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Abstract

We investigate fragments of Halpern-Shoham’s interval
logic HS involving the modal operators for the relations of
left or right overlap of intervals. We prove that most of these
fragments are undecidable, by employing a non-trivial re-
duction from the octant tiling problem.

1. Introduction

Interval temporal logics are based on temporal structures
over linearly (or partially) ordered domains, where time in-
tervals, rather than time instants, are the primitive ontologi-
cal entities. A systematic analysis of the variety of relations
between intervals on linear orders was first accomplished
by Allen [1], who explored the use of interval reasoning in
systems for time management and planning. The problem
of representing and reasoning about time intervals arises
naturally in various other fields of computer science, arti-
ficial intelligence, and temporal databases, such as theories
of action and change, natural language processing, and con-
straint satisfaction problems. Temporal logics with interval-
based semantics have also been proposed as a useful formal-
ism for the specification and verification of hardware [16]
and of real-time systems [8].

Interval temporal logics feature modal operators that cor-
respond to various relations between intervals, in particular
the thirteen different binary interval relations on linear or-
ders, known as Allen’s relations [1]. In [11], Halpern and
Shoham introduce a modal logic for reasoning about inter-
val structures, nowadays known as HS, with modal opera-
tors corresponding to Allen’s interval relations. This logic
turns out to be undecidable under very weak assumptions on
the class of interval structures [11]. In particular, undecid-
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ability holds for any class of interval structures over linear
orders that contains at least one linear order with an infinite
ascending (or descending) chain, thus including the natural
time flows N,Z,Q, and R. The complex and generally bad
computational behavior of interval temporal logics is essen-
tially due to the fact that formulas are evaluated over pairs
of points and translate into binary relations. In a few cases,
decidability has been recovered by imposing severe restric-
tions on the set of modalities and/or on the interval-based
semantics, which essentially reduce the logic to a point-
based one. For a long time, the sweeping undecidability
results of Halpern and Shoham have discouraged attempts
for practical applications and further research on interval
logics. A renewed interest in the area has been recently
stimulated by the discovery of some interesting decidable
fragments of HS [4, 5, 6, 7]. The classification of decid-
able and undecidable fragments of HS has thus become one
of the major topics of the current research agenda in inter-
val temporal logics. The current state of affairs in that area
has recently been been summarized in [3], where the main
techniques so far exploited for proving decidability and un-
decidability have been presented. Such results have so far
been obtained for fragments of HS involving all, but one,
pairs of modal operators, with respect to various classes of
linear orders. The only so far unexplored case is the one of
fragments involving the operators 〈O〉 and/or its transpose
〈O〉, which respectively capture the Overlap relation and its
inverse. Such logics have received almost no attention in the
literature (the only exception we are aware of is a number
of representation theorems for interval structures containing
such a relation, which have recently been obtained in [9]).

In this paper, we show that most extensions of the
interval logic of Overlap are undecidable, thus making
a further step toward the complete classification of the
(un)decidability of all HS fragments. The proofs employ
a non-trivial reduction from the octant tiling problem. The
idea of using tiling problems to prove undecidability of in-
terval logics and many-dimensional logics goes back to [15]
and it has been subsequently applied to the compass logic
[14], to various product logics [10], to modal spatial logics



of topological relations [13], and to other fragments of HS
[3, 6]. Most of these results, however, apply to (relatively)
more expressive logical languages than those considered in
the present paper. Moreover, the techniques for the encod-
ing of tiling problems used so far do not transfer to our cases
in any obvious way.

The paper is structured as follows. In Section 2 we in-
troduce syntax and semantics of the logics of the Overlap
relation. In Section 3, we provide a detailed account of the
undecidability proofs for the fragments AO, AO, AO, and
A O. In Section 4, we summarize the undecidability results
for other extensions. In the conclusion, we provide an as-
sessment of the work and outline future research directions.

2. The logics of the Overlap relation

Let D = 〈D,<〉 be a linearly ordered set. An inter-
val over D can be defined as an ordered pair [a, b], where
a, b ∈ D and a < b, thus excluding intervals with coin-
cident endpoints (strict semantics). As an alternative, one
can define an interval over D as a pair [a, b], with a, b ∈ D
and a ≤ b (non-strict semantics). Hereafter, we confine
our attention to strict semantics; as we will show later, the
non-strict case can be easily reduced to the strict one.

