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Abstract—Unlike the Moon, the dark side of interval tempo-  class of interval structures [4]. In particular, undecitigb
ral logics is the one we usually see: their ubiquitous undedi  holds for any class of interval structures over linear ogder
ability. Identifying minimal undecidable interval logics is thus that contains at least one linear order with an infinite

a natural and important issue in the research agenda in the di q di f points. thus | di
area. The decidability status of a logic often depends on the ascending (or descending) sequence of points, thus imgudi

class of models (in our case, the class of interval structusp ~ the natural time flows\, Z, Q, andR. For a long time, such

in which it is interpreted. In this paper, we have identified  a sweeping undecidability result have discouraged attempt
several new minimal undecidable logics amongst the fragmés  for practical applications and further research on interva

of Halpern-Shoham logicHS, including the logic of theoverlaps - |5gics. A renewed interest in the area has been recently

relation, over the classes of all and finite linear orders, asvell h . . . i
as the logic of themeet and subinterval relations, over the class stimulated by the discovery of some interesting decidable

of dense linear orders. Together with previous undecidabity ~ fragments ofHS [5], [6], [7], [8]. Gradually, the quest for
results, this work contributes to delineate the border of tte  expressive decidable fragments l86 has become one of

dark side of interval temporal logics quite sharply. the main points of the current research agenda for interval
Keywords-temporal logic; interval logic; undecidability. temporal logic. In this context, many fragmentst have
already been shown to be undecidable [9], [10], [11], [12].
|. INTRODUCTION In this paper, we contribute to delineate the boundary

Temporal reasoning plays a major role in computer scibetween decidable and undecidabl& fragments by estab-
ence. In the most standard approach, the basic temporbshing new undecidability results. In particular, we ebihi
entities are time points and temporal domains are repredent the first known case of a single-modall#$ fragment which
as ordered structures of time points. The interval reagpninis undecidable in the class @il linear orders, as well as
approach adopts another, arguably more natural, pergpectiin the class of alfinite linear orders, strengthening previous
on time, according to which the primitive ontological eistit ~ results [10], [11]. Moreover, most undecidability proots f
are time intervals instead of time points. interval logics hinge on the existence of a linear ordering

The tasks of representing and reasoning about time inwith an infinite sequence of points; here we show how to
tervals arises naturally in various fields of computer sci-relax such an assumption. For space reasons, the details
ence, artificial intelligence, and temporal databased) sisc of proofs are mostly omitted; they can be found in [13],
theories of action and change, natural language processingpgether with a complete picture of the state-of-the-arthen
and constraint satisfaction problems. Temporal logic$wit classification ofHS fragments w.r.t. decidability of satisfia-
interval-based semantics have also been proposed as & usdiility. The web page http://itl.dimi.uniud.it/conterdgic-hs
formalism for the specification and verification of hardwarealso provides a collection of online tools that enable one
[1] and of real-time systems [2]. to verify the status (decidable/undecidable/unknown)rof a

Interval temporal logics feature modal operators thatfragment ofHS w.r.t. the satisfiability problem, over various
correspond to (binary) relations between intervals uguall classes of linear orders (all, dense, discrete, and finite).
known as Allen’s relations [3]. In [4], Halpern and Shoham
introduce a modal logic for reasoning about interval struc-
tures HS), with a modal operator for each Allen’s relation. Let D = (D, <) be a linearly ordered set. Amterval
HS is undecidable under very weak assumptions on theverD is an ordered paifa, b], wherea,b € D anda < b.

Il. PRELIMINARIES



Intervals of the form[a,a] are calledpoint intervals if Y S
these are excluded, the resulting semantics is catadt ( l
interval semantic¢non-strictotherwise). Our results hold in
either semantics. There are 12 different non-trivial ietat (L) | l,blRre,d] < b<e
(excluding the equality) between two intervals in a linear (B) | [a,bRplc,d] < a=c,d <b H
order, often calledAllen’s relations[3]: the six relations (E) | [a,b]Rglc,d] & b=d,a<c :
depicted in Table | and their inverses. One can naturally (D) | [a,b)Bple,d] < a < c;d < b ¢ 4
] :

A) | [a,b]Rale,d] & b=c

associate a modal operatgK) with each Allen’s relation
Rx. For each operatdiX'), we denote by X) its transpose
corresponding to the inverse relation.

