Expressiveness, decidability, and undecidability of Interval Temporal Logic

ITL - Beyond the end of the light

Ph.D. Defence

Dario Della Monica

supervisor: A. Montanari
co-supervisors: G. Sciavicco and V. Goranko

Udine - April 1, 2011
D. Della Monica

At the beginning...

At the beginning, it was the darkness... Then, logicians made the light, they became curious, and moved toward the darkness...
... as close as they could
D. Della Monica

Outline

Introduction
The Halpern and Shoham's logic HS

Expressiveness of HS
The satisfiability problem for HS Undecidability

Classical extensions
Metric extensions
Hybrid extensions
First-order extensions

Summary and perspectives
D. Della Monica

Outline

Introduction
The Halpern and Shoham's logic HS

Expressiveness of HS
The satisfiability problem for HS Undecidability

Classical extensions
Metric extensions
Hybrid extensions
First-order extensions

Summary and perspectives
D. Della Monica

Interval-based temporal reasoning: origins and applications

Interval-based temporal reasoning: reasoning about time, where the primary concept is 'time interval', rather than 'time instant'.

Origins:

- Philosophy, in particular philosophy and ontology of time.
- Linguistics: analysis of progressive tenses, semantics of natural languages.
- Artificial intelligence: temporal knowledge representation, temporal planning, theory of events, etc.
- Computer science: specification and design of hardware components, concurrent real-time processes, temporal databases, etc.

Motivations

Some properties are intrinsically related to a time interval instead of a (set of) time instant, each of which has not duration.
D. Della Monica

Motivations

Some properties are intrinsically related to a time interval instead of a (set of) time instant, each of which has not duration.

Think about the event: "traveling from A to B ":
D. Della Monica

Motivations

Some properties are intrinsically related to a time interval instead of a (set of) time instant, each of which has not duration.

Think about the event: "traveling from A to B ":

- it is true over a precise interval of time
- it is not true over any other interval (starting/ending interval, inner interval, ecc.)

Motivations

Some properties are intrinsically related to a time interval instead of a (set of) time instant, each of which has not duration.

Think about the event: "traveling from A to B ":

- it is true over a precise interval of time
- it is not true over any other interval (starting/ending interval, inner interval, ecc.)
Several philosophical and logical paradoxes disappear:

Motivations

Some properties are intrinsically related to a time interval instead of a (set of) time instant, each of which has not duration.

Think about the event: "traveling from A to B ":

- it is true over a precise interval of time
- it is not true over any other interval (starting/ending interval, inner interval, ecc.)
Several philosophical and logical paradoxes disappear:
- Zeno's flying arrow paradox ("if at each instant the flying arrow stands still, how is movement possible?')
- The dividing instant dilemma ("if the light is on and it is turned off, what is its state at the instant between the two events?")

Motivations

Some properties are intrinsically related to a time interval instead of a (set of) time instant, each of which has not duration.

Think about the event: "traveling from A to B ":

- it is true over a precise interval of time
- it is not true over any other interval (starting/ending interval, inner interval, ecc.)
Several philosophical and logical paradoxes disappear:
- Zeno's flying arrow paradox ("if at each instant the flying arrow stands still, how is movement possible?')
- The dividing instant dilemma ("if the light is on and it is turned off, what is its state at the instant between the two events?")

The truth of a formula over an interval does not necessarily depend on its truth over subintervals.

Interval temporal reasoning and temporal ontologies

Interval-based temporal reasoning is subject to the same ontological dilemmas regarding the nature of Time as the instant-based temporal reasoning:
D. Della Monica

Interval temporal reasoning and temporal ontologies

Interval-based temporal reasoning is subject to the same ontological dilemmas regarding the nature of Time as the instant-based temporal reasoning:

- linear or branching?

Interval temporal reasoning and temporal ontologies

Interval-based temporal reasoning is subject to the same ontological dilemmas regarding the nature of Time as the instant-based temporal reasoning:

- linear or branching?
- discrete or dense?
D. Della Monica

Interval temporal reasoning and temporal ontologies

Interval-based temporal reasoning is subject to the same ontological dilemmas regarding the nature of Time as the instant-based temporal reasoning:

- linear or branching?
- discrete or dense?
- with or without beginning/end?, etc.

Interval temporal reasoning and temporal ontologies

Interval-based temporal reasoning is subject to the same ontological dilemmas regarding the nature of Time as the instant-based temporal reasoning:

- linear or branching?
- discrete or dense?
- with or without beginning/end?, etc.

New issues arise regarding the nature of the intervals:
D. Della Monica

Interval temporal reasoning and temporal ontologies

Interval-based temporal reasoning is subject to the same ontological dilemmas regarding the nature of Time as the instant-based temporal reasoning:

- linear or branching?
- discrete or dense?
- with or without beginning/end?, etc.

New issues arise regarding the nature of the intervals:

- Can intervals be unbounded?

Interval temporal reasoning and temporal ontologies

Interval-based temporal reasoning is subject to the same ontological dilemmas regarding the nature of Time as the instant-based temporal reasoning:

- linear or branching?
- discrete or dense?
- with or without beginning/end?, etc.

New issues arise regarding the nature of the intervals:

- Can intervals be unbounded?
- Are intervals with coinciding endpoints admissible or not?

Intervals and interval structures

$\mathbb{D}=\langle D,<\rangle$: partially ordered set.
An interval in \mathbb{D} : ordered pair $[a, b]$, where $a, b \in D$ and $a \leq b$.

Intervals and interval structures

$\mathbb{D}=\langle D,<\rangle$: partially ordered set.
An interval in \mathbb{D} : ordered pair $[a, b]$, where $a, b \in D$ and $a \leq b$.
If $a<b$ then $[a, b]$ is a strict interval; $[a, a]$ is a point interval.
D. Della Monica

Intervals and interval structures

$\mathbb{D}=\langle D,<\rangle$: partially ordered set.
An interval in \mathbb{D} : ordered pair $[a, b]$, where $a, b \in D$ and $a \leq b$.
If $a<b$ then $[a, b]$ is a strict interval; $[a, a]$ is a point interval.
$\mathbb{I}(\mathbb{D})$: the interval structure over \mathbb{D}, consisting of the set of all intervals over \mathbb{D}.

Intervals and interval structures

$\mathbb{D}=\langle D,<\rangle$: partially ordered set.
An interval in \mathbb{D} : ordered pair $[a, b]$, where $a, b \in D$ and $a \leq b$.
If $a<b$ then $[a, b]$ is a strict interval; $[a, a]$ is a point interval.
$\mathbb{I}(\mathbb{D})$: the interval structure over \mathbb{D}, consisting of the set of all intervals over \mathbb{D}.

In this talk I will restrict attention to linear interval structures, i.e. interval structures over linear orders.

Intervals and interval structures

$\mathbb{D}=\langle D,<\rangle$: partially ordered set.
An interval in \mathbb{D} : ordered pair $[a, b]$, where $a, b \in D$ and $a \leq b$.
If $a<b$ then $[a, b]$ is a strict interval; $[a, a]$ is a point interval.
$\mathbb{I}(\mathbb{D})$: the interval structure over \mathbb{D}, consisting of the set of all intervals over \mathbb{D}.

In this talk I will restrict attention to linear interval structures, i.e. interval structures over linear orders.

In particular, standard interval structures on $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$, and \mathbb{R} with their usual orders.

