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Abstract

Temporal reasoning plays an important role in artificial
intelligence. Temporal logics provide a natural framework
for its formalization and implementation. A standard way
of enhancing the expressive power of temporal logics is to
replace their unidimensional domain by a multidimensional
one. In particular, such a dimensional increase can be ex-
ploited to obtain spatial counterparts of temporal logics.
Unfortunately, it often involves a blow up in complexity,
possibly losing decidability. In this paper, we propose a
spatial generalization of the decidable metric interval tem-
poral logic RPNL+INT, called Directional Area Calculus
(DAC). DAC features two modalities, that respectively cap-
ture (possibly empty) rectangles to the north and to the east
of the current one, and metric operators, to constrain the
size of the current rectangle. We prove the decidability of
the satisfiability problem for DAC, when interpreted over
frames built on natural numbers, and we analyze its com-
plexity. In addition, we consider a weakened version of
DAC, called WDAC, which is expressive enough to capture
meaningful qualitative and quantitative spatial properties
and computationally better.

1. Introduction

The transfer of formalisms, techniques, and results from
the temporal context to the spatial one is quite common in
computer science and artificial intelligence. However, it (al-
most) never comes for free: it involves a blow up in com-
plexity, that can possibly yield undecidability. In this paper,
we study a spatial generalization of the decidable metric in-
terval temporal logic RPNL+INT [7]. The main goal of spa-
tial formal systems is to capture common-sense knowledge
about space and to provide a calculus of spatial information.
Applications of spatial calculi include, for instance, spa-
tial databases management, geographical information sys-
tems, image processing, and autonomous agents. Depend-

ing on the considered class of spatial relations, we can dis-
tinguish betweentopologicalanddirectionalspatial reason-
ing. While topological relations between pairs of spatial
objects (viewed as sets of points) are preserved under trans-
lation, scaling, and rotation, directional relations depend on
the relative spatial position of the objects. A comprehen-
sive and sufficiently up-to-date survey, which covers topo-
logical, directional, and combined constraint systems and
relations, can be found in [9].

Deductive systems for reasoning about topological re-
lations have been proposed in various papers, including
Bennett’s work [4, 5], later extended by Bennett et al. [6],
Nutt’s systems for generalized topological relations [21],
the modal logic systems for a number of mathematical the-
ories of space described in [1], the logic of connectedness
constraints developed by Kontchakov et al. [15], and Lutz
and Wolter’s modal logic of topological relations [17]. Di-
rectional relations have been mainly dealt with following
both the algebraic approach or the modal logic one. As
for the first one, the most important contributions are those
by Güsgen [13] and by Mukerjee and Joe [20], that in-
troduce Rectangle Algebra (RA), later extended by Bal-
biani et al. in [2, 3]. As for the second one, we mention
Venema’s Compass Logic [23], whose undecidability has
been shown by Marx and Reynolds in [18], Spatial Propo-
sitional Neighborhood Logic (SpPNL for short) by Morales
et al. [19], that generalizes the logic of temporal neighbor-
hood [12] to the two-dimensional space, and the fragment
of SpPNL called Weak Spatial Propositional Neighborhood
Logic (WSpPNL), presented in [8]. As for thequantitative
level, the literature is very scarce. Condotta [10] presents
a generalization of RA with the integration of quantita-
tive constraints, for which there exist tractable fragments.
Dutta [11] proposes an integrated framework for repre-
senting induced spatial constraints between a set of land-
marks given imprecise, incomplete, and possibly conflicting
quantitative and qualitative information about them, using
fuzzy logic. Finally, Sheremet, Tishkovsky, Wolter and Za-
kharyaschev [22] propose a logic for reasoning about met-



ric spaces with the induced topologies, which combines the
qualitative interior and closure operators with quantitative
operators “somewhere in the sphere of radiusr” including
or excluding the boundary; similar and related work can be
also found in [14, 16].

In this paper, we present the Directional Area Calculus
(DAC), that can be viewed as a two-dimensional variant
of RPNL+INT [7]. DAC allows one to reason with basic
shapes, such as lines, points, and rectangles, directionalre-
lations, and (a weak form of) areas. It features two modal
operators (somewhere in the northand somewhere to the
east). We show that DAC preserves the decidability of the
satisfiability problem, and, moreover, it allows one to ex-
press meaningful spatial expressions despite its simplicity.
DAC is interpreted over frames built over the set of nat-
ural numbers or prefixes of them, and, by means of spe-
cial atomic propositionsof the typelh = k and lv = k,
one can constraint the length of the horizontal (resp., verti-
cal) projections of the considered objects; thus, combining
these two features, it is possible to express statements such
asthe area of the current object is less than 4 square meters.
Moreover, we study a proper fragment of DAC, denoted by
WDAC (Weak DAC), which is expressive enough to cap-
ture meaningful qualitative and quantitative spatial proper-
ties and computationally better.

