starting from forward
and backward rows and, within each case, between those
starting from odd and eventile-intervals. To this end, we
use a new proposition, namely,up relbwo (resp.,up relbwe ,
up relfwo , up relfwe ) to label up rel-intervals starting from
an odd tile-interval of a backward row (resp., eventile-
interval/backward row, odd/forward, even/forward). To ease
the reading of the formulae, we groupup relbwo andup relbwe
in up relbw (up relbw ↔ up relbwo ⊕up relbwe ), and similarly
for up relfw. Finally, up rel is exactly one amongup relbw

andup rel
fw (up rel ↔ up rel

bw⊕up rel
fw). In such a way,

we encode the correspondence between tiles of consecutive
rows of the plane induced by the above-neighbor relation.



Let α, β ∈ {bw, fw} and γ, δ ∈ {o, e}, with α 6= β and
γ 6= δ:

¬up rel ∧ ¬〈O〉up rel (29)

[G]((up rel ↔ up relbw ∨ up relfw)

∧ (up relα ↔ up relαo ∨ up relαe ))
(30)

[G]((k ∨ ∗ → ¬〈O〉up rel) ∧ (up rel → ¬〈O〉k)) (31)

[G](u ∧ 〈O〉up relαγ → ¬〈O〉up relαδ ∧ ¬〈O〉up relβ) (32)

[G](up relα → ¬〈O〉up relα) (33)

[G](up rel → 〈O〉Id) (34)

[G](〈O〉up rel → ¬〈O〉first) (35)

[G](up relαγ → 〈O〉(tile ∧ 〈O〉up relβγ )) (36)

(29) ∧ . . . ∧ (36) (37)

Lemma IV.9. If M, [a, b] 
 (10)∧ (16)∧ (25)∧ (28)∧ (37),
then the sequence of points defined in Lemma IV.7 is such
that, for eachi ≥ 0, j > 0, the following properties hold:
a) if [c, d] satisfiesup rel, then c = cij and d = ci

′

j′ for
somei, i′, j, j′ > 0; that is, eachup rel-interval starts
and ends inside atile-interval. More precisely, it starts
(resp., ends) at the same point in which ak-interval starts
(resp., ends);

b) [cij , c
i′

j′ ] satisfiesup rel if and only if it satisfies exactly
one betweenup relbw andup relfw and [cij , c

i′

j′ ] satisfies
up relbw (resp., up relfw) if and only if it satisfies ex-
actly one betweenup relbwo andup relbwe (resp., between
up relfwo and up relfwe );

c) for eachα, β ∈ {bw, fw} and γ, δ ∈ {o, e}, if [cij , c
i′

j′ ]
satisfiesup relαγ , then there is no other interval starting
at cij satisfyingup rel

β
δ such thatup relαγ 6= up rel

β
δ ;

d) eachup relbw-interval (resp.,up relfw-interval) does not
overlap any otherup relbw-interval (resp., up relfw-
interval);

e) if [cij , c
i′

j′ ] satisfiesup relbwo (resp., up relbwe , up relfwo ,
up relfwe ), then there exists anup relfwo -interval (resp.,
up relfwe -interval, up relbwo -interval, up relbwe -interval)
starting atci

′

j′ .

We constrain eachtile-interval, apart from the last one of
some level, to have atile-interval above-connected to it. To
this end, we label the lasttile-interval of every row with the
new propositionlast (formulae (43)-(45)). Then we force
all tile-intervals not labelled withlast to have atile-interval
above-connected to them (formulae (46)-(49)):

[G](tile → 〈O〉up rel) (38)

[G](α → [O](up rel → up relα)) (39)

[G](up relα → 〈O〉β) (40)

[G](〈O〉∗ → ¬(〈O〉up relbw ∧ 〈O〉up relfw)) (41)

[G](tile ∧ 〈O〉up relαγ ∧ 〈Xu〉tile

→ 〈Xu〉(tile ∧ 〈O〉up relαδ ))
(42)

[G](last → tile) (43)

[G]((∗ ∧ bw → 〈Xu〉last) ∧ (fw ∧ 〈Xu〉∗ → last)) (44)

[G]((last ∧ fw → 〈Xu〉∗) ∧ (bw ∧ 〈Xu〉last → ∗)) (45)

[G](∗ ∧ fw → 〈Xu〉(tile

∧ 〈O〉(up rel ∧ 〈O〉(tile ∧ 〈Xu〉∗))))
(46)

[G](last ∧ bw → 〈O〉(up rel

∧ 〈O〉(tile ∧ 〈Xu〉(tile ∧ 〈Xu〉∗))))
(47)

[G](k ∧ 〈O〉(tile ∧ 〈O〉up relαγ )

→ [O](〈O〉up relαγ ∧ 〈O〉(k ∧ 〈O〉(tile

∧ 〈O〉up rel
β
δ ∧ ¬last)) → 〈O〉up relαδ ))

(48)

