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Abstract ing on the considered class of spatial relations, we can dis-
tinguish betweetopologicalanddirectionalspatial reason-

Temporal reasoning plays an important role in artificial ing. While topological relations between pairs of spatial
intelligence. Temporal logics provide a natural framework objects (viewed as sets of points) are preserved undertrans
for its formalization and implementation. A standard way lation, scaling, and rotation, directional relations deghen
of enhancing the expressive power of temporal logics is tothe relative spatial position of the objects. A comprehen-
replace their unidimensional domain by a multidimensional sive and sufficiently up-to-date survey, which covers topo-
one. In particular, such a dimensional increase can be ex- logical, directional, and combined constraint systems and
ploited to obtain spatial counterparts of temporal logics. relations, can be found in [9].

Unfortunately, it often involves a blow up in complexity,  peqyctive systems for reasoning about topological re-
possibly losing decidability. In this paper, we propose a |5ions have been proposed in various papers, including

spatial generalization of the decidable metric intervahte  gannett's work [4, 5], later extended by Bennett et al. [6],
poral logic RPNL+INT, called Directional Area Calculus s systems for generalized topological relations [21]
(DAC). DAC features two modalities, that respectively cap- {ne modal logic systems for a number of mathematical the-
ture (possibly empty) rectangles to the north and to the eastyieg of space described in [1], the logic of connectedness
of the current one, and metric operators, to constrain the .4 ctraints developed by Kontchakov et al. [15], and Lutz
size of _th_e c_u_rrent rectangle. We prove the decidability of and Wolter's modal logic of topological relations [17]. Di-
the satisfiability problem for DAC, when interpreted over |otiona| relations have been mainly dealt with following
frames built on natural numbers, and we analyze its COM- 4, the algebraic approach or the modal logic one. As
plexity. In addition, we consider a weakened version of ¢, e first one, the most important contributions are those
DAC, called WDAC, which is expressive enough to capture by Gusgen [13] and by Mukerjee and Joe [20], that in-
meaningful qqalitative and quantitative spatial propesti  {.1q,ce Rectangle Algebra (RA), later extended by Bal-
and computationally better. biani et al. in [2, 3]. As for the second one, we mention
Venema’s Compass Logic [23], whose undecidability has
been shown by Marx and Reynolds in [18], Spatial Propo-
1. Introduction sitional Neighborhood Logic (SpPNL for short) by Morales
et al. [19], that generalizes the logic of temporal neighbor
The transfer of formalisms, techniques, and results from hood [12] to the two-dimensional space, and the fragment
the temporal context to the spatial one is quite common in of SpPNL called Weak Spatial Propositional Neighborhood
computer science and artificial intelligence. Howevenlit ( Logic (WSpPNL), presented in [8]. As for trpiantitative
most) never comes for free: it involves a blow up in com- level, the literature is very scarce. Condotta [10] present
plexity, that can possibly yield undecidability. In thispes, a generalization of RA with the integration of quantita-
we study a spatial generalization of the decidable metric in tive constraints, for which there exist tractable fragmnsent
terval temporal logic RPNL+INT [7]. The main goal of spa- Dutta [11] proposes an integrated framework for repre-
tial formal systems is to capture common-sense knowledgesenting induced spatial constraints between a set of land-
about space and to provide a calculus of spatial information marks given imprecise, incomplete, and possibly conflictin
Applications of spatial calculi include, for instance, spa quantitative and qualitative information about them, gsin
tial databases management, geographical information sysfuzzy logic. Finally, Sheremet, Tishkovsky, Wolter and Za-
tems, image processing, and autonomous agents. Dependéharyaschev [22] propose a logic for reasoning about met-



ric spaces with the induced topologies, which combines the
qualitative interior and closure operators with quarnititat
operators “somewhere in the sphere of radiuscluding

or excluding the boundary; similar and related work can be
also found in [14, 16].

In this paper, we present the Directional Area Calculus
(DAC), that can be viewed as a two-dimensional variant
of RPNL+INT [7]. DAC allows one to reason with basic
shapes, such as lines, points, and rectangles, directienal
lations, and (a weak form of) areas. It features two modal
operators gomewhere in the nortand somewhere to the
eas). We show that DAC preserves the decidability of the
satisfiability problem, and, moreover, it allows one to ex-
press meaningful spatial expressions despite its simylici
DAC is interpreted over frames built over the set of nat-
ural numbers or prefixes of them, and, by means of spe-
cial atomic proposition®of the typel;, = k andl, = k,
one can constraint the length of the horizontal (resp.j-vert
cal) projections of the considered objects; thus, comiinin
these two features, it is possible to express statemerits suc
asthe area of the current object is less than 4 square meters
Moreover, we study a proper fragment of DAC, denoted by
WDAC (Weak DAC), which is expressive enough to cap-
ture meaningful qualitative and quantitative spatial @mp
ties and computationally better.