The paper is organized as follows. In Section 2, we
present syntax and semantics of DAC and WDAC. In Sec-
tion 3, we briefly discuss the expressive power of DAC;
then, in Section 4, we prove that it is decidable. Next, in
Section 5, we introduce WDAC, we show that it is strictly
less expressive than DAC, and we provide a more efficient
decision procedure for it.

2. Directional Area Calculi (DAC and WDAC)

The language of the Directional Area Calculus (DAC)
and of Weak Directional Area Calculus (WDAC) consists of
a set of propositional variablesAP , the logical connectives
¬ and∨, and the modalities3e,3n, plus an infinite set of
special atomic propositions of the typelh = k andlv = k,
with k ∈ N. Let p ∈ AP . Well-formed formulas, denoted
byϕ, ψ, . . ., are recursively defined as follows:

ϕ ::= lh = k | lv = k | p | ¬ϕ | ϕ ∨ ψ | 3eϕ | 3nϕ.

The other logical connectives, as well as the logical con-
stants⊤ and⊥ and universal modalities2e and2n, can be
defined in the usual way.

Let Dh = 〈Dh, <〉 andDv = 〈Dv, <〉, whereDh (resp.,
Dv) is (a prefix of) the set of natural numbersN and< is
the usual linear order. Elements ofDh (resp.,Dv) will be
denoted byha, hb, . . . (resp.,va, vb, . . .). A spatial frameis
a structureF = Dh × Dv. The set ofobjects(rectangles,

lines, and points) is the setO(F) = {〈(ha, vb), (hc, vd)〉 |
ha ≤ hc, vb ≤ vd, ha, hc ∈ Dh, vb, vd ∈ Dv}. The se-
mantics of DAC is given in terms ofspatial modelsM =
〈(F,O(F)),V〉, whereF is a spatial frame,O(F) is the set
of relevant objects, andV : O(F) → 2AP is aspatial valua-
tion function. The pair(F,O(F)) is calledspatial structure.
Given a modelM and an objecto = 〈(ha, vb), (hc, vd)〉, the
truth relation for DAC-formulas (resp., WDAC-formulas) is
defined as follows:
• M, o  lh = k (resp.,lv = k) iff (hc−ha) = k (resp.,

(vd − vb = k));
• M, o  p iff p ∈ V(o), for anyp ∈ AP ;
• M, o  ¬φ iff M, 〈(ha, vb), (hc, vd)〉 6 φ;
• M, o  φ ∨ ψ iff M, 〈(ha, vb), (hc, vd)〉  φ or M,

〈(ha, vb), (hc, vd)〉  ψ;
• M, o  3eψ iff there existhe ∈ Dh (resp.,he, hf ∈
Dh) such thathc ≤ he and there existvg, vi ∈ Dv,
such thatvg ≤ vi andM, 〈(hc, vg), (he, vi)〉  ψ

(resp.,M, 〈(he, vg), (hf , vi)〉  ψ);
• M, o  3nψ iff there existve ∈ Dv (resp.,ve, vf ∈
Dv) such thatvd ≤ ve and there existshg, hi ∈ Dh,
such thathg ≤ hi andM, 〈(hg, vd), (hi, ve)〉  ψ

(resp.,M, 〈(hg, ve), (hi, vf )〉  ψ).
Length constraints of the typelh > k or lh < k can be eas-
ily defined in terms oflh = k, and similarly for the vertical
ones.

Proposition 1 The satisfiability problem for DAC and
WDAC can be reduced to the satisfiability problem over an
initial object〈(0, 0), (h0, v0)〉.

As we will show, WDAC is a proper fragment of DAC.
The reason why we will consider both logics is that, even
though both of them are decidable, we will provide a de-
cision procedure for WDAC whose complexity is exponen-
tially lower than that for DAC. In both cases, optimality is
an open issue.

3. Expressive Power of DAC

As mentioned in [19], one of the possible measures of
the expressive power of a directional-based spatial logic
for rectangles is the comparison with Rectangle Algebra
(RA) [20]. In RA, one considers a finite set of objects (rect-
angles)O1, . . .On, and a set of constraints between pairs of
objects. Each constraint is a pair of Allen’s Interval Algebra
relations that capture the relationships between the projec-
tions on thex- and they-axis of the objects. As an example,
O1(b, d)O2 means thatbefore (resp.,during) is the inter-
val relation between thex-projections (resp.,y-projections)
of O1 andO2. In general, given analgebraic constraint
network, the main problem is to establish whether the net-
work is consistent, that is, if all constraints can be jointly
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Figure 1. Intuitive semantics of DAC (left) and WDAC (right).

satisfied. In [19], it has been shown that SpPNL is powerful
enough to express and to check the consistency of an RA-
constraint network, while in [8] it has been proved that the
weak, decidable version of that logic (WSpPNL) is pow-
erful enough to do the same. Here, we consider the prob-
lem of checking the consistency of anaugmented interval
and rectangle network[10], which is, somehow, the metric
version of the consistency problem for a RA-network. An
augmented network is basically a RA-network paired with
(at most two) set(s) of point-based constraints of the type
OX+

i − OX−

j = k. Such a point-based constraint allows
one to relate the endpoints of the various objects; thus, for
example, one can force the objectO1 and the objectO2 to
be 3 units distant along thex-axis, withO2 afterO1, by
means ofOX−

