Undecidability of Interval Temporal Logics with the Overlap Modality

D. Bresolin¹, D. Della Monica², V. Goranko³, A. Montanari², G. Sciavicco⁴

¹University of Verona, Italy

²University of Udine, Italy

³Technical University of Denmark

⁴Universidad de Murcia, Spain

Brixen, 23th July - TIME 2009

Outline

Introduction to Interval Temporal Logics

- Classifying HS fragments
- Undecidability of logics with Overlap modality
- 4 Conclusions and future works

< 同 > < 回 > < 回 >

Outline

Introduction to Interval Temporal Logics

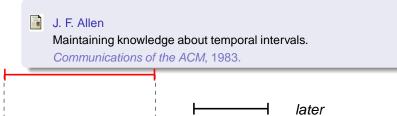
- Classifying HS fragments
- Undecidability of logics with Overlap modality
- Conclusions and future works

Interval Temporal Logics

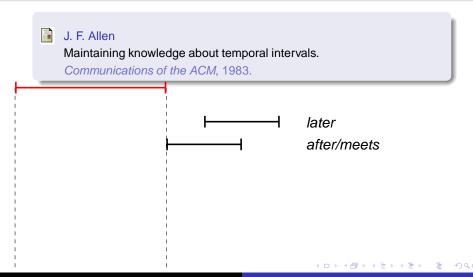
- The time period, instead of the time intstant, is the primitive temporal entity
- Propositional letters are evaluated over pairs of points (instead of individual points)
- Relations between worlds are more complicate than the point-based case

< ロ > < 同 > < 回 > < 回 > < □ > <

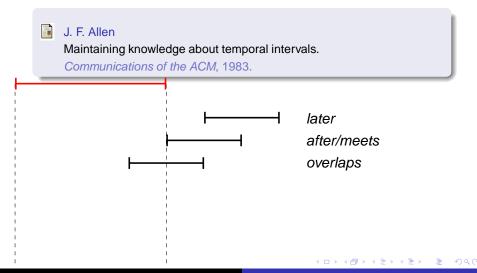
Allen's relations

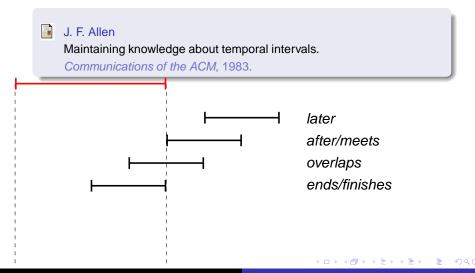

Maintaining knowledge about temporal intervals.

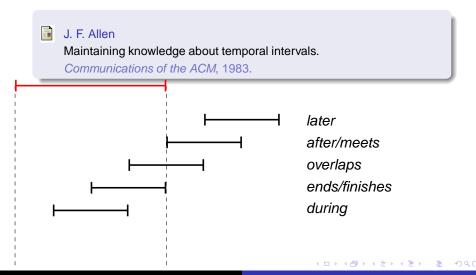
Communications of the ACM, 1983.

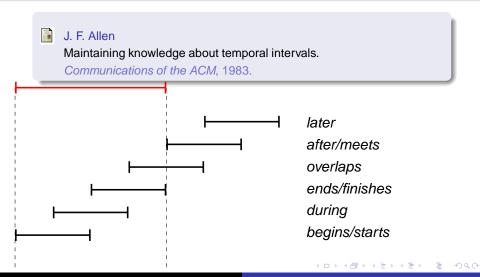

∃ ► < ∃ ►</p>

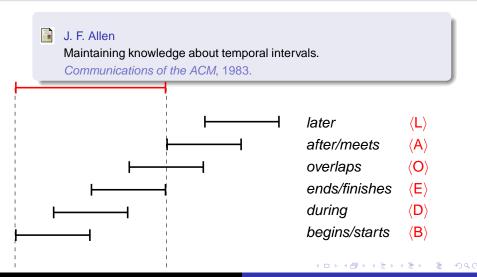
< 行.