In general, the language of a propositional interval logic
with unary modalities consists of a set AP of propositional
letters, any complete set of boolean operators (such as∨ and
¬), and a set of unary modal operators 〈X1〉,. . . ,〈Xk〉, each
of them associated with a specific binary relation over in-
tervals (decidability issues for binary modal operators have
been addressed in [12]). Formulas are defined by the gram-
mar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X1〉ϕ | . . . | 〈Xk〉ϕ,

The semantics is given in terms of interval models M =
〈I(D), V 〉, where I(D) is the set of all intervals over D and
the valuation function V : AP 7→ 2I(D) assigns to every
p ∈ AP the set of intervals V (p) over which it holds. The
truth of a formula over a given interval [a, b] in a model M
is defined by structural induction on formulas:
• M, [a, b] ° p iff [a, b] ∈ V (p), for all p ∈ AP;
• M, [a, b] ° ¬ψ iff it is not the case that M, [a, b] ° ψ;
• M, [a, b] ° ϕ ∨ ψ iff M, [a, b] ° ϕ or M, [a, b] ° ψ;
• M, [a, b] ° 〈Xi〉ψ iff there exists an interval [c, d] such

that [a, b] RXi [c, d] and M, [c, d] ° ψ,
where RXi is the binary interval relation corresponding to
the unary modal operator 〈Xi〉.

In the following, we will focus our attention on a specific
family of HS fragments and, for that purpose, we will as-
sume all operators listed in Fig. 1 and their transposes to be
primitive in the language, where by a transpose of a unary
modal operator 〈X〉 we mean the modal operator 〈X〉 for

the inverse of X . It is worth pointing out that the seman-
tics of the operators slightly differs from the original one
[11], which do not perfectly match the semantics of Allen’s
relations. As a general notation rule, we will denote any
fragment of HS with the set of its operators; for example,
the HS fragment featuring the operators 〈A〉 and 〈O〉 will
be denoted by AO. Also, we will denote by X∗1X

∗
2 the set

consisting of the fragments X1X2,X1X2,X1X2, and X1X2.
The family of fragments of HS we consider here includes

A∗O∗, B∗O∗, E∗O∗, and D∗O∗. We will prove that all these
logics are undecidable. We will give the details of the un-
decidability proof for the logics A∗O∗; the proofs for the
other logics in the class are quite similar. Besides, we have
been able to prove the undecidability of the logic OO with
respect to any class of discrete linear orders. For lack of
space, proof details for this case are omitted, but they will
be included in an extended forthcoming version. All results
are readily transferable to the case of non-strict semantics,
using the formula 〈O〉> to impose the requirement that ev-
ery interval we deal with has an internal point.

3. Undecidability of the logics A∗O∗

In this section, we show that the logics AO,AO,AO, and
A O are undecidable. In fact, we will prove the undecid-
ability of the satisfiability problem for AO and then we will
show that the proof can be tailored to deal with the other
cases. For these proofs we will use a reduction from the
tiling problem for the second octant O of the integer plane
Z× Z.

3.1. The tiling problem for O

The tiling problem for O is the problem of establishing
whether a given finite set of tile types T = {t1, . . . , tk} can
tile O = {(i, j) : i, j ∈ N ∧ 0 ≤ i ≤ j}. For every tile
type ti ∈ T , let right(ti), left(ti), up(ti), and down(ti)
be the colors of the corresponding sides of ti. To solve the
problem, one must find a function f : O → T such that

right(f(n,m)) = left(f(n+ 1,m)), with n < m,
and up(f(n,m)) = down(f(n,m+ 1)).

Using König’s lemma one can prove that a tiling system
tiles an octant if and only if it tiles arbitrarily large squares
if and only if it tiles N×N if and only if it tiles Z×Z. The
undecidability of the former thus immediately follows from
that of the latter [2].

3.2. Generic reduction of the tiling problem
for O to satisfiability in interval logics

Hereafter, we assume that AP contains some special
propositional letters: {u, Id, tile, ∗, b, f} and others that will



Op. Semantics
〈A〉 M, [a, b] ° 〈A〉φ⇔ ∃c(b < c.M, [b, c] ° φ)
〈L〉 M, [a, b] ° 〈L〉φ⇔ ∃c, d(b < c < d.M, [c, d] ° φ)
〈B〉 M, [a, b] ° 〈B〉φ⇔ ∃c(a < c < b.M, [a, c] ° φ)
〈E〉 M, [a, b] ° 〈E〉φ⇔ ∃c(a < c < b.M, [c, b] ° φ)
〈D〉 M, [a, b] ° 〈D〉φ⇔ ∃c, d(a < c < d < b.M, [c, d] ° φ)
〈O〉 M, [a, b] ° 〈O〉φ⇔ ∃c, d(a < c < b < d.M, [c, d] ° φ)

Figure 1. The semantics of basic interval modalities.