[G](up rel → ¬〈O〉last) (49)

(38) ∧ . . . ∧ (49) (50)

Lemma IV.10. If M, [a, b] 
 (10) ∧ (16) ∧ (25) ∧ (28) ∧
(37) ∧ (50), then the sequence of points defined in Lemma
IV.7 is such that the following properties hold:
a) for each up rel-interval [cij , c

i′

j′ ], connecting thetile-

interval [bij , b
i+1
j ] to thetile-interval [bi

′

j′ , b
i′+1
j′ ], if [cij , c

i′

j′ ]

satisfiesup relbw (resp.,up relfw), then[bij , b
i+1
j ] satisfies

bw (resp.,fw) and [bi
′

j′ , b
i′+1
j′ ] satisfiesfw (resp.,bw);

b) (strict alternation property) for eachtile-interval [bij ,
bi+1
j ], with i < kj − 1, such that there exists an
up relbwo -interval (resp.,up relbwe -interval, up relfwo -in-
terval, up relfwe -interval) starting at cij , there exists
an up relbwe -interval (resp.,up relbwo -interval, up relfwe -
interval, up relfwo -interval) starting atci+1

j ;
c) for everytile-interval [bij, b

i+1
j ] satisfyinglast, there is no

up rel-interval ending atcij ;
d) for eachup rel-interval [cij , c

i′

j′ ], with 0 < i < kj , we
have thatj′ = j + 1.

Lemma IV.11. Each tile-interval [bij , b
i+1
j ] is above-

connected to exactly onetile-interval and, if it does not
satisfy last, then there exists exactly onetile-interval which
is above-connected to it.

Right-neighbor relation. The right-neighbor relation con-
nects each tile with its horizontal neighbor in the octant, if
any (e.g.,t23 with t33 in Fig. 2). Again, in order to encode
the right-neighbor relation, we must distinguish between
forward and backward levels: atile-interval belonging to
a forward (resp., backward) level is right-connected to the
tile-interval immediately to the right (resp., left), if any. For
example, in Fig. 2b, the2nd tile-interval of the4th level
(t24) is right-connected to thetile-interval immediately to the
right (t34), since the4th level is a forward one, while the2nd
tile-interval of the3rd level (t23) is right-connected to the
tile-interval immediately to the left (t33), since the3rd level
is a backward one. Therefore, we define the right-neighbor
relation as follows: if[bij, b

i+1
j ] is a tile-interval belonging

to a forward (resp., backward)Id-interval, with i 6= kj − 1



(resp.,i 6= 1), then we say that it is right-connected to the
tile-interval [bi+1

j , bi+2
j ] (resp.,[bi−1

j , bij ]).

Lemma IV.12 (Commutativity property). If M, [a, b] 


(10)∧(16)∧(25)∧(28)∧(37)∧(50), then the commutativity
property holds over the sequence defined in Lemma IV.7.

Tiling the plane. The following formulae constrain each
tile-interval (and no other interval) to be tiled by exactly
one tile (formula (51)) and constrain the tiles that are right-
or above-connected to respect the color constraints (from
(52) to (54)):

[G]((

k∨

i=1

ti ↔ tile) ∧ (

k∧

i,j=1,i6=j

¬(ti ∧ tj)) (51)

[G](tile →
∨

up(ti)=down(tj)

(ti ∧ 〈O〉(up rel ∧ 〈O〉tj))) (52)

[G](tile ∧ fw ∧ 〈Xu〉tile →
∨

right(ti)=left(tj)

(ti ∧ 〈Xu〉tj)) (53)

[G](tile ∧ bw ∧ 〈Xu〉tile →
∨

left(ti)=right(tj)

(ti ∧ 〈Xu〉tj)) (54)

(51) ∧ . . . ∧ (54) (55)

Given the set of tile typesT = {t1, t2, . . . , tk}, let ΦT be
the formula(10) ∧ (16) ∧ (25) ∧ (28) ∧ (37) ∧ (50) ∧ (55).

Lemma IV.13. The formulaΦT is satisfiable if and only if
T can tile the second octantO.

C. Extending undecidability to finite linear orders

In this section, we show how to adapt the construction
of the previous section in order to encode the Finite Tiling
Problem. This provides us with an undecidability proof for
the fragmentO that works in any class ofstrongly discrete
linear orders – that is, linear orders satisfying the property
that every interval contains only finitely many points – that
contains arbitrarily (finitely) long orders. In particular, this
allow us to conclude thatO is undecidable when interpreted
in the class of all finite linear orders.

The Finite Tiling Problem is formally defined as the
problem of establishing if there exists two natural number
k and l such that a finite set of of tile typesT , con-
taining two distinguished tile typest0 and tf , can tile the
{0, . . . , k}×{0, . . . , l} finite plane, under the restriction that
f(0, 0) = t0 and f(k, l) = tf . This problem has been first
introduced and shown to be undecidable in [17].