Halpern and Shoham’s logilS is a multi-modal logic Table |

. p i g . g ALLEN’S INTERVAL RELATIONS AND THE CORRESPONDINGHS
with formulae built over a sefd’P of propositional letters, MODALITIES.
the propositional connectives and -, and a set of modal
unary operators associated with all Allen’s relations. For
each subsefRy,,..., Rx,} of these relations, we define
the HS fragmentX; X, ... Xy, whose formulae are defined
by the grammar:

(0) | [a,b]Rolc,d]| ©a<c<b<d

result, for full HS, was obtained by Halpern and Shoham [4].
Since then, several other results have been publishetingtar
from Lodaya [14], that proved the undecidability of the
pu=pla|-eleVe | (X)e|. .. | (Xke, fragment BE, when interpreted over dense linear orders,
or, alternatively, over(w, <), where infinite intervals are
‘allowed. In [9], Bresolin at al. proved the undecidability
f a number of interesting fragments, such AB*E*,
D*0, AD*B*, AD*0, BE, BE, and BE, where, for each

X € {A,L,B,E,D, 0}, X* denotes eitheX or X. In [10],

wherer is a modal constant, true precisely at point intervals
We omit 7 when it is definable in the language or when
the strict semantics is adopted. The other propositiona
connectives, likeA and —, and the dual modal operators

[X] are defined as usual, e.gX]p = ~(X)-yp. the undecidability of all iS-)extensions of the fragmeft

B Y ST (& hs o). except ot hose i e modaiis) an
interval modelsM — (D, V), whereV : AP s 210 is (L), has been proved when interpreted in any class of linear

: . ) orders with at least one infinite ascending (or descending) s
the valuation functionthat assigns to every € AP the ) .
set of intervalsV (p) over which it holds. Theruth of a quence. In [11], the one-modality fragméialone has been

. ; : ) ; proved undecidable, but assuming discreteness. Recently,
formula over agwen interval, b] in a modelM is defined Marcinkowski et al. have first shown the undecidability of
by structural induction on formulae:

Molabl b iff a—b: B*D* on finite and discrete linear orders [15], and, then,
o M, la,b] I iff o =b; strengthened that result to the one-modality fragmBrasid

o M,[a,b] I piff [a,b] € V(p), for all p e AP; B [12]
e M, a,b] IF - iff it is not the case thai\/, [a, b] I 1; ’
o M,[a,b] Ik @V iff M,[a,b]lF @ or M,[a,b] I+ ; Here, we first extend and complete the results from [10],
o M, [a,b] - (X;) iff there exists an intervdk, d] such ~ [11] by providing an undecidability proof that assumes
that[a,b] Rx, [c,d], and M, [c,d] I 4, neither discreteness nor the presence of an infinite sequenc
Satisfiabilityis defined as usual. Second, we strengthen the undecidability results giveA]in [

The notion of sub-intervalkcpntaing can be declined into by (i) proving that the logic8*E* are undecidable over the
two variants, namelyproper sub-interval [a, b] is a proper class of finite linear orders, and (ii) by showing that the kvea
sub-interval of[c,d] if ¢ < a, b < d, and [a,b] # [c,d]), fragmentsA*D* are undecidable with respect to all relevant
and strict sub-interval (when botle < ¢ andb < d). Both ~ classes of linear orders. As a consequence, we obtain a
variants will play a central role in our technical results; very sharp characterization of the decidability/undelilits
notice that by sub-interval we usually mean the proper oneborder for the family oHS-fragments, as the undecidability
for the mentioned logics holds over the class of all finite
linear orders as well as over the classical orders based on

In this section, we first summarize the main undecidabilityN, Z, Q, andR.
results for fragments dflS. Then, we state the main results
of this paper (Theorem l111.1), which extend the previous
ones under two different aspects) we prove a number of
new undecidability results for proper sub-fragments ofdeg
that were already known to be undecidable, dng we
show how to adapt various existing undecidability proofs to Due to space constraints, we only detail the cas®© of
a more general class of linear orders. The first undecidibili First, we show how to relax the discreteness hypothesis;

IIl. A SHORT SUMMARY OF UNDECIDABILITY RESULTS

Theorem lIl.1. The satisfiability problem for th&lS frag-
mentsO, O, A*D*, B*E* is undecidable in any class of
linear orders that contains, for each > 0, at least one
linear order with length greater than.



then, we provide the changes needed to relax the hypothesimicode tiles of the octant that are above- or right-condecte
about the existence of at least one infinite sequence in theespectively).

model. We refer the reader to [13] for full details. Definition 1V.1 (commutativity property) Given two tile-

IV. UNDECIDABILITY OF O intervals|c, d] and|e, f], if there exists aile-interval[d, e4],
A. Intuition such thate, d] is right-connected tdd;, e;] and[d1, e1] is
above-connected fe, f], then there exists alsotde-interval
[d2, e2] such that[c, d] is above-connected t@ls, e2] and
[d2, e2] is right-connected tde, f].