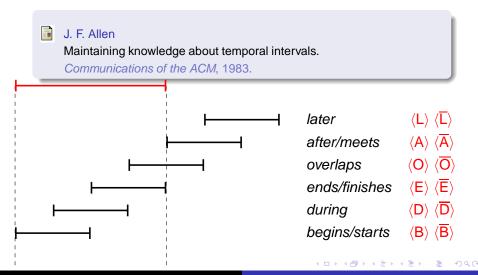

Allen's relations


Allen's relations


Allen's relations


Allen's relations


Allen's relations


Allen's relations

Allen's relations

Allen's relations

Some ontological choices

Time structure:

- Inear or branching !
- discrete or dense !
- with or without beginning/end !

Nature of intervals:

- can or cannot intervals be unbounded !
- Are intervals with coinciding endpoints admissible or not admissible !

Some ontological choices

Time structure:

- Inear or branching ?
- discrete or dense ?
- with or without beginning/end ?

Nature of intervals:

- can or cannot intervals be unbounded !
- Are intervals with coinciding endpoints admissible or not admissible !

< 同 > < 回 > < 回 >

Some ontological choices

Time structure:

- linear or branching !
- discrete or dense !
- with or without beginning/end !

Nature of intervals:

- can or cannot intervals be unbounded !
- Are intervals with coinciding endpoints admissible or not admissible !

Some ontological choices

Time structure:

- linear or branching !
- discrete or dense !
- with or without beginning/end !

Nature of intervals:

- can or cannot intervals be unbounded !
- Are intervals with coinciding endpoints admissible or not admissible !

< 同 > < 回 > < 回 >

Some ontological choices

Time structure:

- linear or branching !
- discrete or dense !
- with or without beginning/end !

Nature of intervals:

- can or cannot intervals be unbounded ?
- Are intervals with coinciding endpoints admissible or not admissible ?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Some ontological choices

Time structure:

- linear or branching !
- discrete or dense !
- with or without beginning/end !

Nature of intervals:

- can or cannot intervals be unbounded !
- Are intervals with coinciding endpoints admissible or not admissible !

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Outline

Introduction to Interval Temporal Logics

- Classifying HS fragments
- Undecidability of logics with Overlap modality
- 4 Conclusions and future works

First discouraging undecidability results

HS is undecidable

J. Halpern and Y. Shoham A propositional modal interval logic. *Journal of the ACM*, 1991.

First discouraging undecidability results

HS is undecidable

J. Halpern and Y. Shoham A propositional modal interval logic. *Journal of the ACM*, 1991.

Undecidability of a small fragment of HS: BE

Sharpening the Undecidability of Interval Temporal Logic.

ASIAN 2000, volume 1961 of LNCS, pages 290-298. Springer, 2000.

First decidable fragments

- Restrictions of the interval-based semantics
 - **locality**: truth of atomic propositions over an interval is defined as truth at its initial point
 - homogeneity: truth of a formula over an interval implies truth of that formula over every sub-interval

< □ > < 同 > < 回 > < 回 > < 回 >

э

First decidable fragments

- Restrictions of the interval-based semantics
 - **locality**: truth of atomic propositions over an interval is defined as truth at its initial point
 - homogeneity: truth of a formula over an interval implies truth of that formula over every sub-interval
- Restrictions of the underlying structures
 - **split logic**: each interval can be divided in subintervals in only one way

A. Montanari, G. Sciavicco, and N. Vitacolonna Decidability of interval temporal logics over split-frames via granularity. *JELIA 2002*, volume 2424 of LNCS, pages 259-270. Springer, 2002.

First decidable fragments

- Restrictions of the interval-based semantics
 - **locality**: truth of atomic propositions over an interval is defined as truth at its initial point
 - homogeneity: truth of a formula over an interval implies truth of that formula over every sub-interval
- Restrictions of the underlying structures
 - **split logic**: each interval can be divided in subintervals in only one way

< 回 > < 回 > < 回 >

Simple fragments of HS

● B<u>B</u>, E<u>E</u>

More meaningful decidable fragments

• RPNL (A)

 D. Bresolin, A. Montanari, and G. Sciavicco
An optimal decision procedure for Right Propositional Neighborhood Logic.

Journal of Automated Reasoning, 2007.

More meaningful decidable fragments

RPNL (A)
PNL (AA)

 D. Bresolin, A. Montanari, and P. Sala
An optimal tableau-based decision algorithm for Propositional Neighborhood Logic.
STACS 2007, volume 4393 of LNCS, pages 549-560. Springer, 2007.