The paper is organized as follows. In Section 2, we
present syntax and semantics of DAC and WDAC. In Sec-
tion 3, we briefly discuss the expressive power of DAC;
then, in Section 4, we prove that it is decidable. Next, in
Section 5, we introduce WDAC, we show that it is strictly
less expressive than DAC, and we provide a more efficient
decision procedure for it.

2. Directional Area Calculi (DAC and WDAC)

The language of the Directional Area Calculus (DAC)
and of Weak Directional Area Calculus (WDAC) consists of
a set of propositional variable4P, the logical connectives
- andV, and the modalitie® ., <,,, plus an infinite set of
special atomic propositions of the tyhe= k andl, = k,
with & € N. Letp € AP. Well-formed formulas, denoted
by ¢, 1, ..., are recursively defined as follows:

pu=lp=klly=k|[p|-p|oVi|Op| Onp.

The other logical connectives, as well as the logical con-
stantsT and_L and universal modalities, andd,,, can be
defined in the usual way.

LetDy, = (Dy, <) andD, = (D,, <), whereD), (resp.,
D,) is (a prefix of) the set of natural numbé¥sand < is
the usual linear order. Elementsbf, (resp.,D,) will be
denoted by, hp, . . . (resp.vq, vp, - - .)- A spatial frames
a structureF = Dy, x D,. The set ofobjects(rectangles,

lines, and points) is the s&(F) = {{(hq,vp), (he,va)) |
ha < hey vy < Vg, hg,he € Dy, vp,vq € DU}. The se-
mantics of DAC is given in terms cfpatial modelsM =
((F,O(F)), V), whereF is a spatial frameQ(F) is the set
of relevant objects, and : O(F) — 247 is aspatial valua-
tion function The pair(F, O(F)) is calledspatial structure
Given amodelM and an object = {((hg, vs), (he,va)), the
truth relation for DAC-formulas (resp., WDAC-formulas) is
defined as follows:

M,olr 1y, =k (resp.l, = k) iff (h.—hg,) = k (resp.,
(Va — vy = k));

M, oIk piff p € V(o), foranyp € AP;

M,olr =g iff M, {(ha,vs), (he,va)) Y ¢;

Mok ¢V iff M,{(ha,vs), (he,va)) IF ¢ or M,
<(haa 'Ub)v (hcvvd» =1

M, o IF O iff there existh, € Dy, (resp.,he, hy €
Dy,) such thath, < h. and there existy,v; € D,,
such thatv, < v; and M, ((h¢,vg), (he,v:)) I+ 9
(resp..M, ((he, vy), (hy, v2) I );

M, o IF Opp iff there existve € D, (resp.,ve, vy €
D,) such that, < v, and there existéy, h; € Dy,
such thath, < h; and M, ((hg,vq), (hi,ve)) IF 9
(resp..M, ((hg, ve). (hi, vp)) I ).

Length constraints of the tygg > k orl; < k can be eas-
ily defined in terms of;, = k, and similarly for the vertical
ones.

Proposition 1 The satisfiability problem for DAC and
WDAC can be reduced to the satisfiability problem over an
initial object((0,0), (ho, vo)).

As we will show, WDAC is a proper fragment of DAC.
The reason why we will consider both logics is that, even
though both of them are decidable, we will provide a de-
cision procedure for WDAC whose complexity is exponen-
tially lower than that for DAC. In both cases, optimality is
an open issue.

3. Expressive Power of DAC

As mentioned in [19], one of the possible measures of
the expressive power of a directional-based spatial logic
for rectangles is the comparison with Rectangle Algebra
(RA) [20]. In RA, one considers a finite set of objects (rect-
angles)0,...0,, and a set of constraints between pairs of
objects. Each constraintis a pair of Allen’s Interval Algeb
relations that capture the relationships between the proje
tions on ther- and they-axis of the objects. As an example,
0O1(b, d)O4 means thabe fore (resp.,during) is the inter-
val relation between the-projections (respy-projections)
of O; andO,. In general, given amlgebraic constraint
network the main problem is to establish whether the net-
work is consistent, that is, if all constraints can be jgintl
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Figure 1. Intuitive semantics of DAC (left) and WDAC (right).