2 −OX+

1 = 3. Moreover, with an augmented
network, one can constraint the horizontal and/or the ver-
tical length of the various objects, by means of constraints
between endpoints of the same object. It is possible to show
that such a metric network can be expressed in DAC as fol-
lows. First, we define, as in [8], aweak universal operator
2u, that guarantees thatp is true “almost everywhere” in a
modelM , that is, over every object〈(ha, vb),(hc, vd)〉 such
thatha 6= 0 or vb 6= 0. Then, we defineweak nominals
(that is, formulas which are true “almost only” on the cur-
rent object). Finally, given an augmented network with ob-
jectsO1, . . . , On, we introduce a propositional variable for
every object and we force it to be a weak nominal. As for
metric constraints, we simply translate them using the met-
ric features of DAC. As an example, the above constraint
OX−

2 −OX+

1 = 3 can be encoded by the formula:

2u(pO1
→ 3e(lh = 3 ∧ 3epO2

)),

wherepO1
andpO2

are the nominals corresponding toO1

andO2, respectively. In such a way, we are able to repre-
sent the network as a conjunction of DAC-formulas which
is satisfiable if and only if the network is consistent.

Moreover, using DAC one is able to express very natu-

ral spatial statements. As an example, one can define the
shortcut:

(Area = k) = (lh = 1∧ lv = k)∨(lh = 2∧ lv =
k

2
)∨ . . . ,

by using all possible combinations of horizontal and ver-
tical constraints that give the intended result. In a similar
way, one can defineArea > k andArea < k. Then, it
is simple to express the constraint: ‘The area of the cur-
rent object is less then 4 square meters’, by means of the
formula: (Area < 4).

Similarly, we can state thatIf the area of the current ob-
ject is greater than 6 square meters, then there exists a line
of length 12 to the north of it with the propertyq, and a
point with the propertyp to the east of it, by using:

(Area > 6) → 3n(lv = 0 ∧ lh = 12 ∧ q)
∧3e(lh = 0 ∧ lv = 0 ∧ p).

4. DAC: Decidability and Complexity

4.1. Basic Notions

Let ϕ be a DAC-formula to be checked for satisfiability
and letAP be the set of its propositional variables. We
define the notions ofclosure, spatial requests, atom, and
fulfilling labeled spatial structureas follows.

Definition 1 TheclosureCL(ϕ) of ϕ is the set of all sub-
formulas ofϕ and of their negations (we identify¬¬ψ
with ψ). The set ofhorizontal(resp.,vertical) spatial re-
questsof ϕ is the setHF(ϕ) (resp., VF(ϕ)) of all hor-
izontal (resp., vertical) spatial formulas inCL(ϕ), that
is, HF(ϕ) = {3eψ,2eψ ∈ CL(ϕ)} (resp., VF(ϕ) =
{3nψ,2nψ ∈ CL(ϕ)}).

Definition 2 A ϕ-atomis a setA ⊆ CL(ϕ) such that i) for
everyψ ∈ CL(ϕ), ψ ∈ A iff ¬ψ 6∈ A, and ii) for every
ψ1 ∨ ψ2 ∈ CL(ϕ), ψ1 ∨ ψ2 ∈ A iff ψ1 ∈ A or ψ2 ∈ A.



We denote the set of allϕ-atoms byAϕ. Let |ϕ| (the size
of ϕ) be the number of symbols ofϕ. By induction on the
structure ofϕ, we can easily prove that for every formula
ϕ, |CL(ϕ)| is linear and|Aϕ| is at most exponential in|ϕ|.
Atoms are connected by the binary relationsRh

ϕ (resp.,Rv
ϕ)

overAϕ × Aϕ such that, for every pair of atoms(A,A′) ∈
Aϕ×Aϕ,A Rh

ϕ A
′ (resp.,A Rv

ϕ A
′) if and only if, for every

2eψ ∈ CL(ϕ) (resp.,2nψ ∈ CL(ϕ)), if 2eψ ∈ A (resp.,
2nψ ∈ A), thenψ ∈ A′. We now introduce a suitable
labeling of spatial structures based onϕ-atoms.

Definition 3 A ϕ-labeled spatial structure(LSS for short)
is a pair L = ((F,O(F)),L), where (F,O(F)) is a
spatial structure andL : O(F) → Aϕ is a labeling
function such that, for every pair of objects〈(ha, vb),
(hc, vd)〉 and 〈(hc, ve), (hf , vg)〉, L(〈(ha, vb), (hc, vd)〉)
Rh

ϕ L(〈(hc, ve), (hf , vg)〉), and for every pair of objects
〈(ha, vb), (hc, vd)〉 and 〈(he, vd), (hf , vg)〉, L(〈(ha, vb),
(hc, vd)〉) R

v
ϕ L(〈(he, vd),(hf ,vg)〉).