Bresolin, Della Monica, Goranko, Montanari, and Sciavicco Undecidability of ITLs with the Overlap Modality

More meaningful decidable fragments

- RPNL (A)
- **PNL** (AA)
- Subinterval logic (D)

 D. Bresolin, V. Goranko, A. Montanari, P. Sala
Tableau-based decision procedures for the logics of subinterval structures over dense orderings.

Journal of Logic and Computation, December 2008.

State of the art

• DD is decidable over dense linear orders

- Most extensions of A (resp., A) are undecidable (except for the ones with BB and EE)
- The class of fragments B*E*(= BE, BE, BE, BE) is undecidable

 A. Montanari, G. Puppis and P. Sala
A Decidable Spatial Logic with Cone-shaped Cardinal Directions. *CSL 2009* (in press).

Bresolin, Della Monica, Goranko, Montanari, and Sciavicco Undecidability of ITLs with the Overlap Modality

State of the art

- DD is decidable over dense linear orders
- Most extensions of A (resp., A) are undecidable (except for the ones with BB and EE)
- The class of fragments B*E*(= BE, BE, BE, BE) is undecidable

D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco

Decidable and Undecidable Fragments of Halpern and Shohams Interval Temporal Logic: Towards a Complete Classification.

LPAR 2008, volume 5330 of LNCS, pages 590-604. Springer, 2008.

State of the art

- DD is decidable over dense linear orders
- Most extensions of A (resp., A) are undecidable (except for the ones with BB and EE)
- The class of fragments B*E*(= BE, BE, BE, BE) is undecidable

D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco

Decidable and Undecidable Fragments of Halpern and Shohams Interval Temporal Logic: Towards a Complete Classification.

LPAR 2008, volume 5330 of LNCS, pages 590-604. Springer, 2008.

Outline

- Classifying HS fragments
- Undecidability of logics with Overlap modality
 - 4 Conclusions and future works

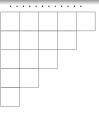
Bresolin, Della Monica, Goranko, Montanari, and Sciavicco Undecidability of ITLs with the Overlap Modality

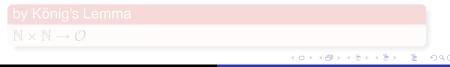
In this paper

We study the satisfiability problem for logics containing the overlap modality

We provide a number of undecidability results

 All the extensions of the fragments O and O (except for the extensions with L and L) are undecidable

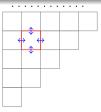

< □ > < 同 > < 回 > < 回 > < 回 >


• The logic OO is undecidable over discrete linear orders

Proof overview

Reduction from the Octant Tiling Problem

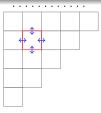
This is the problem of establishing whether a given finite set of tile types $\mathcal{T} = \{t_1, \ldots, t_k\}$ can tile $\mathcal{O} = \{(i, j) : i, j \in \mathbb{N} \land 0 \le i \le j\}$ respecting the color constraints.



Proof overview

Reduction from the Octant Tiling Problem

This is the problem of establishing whether a given finite set of tile types $\mathcal{T} = \{t_1, \ldots, t_k\}$ can tile $\mathcal{O} = \{(i, j) : i, j \in \mathbb{N} \land 0 \le i \le j\}$ respecting the color constraints.



Proof overview

Reduction from the Octant Tiling Problem

This is the problem of establishing whether a given finite set of tile types $\mathcal{T} = \{t_1, \ldots, t_k\}$ can tile $\mathcal{O} = \{(i, j) : i, j \in \mathbb{N} \land 0 \le i \le j\}$ respecting the color constraints.

Bresolin, Della Monica, Goranko, Montanari, and Sciavicco

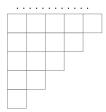
Undecidability of ITLs with the Overlap Modality

Proof overview (cont'd)

We focus on the proof for the fragment AO

We build a formula $\phi_{\mathcal{T}} \in AO$ s.t. $\phi_{\mathcal{T}}$ is satisfiable $\Leftrightarrow \mathcal{T}$ can tile the octant.