Binary interval relations on linear orders

围 J. F. Allen
Maintaining knowledge about temporal intervals.
Communications of the ACM, volume 26(11), pages 832-843, 1983.
D. Della Monica

Binary interval relations on linear orders

围 J. F. Allen
Maintaining knowledge about temporal intervals.
Communications of the ACM, volume 26(11), pages 832-843, 1983.
D. Della Monica

Binary interval relations on linear orders

围 J. F. Allen
Maintaining knowledge about temporal intervals.
Communications of the ACM, volume 26(11), pages 832-843, 1983.
D. Della Monica

Binary interval relations on linear orders

击 J. F. Allen
Maintaining knowledge about temporal intervals.
Communications of the ACM, volume 26(11), pages 832-843, 1983.
D. Della Monica

Binary interval relations on linear orders

击 J. F. Allen
Maintaining knowledge about temporal intervals.
Communications of the ACM, volume 26(11), pages 832-843, 1983.
D. Della Monica

Binary interval relations on linear orders

B
J. F. Allen

Maintaining knowledge about temporal intervals.
Communications of the ACM, volume 26(11), pages 832-843, 1983.
D. Della Monica

Binary interval relations on linear orders

Later
After (right neighbour)
Overlaps (to right)
Ends
During (subinterval)
BeginsJ. F. Allen

Maintaining knowledge about temporal intervals.
Communications of the ACM, volume 26(11), pages 832-843, 1983.
D. Della Monica

Binary interval relations on linear orders

Later
After (right neighbour)
Overlaps (to right)
Ends
During (subinterval)
Begins

6 relations + their inverses + equality $=13$ Allen's relations.

早
J. F. Allen

Maintaining knowledge about temporal intervals.
Communications of the ACM, volume 26(11), pages 832-843, 1983.
D. Della Monica

Outline

Introduction
The Halpern and Shoham's logic HS

Expressiveness of HS
The satisfiability problem for HS Undecidability

Classical extensions
Metric extensions
Hybrid extensions
First-order extensions

Summary and perspectives
D. Della Monica

Halpern-Shoham's modal logic of interval relations
Every interval relation gives rise to a modal operator over relational interval structures.
D. Della Monica

Halpern-Shoham's modal logic of interval relations

Every interval relation gives rise to a modal operator over relational interval structures. Thus, a multimodal logic arises:
\square J. Halpern and Y. Shoham

A propositional modal logic of time intervals.
Journal of the ACM, volume 38(4), pages 935-962, 1991.

Halpern-Shoham's modal logic of interval relations

Every interval relation gives rise to a modal operator over relational interval structures. Thus, a multimodal logic arises:

國 J. Halpern and Y. Shoham
A propositional modal logic of time intervals.
Journal of the ACM, volume 38(4), pages 935-962, 1991. non-strict semantics:
All modalities are definable in terms

$$
\begin{gathered}
\text { of }\langle\mathrm{B}\rangle,\langle\mathrm{E}\rangle,\langle\overline{\mathrm{B}}\rangle,\langle\overline{\mathrm{E}}\rangle \\
\mathrm{HS} \equiv \mathrm{BE} \overline{\mathrm{BE}}
\end{gathered}
$$

Halpern-Shoham's modal logic of interval relations

Every interval relation gives rise to a modal operator over relational interval structures. Thus, a multimodal logic arises:
J. Halpern and Y. Shoham

A propositional modal logic of time intervals.
Journal of the ACM, volume 38(4), pages 935-962, 1991. non-strict semantics:

All modalities are definable in terms

$$
\begin{gathered}
\text { of }\langle\mathrm{B}\rangle,\langle\mathrm{E}\rangle,\langle\overline{\mathrm{B}}\rangle,\langle\overline{\mathrm{E}}\rangle \\
\mathrm{HS} \equiv \mathrm{BE} \overline{\mathrm{BE}}
\end{gathered}
$$

D. Della Monica

Halpern-Shoham's modal logic of interval relations

Every interval relation gives rise to a modal operator over relational interval structures. Thus, a multimodal logic arises:

I J. Halpern and Y. Shoham
A propositional modal logic of time intervals.
Journal of the ACM, volume 38(4), pages 935-962, 1991. non-strict semantics: \mid strict semantics:

All modalities are definable in terms

$$
\begin{gathered}
\text { of }\langle\mathrm{B}\rangle,\langle\mathrm{E}\rangle,\langle\overline{\mathrm{B}}\rangle,\langle\overline{\mathrm{E}}\rangle \\
\mathrm{HS} \equiv \mathrm{BE} \overline{\mathrm{BE}}
\end{gathered}
$$

Also needed additional modalities
$H S \equiv B E \overline{B E}+A \bar{A}$

D. Della Monica

Halpern-Shoham's modal logic of interval relations

Every interval relation gives rise to a modal operator over relational interval structures. Thus, a multimodal logic arises:

I J. Halpern and Y. Shoham
A propositional modal logic of time intervals.
Journal of the ACM, volume 38(4), pages 935-962, 1991. non-strict semantics: \mid strict semantics:
All modalities are definable in terms

$$
\begin{gathered}
\text { of }\langle\mathrm{B}\rangle,\langle\mathrm{E}\rangle,\langle\overline{\mathrm{B}}\rangle,\langle\overline{\mathrm{E}}\rangle \\
H S \equiv \mathrm{BE} \overline{\mathrm{BE}}
\end{gathered}
$$

Also needed additional modalities
$\langle\mathrm{A}\rangle,\langle\overline{\mathrm{A}}\rangle$
$H S \equiv B E \overline{B E}+A \bar{A}$

Syntax of Halpern-Shoham's logic, hereafter called HS :
$\phi::=p|\neg \phi| \phi \wedge \psi|\langle\mathrm{B}\rangle \phi|\langle\mathrm{E}\rangle \phi|\langle\overline{\mathrm{B}}\rangle \phi|\langle\overline{\mathrm{E}}\rangle \phi(|\langle\mathrm{A}\rangle \phi|\langle\overline{\mathrm{A}}\rangle \phi)$.
D. Della Monica

Models for propositional interval logics

$\mathcal{A P}$: a set of atomic propositions (over intervals).
D. Della Monica

Models for propositional interval logics

$\mathcal{A P}$: a set of atomic propositions (over intervals).
Non-strict interval model:

$$
\mathbf{M}^{+}=\left\langle\mathbb{I}(\mathbb{D})^{+}, V\right\rangle
$$

where $V: \mathcal{A P} \mapsto 2^{\mathbb{I}(\mathbb{D})^{+}}$.