satisfied. In [19], it has been shown that SpPNL is powerful ral spatial statements. As an example, one can define the
enough to express and to check the consistency of an RAshortcut:
constraint network, while in [8] it has been proved that the k
weak, decidable version of that logic (WSpPNL) is pow- (Area =k) = (I = 1Al = k)V(lh =2/l = 5)V...,
erful enough to do the same. Here, we consider the prob- . . L .
lem of checking the consistency of angmented interval by using all possible combinations of horizontal and ver-
and rectangle networkL0], which is, somehow, the metric tical constraints that give the intended result. In a simila
version of the consistency problem for a RA-network. An V& or;e can defmelrﬁa > k and éaea < k. fT?\en, It
augmented network is basically a RA-network paired with IS S|mt|c;.e tq erpresrs] ¢ e400nstra|n te area of t efczr-
(at most two) set(s) of point-based constraints of the type][e?r:]ol J?C:l IS ess4t en 4 square meteby means of the
OX" — 0X " = k. Such a point-based constraint allows ormu ".’1'( rea < 4).

i J . ) . Similarly, we can state thét the area of the current ob-
one to relate the endpoints of the various objects; thus, for. . : .
example, one can force the objezt and the objecO; to ject is greater than 6 square meters, then there exists a line

be 3 units distant along the-axis, with O, after O, by gz)ilr?tn V%TIhh %ﬁetgrz)r;)irrt];r'zg t?]l;lte;vsliho;?tebﬁ[jos?ﬁéw and a
means oD — OF" = 3. Moreover, with an augmented '

network, one can constraint the horizontal and/or the ver- (Area > 6) — Ou(ly, =0AI1l, =12Aq)

tical length of the various objects, by means of constraints ANOe(ln =0A1l, =0AD).
between endpoints of the same object. Itis possible to show

that such a metric network can be expressed in DAC as fol-4. DAC: Decidability and Complexity

lows. First, we define, as in [8],&eak universal operator

0., that guarantees thatis true “almost everywhere”ina 4.1. Basic Notions

modelM, that is, over every objecth,, vy),(hc, vq)) Such

thath, # 0 orv, # 0. Then, we defineveak nominals Let ¢ be a DAC-formula to be checked for satisfiability
(that is, formulas which are true “almost only” on the cur- and let AP be the set of its propositional variables. We
rent object). Finally, given an augmented network with ob- define the notions o€losure, spatial requests, atorand
jectsOq, ..., O,, we introduce a propositional variable for  fulfilling labeled spatial structuras follows.

every object and we force it to be a weak nominal. As for e ,

metric constraints, we simply translate them using the met- D€finition 1 TheclosureCL(¢p) of ¢ is the set of all sub-

ric features of DAC. As an example, the above constraint fo_:?‘:bli‘s 'IE)P:(p ar:d fCr)1f theirtnﬁgations (}[/_ve DidemifVFQﬂ
OX~ — OX* —3canb ded by the f la: Wi . The set ofhorizontal(resp., vertica) spatial re-
2 ! can be encoded by the formuia questsof ¢ is the setHF(p) (resp., VF(y)) of all hor-

Ou(po, — Ce(ln =3 A epos,)), izontal (resp., vertical) spatial formulas I€L(y), that

wherepo, andpp, are the nominals corresponding@a |{s<,>HwF(5p)¢_€ ggzz;sew € CLp)} (resp., VE(p) =

andO,, respectively. In such a way, we are able to repre- * "7’ " '

sent the network as a conjunction of DAC-formulas which Definition 2 A ¢-atomis a setA C CL(y) such that i) for

is satisfiable if and only if the network is consistent. everyy € CL(p), v € Aiff wp ¢ A, and ii) for every
Moreover, using DAC one is able to express very natu- 11 V ¢s € CL(p), ¢ V 1)o € Aiff1p; € Aoriyy € A.



We denote the set of ap-atoms byA,,. Let|¢| (the size
of ) be the number of symbols g¢f. By induction on the
structure ofp, we can easily prove that for every formula
¢, | CL(y)| is linear and A, | is at most exponential ifyp|.
Atoms are connected by the binary reIatid%[;(resp.,Rg)
overA, x A, such that, for every pair of atongsl, A’) €
A xA, A R’;, A’ (resp.,A R, A")ifand only if, for every
Oc.¢ € CL(p) (resp.,0,% € CL(yp)), if O, € A (resp.,
O,¢ € A), theny € A’. We now introduce a suitable
labeling of spatial structures basedpgratoms.