AnLSSL is said to be:
• horizontally(resp.,vertically) fulfilling if for every for-

mula of the type3eψ (resp., 3nψ) in CL(ϕ) and
every object〈(ha, vb), (hc, vd)〉, if 3eψ ∈ L(〈(ha,

vb), (hc, vd)〉) (resp.,3nψ ∈ L(〈(ha, vb), (hc, vd)〉)),
then there exists an object〈(hc,ve),(hf ,vg)〉 (resp.,
〈(he,vd),(hf ,vg)〉) such thatψ belongs toL(〈(hc,

ve),(hf ,vg)〉) (resp.,L(〈(he,vd),(hf ,vg)〉));
• length fulfilling if and only if for every length con-

straint lh = k ∈ CL(ϕ) (resp., lv = k ∈
CL(ϕ)) and every object〈(ha, vb), (hc, vd)〉 ∈ O(F),
lh = k ∈ L(〈(ha, vb), (hc, vd)〉) (resp., lv = k ∈
L(〈(ha, vb), (hc, vd)〉)) iff (hc − ha) = k (resp.,(vd −
vb = k));

• fulfilling if and only if it is horizontally, vertically, and
length fulfilling.

It is quite straightforward to prove that a formulaϕ
is satisfiable if and only if there exists a fulfilling LSS
such thatϕ belongs to the labeling of some initial object
〈(0, 0), (h0, v0)〉. This allows us to reduce the satisfiability
problem forϕ to the problem of finding a fulfilling LSS with
an initial object labeled byϕ. From now on, we say that a
fulfilling LSS L satisfiesϕ if and only if ϕ ∈ L(〈(0, 0),
(h0, v0)〉) for someh0, v0 ≥ 0.

4.2. The Elimination Lemma

Since fulfilling LSSs satisfyingϕ may be arbitrarily
large or even infinite, we must find a way to finitely es-
tablish their existence. In the following, we will show
how the techniques developed in [7] for the metric tem-
poral logic RPNL+INT can be exploited to prove the de-
cidability of DAC. We first give a bound on the size of

finite fulfilling LSSs and then we show that in the infi-
nite case we can safely restrict ourselves to infinite fulfill-
ing LSSs with a finite bounded representation. To prove
these results, we take advantage of the following two fun-
damental properties of LSSs: i) the labelings of all objects
that share the rightmost horizontal (resp., topmost verti-
cal) coordinate must agree on horizontal (resp., vertical)
spatial formulas, that is, for everyψ ∈ HF (ϕ) (resp.,
ψ ∈ V F (ϕ)), ψ ∈ L(〈(ha, vb),(hc, vd)〉) if and only ifψ ∈
L(〈(he,vf ),(hc,vg)〉) (resp.,ψ ∈ L(〈(ha, vb), (hc, vd)〉) if

and only ifψ ∈ L(〈(he,vf ),(hg ,vd)〉)); ii) |HF(ϕ)|
2 different

objects of the type〈(hc, ve),(hf , vg)〉 are sufficient to fulfill
the existential horizontal formulas belonging to the labeling
of an object〈(ha, vb),(hc, vd)〉 (and symmetrically for the
vertical axis).

Definition 4 Given anLSSL = ((F,O(F)),L) andhc ∈
Dh (resp., vd ∈ Dv), we denote byREQh(hc) (resp.,
REQv(vd)) the set of all and only the horizontal (resp.,
vertical) requests belonging to the labellings of the objects
of the type〈(ha, vb),(hc, vd)〉. The setREQh(ϕ) (resp.,
REQv(ϕ)) is the set of all possible sets of horizontal (resp.,
vertical) requests for the formulaϕ.

In order to bound the size of finite LSSs that we must
take into consideration when checking the satisfiability of
a given formulaϕ, we determine the maximum number of
times that any set inREQh(ϕ) (resp.,REQv(ϕ)) may ap-
pear in a given LSS.

Definition 5 Given anyLSS L = ((F,O(F)),L), we say
that a horizontal(resp.,vertical) k-sequence inL is a se-
quence ofk consecutive points inDh (resp.,Dv). Given
a horizontal sequenceσ in L, its sequence of requests
REQh(σ) is defined as the sequence of horizontal requests
at the points inσ, and similarly for the vertical component.
We say thath ∈ Dh starts a horizontalk-sequenceσ if
the horizontal requests ath, . . . , h+ k − 1 define an oc-
currence ofREQh(σ), and similarly for the vertical com-
ponent.

Hereafter, letmh = |HF(ϕ)|
2 , mv = |VF(ϕ)|

2 , andm =
max{mh,mv}, and letk = max{k′, 1}, wherek′ is the
the maximal constant that appears in length constraints oc-
curring inϕ.