As in [10], [11], our undecidability proof is based on a
reduction from the so-called Octant Tiling Problem (OTP).
This is the problem of establishing whether a given finite

set of tile typesT = {¢1,...,tx} can tile the second octant B. Technical details in the infinite case
of the integer plan&) = {(i,j) : i,j € NAO < i < j}. i ]
For every tile typet; € T, let right(t;), left(t:), up(t:), Let [a,b] be any interval of length at least 2 (i.e., such

and down(t;) be the colors of the corresponding sidesthat there exists at least one pointwith a < ¢ <b). We
of t;. To solve the problem, one must find a function defineGi, ;) @s the set of all and only those intervadsd
f: O = T such thatright(f(n,m)) = left(f(n + 1,m)) of Iength at Ieasj[ 2 such that> a, d > b. Accordingly, the
and up(f(n,m)) = down(f(n,m + 1)). By exploiting modallty[G],.deflned gs{G]pzp/\[O]p/\[O][O]p, refers to
an argument similar to the one used in [16] to prove the?!l and only intervals i, ;). Because all formulae that we
undecidability of the Quadrant Tiling Problem, it can be Will use in the encoding will be prefixed witt0), [O], or
shown that the Octant Tiling Problem is undecidable too/G]. hereafter we only refer to intervals #, ; all others
Given an instance OTH), where7 is a finite set of tiles Will be irrelevant.

types, we build ar0-formula @7 in such a way tha®7 is  pefinition of the u-chain. The definition of theu-chain is

satisfiable if and only if7" tiles O. The proof is similar e most difficult step in our construction, due to the exeem

to that of other undecidability results fddS fragments, \yeakness of the language. This part represents the main
but not readily derivable from those. It is based on thegiterence with [11]: while there the definition of thechain
undecidability proof ofO in the class of discrete linear ninges on the discreteness assumption, here we need to force
orders [11]. The essential difference here concerns dngppi jis existence by means of a completely new approach. It in-

the discreteness assumption, which turns out to be rathggyes three, related, aspects) the existence of an infinite
non-trivial, and it leads to a very general and elegant podof sequence ofi-intervals(bo, b,], [b1, b} [b:, b!] with
. e . Y ) ) Yt (23] AR |
the undecidability oD, structured as follows. First, we focus ; bo andb, = b, for eachi € N; (ii) the existence of an
< i ;

on the (sub)seg, ) of all and only those intervals that are jterleaved auxiliary chairico, ¢4], [c1,¢], ..., [ci, ¢, .
reachable in the language Offrom a given starting interval ’

e _ whereb; < ¢; < b}, bip1 < ¢ < biyy, andc = c¢iq1
[a,0], by defining a suitableglobal operator [G]. Then, o eachi € N, composed byk-intervals (each one of them

we set the tiling framework by forcing the existence of a,yerjapping exactly one-chain), used to make it possible
unique infinite chain ofi-intervals (i.e., intervals satisfying a ¢4, s to reach the ‘nexii-interval from the current one (see

designated propositiom) on the underlying linear ordering; rig 1): (5ii) guaranteeing that both chains are unique. This
the elements of suotr-chainwill be used as cells to arrange hjrg aspect is the most difficult one. To obtain uniqueness,

the tiling, and we will define in the language a derived,ye ghow that under certain conditions the languag®of
modality to capture exactly the nextinterval from the  can express properties of proper sub-intervals, which is
current one. Third, we encode the octant by means of @ite surprising for a fragment so (apparently) weak. In
unique infinite sequence d-intervals (d-chain), each one  haricylar, we show that wheneveris disjointly-bounded

of them representing a row of the octant. Adinterval IS (see Def. 1V.3 below), it is possible to express properties
composed by a sequence wintervals; eachu-interval is  gch as “for each intervd, b), if [a,b] satisfiesp then no
used either to represent a part of the plane or to separaigoner sub-interval ofa, b] satisfiesp”.

two consecutive rows; in the former case it is labelled
with tile, in the latter case it is labelled with. Fourth,
by setting suitable propositions, we encode #@ve-and e e e TR T
right-neighborrelations, which connect each tile in a row of e ko ke ko ko ko ko
the octant with, respectively, the one immediately above it
and the one immediately at its right, if any. The encoding of
such relations must be done in respect of tbhenmutativity
property(Def. IV.1 below). Throughout, if two tiles; andts

are connected by the above-neighbor (resp., right-neighbo Let M be a model over the setP of propositional letters,
relation, we say that; is above-connectedresp.,right-  and let[a,b] be our starting interval (which automatically
connectedito ¢, and similarly fortile-intervals (when they defines the universg, ;).