be introduced in due course. For every propositional letter
q, we denote by the expression q-interval an interval satis-
fying q. We will provide a reduction of the tiling problem
forO to the satisfiability problem for any fragment F of HS
considered here in any class of interval models containing at
least one model M with an unbounded-to-the-right (for the
logics AO and AO) or unbounded-to-the-left (for the logics
AO and A O) sequence of points. The reduction is based
on the following main steps. First, we set our framework by
forcing the existence of a unique infinite chain of u-intervals
(u-chain, for short) on the linear order, which covers an ini-
tial segment of the domain. Such u-intervals will be used as
cells (‘unit-intervals’) to arrange the tiling. Next, we define
a chain of Id-intervals (Id-chain, for short), each of them
representing a row of the octant. An Id-interval is composed
by a sequence of u-intervals; each u-interval is used either to
represent a part of the plane or to separate two Id-intervals.
In the former case it is labelled with the propositional let-
ter tile, in the latter case it is labelled with the propositional
letter ∗. Then, we define two relations that connect each
tile with its above neighbor and right neighbor in the oc-
tant, respectively. By using these relations, we force the j-
th Id-interval to contain exactly j tile-intervals. Finally, we
introduce a set of propositional letters T = {t1, t2, . . . , tk}
corresponding to the set of tile types T = {t1, t2, . . . , tk}
and we construct a formula ΦT belonging to the fragment
F which is satisfiable if and only if there exists a proper
tiling of the octant O by T , i.e., one that satisfies the color
constraints on vertically- and horizontally-adjacent tiles.

In the rest of this section we will illustrate this technique
by constructing the formula ΦT for the fragment AO.

3.3. Definition of u-chain and Id-chain

Given an interval [a, b], we define G[a,b] as the set of in-
tervals that contains the interval [a, b] and all the intervals
starting after a and ending after b. Moreover, we define the
operator [G] (always in the future) as follows:

[G]p ≡ p ∧ [O]p ∧ [A]p ∧ [A][A]p.

[G]p holds over the interval [a, b] iff p holds over each in-
terval in G[a,b].

Let [a, b] be the interval over which we evaluate formulas
(we may think of it as the interval to the right of which the
u-chain starts). From now on, when we talk about an inter-
val or a set of intervals, we will implicitly refer to intervals
belonging to G[a,b].

We start the encoding by constructing a u-chain of unit
intervals:

¬u ∧ 〈A〉u ∧ 〈O〉> ∧ ¬〈O〉u (1)
[G](u → 〈A〉u) ∧ [G](u → 〈O〉>) (2)

[G](〈A〉u → ¬〈O〉u) (3)
[G]((u ↔ ∗ ∨ tile) ∧ (tile → ¬∗)) (4)

and a Id-chain that encodes the levels of the octant:

[G](〈A〉∗ ↔ 〈A〉Id) (5)
[G](Id → 〈A〉∗) (6)

[G](〈A〉∗ → ¬〈O〉Id) (7)

¬Id ∧ ¬〈O〉Id ∧ 〈A〉(∗ ∧ 〈A〉(tile∧
〈A〉 ∗ ∧[G](∗ → 〈A〉(tile ∧ 〈A〉tile)))) (8)

(1) ∧ . . . ∧ (8) (9)

Lemma 1. If M, [a, b] ° (9), then there exists a sequence
of points b = b01 < b11 < . . . < bk1

1 = b02 < b12 < . . . <
bk2
2 = b03 < . . . such that for each j > 0 we have:

a) M, [bij , b
i+1
j ] ° u for each 0 ≤ i < kj and no other

interval [c, d] ∈ G[a,b] satisfies u, unless c > bij for each
i, j > 0;

b) M, [b0j , b
kj

j ] ° Id and no other interval [c, d] ∈ G[a,b]

satisfies Id, unless c > bij for each i, j > 0;
c) M, [b0j , b

1
j ] ° ∗, and no other interval [c, d] ∈ G[a,b]

satisfies ∗, unless c > bij for each i, j > 0;
d) M, [bij , b

i+1
j ] ° tile for each 1 ≤ i < kj , and no other

interval [c, d] ∈ G[a,b] satisfies tile, unless c > bij for
each i, j > 0;

e) k1 = 2 and kl > 2 for each l > 1.

Proof. a) The existence of such a sequence is guaranteed
by (1) and the left conjunct of (2). Now, suppose, for
contradiction, that there exists an interval [c, d] ∈ G[a,b]



satisfying u such that c ≤ bij for some i, j > 0, and
[c, d] 6= [bij , b

i+1
j ] for each i ≥ 0 and for each j > 0. We

distinguish the following cases:
• if [c, d] = [a, b] or a < c < b < d, then we have a

contradiction with (1);
• if c = bij for some i ≥ 0, j > 0, then we have
d 6= bi+1

j . By (1), there exists a point a′ such that
a < a′ < b. If d < bi+1

j , [a′, d] meets the u-
interval starting at d, by the first conjunct of (2),
and overlaps the u-interval [bij , b

i+1
j ], contradicting

(3). Otherwise, if d > bi+1
j , then [a′, bi+1

j ] meets
the u-interval starting at bi+1

j and overlaps the u-
interval [c, d], contradicting (3);

• if c 6= bij for each i ≥ 0, j > 0, then we have
bij < c < bi+1

j for some i ≥ 0 and j > 0. In
this case, the interval [a′, c] meets the u-interval
starting at c and overlaps the u-interval [bij , b

i+1
j ],

contradicting (3).
b) The existence of a Id-chain is guaranteed by (5), (6), and

(8). Now suppose, for contradiction, that there exists
an interval [c, d] ∈ G[a,b] satisfying Id such that c ≤ bij

for some i, j > 0, and [c, d] 6= [b0j , b
kj

j ] for each j >
0. Notice that c and d start a ∗-interval by (5) and (6),
respectively. We must consider the following cases:
• if [c, d] = [a, b] or a < c < b < d, then we have a

contradiction with (8);
• if c = b0j for some j > 0, then we have d 6= b0j+1.