Models for propositional interval logics

$\mathcal{A P}$: a set of atomic propositions (over intervals).
Non-strict interval model:

$$
\mathbf{M}^{+}=\left\langle\mathbb{I}(\mathbb{D})^{+}, V\right\rangle
$$

where $V: \mathcal{A P} \mapsto 2^{\mathbb{I}(\mathbb{D})^{+}}$.
Strict interval model:

$$
\mathbf{M}^{-}=\left\langle\mathbb{I}(\mathbb{D})^{-}, V\right\rangle
$$

where $V: \mathcal{A P} \mapsto 2^{\mathbb{I}(\mathbb{D})^{-}}$.
D. Della Monica

Formal semantics of HS

$\langle B\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle B\rangle \phi$ iff there exists d_{2} such that $d_{0} \leq d_{2}<d_{1}$ and $\mathbf{M},\left[d_{0}, d_{2}\right] \Vdash \phi$.
$\langle\overline{\mathrm{B}}\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle\overline{\mathrm{B}}\rangle \phi$ iff there exists d_{2} such that $d_{1}<d_{2}$ and $\mathbf{M},\left[d_{0}, d_{2}\right] \Vdash \phi$.
current interval:
$\langle\mathrm{B}\rangle \phi$:
$\langle\overline{\mathrm{B}}\rangle \phi$:

D. Della Monica

Formal semantics of HS

$\langle\mathrm{B}\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle\mathrm{B}\rangle \phi$ iff there exists d_{2} such that $d_{0} \leq d_{2}<d_{1}$ and $\mathrm{M},\left[d_{0}, d_{2}\right] \Vdash \phi$.
$\langle\overline{\mathrm{B}}\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle\overline{\mathrm{B}}\rangle \phi$ iff there exists d_{2} such that $d_{1}<d_{2}$ and $\mathbf{M},\left[d_{0}, d_{2}\right] \Vdash \phi$.
$\langle E\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle E\rangle \phi$ iff there exists d_{2} such that $d_{0}<d_{2} \leq d_{1}$ and $\mathrm{M},\left[d_{2}, d_{1}\right] \Vdash \phi$.
$\langle\overline{\mathrm{E}}\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle\overline{\mathrm{E}}\rangle \phi$ iff there exists d_{2} such that $d_{2}<d_{0}$ and $\mathrm{M},\left[d_{2}, d_{1}\right] \Vdash \phi$.
current interval:
$\langle\mathrm{E}\rangle \phi$:
$\langle\overline{\mathrm{E}}\rangle \phi$:

D. Della Monica

Formal semantics of HS

$\langle\mathrm{B}\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle\mathrm{B}\rangle \phi$ iff there exists d_{2} such that $d_{0} \leq d_{2}<d_{1}$ and $\mathbf{M},\left[d_{0}, d_{2}\right] \Vdash \phi$.
$\langle\overline{\mathrm{B}}\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle\overline{\mathrm{B}}\rangle \phi$ iff there exists d_{2} such that $d_{1}<d_{2}$ and $\mathrm{M},\left[d_{0}, d_{2}\right] \Vdash \phi$.
$\langle\mathrm{E}\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle\mathrm{E}\rangle \phi$ iff there exists d_{2} such that $d_{0}<d_{2} \leq d_{1}$ and $\mathbf{M},\left[d_{2}, d_{1}\right] \Vdash \phi$.
$\langle\overline{\mathrm{E}}\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle\overline{\mathrm{E}}\rangle \phi$ iff there exists d_{2} such that $d_{2}<d_{0}$ and $\mathbf{M},\left[d_{2}, d_{1}\right] \Vdash \phi$.
$\langle\mathrm{A}\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle\mathrm{A}\rangle \phi$ iff there exists d_{2} such that $d_{1}<d_{2}$ and $\mathbf{M},\left[d_{1}, d_{2}\right] \Vdash \phi$.
$\langle\overline{\mathrm{A}}\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle\overline{\mathrm{A}}\rangle \phi$ iff there exists d_{2} such that $d_{2}<d_{0}$ and $\mathrm{M},\left[d_{2}, d_{0}\right] \Vdash \phi$.
current interval:

D. Della Monica

Formal semantics of HS - contd'

$\langle\mathrm{L}\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle\mathrm{L}\rangle \phi$ iff there exists d_{2}, d_{3} such that $d_{1}<d_{2}<d_{3}$ and $\mathbf{M},\left[d_{2}, d_{3}\right] \Vdash \phi$.
$\langle\overline{\mathrm{L}}\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle\overline{\mathrm{L}}\rangle \phi$ iff there exists d_{2}, d_{3} such that $d_{2}<d_{3}<d_{0}$ and $\mathbf{M},\left[d_{2}, d_{3}\right] \Vdash \phi$.
current interval:
$\langle\mathrm{L}\rangle \phi$:
$\langle\overline{\mathrm{L}}\rangle \phi$:

D. Della Monica

Formal semantics of HS - contd'

$\langle\mathrm{L}\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle\mathrm{L}\rangle \phi$ iff there exists d_{2}, d_{3} such that $d_{1}<d_{2}<d_{3}$ and $\mathbf{M},\left[d_{2}, d_{3}\right] \Vdash \phi$.
$\langle\overline{\mathrm{L}}\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle\overline{\mathrm{L}}\rangle \phi$ iff there exists d_{2}, d_{3} such that $d_{2}<d_{3}<d_{0}$ and $\mathrm{M},\left[d_{2}, d_{3}\right] \Vdash \phi$.
$\langle\mathrm{D}\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle\mathrm{D}\rangle \phi$ iff there exists d_{2}, d_{3} such that $d_{0}<d_{2}<d_{3}<d_{1}$ and $\mathrm{M},\left[d_{2}, d_{3}\right] \Vdash \phi$.
$\langle\overline{\mathrm{D}}\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle\overline{\mathrm{D}}\rangle \phi$ iff there exists d_{2}, d_{3} such that $d_{2}<d_{0}<d_{1}<d_{3}$ and $\mathrm{M},\left[d_{2}, d_{3}\right] \Vdash \phi$.
current interval:
$\langle\mathrm{D}\rangle \phi$:
$\langle\overline{\mathrm{D}}\rangle \phi$:

D. Della Monica

Formal semantics of HS - contd'

$\langle\mathrm{L}\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle\mathrm{L}\rangle \phi$ iff there exists d_{2}, d_{3} such that $d_{1}<d_{2}<d_{3}$ and $\mathrm{M},\left[d_{2}, d_{3}\right] \Vdash \phi$.
$\langle\overline{\mathrm{L}}\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle\overline{\mathrm{L}}\rangle \phi$ iff there exists d_{2}, d_{3} such that $d_{2}<d_{3}<d_{0}$ and $\mathbf{M},\left[d_{2}, d_{3}\right] \Vdash \phi$.
$\langle\mathrm{D}\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle\mathrm{D}\rangle \phi$ iff there exists d_{2}, d_{3} such that $d_{0}<d_{2}<d_{3}<d_{1}$ and $\mathbf{M},\left[d_{2}, d_{3}\right] \Vdash \phi$.
$\langle\overline{\mathrm{D}}\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle\overline{\mathrm{D}}\rangle \phi$ iff there exists d_{2}, d_{3} such that $d_{2}<d_{0}<d_{1}<d_{3}$ and $\mathrm{M},\left[d_{2}, d_{3}\right] \Vdash \phi$.
$\langle\mathrm{O}\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle\mathrm{O}\rangle \phi$ iff there exists d_{2}, d_{3} such that $d_{0}<d_{2}<d_{1}<d_{3}$ and $\mathrm{M},\left[d_{2}, d_{3}\right] \Vdash \phi$.
$\langle\overline{\mathrm{O}}\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle\overline{\mathrm{O}}\rangle \phi$ iff there exists d_{2}, d_{3} such that $d_{2}<d_{0}<d_{3}<d_{1}$ and $\mathbf{M},\left[d_{2}, d_{3}\right] \Vdash \phi$.
current interval:
$\langle\mathrm{O}\rangle \phi:$
$\langle\overline{\mathrm{O}}\rangle \phi:$

D. Della Monica

Defining the other interval modalities in HS

A useful new symbol is the modal constant π for point-intervals:

$$
\mathrm{M},\left[d_{0}, d_{1}\right] \Vdash \pi \text { iff } d_{0}=d_{1} .
$$

D. Della Monica

Defining the other interval modalities in HS

A useful new symbol is the modal constant π for point-intervals:

$$
\mathbf{M},\left[d_{0}, d_{1}\right] \Vdash \pi \text { iff } d_{0}=d_{1} .
$$

It is definable as either $[B] \perp$ or $[E] \perp$, so it is only needed in weaker fragments of HS.
D. Della Monica

Defining the other interval modalities in HS

A useful new symbol is the modal constant π for point-intervals:

$$
\mathbf{M},\left[d_{0}, d_{1}\right] \Vdash \pi \text { iff } d_{0}=d_{1} .
$$

It is definable as either $[B] \perp$ or $[E] \perp$, so it is only needed in weaker fragments of HS.