Definition 6 Given anyLSSL = ((F,O(F)),L), any se-
quence of horizontal requestsREQh(σ) is said to beabun-
dant in L if and only if it has at leastk · (m2 + m) ·
|REQh(ϕ)|2 + (m2 + 3 · m) · |REQh(ϕ)| + 1 distinct
occurrences inDh. The case of an abundant sequence of
vertical requests is defined similarly.

The above definition shows a quadratic increase in com-
plexity from RPNL+INT: in the temporal case, a number of



occurrences linear inm andREQ(ϕ) suffices to declare a
sequence of requests as abundant. For any given horizontal
k-sequenceσ in L, we will denote byhσ

q the first point of
theq-th occurrence ofσ. Hereafter, wheneverσ will be ev-
ident from the context, we will writehq for hσ

q . The next
Lemma is analogous to Lemma 5.12 in [7]: in the spatial
case we also need the existence of a certain number of oc-
currences of the sequencebeforea given pointhq to be able
to reduce the size of the model.

Lemma 1 Let L = ((F,O(F)),L) be anLSS andσ be a
horizontalk-sequence inL such thatREQh(σ) is abundant
in L. Then, there exists an indexq such that:

1. for every pair(REQh(h),REQh(h′)) such thath ∈
D−

h = {h | hq ≤ h < hq+1} and h′ − h ≤ k,
there exist at leastm2 + m distinct pairs of points
h′′, h′′′ in Dh \D−

h such thath′′′ − h′′ = h′ − h and
(REQh(h′′),REQh(h′′′)) = (REQh(h),REQh(h′));

2. for every elementR ∈ {REQh(h) | h ∈ D−
h }, R

occurs at leastm2 + m times beforehq and at least
2 ·m times afterhq+1.

Proof. (sketch) By Definition 6, there exist at leastk ·
(m2 +m) · |REQh(ϕ)|2 +(m2 + 3 ·m)| · |REQh(ϕ)|+ 1
pointsh ∈ Dh such thath is the first element of a distinct
occurrence ofσ. For every indexi, if there exists a pair
(REQh(h),REQh(h′)), with hi ≤ h < h′ ≤ hi+1 + k,
such that there exist nom2 + m distinct pairs of points
h′′, h′′′ in Dh \ {h | hi ≤ h < hi+1} with h′′′ − h′′ =
h′ − h, thenq cannot be equal toi. By an easy combina-
torial argument, we can prove that there exist at mostk ·
(m2 +m) · |REQh(ϕ)|2 such indexes, where|REQh(ϕ)|2

is the number of possible pairs(REQh(h),REQh(h′)),
k is the number of possible values forh′ − h, and, for
any pair(REQh(h),REQh(h′)) and any distanceh′ − h,
m2 + m is the greatest number of occurrences of a pair
(REQh(h),REQh(h′)) that may lead to a violation of con-
dition 1. Sinceσ is abundant inL, we can conclude that
there exist at least(m2 + 3 · m)|REQh(ϕ)| + 1 indexes
in Dh that satisfy condition 1. Let us now restrict our at-
tention on these indexes. In the worst case, for at most
(m2 +m) · |REQh(ϕ)| indexesi it may happen that there
exist nom2 + m occurrences ofR beforehi for some
R ∈ {REQh(h) | hi ≤ h < hi+1}. Hence, there exist
at least2 ·m · |REQh(ϕ)| + 1 indexes that satisfy both the
above conditions. By applying the same argument, we can
conclude that for at most2 ·m · |REQh(ϕ)| indexesi it may
happen that there exist no2·m occurrences ofR afterhi for
someR ∈ {REQh(h) | hi ≤ h < hi+1}. This allows us
to conclude that there exists at least one indexi that satisfies
the conditions of the lemma.2

Lemma 2 (Horizontal Elimination Lemma) LetL =
((F,O(F)),L) be a fulfillingLSS that satisfiesϕ. Suppose

that there exists an abundantk-sequence of horizontal re-
questsREQh(σ) and letD−

h be the set whose existence is
guaranteed by Lemma 1. Then, there exists a fulfillingLSS
L = ((F,O(F)),L) that satisfiesϕ, withDh = Dh \ D−

h

andDv = Dv.

Proof. Let us fix a fulfilling LSSL = ((F,O(F)),L) satis-
fying ϕ at some〈(0, 0), (h0, v0)〉, an abundantk-sequence
of horizontal requestsREQh(σ) and letD−

h be the set
whose existence is guaranteed by Lemma 1. Now, let
D′

h = Dh \D−
h and, accordingly, the spatial frameF′

1 and
set of objectsO(F′

1), andL′
1 = L|O(F′

1
) (the restriction of

L to the objects inO(F′
1)). For the sake of readability, the

points inD′
h will be denoted by the same numbers as inDh.