If d < b0j+1, [a′, d] meets the ∗-interval starting
at d and overlaps the Id-interval [b0j , b

0
j+1], contra-

dicting (7). Otherwise, if d > b0j+1, then [a′, b0j+1]
meets the ∗-interval starting at b0j+1 and overlaps
the Id-interval [c, d], contradicting (7);

• if c 6= b0j for each j > 0, then we have bij < c <

bi+1
j for some i ≥ 0 and j > 0. In this case,

the interval [a′, c] meets the ∗-interval starting at c
and overlaps the Id-interval [b0j , b

0
j+1], contradict-

ing (7).
c) The first u-interval of each Id-interval ([b0j , b

1
j ]) is a ∗-

interval by (5). Now suppose, for contradiction, that
there exists an interval [c, d] ∈ G[a,b] satisfying ∗ such
that c ≤ bij for some i, j > 0, and [c, d] 6= [b0j , b

1
j ]

for each j > 0. By point a) of this lemma and by
(4), we have that [c, d] = [bij , b

i+1
j ] for some i, j > 0.

Since the interval [a′, c] meets the ∗-interval [bij , b
i+1
j ]

and overlaps the Id-interval [b0j , b
kj

j ], we have a contra-
diction with (7).

d) By point c) of this lemma and (4), we can conclude that
for each i, j > 0, [bij , b

i+1
j ] satisfies tile. Moreover, by

point c), (4), and point a), we have that no other interval
[c, d] ∈ Ga,b is a tile-interval, unless c > bij for each
i, j > 0.

e) k1 = 2 and kl > 2 for each l > 1 immediately follows
from (8).

3.4. The above-neighbor relation

We focus now on the ‘above-neighbor’ relation, whose
encoding is shown in Fig. 2. Intuitively, the above-neighbor
relation connects each tile-interval with its vertical neighbor
in the octant (e.g., t2,2 with t2,3 in Fig. 2).

We distinguish between backward and forward Id-in-
tervals, which alternate, by labeling each u-interval either
with b, if it belongs to a backward Id-interval, or with f, if it
belongs to a forward one (formulas from (10) to (12)). Intu-
itively, we have that the tile-intervals are placed in ascend-
ing order in forward Id-intervals and in descending order in
backward Id-intervals. In particular, this means that the left-
most tile-interval of a backward Id-interval represents the
last tile of that level (and not the first one) in the octant
plane. Let α, β ∈ {b, f}, with α 6= β:

〈A〉b ∧ [G]((u ↔ b ∨ f) ∧ (b → ¬f)) (10)
[G](u ∧ α ∧ ¬〈A〉∗ → 〈A〉α) (11)
[G](u ∧ α ∧ 〈A〉∗ → 〈A〉β) (12)

(10) ∧ . . . ∧ (12) (13)

Lemma 2. If M, [a, b] ° (9) ∧ (13), then there exists a
sequence of points like that defined in Lemma 1 such that
M, [bij , b

i+1
j ] ° b if and only j is an odd number and

M, [bij , b
i+1
j ] ° f if and only j is an even number. Further-

more, we have that no other interval [c, d] ∈ G[a,b] satisfies
b or f, unless c > bij for each i, j > 0.

Because of the alternation between forward and back-
ward Id-intervals, the encoding of the above-neighbor rela-
tion is not simple. For example, in Fig. 2b, consider the 3rd
and the 4th Id’s: the 1st tile of the 3rd Id (t3,3) is connected
with the next-to-last tile of the 4th Id (t3,4), the 2nd tile of
the 3rd Id (t2,3) is connected with the third from last tile of
the 4th Id (t2,4), and so on. Notice that, in the forward (resp.,
backward) Id-intervals, the last (resp., first) tile-interval has
no tile-intervals connected above with it, to constrain each
level of the octant to have exactly one tile more than the
previous one (these tile-intervals are labeled with last).