Figure 1. Encoding of th@-chain.



Definition 1V.2. The proposition®, g € AP are said to be denote the formul@l) A (2) A (3), and expressing the global

disjoint if, for every pair of intervalg[c, d], [e, f]) such that property that nop-interval is sub-interval of anothep-

[c, d] satisfiesp and [e, f] satisfiesq, eitherd < e or f <c¢ interval. By means of the following formulae, we force the

(i.e., [e,d] N e, f] = 0). The propositiony is calleddisjoint  letter us, up, ki, andk, to be disjointly-bounded.

consequentf p if p andq are disjoint and any-interval

i; foII(t)xvetd b%{ ?.q-int?rr]val, thgt:s, for etachéiknt;]rv@éd] € —u A =k A [O](=u A k) 4)

.0 that satisfiegp, there exists an intervat, f] € Gy, 4,

w[itr?]e > d, that satisfies;. o [G]((u &> up V) A (k6 ke V ko)

A\ (Ul — ﬁUQ) A\ (kl — ﬁkz))

(5)
Definition IV.3. The propositiorp is said to bedisjointly-

bounded inG,; (w.rt a disjoint consequeny) if: (i) [G]((ur = [O)(zu A k) A(uz = [O](mu A =ks))) - (6)
[a,b] neither satisfiep nor overlaps ap-interval, that is, [G]((k1 = [O](=k A =u1))A(ke = [O](=k A =u2)))  (7)
D _(possibly) holds only over intervals, d], With c>b; (i) [G]({O)u; — =(O)ua) A ({OYky — ={O)ka)) (8)
p-|ntervaI§ do not overlap each other,_ that is, there do not [G]((u1 — (OYk1) A (kg — (O)uy)
exist two intervaldc, d] and|[e, f] satisfyingp and such that . c 0 9)
c<e<d< f; (iii) p has a disjoint consequent A (uz2 = (O)k) A (k2 = (O)ur))

() A A(9) (10)

Now, whenever we can prove that a certain propositios
is disjointly-bounded irg, ; w.r.t. a disjoint consequent .
we may set an auxiliary propositidnside, in such a way Lemma IV.5. Let M be a model, anda,b] and interval
that it is true over all proper sub-intervals (@, ;) of p-  over M such thatM, [a, b] IF (10). Thenuy, ua, ki, andks
intervals; after that, by simply asserting thatide,-intervals ~ are disjointly-bounded.

and p-intervals cannot overlap each other, we will be able
to guarantee thagt-intervals are never proper sub-intervals
of other p-intervals. To defineinside, for the (disjointly

Finally, to build the u-chain, we state the following
formulae, wherefirst is used to identify the first interval

bounded) letterp, we exploit the existence of its disjoint of the chain.

consequence, plus an auxiliary propositiofy, which we _

make true over intervals starting inside painterval and (O)(O)(u1 Afirst) (11)

ending outside it and inside @interval. [G](u V k — [O]—first A [O][O]—first) (12)
[G](p = [0]((0)g = 7)) 1) [G]((first — u1) A (first — [O][O]—first)) (13)
[G](=p A [O]({O)q — ) — inside,,) ) non-sub(us, ki) A non-sub(uz, k2) (14)
[G]((inside, — —(O)p) A (p — —(O)inside,,)) 3) A mon-sub(ky, uz) A non-sub(kz, u1)

[G](u Vv k = [O]{O)(u Vk)) (15)

Lemma IV.4. Let M be a modella, b] be an interval over
M, andp, ¢ € AP two propositions such thatis disjointly- (A1) A A(15) (16)
bounded inG, 5 W.r.t. q. If M, [a,b] IF (1) A(2) A(3), then,

in G, 1), there are ng-intervals properly contained in other | emma IV.6. Let M be a model anda, b] an interval over

p-intervals. M such thatM, [a, b] I- (10) A (16). Then:

Proof: Suppose, by contradiction, that there exist two(a) there exists an infinite sequence af-intervals
intervals [c,d] and [e, f] (belonging toG, ;) satisfying p [bo, o), [b1, b3 )5 « -+ [biy bF], - With b < bg, ] = b1
and such thafe, f] is sub-interval ofic, d]. By definition of for eachi € N, and such thaTM, [bo, b I first,
sub-interval, we have that < e or f < d. Without loss () there exists an infinite sequence dfintervals
of generality, let us suppose that< e (the other case is [co, o), [01,01] ,lei, ], ... such thatb; < ¢; < b,
analogous). Sincg, f] € Gj,5, then there exists a point in bip1 < ¢ < b1+1, andc = ¢;11 for eachi € N, and
betweere andf, say ite’. The intervalc, ¢/] is a sub-interval ~ (C) every other intervalc, d] € Gla,5) Satisfies neither ofi,
of [c, d]. Moreover, it cannot satisfy, since it overlaps the k, or first, unlessc > b; for everyi € N.