Definition 3 A ¢-labeled spatial structur@SS for short)
is a pair L ((F,O(F)), L), where (F,O(F)) is a
spatial structure andC : O(F) — A, is a labeling
function such that, for every pair of object§h,,vp),
(he,va)) and ((he,ve), (B, vg)), L(((ha;vp), (he,va)))
R’; L({(he,ve), (hy,vg))), and for every pair of objects
<(haavb)7 (hcvvd» and <(hevvd)7 (hfavg»' £(<(havvb)v
(hey va))) RY L({(he,va),(hs,0)))-

ANnLSSL is said to be:

e horizontally(resp. vertically) fulfilling if for every for-
mula of the type®. ¢ (resp., ¢,) in CL(p) and
every object{(hq, vp), (he,va)), If Cetp € L{{(Rq,
), (he,va))) (resp.,Onth € L({(ha,vs), (he;va)))),
then there exists an obje¢th.,ve),(hs,v,)) (resp.,
((he,va),(hf,vg))) such thaty belongs toL(((he,
ve)(hpvg))) (reSpoL(((he.va),(hy,0g)));

¢ length fulfilling if and only if for every length con-
straint [, k € CL(p) (resp., I, k €
CL(y)) and every object(hq, vs), (he,va)) € O(F),
Ih = k € L({(hg,vp), (he,va))) (resp.,l, = k €
£(<(haa vb)a (hcvvd»)) iff (hc - ha) =k (resp'!(vd -
Vp = k)),

o fulfilling if and only if it is horizontally, vertically, and
length fulfilling.

It is quite straightforward to prove that a formufa
is satisfiable if and only if there exists a fulfiling LSS
such thaty belongs to the labeling of some initial object
((0,0), (ho,vo)). This allows us to reduce the satisfiability
problem fory to the problem of finding a fulfilling LSS with
an initial object labeled by. From now on, we say that a
fulfilling LSS L satisfiesy if and only if ¢ € £({(0,0),
(ho,v0))) for somehg, vy > 0.

4.2. The Elimination Lemma

Since fulfilling LSSs satisfyingp may be arbitrarily
large or even infinite, we must find a way to finitely es-
tablish their existence. In the following, we will show
how the techniques developed in [7] for the metric tem-
poral logic RPNL+INT can be exploited to prove the de-
cidability of DAC. We first give a bound on the size of

finite fulfilling LSSs and then we show that in the infi-
nite case we can safely restrict ourselves to infinite fulfill
ing LSSs with a finite bounded representation. To prove
these results, we take advantage of the following two fun-
damental properties of LSSs: i) the labelings of all objects
that share the rightmost horizontal (resp., topmost verti-
cal) coordinate must agree on horizontal (resp., vertical)
spatial formulas, that is, for every € HF(y) (resp.,

¥ € VF(9)), v € L({(hayv3),(he va))) if and only if ¢ €
‘C(<(h€7vf)a(hcvvg)>) (resp.,w € E(«hmvb)v (hcavd») if

and only ify) € L({(he,vy),(hgva)))); i) HE@L different
objects of the typé(h., ve),(hy,v,)) are sufficient to fulfill

the existential horizontal formulas belonging to the laigpl

of an object{(h,, vs),(hc, v4)) (and symmetrically for the
vertical axis).

Definition 4 Given anLSSL = ((F,O(F)),£) andh, €

Dy, (resp.,vq € D,), we denote byREQ,,(h.) (resp.,
REQ,(vq)) the set of all and only the horizontal (resp.,
vertical) requests belonging to the labellings of the otgec
of the type((hq,vp),(he,vq)). The setREQ,(¢) (resp.,
REQ,(¢)) is the set of all possible sets of horizontal (resp.,
vertical) requests for the formula.

In order to bound the size of finite LSSs that we must
take into consideration when checking the satisfiability of
a given formulap, we determine the maximum number of
times that any set IREQ,,(¢) (resp.,REQ,(¢)) may ap-
pear in a given LSS.

Definition 5 Given anyLSSL = ((F,O(F)), £), we say
that a horizontal(resp.,vertica) k-sequence il is a se-
guence oft consecutive points iD;, (resp., D,). Given

a horizontal sequence in L, its sequence of requests
REQ,, (o) is defined as the sequence of horizontal requests
at the points inr, and similarly for the vertical component.
We say thath € D, starts a horizontak-sequencer if

the horizontal requests dt,...,h + k — 1 define an oc-
currence ofREQ,, (o), and similarly for the vertical com-
ponent.

Hereafter, letm; = ‘HFQM, m, = ‘VF—Q(“’”', andm =
max{mp,m,}, and letk = maa{k’, 1}, wherek’ is the

the maximal constant that appears in length constraints oc-
curring inp.