We define the above-neighbor relation as follows. If
[bij , b

i+1
j ] is a tile-interval belonging to a forward (resp.,

backward) Id-interval, then we say that it is above-
connected with the tile-interval [bk(j+1)−i

j+1 , b
k(j+1)−i+1

j+1 ]

(resp., [bk(j+1)−i−1

j+1 , b
k(j+1)−i

j+1 ]). We capture this situa-

tion by labelling with up rel the interval [bi+1
j , b

k(j+1)−i

j+1 ]

(resp., [bi+1
j , b

k(j+1)−i−1

j+1 ]). Moreover, we distinguish be-
tween up rel-intervals starting from a forward and a back-
ward Id-interval and, for each one of these cases, be-
tween those starting from an odd and an even tile-interval.



a) Cartesian representation

b) Interval representation

ti,j = i-th tile of the j-th Id-interval
Idi = i-th Id-interval
b/f = backward/forward Id-intervalr = up relb-intervalb = up relf -interval

t1,1

t1,2 t2,2

t1,3 t2,3 t3,3

t1,4 t2,4 t3,4 t4,4

. . . . . . . . . . . . . . .

1st level (Id1)

2nd level (Id2)

3rd level (Id3)

4th level (Id4)

. . .

r6
b6
r6

b6
r6 r6

∗ t1,1 ∗ t1,2 t2,2 ∗ t3,3 t2,3 t1,3 ∗ t1,4 t2,4 t3,4 t4,4 ∗last last last last

p pId1, b p pId2, f p pId3, b p pId4, f

r r

b bb b

r rr rr r

Figure 2. The above-neighbor relation encoded
in the fragment AO.

To this end, we use a new propositional letter, namely,
up relbo (resp., up relbe , up relfo, up relfe) to label up rel-
intervals starting from an odd tile-interval of a backward
Id-interval (resp., even tile-interval/backward Id-interval,
odd/forward, even/forward). Moreover, to ease the read-
ing of the formulas, we group up relbo and up relbe in up relb

(up relb ↔ up relbo ⊕ up relbe ), and similarly for up relf .
Finally, up rel is exactly one among up relb and up relf

(up rel ↔ up relb ⊕ up relf ). From the above conditions,
it follows that the up rel-intervals between any pair of con-
secutive Id-intervals are placed the one strictly contained in
the other.

Let α, β ∈ {b, f} and γ, δ ∈ {o, e}, with α 6= β and
γ 6= δ:

[G](up rel ↔ up relb ∨ up relf) (14)
[G](up relα ↔ up relαo ∨ up relαe ) (15)

[G](〈A〉up relαγ → ¬〈A〉up relαδ ∧ ¬〈A〉up relβ) (16)

[G](up relα → ¬〈O〉up relα) (17)

[G](up relαγ → 〈A〉(tile ∧ 〈A〉up relβγ )) (18)

(14) ∧ . . . ∧ (18) (19)

Lemma 3. If M, [a, b] ° (9)∧(13)∧(19), then there exists
a sequence of points like that defined in Lemma 1 such that,
for each i ≥ 0, j > 0, the following properties hold:

a) [bij , b
i′
j′ ] satisfies up rel if and only if it satisfies exactly

one between up relα and up relβ and [bij , b
i′
j′ ] satisfies

up relb (resp., up relf ) if and only if it satisfies exactly
one between up relbo and up relbe (resp., between up relfo
and up relfe);

b) for each α, β ∈ {b, f} and γ, δ ∈ {o, e}, if [bij , b
i′
j′ ] sat-

isfies up relαγ , then there is no other interval starting at
bij satisfying up relβδ such that up relαγ 6= up relβδ ;

c) each up relb-interval (resp., up relf -interval) does not
overlap any other up relb-interval (resp., up relf -inter-
val);

d) if [bij , b
i′
j′ ] satisfies up relbo (resp., up relbe , up relfo,

up relfe), then [bi
′

j′ , b
i′+1
j′ ] satisfies tile and there exists

a up relfo-interval (resp., up relfe-interval, up relbo-inter-
val, up relbe -interval) starting at bi

′+1
j′ .

Now we constrain each tile-interval, except for the one
representing the last tile of some level, to have a tile-interval
above-connected with it. To this end, we label the tile-
intervals representing the last tile of some level in the octant
with the new propositional letter last (formulas from (28) to
(30)). Next, we force all and only tile-intervals not labelled
with last to have a tile-interval above-connected with them
(formulas from (31) to (34)):

¬up rel ∧ ¬〈O〉up rel ∧ ¬〈A〉up rel (20)
[G](tile → 〈A〉up rel) (21)

[G](〈A〉up rel → 〈A〉u) (22)
[G](u ∧ 〈A〉up rel → tile) (23)

[G](α→ [A](up rel → up relα)) (24)
[G](up relα → 〈A〉β) (25)

[G](〈O〉∗ → ¬(〈O〉up relb ∧ 〈O〉up relf)) (26)
[G](〈A〉up relαγ ∧ 〈A〉tile → 〈A〉(tile ∧ 〈A〉up relαδ ))

(27)

[G](last → tile) (28)
[G]((∗ ∧ b → 〈A〉last) ∧ (f ∧ 〈A〉∗ → last)) (29)
[G]((last ∧ f → 〈A〉∗) ∧ (b ∧ 〈A〉last → ∗)) (30)