In general, it is possible defining HS modalities in terms of others

The zoo of fragments of HS

Technically, there are $2^{12}=4096$ fragments of HS
Of them, several hundreds are of essentially different expressiveness
D. Della Monica

The zoo of fragments of HS

Technically, there are $2^{12}=4096$ fragments of HS
Of them, several hundreds are of essentially different expressiveness
Each of these, considered with respect to some parameters:

1. over special classes of interval structures (all, dense, discrete, finite, etc.)
2. with strict or non-strict semantics
3. including or excluding π operator (whenever it cannot be defined)

Outline

Introduction
 The Halpern and Shoham's logic HS

Expressiveness of HS

The satisfiability problem for HS Undecidability

Classical extensions
Metric extensions
Hybrid extensions
First-order extensions

Summary and perspectives
D. Della Monica

Comparing the expressiveness of fragments of HS

Expressiveness classification problem: classify the fragments of HS with respect to their expressiveness, relative to important classes of interval models.

The problem of comparing expressive power of HS fragments L_{1}, L_{2} HS-fragments

D. Della Monica

The problem of comparing expressive power of HS fragments
L_{1}, L_{2} HS-fragments

$$
L_{1}\{\prec, \equiv, \succ, \not \approx\} \quad L_{2}
$$

D. Della Monica

The problem of comparing expressive power of HS fragments L_{1}, L_{2} HS-fragments

$$
L_{1}\{\prec, \equiv, \succ, \not \approx\} \quad L_{2}
$$

D. Della Monica

Truth-preserving translation

There exists a truth-preserving translation of L_{1} into L_{2} iff
L_{2} is at least as expressive as L_{1}
$\left(L_{1} \preceq L_{2}\right)$
D. Della Monica

Truth-preserving translation

There exists a truth-preserving translation of L_{1} into L_{2} iff
L_{2} is at least as expressive as L_{1}

$$
\left(L_{1} \preceq L_{2}\right)
$$

For each modal operator $\langle X\rangle$ of L_{1} there exists a L_{2}-formula φ s.t.

$$
\langle X\rangle p \equiv \varphi
$$

Truth-preserving translation

There exists a truth-preserving translation of L_{1} into L_{2} iff
L_{2} is at least as expressive as L_{1}

$$
\left(L_{1} \preceq L_{2}\right)
$$

For each modal operator $\langle X\rangle$ of L_{1} there exists a L_{2}-formula φ s.t.

$$
\langle X\rangle p \equiv \varphi
$$

2^{12} fragments... $\frac{2^{12} \cdot\left(2^{12}-1\right)}{2}$ comparisons
D. Della Monica

Inter-definability equations

Notation: $\mathrm{X}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{n}}$ will denote the fragment of HS containing the modalities $\left\langle X_{1}\right\rangle,\left\langle X_{2}\right\rangle, \ldots,\left\langle X_{n}\right\rangle$

$$
\begin{aligned}
& \langle L\rangle p \equiv\langle A\rangle\langle A\rangle p \\
& \langle O\rangle p \equiv\langle E\rangle\langle\bar{B}\rangle p \\
& \langle D\rangle p \equiv\langle E\rangle\langle B\rangle p
\end{aligned}
$$

D. Della Monica

Inter-definability equations

Notation: $\mathrm{X}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{n}}$ will denote the fragment of HS containing the modalities $\left\langle X_{1}\right\rangle,\left\langle X_{2}\right\rangle, \ldots,\left\langle X_{n}\right\rangle$
$\langle L\rangle p \equiv\langle A\rangle\langle A\rangle p$
$\langle L\rangle \sqsubseteq \mathrm{A}$
$\langle O\rangle p \equiv\langle E\rangle\langle\bar{B}\rangle p$
$\langle O\rangle \sqsubseteq \mathrm{E} \overline{\mathrm{B}}$
$\langle D\rangle p \equiv\langle E\rangle\langle B\rangle p$
$\langle D\rangle \sqsubseteq \mathrm{EB}$

Inter-definability equations

Notation: $\mathrm{X}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{n}}$ will denote the fragment of HS containing the modalities $\left\langle X_{1}\right\rangle,\left\langle X_{2}\right\rangle, \ldots,\left\langle X_{n}\right\rangle$
$\langle L\rangle p \equiv\langle A\rangle\langle A\rangle p$
$\langle L\rangle \sqsubseteq \mathrm{A}$
$\langle\bar{L}\rangle \sqsubseteq \overline{\mathrm{A}}$
$\langle O\rangle p \equiv\langle E\rangle\langle\bar{B}\rangle p$
$\langle O\rangle \sqsubseteq E \bar{B}$
$\langle\bar{O}\rangle \sqsubseteq \overline{\mathrm{E}} \mathrm{B}$
$\langle D\rangle p \equiv\langle E\rangle\langle B\rangle p$
$\langle D\rangle \sqsubseteq \mathrm{EB}$
$\langle\bar{D}\rangle \sqsubseteq \overline{\mathrm{EB}}$
D. Della Monica

Inter-definability equations

Notation: $\mathrm{X}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{n}}$ will denote the fragment of HS containing the modalities $\left\langle X_{1}\right\rangle,\left\langle X_{2}\right\rangle, \ldots,\left\langle X_{n}\right\rangle$
$\langle L\rangle p \equiv\langle A\rangle\langle A\rangle p$
$\langle L\rangle \sqsubseteq \mathrm{A}$
$\langle O\rangle p \equiv\langle E\rangle\langle\bar{B}\rangle p$
$\langle O\rangle \sqsubseteq E \bar{B}$
$\langle\bar{L}\rangle \sqsubseteq \overline{\mathrm{A}}$
$\langle D\rangle p \equiv\langle E\rangle\langle B\rangle p$
$\langle D\rangle \sqsubseteq \mathrm{EB}$
$\langle\bar{O}\rangle \sqsubseteq \overline{\mathrm{E}} \mathrm{B}$
$\langle L\rangle \sqsubseteq \bar{B} E$
$\langle\bar{L}\rangle \sqsubseteq B \bar{E}$
D. Della Monica

Inter-definability equations

Notation: $\mathrm{X}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{n}}$ will denote the fragment of HS containing the modalities $\left\langle X_{1}\right\rangle,\left\langle X_{2}\right\rangle, \ldots,\left\langle X_{n}\right\rangle$
$\langle L\rangle p \equiv\langle A\rangle\langle A\rangle p$
$\langle L\rangle \sqsubseteq \mathrm{A}$
$\langle O\rangle p \equiv\langle E\rangle\langle\bar{B}\rangle p$
$\langle O\rangle \sqsubseteq E \bar{B}$
$\langle\bar{L}\rangle \sqsubseteq \overline{\mathrm{A}}$
$\langle D\rangle p \equiv\langle E\rangle\langle B\rangle p$
$\langle D\rangle \sqsubseteq \mathrm{EB}$
$\langle\bar{O}\rangle \sqsubseteq \overline{\mathrm{E}} \mathrm{B}$
$\langle L\rangle \sqsubseteq \bar{B} E$
$\langle\bar{L}\rangle \sqsubseteq \mathrm{B} \overline{\mathrm{E}}$