Now, L′
1 is still a LSS, but not necessarily a fulfilling one,

thus we have the problem of suitably re-defining the evalu-
ation of objects in a way that preserves the spatial requests
and still satisfyingϕ.
Fixing lengths. First of all, we have to change the labelling
of those objects whose horizontal length has changed after
the elimination, and it is less or equal tok in O(F′

1). To this
end, for allh < hq, all va, vb ∈ Dv, and all0 ≤ r ≤ k,
we putL′

1(〈(h, va), (hq+1 + r, vb)〉) = L(〈(h, va), (hq +
r, vb)〉). In this way, we have guaranteed that the objects
whose horizontal length was changed have now a correct
labelling in terms of all length constraints.
Fixing defects. After the above re-labelling, we can still
have the following four types of defects:

1. there is a formula3eψ ∈ REQh(ha), for some
ha ∈ Dh, that is not fulfilled anymore because of
the elimination of some object〈(ha,vb),(h,vc)〉, where
h ∈ D−

h . Notice that for this to be the case, it must
be that(h − ha) > k. Since there are at least2 · m
pointsh1, . . . , h2·m afterhq+1, for at least one of them
we have that the label of the object〈(ha,vb),(hi,vc)〉
satisfies neither vertical requests fromREQv(vb) nor
horizontal requests fromREQh(ha), or it satisfies
only requests that are satisfied elsewhere. So we put
L′

1(〈(ha,vb),(hi,vc)〉) = L(〈(ha,vb),(h,vc)〉), thus fix-
ing the defect;

2. there is a formula3nψ ∈ REQv(va), for some
va ∈ Dv, that is not fulfilled anymore because of
the elimination of some object〈(hb,va),(h,vc)〉, where
h ∈ D−

h . Again, for this to be the case, it must be that
(h−hb) > k. To fix this defect, we proceed exactly as
in the previous case;

3. there is a formula3nψ ∈ REQv(va), for some
va ∈ Dv, that is not fulfilled anymore because of the
elimination of some object〈(h,va),(hb,vc)〉), where
h, hb ∈ D−

h and hb − h ≤ k. Recall that, by
hypothesis, there are at leastm2 + m distinct pairs
(h1, h

′
1), . . . , (hm2+m, h

′
m2+m

) such that for alli we
havehi, h

′
i ∈ Dh\D

−
h and(h′i−hi) = (hb−h). Let us

consider the horizontal requests{3eτ1, . . . ,3eτq} ⊆



REQh(h), whereq ≤ m. For each3eτr we take an
object of the type〈(h,vτr

),(hτr
,v′τr

)〉 containingτr in
its labelling (inL). Eachvτr

has at mostm vertical
requests, which are satisfied, in the worst case, us-
ing objects with leftmost horizontal coordinate of the
typehi. Then, at mostm2 horizontal coordinates are
needed to satisfy the vertical requests of the vertical
coordinates of the typevτr

. Let us consider now the
vertical coordinateva. Again, the vertical requests in
REQv(va) different from 3nψ are at mostm − 1,
so, there must be at least one horizontal coordinate
hi such that no object withhi as leftmost horizontal
coordinate satisfy any vertical request ofva or of any
of the vτr

. We can then putL′
1(〈(hi,va),(h′i,vc)〉) =

L(〈(h,va),(hb,vc)〉), thus fixing the defect. However,
in general, such a substitution can introduce a new de-
fect, since there can be some3eθ ∈ REQh(hi) which
was satisfied by〈(hi,va),(h′i,vc)〉 and it is not satisfied
anymore. Now, sinceREQh(hi) = REQh(h), θ = τr
for somer. We can fix this new defect by putting
L′

1(〈(hi,vτr
),(h′i,v

′
τr

)〉) = L(〈(h,vτr
),(hτr

,v′τr
)〉). By

repeating this last substitution in a suitable way at most
m times, we can fix all new defects that can be possibly
introduced;

4. there is a formula3nψ ∈ REQv(va), for some
va ∈ Dv, that is not fulfilled anymore because of the
elimination of some object〈(h,va),(hb,vc)〉), where
h ∈ D−

h , and(hb − h) > k. To fix this defect, we pro-
ceed exactly as in case 3, but using only them2 + m

copies ofh beforehq, and maintaininghb as the right-
most horizontal coordinate.

In this way we can eliminate all defects; at the end of the
process we obtainL as claimed.2

Similarly, we have:

Lemma 3 (Vertical Elimination Lemma) LetL =
((F,O(F)),L) be a fulfilling LSS that satisfiesϕ. Sup-
pose that there exists an abundantk-sequence of vertical
requestsREQv(σ) and letD−

v be the set whose existence
is guaranteed by the (vertical version of) Lemma 1. Then,
there exists a fulfillingLSSL = ((F,O(F)),L) that satis-
fiesϕ, withDv = Dv \D−

v andDh = Dh.

Lemma 2 and 3 are the spatial counterpart of the Elim-
ination Lemma for RPNL+INT [7]. However, while in the
temporal case we have to deal only with defects of type 1,
the interaction between the two spatial operators of DAC
adds two more types of defects.