[G](∗ ∧ f → 〈A〉(tile ∧ 〈A〉(up rel ∧ 〈A〉(tile ∧ 〈A〉∗))))
(31)

[G](last ∧ b → 〈A〉(up rel ∧ 〈A〉(tile∧
〈A〉(tile ∧ 〈A〉∗)))) (32)

[G](〈O〉(u ∧ 〈A〉up relαγ ) → [A](〈O〉up relαγ ∧ 〈O〉
(u ∧ 〈A〉(u ∧ ¬last ∧ 〈A〉up relβδ )) → 〈O〉up relαδ ))

(33)

[G](up rel → ¬〈A〉last) (34)
(20) ∧ . . . ∧ (34) (35)

Lemma 4. If M, [a, b] ° (9)∧(13)∧(19)∧(35), then there
exists a sequence of points like that defined in Lemma 1 such



that the following properties hold:
a) for each up rel-interval [c, d], there exist c′, d′ such that

[c′, c] and [d, d′] are tile-intervals and if [c, d] satisfies
up relb (resp., up relf ), then [c′, c] satisfies b (resp., f)
and [d, d′] satisfies f (resp., b);

b) (strict alternation property) for each tile-interval [bij ,
bi+1
j ], with i < kj − 1, such that there exists

a up relbo-interval (resp., up relbe -interval, up relfo-in-
terval, up relfe-interval) starting at bi+1

j , there ex-
ists a up relbe -interval (resp., up relbo-interval, up relfe-
interval, up relfo-interval) starting at bi+2

j ;
c) for every tile-interval [bij , b

i+1
j ] satisfying last, there is

no up rel-interval ending at bij;
d) for each up rel-interval [bij , b

i′
j′ ], with 1 < i ≤ kj , we

have that j′ = j + 1.

Proof. a) Let [c, d] be a up rel-interval. By (18), we have
that there exists d′ such that [d, d′] is a tile-interval and
by (22), (23), and Lemma 1, there exists c′ such that
[c′, c] is a tile-interval. Now, suppose that [c, d] satisfies
up relb (the other case is symmetric) and that [c′, c] sat-
isfies f. Then, (24) is contradicted. Similarly, if [d, d′]
satisfies b, then (25) is contradicted.

b) Straightforward, by (27);
c) Straightforward, by (34);
d) Let [bij , b

i′
j′ ] be a up rel-interval, with 1 < i ≤ kj , and

suppose, for contradiction, that j′ 6= j+1. Suppose that
[bij , b

i′
j′ ] is a up relb-interval (the other case is symmet-

ric). By point a) of this lemma, we have that [bi−1
j , bij ]

satisfies b and that [bi
′

j′ , b
i′+1
j′ ] satisfies f. Two cases are

possible:
(i) if j′ = j, then [bi−1

j , bij ] and [bi
′

j′ , b
i′+1
j′ ] belong to

the same Id-interval. By Lemma 2, they must be
both labelled with b or f, against the hypothesis;

(ii) if j′ > j + 1, then consider a tile-interval [bhj+1,

bh+1
j+1 ] belonging to the (j + 1)-th Id-interval. By

Lemma 2, we have that [bhj+1, b
h+1
j+1 ] satisfies f

(since [bi−1
j , bij ] satisfies b) and, by (21) and (24),

we have that there is a up relf -interval starting
at bh+1

j+1 and ending at some point bh
′

j′′ for some
j′′ > j + 1 (by point (i)). Consider the ∗-interval
[b0j+2, b

1
j+2]. By the right conjunct of (2), there

exists a point b′ such that b0j+2 < b′ < b1j+2.
Thus, the interval [b, b′] overlaps the ∗-interval
[b0j+2, b

1
j+2], the up relf -interval [bh+1

j+1 , b
h′
j′′ ] and

the up relb-interval [bij , b
i′
j′ ], contradicting (26).

Hence, the only possibility is j′ = j + 1.

Lemma 5. Each tile-interval [bij , b
i+1
j ] is above-connected

with exactly one tile-interval and if [bij , b
i+1
j ] does not sat-

isfy last, then there exists exactly one tile-interval which is

above-connected with it.