Op.	Semantics		
$\langle A \rangle$	$M, [a, b] \Vdash \langle A \rangle \phi \Leftrightarrow \exists c (b < c.M, [b, c] \Vdash \phi)$	Π	
$\langle O \rangle$	$M, [a, b] \Vdash \langle O \rangle \phi \Leftrightarrow \exists c, d (a < c < b < d.M, [c, d] \Vdash \phi)$		

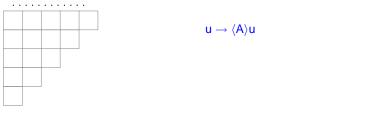

< □ > < 同 > < 回 > < 回 > < 回 >

Bresolin, Della Monica, Goranko, Montanari, and Sciavicco Undecidability of ITLs with the Overlap Modality

Proof overview (cont'd)

Encoding the octant

Encoding the neighbourhood relations


< □ > < 同 > < 回 > < 回 > < 回 >

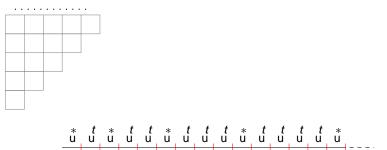
э

Proof overview (cont'd)

Encoding the octant

Encoding the neighbourhood relations

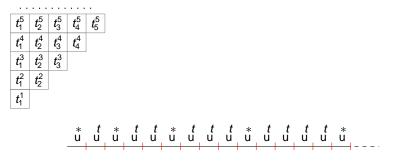
<u>u u u u u u u u u u u u u u u u</u>


< 日 > < 同 > < 回 > < 回 > < □ > <

э.

Proof overview (cont'd)

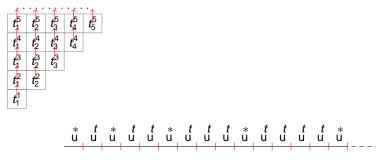
Encoding the octant


Encoding the neighbourhood relations

< ロ > < 同 > < 回 > < 回 > .

Proof overview (cont'd)

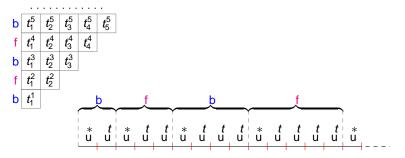
- Encoding the octant
- Encoding the neighbourhood relations



・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

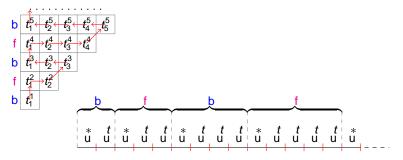
э

Proof overview (cont'd)


- Encoding the octant
- Encoding the neighbourhood relations

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

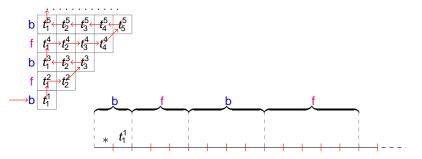
Proof overview (cont'd)


- Encoding the octant
- Encoding the neighbourhood relations

< 一 →

Proof overview (cont'd)

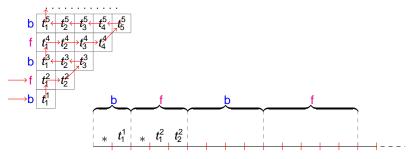
- Encoding the octant
- Encoding the neighbourhood relations



< 一 →

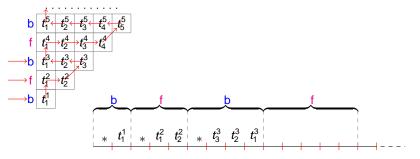
Bresolin, Della Monica, Goranko, Montanari, and Sciavicco Undecidability of ITLs with the Overlap Modality

Proof overview (cont'd)


- Encoding the octant
- Encoding the neighbourhood relations

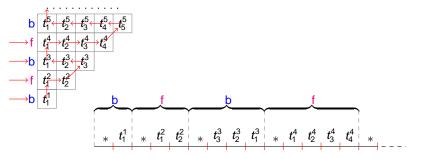
э

Proof overview (cont'd)


- Encoding the octant
- Encoding the neighbourhood relations

Bresolin, Della Monica, Goranko, Montanari, and Sciavicco Undecidability of ITLs with the Overlap Modality

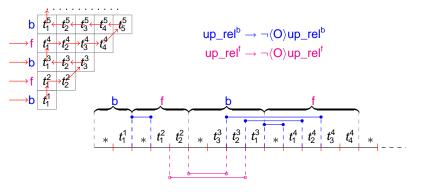
Proof overview (cont'd)