Soundness and completeness???
D. Della Monica

Inter-definability equations

Notation: $\mathrm{X}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{n}}$ will denote the fragment of HS containing the modalities $\left\langle X_{1}\right\rangle,\left\langle X_{2}\right\rangle, \ldots,\left\langle X_{n}\right\rangle$
$\langle L\rangle p \equiv\langle A\rangle\langle A\rangle p$
$\langle L\rangle \sqsubseteq \mathrm{A}$
$\langle\bar{L}\rangle \sqsubseteq \overline{\mathrm{A}}$
$\langle O\rangle p \equiv\langle E\rangle\langle\bar{B}\rangle p$
$\langle O\rangle \sqsubseteq E \bar{B}$
$\langle\bar{O}\rangle \sqsubseteq \overline{\mathrm{E}} \mathrm{B}$
$\langle D\rangle p \equiv\langle E\rangle\langle B\rangle p$
$\langle D\rangle \sqsubseteq \mathrm{EB}$
$\langle\bar{D}\rangle \sqsubseteq \overline{\mathrm{EB}}$
$\langle L\rangle p \equiv\langle\bar{B}\rangle[E]\langle\bar{B}\rangle\langle E\rangle p$
$\langle L\rangle \sqsubseteq \bar{B} E$
$\langle\bar{L}\rangle \sqsubseteq \mathrm{B} \overline{\mathrm{E}}$

Soundness and completeness???

Soundness: all equations are valid
D. Della Monica

Inter-definability equations

Notation: $\mathrm{X}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{n}}$ will denote the fragment of HS containing the modalities $\left\langle X_{1}\right\rangle,\left\langle X_{2}\right\rangle, \ldots,\left\langle X_{n}\right\rangle$
$\langle L\rangle p \equiv\langle A\rangle\langle A\rangle p$
$\langle L\rangle \sqsubseteq \mathrm{A}$
$\langle\bar{L}\rangle \sqsubseteq \overline{\mathrm{A}}$
$\langle O\rangle p \equiv\langle E\rangle\langle\bar{B}\rangle p$
$\langle O\rangle \sqsubseteq E \bar{B}$
$\langle\bar{O}\rangle \sqsubseteq \overline{\mathrm{E}} \mathrm{B}$
$\langle D\rangle p \equiv\langle E\rangle\langle B\rangle p$
$\langle D\rangle \sqsubseteq \mathrm{EB}$
$\langle\bar{D}\rangle \sqsubseteq \overline{\mathrm{EB}}$
$\langle L\rangle p \equiv\langle\bar{B}\rangle[E]\langle\bar{B}\rangle\langle E\rangle p$
$\langle L\rangle \sqsubseteq \bar{B} E$
$\langle\bar{L}\rangle \sqsubseteq \mathrm{B} \overline{\mathrm{E}}$

Soundness and completeness???

Soundness:
all equations are valid

Inter-definability equations

Notation: $\mathrm{X}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{n}}$ will denote the fragment of HS containing the modalities $\left\langle X_{1}\right\rangle,\left\langle X_{2}\right\rangle, \ldots,\left\langle X_{n}\right\rangle$
$\langle L\rangle p \equiv\langle A\rangle\langle A\rangle p$
$\langle L\rangle \sqsubseteq \mathrm{A}$
$\langle\bar{L}\rangle \sqsubseteq \overline{\mathrm{A}}$
$\langle O\rangle p \equiv\langle E\rangle\langle\bar{B}\rangle p$
$\langle O\rangle \sqsubseteq E \bar{B}$
$\langle\bar{O}\rangle \sqsubseteq \overline{\mathrm{E}} \mathrm{B}$
$\langle D\rangle p \equiv\langle E\rangle\langle B\rangle p$
$\langle D\rangle \sqsubseteq \mathrm{EB}$
$\langle\bar{D}\rangle \sqsubseteq \overline{\mathrm{EB}}$
$\langle L\rangle p \equiv\langle\bar{B}\rangle[E]\langle\bar{B}\rangle\langle E\rangle p$
$\langle L\rangle \sqsubseteq \bar{B} E$
$\langle\bar{L}\rangle \sqsubseteq \mathrm{B} \overline{\mathrm{E}}$

Soundness and completeness???

Soundness:
all equations are valid
SIMPLE

Completeness:
there are no more
inter-definability equations
D. Della Monica

Inter-definability equations

Notation: $\mathrm{X}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{n}}$ will denote the fragment of HS containing the modalities $\left\langle X_{1}\right\rangle,\left\langle X_{2}\right\rangle, \ldots,\left\langle X_{n}\right\rangle$
$\langle L\rangle p \equiv\langle A\rangle\langle A\rangle p$
$\langle L\rangle \sqsubseteq \mathrm{A}$
$\langle\bar{L}\rangle \sqsubseteq \overline{\mathrm{A}}$
$\langle O\rangle p \equiv\langle E\rangle\langle\bar{B}\rangle p$
$\langle O\rangle \sqsubseteq E \bar{B}$
$\langle\bar{O}\rangle \sqsubseteq \overline{\mathrm{E}} \mathrm{B}$
$\langle D\rangle p \equiv\langle E\rangle\langle B\rangle p$
$\langle D\rangle \sqsubseteq \mathrm{EB}$
$\langle\bar{D}\rangle \sqsubseteq \overline{\mathrm{EB}}$
$\langle L\rangle p \equiv\langle\bar{B}\rangle[E]\langle\bar{B}\rangle\langle E\rangle p$
$\langle L\rangle \sqsubseteq \bar{B} E$
$\langle\bar{L}\rangle \sqsubseteq \mathrm{B} \overline{\mathrm{E}}$

Soundness and completeness???

Soundness:
all equations are valid
SIMPLE
there are no more inter-definability equations

BISIMULATIONS
D. Della Monica

Bisimulation between interval structures

$Z \subseteq M_{1} \times M_{2}$ is a bisimulations wrt the fragment $X_{1} X_{2} \ldots X_{n}$ iff
D. Della Monica

Bisimulation between interval structures

$Z \subseteq M_{1} \times M_{2}$ is a bisimulations wrt the fragment $X_{1} X_{2} \ldots X_{n}$ iff 1. Z-related intervals satisfy the same propositional letters, i.e.:

$$
\left(i_{1}, i_{2}\right) \in Z \Rightarrow\left(p \text { is true over } i_{1} \Leftrightarrow p \text { is true over } i_{2}\right)
$$

Bisimulation between interval structures

$Z \subseteq M_{1} \times M_{2}$ is a bisimulations wrt the fragment $X_{1} X_{2} \ldots X_{n}$ iff 1. Z-related intervals satisfy the same propositional letters, i.e.:

$$
\left(i_{1}, i_{2}\right) \in Z \Rightarrow\left(p \text { is true over } i_{1} \Leftrightarrow p \text { is true over } i_{2}\right)
$$

2. the bisimulation relation is "preserved" by modal operators, i.e., for every modal operator $\langle X\rangle$:

D. Della Monica

Bisimulation between interval structures

$Z \subseteq M_{1} \times M_{2}$ is a bisimulations wrt the fragment $X_{1} X_{2} \ldots X_{n}$ iff 1. Z-related intervals satisfy the same propositional letters, i.e.:

$$
\left(i_{1}, i_{2}\right) \in Z \Rightarrow\left(p \text { is true over } i_{1} \Leftrightarrow p \text { is true over } i_{2}\right)
$$

2. the bisimulation relation is "preserved" by modal operators, i.e., for every modal operator $\langle X\rangle$:

$$
\left(i_{1}, i_{2}\right) \in Z
$$

D. Della Monica

Bisimulation between interval structures

$Z \subseteq M_{1} \times M_{2}$ is a bisimulations wrt the fragment $X_{1} X_{2} \ldots X_{n}$ iff 1. Z-related intervals satisfy the same propositional letters, i.e.:

$$
\left(i_{1}, i_{2}\right) \in Z \Rightarrow\left(p \text { is true over } i_{1} \Leftrightarrow p \text { is true over } i_{2}\right)
$$

2. the bisimulation relation is "preserved" by modal operators, i.e., for every modal operator $\langle X\rangle$:

$$
\begin{aligned}
& \left(i_{1}, i_{2}\right) \in Z \\
& \left(i_{1}, i_{1}^{\prime}\right) \in X
\end{aligned}
$$

D. Della Monica

Bisimulation between interval structures

$Z \subseteq M_{1} \times M_{2}$ is a bisimulations wrt the fragment $X_{1} X_{2} \ldots X_{n}$ iff 1. Z-related intervals satisfy the same propositional letters, i.e.:

$$
\left(i_{1}, i_{2}\right) \in Z \Rightarrow\left(p \text { is true over } i_{1} \Leftrightarrow p \text { is true over } i_{2}\right)
$$

2. the bisimulation relation is "preserved" by modal operators, i.e., for every modal operator $\langle X\rangle$:

$$
\left.\begin{array}{l}
\left(i_{1}, i_{2}\right) \in Z \\
\left(i_{1}, i_{1}^{\prime}\right) \in X
\end{array}\right\} \Rightarrow \exists i_{2}^{\prime} \text { s.t. }
$$

D. Della Monica

Bisimulation between interval structures

$Z \subseteq M_{1} \times M_{2}$ is a bisimulations wrt the fragment $X_{1} X_{2} \ldots X_{n}$ iff 1. Z-related intervals satisfy the same propositional letters, i.e.:

$$
\left(i_{1}, i_{2}\right) \in Z \Rightarrow\left(p \text { is true over } i_{1} \Leftrightarrow p \text { is true over } i_{2}\right)
$$

2. the bisimulation relation is "preserved" by modal operators, i.e., for every modal operator $\langle X\rangle$:

$$
\left.\begin{array}{l}
\left(i_{1}, i_{2}\right) \in Z \\
\left(i_{1}, i_{1}^{\prime}\right) \in X
\end{array}\right\} \Rightarrow \exists i_{2}^{\prime} \text { s.t. }\left\{\begin{array}{l}
\left(i_{1}^{\prime}, i_{2}^{\prime}\right) \in Z \\
\left(i_{2}, i_{2}^{\prime}\right) \in X
\end{array}\right.
$$

Bisimulation between interval structures - cont'd

Theorem Let Z be a bisimulation between M_{1} and M_{2} for the language \mathcal{L} and let i_{1} and i_{2} be intervals in M_{1} and M_{2}, respectively. Then, truth of \mathcal{L}-formulae is preserved by Z, i.e.,

$$
\text { If }\left(i_{1}, i_{2}\right) \in Z \text {, then for every formula } \varphi \text { of } \mathcal{L} \text { : }
$$

$$
M_{1}, i_{1} \Vdash \varphi \text { iff } M_{2}, i_{2} \Vdash \varphi
$$

D. Della Monica

How to use bisimulations to disprove definability

Suppose that we want to prove:
$\langle X\rangle$ is not definable in terms of \mathcal{L}
D. Della Monica

How to use bisimulations to disprove definability

Suppose that we want to prove:
$\langle X\rangle$ is not definable in terms of \mathcal{L}
We must provide:

1. two models M_{1} and M_{2}

How to use bisimulations to disprove definability

Suppose that we want to prove:
$\langle X\rangle$ is not definable in terms of \mathcal{L}
We must provide:

1. two models M_{1} and M_{2}
2. a bisimulation $Z \subseteq M_{1} \times M_{2}$ wrt fragment \mathcal{L}

How to use bisimulations to disprove definability

Suppose that we want to prove:

$\langle X\rangle$ is not definable in terms of \mathcal{L}

We must provide:

1. two models M_{1} and M_{2}
2. a bisimulation $Z \subseteq M_{1} \times M_{2}$ wrt fragment \mathcal{L}
3. two interval $i_{1} \in M_{1}$ and $i_{2} \in M_{2}$ such that
a. i_{1} and i_{2} are Z-related
b. $M_{1}, i_{1} \Vdash\langle X\rangle p$ and $M_{2}, i_{2} \Vdash \neg\langle X\rangle p$

How to use bisimulations to disprove definability

Suppose that we want to prove:

We must provide:

1. two models M_{1} and M_{2}
2. a bisimulation $Z \subseteq M_{1} \times M_{2}$ wrt fragment \mathcal{L}
3. two interval $i_{1} \in M_{1}$ and $i_{2} \in M_{2}$ such that
a. i_{1} and i_{2} are Z-related
b. $M_{1}, i_{1} \Vdash\langle X\rangle p$ and $M_{2}, i_{2} \Vdash \neg\langle X\rangle p$

By contradiction

If $\langle X\rangle$ is definable in terms of \mathcal{L}, then $\langle X\rangle p$ is.

How to use bisimulations to disprove definability

Suppose that we want to prove:

$$
\langle X\rangle \text { is not definable in terms of } \mathcal{L}
$$

We must provide:

1. two models M_{1} and M_{2}
2. a bisimulation $Z \subseteq M_{1} \times M_{2}$ wrt fragment \mathcal{L}
3. two interval $i_{1} \in M_{1}$ and $i_{2} \in M_{2}$ such that
a. i_{1} and i_{2} are Z-related
b. $M_{1}, i_{1} \Vdash\langle X\rangle p$ and $M_{2}, i_{2} \Vdash \neg\langle X\rangle p$

By contradiction

If $\langle X\rangle$ is definable in terms of \mathcal{L}, then $\langle X\rangle p$ is.
Truth of $\langle X\rangle p$ should have been preserved by Z, but $\langle X\rangle p$ is true in i_{1} (in M_{1}) and false in i_{2} (in M_{2})

How to use bisimulations to disprove definability

Suppose that we want to prove:

$$
\langle X\rangle \text { is not definable in terms of } \mathcal{L}
$$

We must provide:

1. two models M_{1} and M_{2}
2. a bisimulation $Z \subseteq M_{1} \times M_{2}$ wrt fragment \mathcal{L}
3. two interval $i_{1} \in M_{1}$ and $i_{2} \in M_{2}$ such that
a. i_{1} and i_{2} are Z-related
b. $M_{1}, i_{1} \Vdash\langle X\rangle p$ and $M_{2}, i_{2} \Vdash \neg\langle X\rangle p$

By contradiction

If $\langle X\rangle$ is definable in terms of \mathcal{L}, then $\langle X\rangle p$ is.
Truth of $\langle X\rangle p$ should have been preserved by Z, but $\langle X\rangle p$ is true in i_{1} (in M_{1}) and false in i_{2} (in M_{2}) \Rightarrow contradiction