Proof. First of all, we observe that each tile-interval is
above-connected with at least one tile, by (21) and by
Lemma 4, item (a). Now suppose, for contradiction, that
there exists a tile-interval [bij , b

i+1
j ] not satisfying last and

such that there is no tile-interval above-connected with it.
If it is the rightmost interval of the j-th Id-interval not sat-
isfying last (base case) and it satisfies f (resp., b), then we
have that i = kj − 2 (resp., i = kj − 1) and (32) (resp.,
(31)) guarantees the existence of a up rel-interval ending at
bij , leading to a contradiction. Now, suppose that there is
a up rel-interval ending at bi+1

j and starting at some point
bi
′

j−1 (inductive case). Without loss of generality, suppose
that [bi

′
j−1, b

i+1
j ] satisfies up relfo. Then, by Lemma 3, item

(d), there exists a up relbo-interval starting at bi+2
j and, by

the strict alternation property (Lemma 4, item (b)), there
exists a up relbe -interval starting at bi+1

j . Let c be a point

such that bi
′−1

j−1 < c < bi
′

j−1 (the existence of such a point is
guaranteed by the right conjunct of (2)). Similarly, let d be
a point such that bi−1

j < d < bij . We show that, by apply-
ing (33) to any interval ending in c and starting before than
bi
′−1

j−1 , say [c′, c], we get a contradiction. Indeed, [c′, c] satis-
fies 〈O〉(u ∧ 〈A〉up relfo) and it meets [c, d], which satisfies
the following formulas:
• 〈O〉up relfo: [bi

′
j−1, b

i+1
j ] satisfies up relfo;

• 〈O〉(u ∧ 〈A〉(u ∧ ¬last ∧ 〈A〉up relbe)): the interval
[bi−1

j , bij ] satisfies u and meets the u-interval [bij , b
i+1
j ],

which does not satisfy last (by hypothesis) and whose
right endpoint starts a up relbe -interval.

We show that [c, d] does not satisfy the formula 〈O〉up relfe,
getting a contradiction with (33). Suppose that there exists
an interval [e, f ] satisfying up relfe and such that c < e <
d < f . We distinguish the following cases:
• if f > bi+1

j and e > bi
′

j−1, then the up relfo-interval
[bi

′
j−1, b

i+1
j ] overlaps the up relfe-interval [e, f ], contra-

dicting Lemma 3, item (c);
• if f > bi+1

j and e = bi
′

j−1, then there are a up relfo-
and a up relfe-interval starting at bi

′
j−1, contradicting

Lemma 3, item (b);
• if f = bi+1

j , then there are a up relfo- and a up relfe-
interval ending at bi+1

j and, by Lemma 3, item (d),
there are a up relbo- and a up relbe -interval starting at
bi+2
j , contradicting Lemma 3, item (b);

• finally, if f = bij , we have a contradiction with the
hypothesis.

Thus, there exists no such an interval, contradicting (33).
This proves that each tile-interval is above-connected

with at least one tile-interval and if it does not satisfy last,
then there exists at least one tile-interval above-connected
with it. Now, we show that such connections are unique.



Suppose, for contradiction, that for some [bij , b
i′
j+1] and

[bij , b
i′′
j+1], with bi

′
j+1 < bi

′′
j+1 (the case bi

′
j+1 > bi

′′
j+1 is

symmetric), we have that both [bij , b
i′
j+1] and [bij , b

i′′
j+1] are

up rel-intervals. By Lemma 3 and Lemma 4, we have
that they both satisfy the same propositional letter among
up relfo, up relfe, up relbo and up relbe , say up relfo (the other
cases are symmetric). Then both bi

′+1
j+1 and bi

′′+1
j+1 start a

up relbo-interval by Lemma 3, item (d). By the strict alter-
nation property, a up relbe -interval starts at the point bi

′+2
j+1 .

Since [bi
′+1

j+1 , b
i′+2
j+1 ] is not the rightmost tile of the (j+1)-th

Id-interval, then, as we have already shown, there exists a
point c such that [c, bi

′+1
j+1 ] is a up rel-interval. By Lemma 3,

items (d) and (b), we have that [c, bi
′+1

j+1 ] is a up relfe-interval.
We show that the existence of such an interval leads to a
contradiction:
• if c < bij , then the up relfe-interval [c, bi

′+1
j+1 ] overlaps

the up relfo-interval [bij , b
i′′
j+1], contradicting Lemma 3,

item (c);
• if c = bij , then bij starts both a up relfo- and a up relfe-

interval, contradicting Lemma 3, item (b);
• if c > bij , then the up relfo-interval [bij , b

i′
j+1] overlaps

the up relfe-interval [c, bi
′+1

j+1 ], contradicting Lemma 3,
item (c).

In a similar way, we can prove that it cannot happen that
two distinct up rel-intervals end at the same point.

3.5. The right-neighbor relation

Intuitively, the right-neighbor relation connects each tile-
interval with its horizontal neighbor in the octant, if any
(e.g., t2,3 with t3,3 in Fig. 2).

Again, we must distinguish between forward and back-
ward Id-intervals: a tile-interval belonging to a forward
(resp., backward) Id-interval is right connected with the tile-
interval immediately on its right (resp., left), if any. For ex-
ample, in Fig. 2b, the 2nd tile-interval of the 4th Id-interval
(t2,4) is right connected with the tile-interval immediately
on its right (t3,4), since the 4th Id-interval is a forward one,
while the 2nd tile-interval of the 3rd Id-interval (t2,3) is
right connected with the tile-interval immediately on its left
(t3,3), since the 3rd Id-interval is a backward one.