- Encoding the octant
- Encoding the neighbourhood relations

Bresolin, Della Monica, Goranko, Montanari, and Sciavicco Undecidability of ITLs with the Overlap Modality

Proof overview (cont'd)

- Encoding the octant
- Encoding the neighbourhood relations



→ ∃ > < ∃ >

< 一 →

Proof overview (cont'd)

- Encoding the octant
- Encoding the neighbourhood relations

Undecidability of ITLs with the Overlap Modality

< □ > < 同 > < 回 > < 回 > < 回 >

Theorems

Theorem [AO undecidability]

The satisfiability problem for the logic AO is undecidable over any class of linear orders that contains at least one linear order with an infinite ascending sequence.

Theorem [A*O*, B*O*, E*O*, D*O* undecidability]

The satisfiability problem for the logics \overline{AO} , \overline{BO} , \overline{BO} , \overline{EO} , \overline{EO} , \overline{DO} , and \overline{DO} (resp., \overline{AO} , \overline{AO} , \overline{BO} , \overline{BO} , \overline{BO} , \overline{EO} , \overline{EO} , \overline{DO} , and \overline{DO}) is undecidable over any class of linear orders that contains at least one linear order with an infinite ascending (resp., descending) sequence.

Image: A matrix and a matrix

∃ ► < ∃ ►</p>

Outline

- Classifying HS fragments
- Undecidability of logics with Overlap modality
- 4 Conclusions and future works

< □ > < 同 > < 回 > < 回 >

Conclusions

- Undecidable extensions of the fragments O and O: A*O*, B*O*, E*O*, D*O*
- Fragment OO undecidable over discrete linear orders
- Extended to the fragment O (resp., O) over discrete linear orders (unpublished)

< ロ > < 同 > < 回 > < 回 > .

Conclusions

- Undecidable extensions of the fragments O and O: A*O*, B*O*, E*O*, D*O*
- Fragment OO undecidable over discrete linear orders
- Extended to the fragment O (resp., O) over discrete linear orders (unpublished)

< ロ > < 同 > < 回 > < 回 > .

Conclusions

- Undecidable extensions of the fragments O and O: A*O*, B*O*, E*O*, D*O*
- Fragment OO undecidable over discrete linear orders
- Extended to the fragment O (resp., O) over discrete linear orders (unpublished)

< 回 > < 回 > < 回 >

Conclusions

- Undecidable extensions of the fragments O and O: A*O*, B*O*, E*O*, D*O*
- Fragment OO undecidable over discrete linear orders
- Extended to the fragment O (resp., O) over discrete linear orders (unpublished)

Current classification for the main classes of linear orders

Bresolin, Della Monica, Goranko, Montanari, and Sciavicco

Undecidability of ITLs with the Overlap Modality

Future works

To complete the classification of HS fragments:

- L*O* and L*D*: conjecture is undecidability
- O, O, and OO over dense linear orders: conjecture is ?
- D, D, and DD over discrete linear orders: conjecture is ?
- B*D*: conjecture is decidability at least over dense structures

< 回 > < 回 > < 回 >

Future works

To complete the classification of HS fragments:

- L*O* and L*D*: conjecture is undecidability
- O, \overline{O} , and $O\overline{O}$ over dense linear orders: conjecture is ?
- D, D, and DD over discrete linear orders: conjecture is ?
- B*D*: conjecture is decidability at least over dense structures

・ 同 ト ・ ヨ ト ・ ヨ ト

Future works

To complete the classification of HS fragments:

- L*O* and L*D*: conjecture is undecidability
- O, O, and OO over dense linear orders: conjecture is ?
- D, D, and DD over discrete linear orders: conjecture is ?
- B*D*: conjecture is decidability at least over dense structures

・ 同 ト ・ ヨ ト ・ ヨ ト

Future works

To complete the classification of HS fragments:

- L*O* and L*D*: conjecture is undecidability
- O, O, and OO over dense linear orders: conjecture is ?
- D, D, and DD over discrete linear orders: conjecture is ?
- B*D*: conjecture is decidability at least over dense structures

▲ □ ▶ ▲ □ ▶ ▲ □ ▶