An example: the operator $\langle D\rangle$
Semantics:
$M,[a, b] \Vdash\langle D\rangle \varphi \stackrel{\text { def }}{\Leftrightarrow} \exists c, d$ such that $a<c<d<b$ and $M,[c, d] \Vdash \varphi$

D. Della Monica

An example: the operator $\langle D\rangle$
Semantics:
$M,[a, b] \Vdash\langle D\rangle \varphi \stackrel{\text { def }}{\Leftrightarrow} \exists c, d$ such that $a<c<d<b$ and $M,[c, d] \Vdash \varphi$

Operator $\langle D\rangle$ is definable in terms of $\mathrm{BE} \quad\langle D\rangle \varphi \equiv\langle B\rangle\langle E\rangle \varphi$
D. Della Monica

An example: the operator $\langle D\rangle$

Semantics:
$M,[a, b] \Vdash\langle D\rangle \varphi \stackrel{\text { def }}{\Leftrightarrow} \exists c, d$ such that $a<c<d<b$ and $M,[c, d] \Vdash \varphi$

Operator $\langle D\rangle$ is definable in terms of $\mathrm{BE} \quad\langle D\rangle \varphi \equiv\langle B\rangle\langle E\rangle \varphi$
To prove that $\langle D\rangle$ is not definable in terms of any other fragment, we must prove that:

1) $\langle D\rangle$ is not definable in terms of ALBO $\overline{\operatorname{ALBEDO}}$
2) $\langle D\rangle$ is not definable in terms of ALEO $\overline{A L B E D O}$
D. Della Monica
$\langle D\rangle$ is not definable in terms of A
A bisimulation wrt fragment A but not D
Bisimulation wrt $\mathrm{A}(\mathcal{A P}=\{p\})$:

- models: $M_{1}=\left\langle\mathbb{I}(\mathbb{N}), V_{1}\right\rangle, M_{2}=\left\langle\mathbb{I}(\mathbb{N}), V_{2}\right\rangle$

D. Della Monica
$\langle D\rangle$ is not definable in terms of A
A bisimulation wrt fragment A but not D
Bisimulation wrt $\mathrm{A}(\mathcal{A P}=\{p\})$:
- models: $M_{1}=\left\langle\mathbb{I}(\mathbb{N}), V_{1}\right\rangle, M_{2}=\left\langle\mathbb{I}(\mathbb{N}), V_{2}\right\rangle$
- $V_{1}(p)=\{[1,2]\}$

D. Della Monica
$\langle D\rangle$ is not definable in terms of A
A bisimulation wrt fragment A but not D
Bisimulation wrt $\mathrm{A}(\mathcal{A P}=\{p\})$:
- models: $M_{1}=\left\langle\mathbb{I}(\mathbb{N}), V_{1}\right\rangle, M_{2}=\left\langle\mathbb{I}(\mathbb{N}), V_{2}\right\rangle$
- $V_{1}(p)=\{[1,2]\}$
- $V_{2}(p)=\emptyset$

D. Della Monica
$\langle D\rangle$ is not definable in terms of A
A bisimulation wrt fragment A but not D
Bisimulation wrt $\mathrm{A}(\mathcal{A P}=\{p\})$:
- models: $M_{1}=\left\langle\mathbb{I}(\mathbb{N}), V_{1}\right\rangle, M_{2}=\left\langle\mathbb{I}(\mathbb{N}), V_{2}\right\rangle$
- $V_{1}(p)=\{[1,2]\}$
- $V_{2}(p)=\emptyset$
- bisimulation relation $Z:([x, y],[w, z]) \in Z$ iff

D. Della Monica
$\langle D\rangle$ is not definable in terms of A
A bisimulation wrt fragment A but not D
Bisimulation wrt $\mathrm{A}(\mathcal{A P}=\{p\})$:
- models: $M_{1}=\left\langle\mathbb{I}(\mathbb{N}), V_{1}\right\rangle, M_{2}=\left\langle\mathbb{I}(\mathbb{N}), V_{2}\right\rangle$
- $V_{1}(p)=\{[1,2]\}$
- $V_{2}(p)=\emptyset$
- bisimulation relation $Z:([x, y],[w, z]) \in Z$ iff

$$
\text { 1. }[x, y]=[w, z]=[0,3]
$$

$\langle D\rangle$ is not definable in terms of A
A bisimulation wrt fragment A but not D
Bisimulation wrt $\mathrm{A}(\mathcal{A P}=\{p\})$:

- models: $M_{1}=\left\langle\mathbb{I}(\mathbb{N}), V_{1}\right\rangle, M_{2}=\left\langle\mathbb{I}(\mathbb{N}), V_{2}\right\rangle$
- $V_{1}(p)=\{[1,2]\}$
- $V_{2}(p)=\emptyset$
- bisimulation relation $Z:([x, y],[w, z]) \in Z$ iff

1. $[x, y]=[w, z]=[0,3]$
2. $[x, y]=[w, z]$ and $x \geq 3$

$\langle D\rangle$ is not definable in terms of A
A bisimulation wrt fragment A but not D
Bisimulation wrt $\mathrm{A}(\mathcal{A P}=\{p\})$:

- models: $M_{1}=\left\langle\mathbb{I}(\mathbb{N}), V_{1}\right\rangle, M_{2}=\left\langle\mathbb{I}(\mathbb{N}), V_{2}\right\rangle$
- $V_{1}(p)=\{[1,2]\}$
- $V_{2}(p)=\emptyset$
- bisimulation relation $Z:([x, y],[w, z]) \in Z$ iff

1. $[x, y]=[w, z]=[0,3]$
2. $[x, y]=[w, z]$ and $x \geq 3$

$M_{1},[0,3] \Vdash\langle D\rangle_{p}$ and $M_{2},[0,3] \Vdash \neg\langle D\rangle p$
D. Della Monica
$\langle D\rangle$ is not definable in terms of A
A bisimulation wrt fragment A but not D
Bisimulation wrt $\mathrm{A}(\mathcal{A P}=\{p\})$:

- models: $M_{1}=\left\langle\mathbb{I}(\mathbb{N}), V_{1}\right\rangle, M_{2}=\left\langle\mathbb{I}(\mathbb{N}), V_{2}\right\rangle$
- $V_{1}(p)=\{[1,2]\}$
- $V_{2}(p)=\emptyset$
- bisimulation relation $Z:([x, y],[w, z]) \in Z$ iff

1. $[x, y]=[w, z]=[0,3]$
2. $[x, y]=[w, z]$ and $x \geq 3$

Outline

Introduction
 The Halpern and Shoham's logic HS

Expressiveness of HS

The satisfiability problem for HS Undecidability

Classical extensions
Metric extensions
Hybrid extensions
First-order extensions

Summary and perspectives
D. Della Monica

The satisfiability problem for HS

Satisfiability problem for a logic \mathcal{L} Given an \mathcal{L}-formula φ, is φ satisfiable, i.e., there exists a model and an interval in which φ is true?
D. Della Monica

The satisfiability problem for HS

Satisfiability problem for a logic \mathcal{L} Given an \mathcal{L}-formula φ, is φ satisfiable, i.e., there exists a model and an interval in which φ is true?
\mathcal{L} is decidable (wrt the satisfiability problem) iff
for each formula it is possible to answer the question
D. Della Monica