p-interval [e, f] (and p is a propositional letter disjointly-
bounded in{M, [a,b])). By (1) and by the fact thag is a
disjoint consequent op, each interval starting in between
¢ andd, and ending inside g-interval, satisfiesp’. Thus,
¢, ¢/] satisfies~p and[0]((O)q — 7). By (2), it must also
satisfyinside,. But this contradicts (3), hence the thesi.  {(Xu)»=(-uA(0)(O)(first Ap))V (uA(O) (kA (O)(uAp)))

From now on, given a propositiop disjointly-bounded
w.r.t. to a disjoint consequent, we usenon-sub(p,q) to  Definition of the Id-chain. In order to define théd-chain,

Within this framework, the operatgtX,), used either to
reach the firsu-interval of theu-chain or to step from any
givenu-interval to the next one in the sequence, is definable:



we make use of the following set of formulae:

—ld A =(O)ld A [G](Id — —(O)Id) (17)
(Xu) (A (X)) (tile Al A (X% 18)
A G](x — (Xu)(tile A (X,)tile))))
[G]((u <>  V tile) A (x — —tile)) (19)
[G](x = (O)(k A (O)Id)) (20)
[G](Id = (O)(k A (O)%)) (21)
[G]((u = =(O)Ild) A (Id = =(O)u)) (22)
[G]((O)* — =(0)ld) (23)
non-sub(ld, k) (24)
(IT) A ... A (24) (25)

Lemma IV.7. Let M, [a,b] IF (10) A (16) A (25) and let
b<t) < <bl <. <ttt bt =) <
g =c <bh < ... <k =1 < ... be the sequence of
points, defined by Lemma IV.6, such tfigt b'"'] satisfies
u and|[c}, c;.“] satisfiesk for eachj > 1,0 <4 < k;. Then,
for eachj > 1, we have:

(@) M, [b9,b]] I %;

(b) M, b5, b5 I tile for each0 < i < kj;

() M, b}, b0, ] IF Id;

(d) k&1 =2, k; > 2 for eachl > 1;

and no other intervalc,d] € G, satisfiesx (resp., tile,
Id), unlessc > b; for eachi,j > 0.

Above-neighbor relation. We proceed now with the en-

o -5 O -5 O
it
=
&
W
&
ww

b) bw fw

|

| |

| sty
Dyt it
! 1 1 1 1 1
r T T T T T T T

|
last

Figure 2. Encoding of the above-neighbor relation.

We make use of such an alternation between backward
and forward rows to correctly encode the above-neighbor
relation. We constrain eaclp_rel-interval starting from a
backward (resp., forward) row not to overlap any other
up_rel-interval starting from a backward (resp., forward)
row. The structure of the encoding is shown in Fig. 2, where
up_rel-intervals starting inside forward (resp., backward)
rows are placed one inside the other. Consider, for instance
how the 3rd and 4th level of the octant are encoded in
Fig. 2b. Thelsttile-interval of the3rd level ¢3) is connected
to the second from lastle-interval of the4th level ¢3), the
2nd tile-interval of the3rd level ¢3) is connected to the third

coding of the above-neighbor relation (Fig. 2), by means offrom lasttile-interval of the4th level ¢?), and so on. Notice

which we connect eadtile-interval with its vertical neighbor
in the octant (e.g#2 with ¢2 in Fig. 2). For technical reasons,
we need to distinguish betwedackwardandforward rows
of O using the propositionsw and fw: we label eachu-
interval with bw (resp.,fw) if it belongs to a backward
(resp., forward) row (formulae (26)-(27)). Intuitivelyhe
tiles belonging to forward rows o) are encoded in as-

that, in forward (resp., backward) level, the last (respstfi
tile-interval has notile-intervals above-connected to it, in
order to constrain each level to have exactly eieinterval
more than the previous one (thesk-intervals are labeled
with last).

Formally, we define the above-neighbor relation as fol-

lows. If [b,b57"] is a tile-interval belonging to a for-

cending order, while those belonging to backward rows argyg,q (resp., backward) row, then we say that it is above-
encoded in descending order (the tiling is encoded in a Ziggonnected to thetile-interval [bj+2—i bj+2—i+1] (resp.,

zag manner). In particular, this means that the left-noibst

interval of a backward level encodes the last tile of that row: 7!