4.3 Satisfiability for DAC

Thanks to the horizontal and vertical elimination lemmas
above, we have that the following theorem holds.

Theorem 1 (Small Model Theorem) If ϕ is any finitely
satisfiable formula of DAC, then it is satisfiable in a finite
LSSL = ((F,O(F)),L) such that|Dh| ≤ (k · (m2 +m) ·
|REQh(ϕ)|2 +(m2+3 ·m) · |REQh(ϕ)|) · |REQh(ϕ)|k +
k − 1, and|Dv| ≤ (k · (m2 +m) · |REQv(ϕ)|2 + (m2 +
3 ·m) · |REQv(ϕ)|) · |REQv(ϕ)|k + k − 1.

Corollary 1 Finite satisfiability for DAC is decidable.

Infinite structures can be dealt with in a similar way. First
of all, we must distinguish among three types of infinite
LSSs, depending on whether only one domain is infinite
(and which one) or both. For each of these types, an ap-
propriate representation can be obtained as follows.

Definition 7 Any LSSL = ((F,O(F)),L) is horizontally
ultimately periodic, with prefixPreH , periodPerH ≥ 0
and thresholdk, if and only if:

1. for all h, h′ such that h′ ≥ hPreH
and (h′ −

h) > k, and for all v, v′, L(〈(h, v), (h′, v′)〉) =
L(〈(h, v), (h′ + PerH , v

′)〉);
2. for each object L(〈(h,v), (h′, v′)〉) such

that h ≥ hPreH
, L(〈(h, v), (h′, v′)〉) =

L(〈(h+ PerH , v), (h
′ + PerH , v

′)〉).
The notion ofvertically ultimately periodic LSScan be de-
fined in a similar way. Finally, aLSS is simplyultimately
periodicif it is (i) both horizontally and vertically ultimately
periodic, or (ii) horizontally ultimately periodic and ver-
tically finite, or (iii) horizontally finite and vertically ulti-
mately periodic.

Note that every ultimately periodic LSS is finitely pre-
sentable.

Lemma 4 Let L = ((F,O(F)),L) be an horizontally infi-
nite, vertically finiteLSS that satisfiesϕ. Then, there exists
an ultimately periodicLSSL that satisfiesϕ.

An analogous of Lemma 4 can be stated for the vertical
component, and, thus, any infinite LSS can be transformed
in a ultimately periodic one.

Theorem 2 (Periodic Small Model Theorem)Let L =
((F,O(F)),L) be anyLSS that satisfiesϕ. Then, there ex-
ists an ultimately periodicLSSL that satisfiesϕ, and such
that length of the horizontal prefix and the horizontal period
are bounded by(k · (m2 +m) · |REQh(ϕ)|2 + (m2 + 3 ·
m) · |REQ(ϕ)|) · |REQh(ϕ)|k + k − 1, and similarly for
the vertical component.

Once again, the spatial features of DAC causes a
quadratic increase on the size of (prefixes and periods
of) the model with respect to the metric temporal logic
RPNL+INT [7].

Corollary 2 The satisfiability problem for DAC is decid-
able.



4.4 Complexity Issues

In [8] it has been shown that the non-metric version of
DAC presents a NEXPTIME-complete satisfiability prob-
lem. This means that DAC is at least NEXPTIME-hard. To
correctly state the complexity of the satisfiability problem
for DAC, we have to consider three different cases, depend-
ing on the representation of length constraints. As a direct
consequence of the theorems of the above section, a non-
deterministic decision procedure that guesses an ultimately
periodic model satisfying the formulaϕ can be easily built.
Such a procedure works in NTIME(2|ϕ|·k), and its exact
complexity class depends on how the metric constants are
encoded.

Theorem 3 The satisfiability for DAC is:
• NEXPTIME-complete, ifk is a constant;
• NEXPTIME-complete, ifk is represented in unary;
• Between EXPSPACE and 2NEXPTIME, ifk is repre-

sented in binary.

NEXPTIME inclusion (cases 1 and 2) can be proved sim-
ply observing thatO(2|ϕ|·k) = O(2|ϕ|) if k is constant or
represented in unary (respect to the length of the formula);
NEXPTIME-hardness is a consequence of NEXPTIME-
hardness for SpPNL [8]. In these cases there is no com-
plexity increase with respect to the temporal counterpart
RPNL+INT, that it is NEXPTIME-hard as well [7]. Con-
versely, whenk is represented in binary (Case 3) we
have that RPNL+INT is EXPSPACE-complete, and thus
that DAC is at least EXPSPACE-hard. However, since
k = O(2|ϕ|), the non-deterministic procedure runs in time
O(22|ϕ|

), giving us a 2NEXPTIME upper bound on the
complexity. We do not know yet which is the exact com-
plexity class for DAC in this case, and if the spatial gener-
alization causes an increase on the complexity or not.