Definition of the u-chain. The main difference from the
reduction of the octant tiling problem described in the
previous section is the finiteness of the rectangular area. This
requires the existence of an arbitrarily long, but not infinite,
u-chain. Hence, we introduce an auxiliary propositionslastu
to denote the lastu-interval of the (finite)u-chain. The

properties oflastu are defined as follows.

〈O〉〈O〉lastu (56)

[G](lastu → ∗ ∧ [O](¬u ∧ ¬k) ∧ [O][O](¬u ∧ ¬k)) (57)

Now, we analyze the formulae used in the previous
section, showing only those that need to be changed for
the finite case. Formula (9) is replaced by (58) in order to
guarantee the existence of theu- andk-chains.

[G]((u1 ∧ ¬lastu → 〈O〉k1) ∧ (k1 → 〈O〉u2)

∧ (u2 ∧ ¬lastu → 〈O〉k2) ∧ (k2 → 〈O〉u1))
(58)

Since u1- and u2-intervals (resp.,k1- and k2-intervals) do
not infinitely alternate with each other in the finite case, we
introduce the new propositioncons, and we force it to be
a disjoint consequent ofu andk. In this way, we can force
u1, u2, k1, andk2 to be disjointly-bounded.

¬cons ∧ [O]¬cons ∧ [G](u ∧ k → 〈O〉〈O〉cons) (59)

[G](〈O〉u ∨ 〈O〉k → ¬〈O〉cons) (60)

[G]((u ∨ k → ¬〈O〉cons) ∧ (cons → [O](¬u ∧ ¬k))) (61)

Finally, we replace (14) and (15) with (62) and (63).

non-sub(u1, cons) ∧ non-sub(u2, cons)

∧ non-sub(k1, cons) ∧ non-sub(k2, cons)
(62)

[G](u ∨ k → [O](〈O〉〈O〉lastu → 〈O〉(u ∨ k))) (63)

Notice that formulae (56), . . . , (63) guarantees the ex-
istence of theu-chain also when interpreted over arbitrary
linear orders, but that the strong discreteness assumptionis
crucial to guarantee the finiteness of the chain. As a coun-
terexample, consider the model overQ depicted in Figure 3,
whereu1 holds over every interval[2− 1

2n , 2−
1

2n+1 ] such that
n is even,u2 holds over every interval[2 − 1

2n , 2 − 1
2n+1 ]

such thatn is odd, the sequence ofk1- and k2-intervals
are defined consistently, andlastu holds over the interval
[2, 2+ 1

2 ]. Such a model satisfy formulae (56), . . . , (63), but
contains an infiniteu-chain.

u1 u2 u1

k1 k2 k1
u1, lastu

1 1
2

3
4

7
8 2 2 + 1

2

Figure 3. Infiniteu-chain counterexample.

Definition of the Id-chain. To guarantee thatId is a
disjointly-bounded proposition, we exploit the fact that,by
definition,cons is also a disjoint consequent ofId. Moreover,
as for theu-chain, we have to make sure that the chain
is finite: to this end, we introduce the propositionlastId to
denoting the lastId-interval of the (finite)Id-chain.

[G]((lastId → Id)∧(Id∧〈O〉(k∧〈O〉lastu) → lastId)) (64)



Finally, we redefine formulae (18) and (20) as follows.

〈Xu〉 ∗ ∧[G](∗ → 〈Xu〉tile) (65)

[G](∗ ∧ ¬lastu → 〈O〉(k ∧ 〈O〉Id)) (66)

Above-neighbor relation. In the finite case, every row has
exactly the same number of tiles; therefore, the formulae
(43), (44), (45), (47), and (49) can be dismissed. Formulae
(36), (38), and (48) are replaced by the following ones.

[G](up relαγ → (〈O〉tile ∧ (〈O〉〈O〉(∗ ∧ ¬lastu)

→ 〈O〉(tile ∧ 〈O〉up relβγ))))
(67)

[G](tile ∧ 〈O〉〈O〉(∗ ∧ ¬lastu) → 〈O〉up rel) (68)

[G](k ∧ 〈O〉(tile ∧ 〈O〉up relαγ )

→ [O](〈O〉up rel
α
γ ∧ 〈O〉(k ∧ 〈O〉(tile

∧ 〈O〉up rel
β
δ )) → 〈O〉up rel

α
δ ))

(69)

To complete the construction is sufficient to add the
constraints on the first and last tile of the plane. Therefore,
undecidability ofO is proven also for finite linear orders.

V. CONCLUSIONS

In this paper, we filled in many gaps in the char-
acterization ofHS fragments with respect to decidabil-
ity/undecidability. More precisely, we proved thatO, O,
B∗E∗, andA∗D∗ are undecidable when interpreted in any
significant class of linear orders. However, this is not the
end of the story, because the status of some meaningful frag-
ments is still unknown. As an example, the (un)decidability
of D and D over the class of all linear orders cannot be
trivially derived from known results about finite, discrete,
and dense ones [12], [18].
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