(and not the first one) IrO. Let o, 5 € {bw,fw}, with
a# B

(Xu)bw A [G]((u < bw V fw) A (bw — —fw))
[Gl((an=(Xu)x = (Xu)a)A(an(Xu)x = (X4)B))
(26) A (27)

(26)
(27)
(28)

Lemma IV.8. If M, [a,b] IF (10) A (16) A (25) A (28),

then the sequence of points defined in Lemma V.7 is su

that M, [b%,b5"'] IF bw if and only if j is an odd number,
and M, [b%,b5"'] I+ fw if and only j is an even number.
Furthermore, we have that no other intervial d] € Gy,

satisfiesbw or fw, unlessc > b; for eachi, j > 0.

1 0 Y54

g2l B2y To do so, we label withup_rel the

I o )
interval [ci, ¢/ 137" (resp., [c}, ¢J137"""]). Moreover, we

distinguish betweemnp_rel-intervals starting from forward
and backward rows and, within each case, between those
starting from odd and evetile-intervals. To this end, we
use a new proposition, namelyp_rel® (resp.,up_rel®,
up_rel™, up_rel™) to label up_rel-intervals starting from

an oddtile-interval of a backward row (resp., eveile-
interval/backward row, odd/forward, even/forward). Teea
tﬁe reading of the formulae, we group_rel® andup_rel?

q up_rel™ (up_rel™ < up_rel®™ @ up_rel>™), and similarly

for up_rel™. Finally, up_rel is exactly one amongp_rel®”
andup_rel™ (up_rel < up_rel®™ & up_rel™). In such a way,

we encode the correspondence between tiles of consecutive
rows of the plane induced by the above-neighbor relation.



Let a, 8 € {bw,fw} and~,d € {o,e}, with a # g and [G](last — tile) (43)
v F O [G]((x A bw — (X )ast) A (fw A (X)* — last))  (44)
—up_rel A =(O)up_rel (29) [G]((last A fw — (X ,)%) A (bw A (X )ast — %))  (45)
[G)((up_rel < up_rel®™ \/ up_rel™) [G](x A fw — (Xy)(tile

A (up_rel® 5 up_rel? v up.rel®) (30) A {0} (up_rel A (O)tile A (X,))))) 49)
[G)((k V * — =(O)up_rel) A (up_rel — =(O)k)) (31) [G](last A bw — (O) (up_rel 47)
[G](u A (O)up_rel2 — —~(O)up_rel§ A —(O)up_rel®) (32) A (O)(tile A (Xu)(tile A (Xy)%))))
[G](up_rel® — —~(O)up_rel®) (33) [G](k A (O)(tile A (O)up_rel])
[G](up_rel — (O)Id) (34) — [O]((O)up_rel§ A (O)(k A (O)(tile (48)
[G]((O)up_rel — —~(O)first) (35) A (O)up_rel? A —last)) — (O)up_rel?))
[G](up_relS — (O)(tile A (O )up_relfj)) (36) [G](up_rel = —(O)last) (49)
(29) A ... A (36) (37) (38) A A (49) (50)

Lemma IV.9. If M, [a,b] IF (10) A(16) A(25)A(28)A(37),  Lemma IV.10. If M, [a,b] IF (10) A (16) A (25) A (28) A
then the sequence of points defined in Lemma IV.7 is suqf37) A (50), then the sequence of points defined in Lemma
that, for eachi > 0, j > 0, the following properties hold: V.7 is such that the following properties hold:
a) if [c,d] satisfiesup_rel, thenc = ¢j andd = ¢j, for  a) for each up_rel-interval [ci,c)], connecting thetile-
somei, i, 7,7 > 0; that is, eachup_rel-interval starts interval [bi, 5] to thetile-interval [bi"”bi"/-i-l] if [c, ¢ ,]
and ends inside aile-interval. More precisely, it starts satisfiesip_rel™ (resp up_rel™), thejn[bij b+ sajnsfjles
(resp., ends) at the same point in whick-anterval starts - ool J i
(resp., ends): bw (resp.,fw) and [b},, b3, "] satisfiesfw (resp.,bw);

i’ 75’ ) )
b) [c}, ci/] satisfiesup_rel if and only if it satisfies exactly b) (strict alternation property) for eachile-interval [b7,
one betweenip_rel™ and up_rel™ and [c}, ¢i/] satisfies