5. Weak Directional Area Calculus (WDAC)

In this section we discuss expressive power, decidability,
and complexity of Weak DAC, comparing it with the full
Directional Area Calculus.

First of all, formulas of WDAC can be translated to
DAC-formulas by replacing any sub-formula of the form
3eψ (resp., 3nψ) with 3eψ ∨ 3e3eψ (resp., 3nψ ∨
3n3nψ). By exploiting abisimulationargument we can
prove that the converse does not hold. We will show that,
for everyk ≥ 0, there exist two modelsMk

1 andMk
2 that

are bisimilar with respect to WDAC-formulas with maxi-
mum metric constantk, but can be easily distinguished by
a DAC formula. Letk ≥ 0, AP = {p}: the two spatial
modelsM1 = 〈F1,O(F1),V1〉 andM2 = 〈F2,O(F2),V2〉
are defined as follows.

• F1 = F2 = N × N

• V1(〈(1, va), (k + 4, vb)〉) = V1(〈(3, va), (k +
4, vb)〉) = {p}, for all va, vb ∈ N;

• V2(〈(3, va), (k + 4, vb)〉) = {p}, for all va, vb ∈ N;
• p is false everywhere else.

The relationZk ⊆ O(F1)× O(F2), defined as follows, is a
WDAC-bisimulation betweenMk

1 andMk
2 :

• (〈(ha, vb), (hc, vd)〉, 〈(ha, vb), (hc, vd)〉) ∈ Zk for all
(ha, hc) 6= (1, k + 4);

• (〈(1, vb), (k + 4, vd)〉, 〈(3, vb), (k + 4, vd)〉) ∈ Zk;
• (〈(2, vb), (k + 4, vd)〉, 〈(1, vb), (k + 4, vd)〉) ∈ Zk.

Since the DAC-formula3ep is true over the object
〈(0, 0), (1, 1)〉 in Mk

1 but false inMk
2 for every value of

k, and since bisimilar models must satisfy the same set of
WDAC formulas,3ep cannot be translated to any WDAC
formula.

Theorem 4 WDAC is strictly less expressive than DAC.

Despite being strictly less expressive than DAC, Weak
DAC is powerful enough to express the augmented inter-
val and rectangle network consistency problem discussed in
Section 3, at the price of a more complex encoding.

Decidability of WDAC trivially follows from the decid-
ability of DAC. However, its weaker semantics allows us
to lower the complexity bound. The modal operators are
transitivein WDAC: if a formula2eψ holds over an object,
then it holds over any object to the east of it (and symmetri-
cally for 2nψ), while in full DAC this is not necessarily the
case. This implies that if a formula2eψ ∈ REQh(ha)
(resp.,2nψ ∈ REQv(va)) for someha ∈ Dh (resp.,
va ∈ Dv), then2eψ ∈ REQh(hb) for everyhb > ha

(resp.,2nψ ∈ REQv(vb) for everyvb > va). By exploiting
this property, we can provide a bound on the size of LSS sat-
isfying a WDAC formula that is exponentially smaller than
the one given for DAC in Theorem 2.

Theorem 5 (Weak Periodic Small Model Theorem)Let
ϕ be a satisfiable WDAC formula. Then, there exists a ulti-
mately periodic fulfillingLSS satisfyingϕ with horizontal
and vertical prefix bounded by(2 · m + 1) · (k + 1) + 1,
horizontal and vertical period bounded by2 ·m · (k + 1),
and thresholdk.

As a direct consequence of Theorem 5, a nondetermin-
istic decision procedure that guesses an ultimately periodic
model satisfying the formulaϕ can be easily built. Such a
procedure works in NTIME(k · |ϕ|), and its exact complex-
ity class depends on how the metric constants are encoded.

Theorem 6 Satisfiability for WDAC is:
• NP-complete, ifk is a constant;
• NP-complete, ifk is represented with unary encoding;
• in NEXPTIME, ifk is represented with binary encod-

ing.



NP-completeness of the problem whenk is constant or in
unary encoding follows from the NP-completeness of SAT.
We do not know yet if WDAC with binary encoding is
NEXPTIME-hard or not.

6 Conclusions

In this paper, we proposed a new modal logic, called
DAC, that pairs qualitative and quantitative spatial reason-
ing about points, lines, and rectangles over natural num-
bers frames by means of directional relations. DAC can
be viewed as an extension of the spatial logic WSpPNL [8]
with special atomic propositions that make it possible to ex-
press a weak notion of area. We proved that the satisfiability
problem for DAC is decidable. Moreover, we showed that,
when a binary encoding of length constraints is provided, it
is between EXPSPACE and 2NEXPTIME, while the exact
complexity class is an open problem. Then, we analyzed
the satisfiability problem for a proper expressive fragment
of DAC, called WDAC, and we proved that it belongs to
NEXPTIME. As in the case of DAC, the exact complexity
class, when a binary encoding of length constraints is pro-
vided, is an open problem.
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