Definition 6 Given anyLSSL = ((F,O(F)), £), any se-
quence of horizontal requesSREQ),, (o) is said to beabun-
dantin L if and only if it has at least - (m? + m) -
IREQ, (0)]? + (m? + 3 - m) - |REQ, ()| + 1 distinct
occurrences inD;. The case of an abundant sequence of
vertical requests is defined similarly.

The above definition shows a quadratic increase in com-
plexity from RPNL+INT: in the temporal case, a number of



occurrences linear im andREQ() suffices to declare a

that there exists an abundahtsequence of horizontal re-

sequence of requests as abundant. For any given horizontajuestsREQ,, (¢) and letD,  be the set whose existence is

k-sequence in L, we will denote byh] the first point of
theg-th occurrence of. Hereafter, whenever will be ev-
ident from the context, we will writé,, for ~7. The next
Lemma is analogous to Lemma 5.12 in [7]: in the spatial
case we also need the existence of a certain number of oc
currences of the sequeniseforea given point:, to be able

to reduce the size of the model.

Lemmal LetL = ((F,O(F)), £) be anLSSandc be a

horizontalk-sequence il such thaREQ,, (o) is abundant

in L. Then, there exists an indgxsuch that:
1. for every pair(REQ,,(h), REQ,(R')) such thath €
Dy = {h | hg < h < hgp1} andh’ — h < k,
there exist at leastn? + m distinct pairs of points
R, h""in Dy \ D, suchthath — h" = h' — hand
(REQy, (1), REQ,, (k")) = (REQy, (h), REQy, (h"));

. for every elemenR € {REQn(h) | h € D, }, R
occurs at leastn? + m times beforeh, and at least
2 - mtimes afterhg .

Proof. (sketch) By Definition 6, there exist at least:
(m?+m) - |REQ,,(9)[2 + (m? +3-m)| - | REQ,, ()| +1
pointsh € D;, such thath is the first element of a distinct
occurrence ob. For every index, if there exists a pair
(REQ,(h), REQ, (), with h; < h < W' < hiy1 + K,
such that there exist nm? + m distinct pairs of points
' R in Dp\{h | hy < h < hjy1} with B/ — "
h' — h, thenq cannot be equal t& By an easy combina-
torial argument, we can prove that there exist at nikost
(m?+m)-| REQ, (¢)|? such indexes, whelREQ,, (¢)|?

is the number of possible paifREQ,(h), REQ,(h')),

k is the number of possible values fof — h, and, for
any pair(REQ,, (h), REQ,(R')) and any distancé’ — h,

m? + m is the greatest number of occurrences of a pair
(REQ, (h), REQ, (h')) that may lead to a violation of con-
dition 1. Sinces is abundant ir, we can conclude that
there exist at leastn? + 3 - m)| REQ,,(v)| + 1 indexes

in Dy, that satisfy condition 1. Let us now restrict our at-
tention on these indexes. In the worst case, for at most
(m? +m) - | REQ,,(¢)| indexesi it may happen that there
exist nom? + m occurrences ofR beforeh; for some

R € {REQn(h) | hi < h < h;+1}. Hence, there exist
atleas2 - m - |REQ, ()| + 1 indexes that satisfy both the
above conditions. By applying the same argument, we can
conclude that for at mog&t-m-| REQ,, ()| indexes it may
happen that there exist 2em occurrences oR afterh; for
someR € {REQy(h) | h; < h < h;41}. This allows us

to conclude that there exists at least one indivat satisfies

the conditions of the lemma]

Lemma 2 (Horizontal Elimination Lemma) LeflL
((F,O(F)), £) be a fulfillingLSSthat satisfiesp. Suppose

guaranteed by Lemma 1. Then, there exists a fulfiliS$
L = ((F,O(F)), £) that satisfiesp, with D}, = Dy, \ D,