b7, with i < k; — 1, such that there exists an
bw bw _; fw _:
up_rel®™ (resp., up_rel™) if and only if it satisfies ex- up_relo‘”—mter\f/al_ (resp., up_rel."-interval, up_rely"-in-
acﬁy one between?; rel™ and up_rel™ (resp., between terval, up_rel."-interval) starting at ¢, there exists
— o - e ]
up_reliW and up_reliw);

an up_rel®-interval (resp.,up_rel?-interval, up_rel™-

. +1.
c) for eacha, 3 € {bw,fw} and~,8 € {o,e}, if [C,,CJ/] interval, up_rel W-mterval) starting atcZ

satisfiesup_rel?, then there is no other interval starting ) for everytile-interval [b;, bt satlsfymglast there is no
at ¢ Satisfyingup_rel’g such thatup_rel # up_relf; up_rel-interval gndlng atcl _

d) eachup_rel™-interval (resp.,up_rel™-interval) does not d) for eachup_rel-interval [Cavcg’] with 0 < i < k;, we
overlap any otherup_rel®™-interval (resp., up_rel™- have thatj’ = j + 1.

interval), b ‘ Lemma IV.11. Each tile-interval [b%,bi"'] is above-

e) if [}, ¢} satisfiesup_relg” (resp., up_rele”, up_rely",  connected to exactly ongle-interval and if it does not
UP_fe|fW) then there exists amp_rely'-interval (resp.,  satisfylast, then there exists exactly omde-interval which
up_rel™-interval, up_rel>™-interval, up_rel®-interval) s above-connected to it.

starting atc’. _ . _ . . _
Right-neighbor relation. The right-neighbor relation con-

We constrain eachile-interval, apart from the last one of nects each tile with its horizontal neighbor in the octat, i
some level, to have ale-mte_rval above-connected t_o it. To any (e.g.t2 with 3 in Fig. 2). Again, in order to encode
new propositionlast (formulae (43)-(45)). Then we force forward and backward levels: tile-interval belonging to
all tile-intervals not labelled withast to have atile-interval a forward (resp., backward) level is right-connected to the
above-connected to them (formulae (46)-(49)): tile-interval immediately to the right (resp., left), if any.Fo
G(tile — (O)up_rel) (38) exar_npl_e, in Fig. 2b, th@nd. til_e-interva_il of th_e4th level

(t3) is right-connected to thgle-interval immediately to the
( right (¢3), since theith level is a forward one, while thend
(up_rel® = (0)p) (40)  tile-interval of the3rd level (2) is right-connected to the
((O)* — =((O)up_rel®™ A (O)up_rel™)) (41) tile-interval immediately to the leftt§), since the3rd level
G (tile A (O)up_rel® A (X,)tile is a backward one. Therefore, we define the right-neighbor
377

] N (42) relation as follows: if[b%, 5] is atile-interval belonging
— (Xy)(tile A (O)up_rel5)) to a forward (resp., backwardd-interval, withi # k; — 1

G)(a = [O](up_rel — up_rel®)) (39)



(resp.,i # 1), then we say that it is right-connected to the properties oflast, are defined as follows.
tile-interval [b+!, bi+2] (resp.,[b) ", b1)).
(0)(O)last, (56)
Lemma V.12 (Commutativity property) If M, [a, b] .IF. [G](lasty — * A [0](=u A =k) A [O][0](~u A =K)) (57)
(10)A(16) A (25) A(28) A(37) A(50), then the commutativity
property holds over the sequence defined in Lemma IV.7. Now, we analyze the formulae used in the previous
section, showing only those that need to be changed for
the finite case. Formula (9) is replaced by (58) in order to
guarantee the existence of theandk-chains.

Tiling the plane. The following formulae constrain each
tile-interval (and no other interval) to be tiled by exactly
one tile (formula (51)) and constrain the tiles that are trigh
or above-connected to respect the color constraints (from [G]((u1 A —last, — (O)ki) A (k1 — (O)uz)

. 58

(52) to (54)): A (uz A —last, — (OYka) A (ko — (O)up)) 8)
k . k Since u;- and up-intervals (resp.k;- and kp-intervals) do

[GI(\ ts o tile) A /(1 Aty)) (51)  not infinitely alternate with each other in the finite case, we
=1 i,j=1,i#] introduce the new propositiocons, and we force it to be
[G](tile — \/ (ti A (O)(up_rel A (O)t5))) (52)  a disjoint consequent of andk. In this way, we can force
up(ti)=down(t;) ui, uz, k1, andk; to be disjointly-bounded.
[G](tile A fw A (X,)tile — \/ (ti A (Xu)t;))  (B3) —cons A [O]—cons A [G](u A k — (O)(O)cons) (59)
right(ts)=left(t;) [G]((O)u v (O)k = —(O)cons) (60)