As a consequence, we define the right-neighbor relation
as follows. If [bij , b

i+1
j ] is a tile-interval belonging to a for-

ward (resp., backward) Id-interval, with i 6= kj − 1 (resp.,
i 6= 1), then we say that it is right connected with the tile-
interval [bi+1

j , bi+2
j ] (resp., [bi−1

j , bij ]).

Lemma 6 (Commutativity property). If M, [a, b] ° (9) ∧
(13) ∧ (19) ∧ (35), then there exists a sequence of points
like that defined in Lemma 1 such that the following com-
mutativity property holds: given two tile-intervals [c, d]
and [e, f ], if there exists a tile-interval [d1, e1], such that

[c, d] is right connected with [d1, e1] and [d1, e1] is above-
connected with [e, f ], then there exists also a tile-interval
[d2, e2] such that [c, d] is above-connected with [d2, e2] and
[d2, e2] is right connected with [e, f ].

3.6. Tiling the plane

The following formulas constrain each tile-interval (and
no other interval) to be tiled by exactly one tile ((36)
and (37)) and constrain the tiles that are right or above-
connected to respect the color constraints (from (38) to
(40)):

[G]((
k∨

i=1

ti) ↔ tile) (36)

[G]
k∧

i,j=1,i6=j

¬(ti ∧ tj) (37)

[G](tile →
∨

up(ti)=down(tj)

(ti ∧ 〈A〉(up rel ∧ 〈A〉tj))) (38)

[G](tile →
∨

right(ti)=left(tj)

(ti ∧ f ∧ 〈A〉tile ∧ 〈A〉tj)) (39)

[G](tile →
∨

left(ti)=right(tj)

(ti ∧ b ∧ 〈A〉tile ∧ 〈A〉tj)) (40)

(36) ∧ . . . ∧ (40) (41)

Given the set of tiles T = {t1, t2, . . . , tk}, let ΦT be the
formula:

(9) ∧ (13) ∧ (19) ∧ (35) ∧ (41)

Lemma 7. Given any finite set of tile types T = {t1,
t2, . . . , tk}, the formula ΦT is satisfiable if and only if T
can tile the second octant O.

Since the above construction can be carried out on any
linear ordering containing an infinite ascending chain of
points, such as, for instance, N, Z, Q, and R, the follow-
ing theorem holds.

Theorem 1. The satisfiability problem for the logic AO is
undecidable over any class of linear orders that contains at
least one linear order with an infinite ascending sequence.

3.7. Undecidability of AO,AO, and A O

To prove the undecidability of the logic AO we can ex-
ploit the same construction we use for AO, provided that
we change the formulas containing the operators 〈O〉 or [O]
as follows. In formulas (1), (2), (17), and (26), we replace
all occurrences of the operator 〈O〉 with 〈O〉. Besides, we



replace formulas (3), (7), and (33) by the following ones:

[G](u → ¬〈O〉〈A〉u) (42)

[G](Id → ¬〈O〉〈A〉∗) (43)

[G](tile ∧ ¬last → [O](〈O〉u ∧ ¬〈O〉Id → 〈O〉up rel))
(44)

Theorem 2. The satisfiability problem for the logic AO is
undecidable over any class of linear orders that contains at
least one linear order with an infinite ascending sequence.

The previous reductions can easily be extended to the
logics AO and A O, provided that the class of models con-
tains at least one linear order with an infinite descending
sequence of points, such as, for instance, Z≤0, Z, Q, and R.

Theorem 3. The satisfiability problem for the logics AO
and A O is undecidable over any class of linear orders that
contains at least one linear order with an infinite descend-
ing sequence.

4. Other undecidable logics

Using analogous constructions we have proved the un-
decidability of the logics B∗O∗, E∗O∗, and D∗O∗. The ob-
tained results are summarized by the following theorem.

Theorem 4. The satisfiability problem for the logics BO,
BO, EO, EO, DO, and DO (resp., BO, B O, EO, E O, DO,
and D O) is undecidable over any class of linear orders that
contains at least one linear order with an infinite ascending
(resp., descending) sequence.

We have also constructed a similar reduction for the logic
OO interpreted on discrete linear orders, as formally stated
by the following theorem.

Theorem 5. The satisfiability problem for the logic OO is
undecidable over any class of discrete linear orders that
contains at least one linear order with an infinite ascending
or descending sequence.

The details of these constructions will be included in a
forthcoming extended version.

5. Conclusions and future work

In this paper, we have shown that most extensions of the
logics O and O are undecidable. The undecidability proof
for the various logics has essentially the same structure,
based on a suitable reduction from the octant tiling prob-
lem. The only extensions for which the decision problem
remains open are those of the form L∗O∗. The most inter-
esting related open problem, however, is that concerning the

decidability status of the logic O (and respectively O). They
are the only one-modality fragments of HS for which we do
not have yet any positive decidability result on important
classes of linear orders.
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