andD, = D,,.
Proof. Let us fix a fulfilling LSSL = ((IF, O(F)), £) satis-

fying o at some((0,0), (ho,vo)), an abundant-sequence
of horizontal requestREQ, (o) and let D,  be the set
whose existence is guaranteed by Lemma 1. Now, let
D;, = Dy \ D, and, accordingly, the spatial frani¢ and
set of objectsD(IF}), andL] = L|gr;) (the restriction of
L to the objects ifO(F})). For the sake of readability, the
points inD;, will be denoted by the same numbers a®in
Now, £/ is still a LSS, but not necessarily a fulfilling one,
thus we have the problem of suitably re-defining the evalu-
ation of objects in a way that preserves the spatial requests
and still satisfyingp.
Fixing lengths. First of all, we have to change the labelling
of those objects whose horizontal length has changed after
the elimination, and it is less or equalkan O(F}). To this
end, for allh < hy, all vg, v, € Dy, and all0 < r < k,
we putL (((h,va), (hgtr + 7,0))) = L({(h.va), (hy +
r,up))). In this way, we have guaranteed that the objects
whose horizontal length was changed have now a correct
labelling in terms of all length constraints.
Fixing defects. After the above re-labelling, we can still
have the following four types of defects:
1. there is a formulaC.yy € REQ(h,), for some
he € Dy, that is not fulfiled anymore because of
the elimination of some obje¢th,,vy),(h,v.)), where
h € D, . Notice that for this to be the case, it must
be that(h — h,) > k. Since there are at lea®t m
pointshy, ..., ho.y, afterhy, 1, for at least one of them
we have that the label of the obje(ti,,vp),(hive))
satisfies neither vertical requests fr&iQ, (v,) nor
horizontal requests fronrREQ,,(h,), or it satisfies
only requests that are satisfied elsewhere. So we put
5 ({(hasvn) (hive))) = £({(ha,v),(h,vc))), thus fix-
ing the defect;
there is a formula®,y € REQ,(v,), for some
v, € D,, that is not fulfiled anymore because of
the elimination of some obje¢thy,v.),(h,v.)), where
h € D, . Again, for this to be the case, it must be that
(h— hy) > k. To fix this defect, we proceed exactly as
in the previous case;
3. there is a formula®,y € REQ,(v,), for some
v, € D,, thatis not fulfilled anymore because of the
elimination of some object(h,v,),(hy,vc:))), where
h,hy € D, andh, — h < k. Recall that, by
hypothesis, there are at leasf + m distinct pairs
(h1,h1)s s (P2, 2, ) SUCH that for all we
haveh;, h; € D\ D, and(h;—h;) = (h,—h). Letus

k2
consider the horizontal request®.7,. .., g} C

2.



REQ,,(h), whereq < m. For each®. 7, we take an
object of the typ€(h,v-, ),(h, 0% )) containingr, in
its labelling (inL). Eachv,, has at mosin vertical

requests, which are satisfied, in the worst case, us-

ing objects with leftmost horizontal coordinate of the
type h;. Then, at mosin? horizontal coordinates are

needed to satisfy the vertical requests of the vertical

coordinates of the type, . Let us consider now the
vertical coordinatey,. Again, the vertical requests in
REQ,(v,) different from <, are at mostm — 1

Theorem 1 (Small Model Theorem) If ¢ is any finitely

satisfiable formula of DAC, then it is satisfiable in a finite

LSSL = ((F,O(F)), £) such thaiDy,| < (k- (m? +m) -

|REQ),(¢)[* + (m?+3-m) - | REQ, (¢)]) - | REQ, (¢)|*

k—1,and|D,| < (k- (m*+m) - |REQ,(¢)|* + (m” +
m) - |REQ,(¢)]) - |IREQ, ()|* + & — 1.

Corollary 1 Finite satisfiability for DAC is decidable.

Infinite structures can be dealt with in a similar way. First
of all, we must distinguish among three types of |nf|n|te

h; such that no object witth; as leftmost horizontal
coordinate satisfy any vertical requestigfor of any

of thev,,.. We can then put ({((hi,v.),(h},vc)))
L({(hyva),(h,ve))), thus fixing the defect. However,

in general, such a substitution can introduce a new de-

fect, since there can be sored € REQ,, (h;) which
was satisfied by(h;,v,),(h},v.)) and it is not satisfied
anymore. Now, sincREQ,, (h;) = REQ,(h), 0 = 7.
for somer. We can fix this new defect by putting
L1({(hiyor, ), (hior, ))) = LU{(Ryvr, ), (e, 07, )))- BY

repeating this last substitution in a swtable way at most
m times, we can fix all new defects that can be possibly

introduced;
. there is a formula®,y € REQ,(v,), for some
v, € D,, that is not fulfilled anymore because of the
elimination of some object(h,v,),(hy,v.))), where
h € D, ,and(hy, — h) > k. To fix this defect, we pro-
ceed exactly as in case 3, but using only th&+ m
copies ofh beforeh,, and maintaining, as the right-
most horizontal coordinate.
In this way we can eliminate all defects; at the end of the
process we obtaikh as claimedd
Similarly, we have:
Lemma 3 (Vertical Elimination Lemma) LetL. =
((F,O(F)), £) be a fulfilling LSS that satisfiesp. Sup-
pose that there exists an abunddntequence of vertical
requestREQ, (c) and letD, be the set whose existence
is guaranteed by the (vertlcal version of) Lemma 1. Then,
there exists a fulfillind.SST = ((]F O(F)), £) that satis-
fiesy, with D, = D, \ D, andDj, = Dj,.