[G](tile Abw A (Xy)tile = \/ (8 A (Xu)t5)) (B4 [G]((uV k — —(O)cons) A (cons — [O](—u A —k))) (61)
left(t;)=right(t;)
(51) A ... A (54) (55) Finally, we replace (14) and (15) with (62) and (63).
non-sub(uz, cons) A non-sub(uz, cons)
Given the set of tile type§ = {ti,t2,...,1}, let &1 be (62)

the formula(10) A (16) A (25) A (28) A (37) A (50) A (55). [ G]/(\u”\ﬁib([kol]’&cg;i C/?\;;Ti(tz?;?zs\)/ ) (63)

Lemma 1V.13. The formula® is satisfiable if and only if )
T can tile the second octard. Notice that formulae (56), ..., (63) guarantees the ex-

istence of theu-chain also when interpreted over arbitrary
linear orders, but that the strong discreteness assumistion
crucial to guarantee the finiteness of the chain. As a coun-
In this section, we show how to adapt the constructiorterexample, consider the model ov@rdepicted in Figure 3,
of the previous section in order to encode the Finite Tilingwhereu; holds over every intervd2— 5%, 2— ] such that
Problem. This provides us with an undecidability proof forn is even,u, holds over every interval2 — %, 2 — 27%]
the fragmentO that works in any class dftrongly discrete such thatn is odd, the sequence d&fi- and ks-intervals
linear orders — that is, linear orders satisfying the prgper are defined consistently, ardst, holds over the interval
that every interval contains only finitely many points — that[2,2+ %]. Such a model satisfy formulae (56), ..., (63), but
contains arbitrarily (finitely) long orders. In particuldhis  contains an infinitai-chain.
allow us to conclude thad is undecidable when interpreted

in the class of all finite linear orders. k1 ko ki

C. Extending undecidability to finite linear orders

. . . ) } } }—t---  uq, last
The Finite Tiling Problem is formally defined as the } J TP TP ! mE—
problem of establishing if there exists two natural number oo, T L
1 5 342 2+ 3
2 4 8 2

k and [ such that a finite set of of tile type%, con-
taining two distinguished tile types andt;, can tile the
{0,...,k} x{0,...,1} finite plane, under the restriction that
f(0,0) = to and f(k,l) = t;. This problem has been first o . .
introduced and shown to be undecidable in [17]. Definition of the Id-chain. To guarantee thatd is a
disjointly-bounded proposition, we exploit the fact thiay,
Definition of the u-chain. The main difference from the definition,cons is also a disjoint consequent . Moreover,
reduction of the octant tiling problem described in theas for theu-chain, we have to make sure that the chain
previous section is the finiteness of the rectangular afeia. T is finite: to this end, we introduce the proposititiat,q to
requires the existence of an arbitrarily long, but not inéini  denoting the lastd-interval of the (finite)ld-chain.
u-chain. Hence, we introduce an auxiliary proposititess,
to denote the last-interval of the (finite)u-chain. The  [G]((lastiy = I)A(IdA(O) (kA (O)lasty) — lastia)) (64)

Figure 3. Infiniteu-chain counterexample.



Finally, we redefine formulae (18) and (20) as follows.

(Xu) * A[G](x — (Xy)tile) (65)
[G](x A —last, — (O)(k A (O)Id)) (66)

Above-neighbor relation. In the finite case, every row has

(5]

(6]

exactly the same number of tiles; therefore, the formulae
(43), (44), (45), (47), and (49) can be dismissed. Formulae

(36), (38), and (48) are replaced by the following ones.
[G](up_rel5 — ((O)tile A ((O)(O)(x A —lasty)

: (67)
— (O)(tile A (O)up_rel?))))
[G](tile A (OY{O)(x A —last,) — (O)up_rel) (68)
[G](k A (O)(tile A (O)up_rel?)
— [O]({O)up_rel? A (O)(k A (O)(tile (69)

A <O>up_re|§)) — (O)up_rel§))

To complete the construction is sufficient to add the

[7]

(8]

[9]

constraints on the first and last tile of the plane. Therefore

undecidability ofO is proven also for finite linear orders.

V. CONCLUSIONS

In this paper, we filled in many gaps in the char-
acterization ofHS fragments with respect to decidabil-

ity/undecidability. More precisely, we proved th& O,

B*E*, and A*D* are undecidable when interpreted in any

(10]

(11]

significant class of linear orders. However, this is not the

end of the story, because the status of some meaningful fra
ments is still unknown. As an example, the (un)decidabilit

and dense ones [12], [18].
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