Lemma 2 and 3 are the spatial counterpart of the Elim-

ination Lemma for RPNL+INT [7]. However, while in the

temporal case we have to deal only with defects of type 1,
the interaction between the two spatial operators of DAC

adds two more types of defects.
4.3 Satisfiability for DAC

Thanks to the horizontal and vertical elimination lemmas
above, we have that the following theorem holds.

(and WhICh one) or both. For each of these types, an ap-
propriate representation can be obtained as follows.

Definition 7 AnyLSSL = ((F,O(F)), £) is horizontally
ultimately periodi¢ with prefix Prey, period Pery > 0
and threshold, if and only if:

1. for all h,h’ such thath’
h) > k, and for all v,?’,
L({(hv), (' + Perg,v')));

2. for each object L({(h,w),(h,v")))
that = > hprey, L{(R,v), (R, 0)))
L({(h+ Perg,v),(h' + Perg,v'))).

The notion ofvertically ultimately periodic LS®an be de-
fined in a similar way. Finally, 4 SSis simplyultimately
periodicif it is (i) both horizontally and vertically ultimately
periodic, or (ii) horizontally ultimately periodic and ver
tically finite, or (iii) horizontally finite and vertically Iti-
mately periodic.

> hppe, and (b —

L({(h,v), (,07))) =

such

Note that every ultimately periodic LSS is finitely pre-
sentable.

Lemma 4 LetL = ((F,O(F)), £) be an horizontally infi-
nite, vertically finiteLSSthat satisfiesp. Then, there exists
an ultimately periodid. SS L that satisfiesp.

An analogous of Lemma 4 can be stated for the vertical
component, and, thus, any infinite LSS can be transformed
in a ultimately periodic one.

Theorem 2 (Periodic Small Model Theorem)Let L. =
((F,O(F)), £) be anyLSSthat satisfiesp. Then, there ex-
ists an ultimately periodit SSL that satisfiesp, and such
that length of the horizontal prefix and the horizontal pdrio
are bounded byk - (m? +m) - |REQ,(¢)[? + (m? + 3 -
m) - |REQ(¢)|) - |REQ,(¢)|* + k — 1, and similarly for
the vertical component.

Once again, the spatial features of DAC causes a
guadratic increase on the size of (prefixes and periods
of) the model with respect to the metric temporal logic
RPNL+INT [7].

Corollary 2 The satisfiability problem for DAC is decid-
able.



4.4 Complexity Issues Fi=F,=NxN

Vi({(L,va), (K + 4,w)) = Vi((3B,val), (k +
In [8] it has been shown that the non-metric version of 4,vp))) = {p}, forall v,, vy, € N;

DAC presents a NEXPTIME-complete satisfiability prob- — ® Va({(3,v4), (k +4,v))) = {p}, forall v,, v, € N;

lem. This means that DAC is at least NEXPTIME-hard. To e pis false everywhere else.

correctly state the complexity of the satisfiability prable ~ The relationZz* C O(F1) x O(Fs), defined as follows, is a

for DAC, we have to consider three different cases, depend-WDAC-bisimulation betweed/{ and M

ing on the representation of length constraints. As a direct ® ({(ha, ), (he,va)), ((hasvs), (he,va))) € Z* for all

consequence of the theorems of the above section, a non-  (ha, he) # (1, k +4);

deterministic decision procedure that guesses an ultlpnate ~ ® (((1,v), (k +4,va)), ((3,v), (k + 4,v4))) € Z*;

periodic model satisfying the formulacan be easily built. o ({((2,vp), (k+4,va)), (1, vp), (k +4,va))) € Z*.

Such a procedure works in NTIME#I'*), and its exact ~ Since the DAC-formula®.p is true over the object

complexity class depends on how the metric constants are{(0,0), (1,1)) in M{ but false in)M% for every value of

encoded. k, and since bisimilar models must satisfy the same set of
WDAC formulas, <. p cannot be translated to any WDAC
Theorem 3 The satisfiability for DAC is: formula.
e NEXPTIME-complete, it is a constant; ) ) )
o NEXPTIME-complete, i is represented in unary; Theorem 4 WDAC is strictly less expressive than DAC.

e Between EXPSPACE and 2NEXPTIMEL ifs repre-

sented in binary, Despite being strictly less expressive than DAC, Weak

DAC is powerful enough to express the augmented inter-
NEXPTIME inclusion (cases 1 and 2) can be proved sim- val and rectangle network consistency problem discussed in
Section 3, at the price of a more complex encoding.

ply observing thaD (2/¢!"*) = O(2!¥l) if k is constant or . o .
; . Decidability of WDAC trivially follows from the decid-
represented in unary (respect to the length of the formUIa)’ability of DAC. However, its weaker semantics allows us

NEXPTIME-hardness is a consequence of NEXPTIME- 0 | h lexity bound. Th dal i
hardness for SpPNL [8]. In these cases there is no com-.0 'OWer the complexity bound. € modal opera‘ors are

plexity increase with respect to the temporal counterpart;L""ns'.':'xe'lzj WDAC: |faft§>.rmtutlachez/) holtdsfc?tvera:jn ObJeCt’t .
RPNL+INT, that it is NEXPTIME-hard as well [7]. Con- thenitholds overany object to the east of it (and symmetri-

versely, whenk is represented in binary (Case 3) we cally for O,,7)), while in full DAC this is not necessarily the

have that RPNL+INT is EXPSPACE-complete, and thus C2S€- This implies that if a formuld.y» € REQy(ha)
that DAC is at least EXPSPACE-hard. However, since (resp.,On¢ € REQ,(va)) for someh, € Dy (resp.,
k = O(2!¥!), the non-deterministic procedure runs in time E)raesf) é)“z/’} teheRij%el/(Jve) f?rEe(\?gr(:qf) ;OL ?Vg;/g;plzitﬁz

Il . a—n v\ Ub b a)-
0(2? )’. giving us a 2NEXPTIME Upper bound on the this property, we can provide a bound on the size of LSS sat-
com_plexny. We do not kn_ow yet Whlch is the exact com- isfying a WDAC formula that is exponentially smaller than
plexity class for DAC in this case, and if the spatial gener-

N ) . the one given for DAC in Theorem 2.

alization causes an increase on the complexity or not.
Theorem 5 (Weak Periodic Small Model Theorem)Let

5. Weak Directional Area Calculus (WDAC) » be a satisfiable WDAC formula. Then, there exists a ulti-
mately periodic fulfillingLSS satisfyinge with horizontal
and vertical prefix bounded b2 - m + 1) - (k + 1) + 1,
horizontal and vertical period bounded By m - (k + 1),
and thresholdk.

In this section we discuss expressive power, decidability,
and complexity of Weak DAC, comparing it with the full
Directional Area Calculus.

First of all, formulas of WDAC can be translated 0 ag 3 direct consequence of Theorem 5, a nondetermin-
DAC-formulas by replacing any sub-formula of the form igtic decision procedure that guesses an ultimately pieriod
Octp (resp., Ony)) With Ocp V OOt (resp., Onyp v model satisfying the formula can be easily built. Such a
CnOntp). By exploiting abisimulationargument we can procedure works in NTIME: - ||), and its exact complex-

prove that the converse does not hold. We will show that, iy class depends on how the metric constants are encoded.
for everyk > 0, there exist two model8/f and M¥ that

are bisimilar with respect to WDAC-formulas with maxi- Theorem 6 Satisfiability for WDAC is:

mum metric constant, but can be easily distinguished by e NP-complete, ik is a constant;

a DAC formula. Letk > 0, AP = {p}: the two spatial e NP-complete, it is represented with unary encoding;
modelsM; = (Fq,O(F1), V1) andMs = (Fo, O(F2), Vo) e in NEXPTIME, ifk is represented with binary encod-
are defined as follows. ing.



NP-completeness of the problem whiers constant or in
unary encoding follows from the NP-completeness of SAT.
We do not know yet if WDAC with binary encoding is
NEXPTIME-hard or not.

6 Conclusions

relations. InProc. of the 18th Int. Conference on Auto-
mated Reasoning with Analytic Tableaux and Related Meth-
ods volume 5607 o£NCS pages 123-137. Springer, 2009.

[9] A. Cohn and S. Hazarika. Qualitative spatial representa

[10]

In this paper, we proposed a new modal logic, called [11]
DAC, that pairs qualitative and quantitative spatial reaso

ing about points, lines, and rectangles over natural num-

bers frames by means of directional relations. DAC can [12]
be viewed as an extension of the spatial logic WSpPNL [8]
with special atomic propositions that make it possible to ex
press a weak notion of area. We proved that the satisfiability [13]
problem for DAC is decidable. Moreover, we showed that,
when a binary encoding of length constraints is provided, it
is between EXPSPACE and 2NEXPTIME, while the exact

complexity class is an open problem. Then, we analyzed

the satisfiability problem for a proper expressive fragment
of DAC, called WDAC, and we proved that it belongs to
NEXPTIME. As in the case of DAC, the exact complexity

class, when a binary encoding of length constraints is pro-

vided, is an open problem.
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