The satisfiability problem for HS

Satisfiability problem for a logic \mathcal{L} Given an \mathcal{L}-formula φ, is φ satisfiable, i.e., there exists a model and an interval in which φ is true?
\mathcal{L} is decidable (wrt the satisfiability problem) iff
for each formula it is possible to answer the question there exists a terminating algorithm that answer yes / not for any φ

The satisfiability problem for HS

Satisfiability problem for a logic \mathcal{L} Given an \mathcal{L}-formula φ, is φ satisfiable, i.e., there exists a model and an interval in which φ is true?
\mathcal{L} is decidable (wrt the satisfiability problem) iff
for each formula it is possible to answer the question there exists a terminating algorithm that answer yes / not for any φ

Expressive enough, yet decidable, HS fragments

The satisfiability problem for HS

Satisfiability problem for a logic \mathcal{L} Given an \mathcal{L}-formula φ, is φ satisfiable, i.e., there exists a model and an interval in which φ is true?
\mathcal{L} is decidable (wrt the satisfiability problem) iff
for each formula it is possible to answer the question there exists a terminating algorithm that answer yes / not for any φ

Expressive enough, yet decidable, HS fragments
Classification of all HS fragments wrt (un)decidability
D. Della Monica

Maximal decidable HS fragments

- PNL $(\equiv A \bar{A})$ in general case
D. Bresolin, V. Goranko, A. Montanari, G. Sciavicco

Propositional Interval Neighborhood Logic: Decidability, Expressiveness, and Undecidable Extensions.

Annals of Pure and Applied Logics, 2009, 161, 289-304.
D. Della Monica

Maximal decidable HS fragments

- PNL (三A \bar{A}) in general case
- $A B \overline{B L}$ (and $\bar{A} E \bar{E} L$) in general case
D. Bresolin, A. Montanari, P. Sala, G. Sciavicco

What's decidable about Halpern and Shoham's interval logic?
The maximal fragment $A B B L$.
LICS 2011, 2011.
D. Della Monica

Maximal decidable HS fragments

- PNL (三A \bar{A}) in general case
- $A B \overline{B L}$ (and $\bar{A} E \bar{E} L$) in general case
- $A B \overline{B A}$ (and $\bar{A} E \bar{E} A$) over finite structures
A. Montanari, G. Puppis, P. Sala

Maximal Decidable Fragments of Halpern and Shoham's
Modal Logic of Intervals.
ICALP 2010, 2010, LNCS 6199, 2010, 345-356.

Maximal decidable HS fragments

- PNL (三A \bar{A}) in general case
- $A B \overline{B L}$ (and $\bar{A} E \bar{E} L$) in general case
- $A B \overline{B A}$ (and $\bar{A} E \bar{E} A$) over finite structures
- $D \bar{D} B \bar{B} L \bar{L}$ over \mathbb{Q}

P. Sala
PhD thesis
2010

Weakest undecidable HS fragments

$$
A D, A \bar{D}, \bar{A} D, \overline{A D}
$$

D. Della Monica

Weakest undecidable HS fragments
$A D, A \bar{D}, \bar{A} D, \overline{A D}$
$B E, B \bar{E}, \bar{B} E, \overline{B E}$
D. Della Monica

Weakest undecidable HS fragments

$A D, A \bar{D}, \bar{A} D, \overline{A D}$
$B E, B \bar{E}, \bar{B} E, \overline{B E}$
O (and $\overline{\mathrm{O}}$)

Weakest undecidable HS fragments

$\mathrm{AD}, \mathrm{AD}, \overline{\mathrm{A}} \mathrm{D}, \overline{\mathrm{AD}}$
$B E, B \bar{E}, \bar{B} E, \overline{B E}$
O (and $\overline{\mathrm{O}}$)
D (and $\overline{\mathrm{D}}$) over discrete

Weakest undecidable HS fragments

$$
\mathrm{AD}, \mathrm{AD}, \overline{\mathrm{~A} D}, \overline{\mathrm{AD}}
$$

$B E, B \bar{E}, \bar{B} E, \overline{B E}$
O (and $\overline{\mathrm{O}}$)
D (and $\overline{\mathrm{D}}$) over discrete
[in this thesis]
[in this thesis]
[in this thesis]
[Michaliszyn, Marcinkowski]
The Ultimate Undecidability Result for the Halpern-Shoham Logic

LICS 2011

Outline

Introduction
 The Halpern and Shoham's logic HS

Expressiveness of HS

The satisfiability problem for HS Undecidability

Classical extensions
Metric extensions
Hybrid extensions
First-order extensions

Summary and perspectives
D. Della Monica

The Octant Tiling Problem

This is the problem of establishing whether a given finite set of tile types $\mathcal{T}=\left\{t_{1}, \ldots, t_{k}\right\}$ can tile the 2 nd octant of the integer plane:

$$
\mathcal{O}=\{(i, j): i, j \in \mathbb{N} \wedge 0 \leq i \leq j\},
$$

while respecting the color constraints.
D. Della Monica

The Octant Tiling Problem

This is the problem of establishing whether a given finite set of tile types $\mathcal{T}=\left\{t_{1}, \ldots, t_{k}\right\}$ can tile the 2 nd octant of the integer plane:

$$
\mathcal{O}=\{(i, j): i, j \in \mathbb{N} \wedge 0 \leq i \leq j\}
$$

while respecting the color constraints.

D. Della Monica

The Octant Tiling Problem

This is the problem of establishing whether a given finite set of tile types $\mathcal{T}=\left\{t_{1}, \ldots, t_{k}\right\}$ can tile the 2 nd octant of the integer plane:

$$
\mathcal{O}=\{(i, j): i, j \in \mathbb{N} \wedge 0 \leq i \leq j\}
$$

while respecting the color constraints.

Proposition The Octant Tiling Problem is undecidable.
D. Della Monica

The Octant Tiling Problem

This is the problem of establishing whether a given finite set of tile types $\mathcal{T}=\left\{t_{1}, \ldots, t_{k}\right\}$ can tile the 2 nd octant of the integer plane:

$$
\mathcal{O}=\{(i, j): i, j \in \mathbb{N} \wedge 0 \leq i \leq j\}
$$

while respecting the color constraints.

Proposition The Octant Tiling Problem is undecidable.
Proof: by reduction from the tiling problem for $\mathbb{N} \times \mathbb{N}$, using König's Lemma.
D. Della Monica

Undecidability of the interval logics via tiling: generic construction

1. Encoding of the octant
2. Encoding of the neighborhood relations

- Right-neighborhood relation SIMPLE
- Above-neighborhood relation HARD

Undecidability of the interval logics via tiling: generic construction

1. Encoding of the octant
2. Encoding of the neighborhood relations

- Right-neighborhood relation SIMPLE
- Above-neighborhood relation HARD

Encoding of the octant

- Force the existence of a unique infinite chain of unit-intervals on the linear order, which covers an initial segment of the interval model. (propositional letter u)

Unit intervals are used to place tiles and delimiting symbols.

Undecidability of the interval logics via tiling:

 generic construction1. Encoding of the octant
2. Encoding of the neighborhood relations

- Right-neighborhood relation SIMPLE
- Above-neighborhood relation HARD

Encoding of the octant

- Force the existence of a unique infinite chain of unit-intervals on the linear order, which covers an initial segment of the interval model. (propositional letter u)

Unit intervals are used to place tiles and delimiting symbols.

- ID-intervals are then introduced to represent the layers of tiles. (propositional letter Id)

Undecidability of the interval logics via tiling:

 generic construction cont'd

Undecidability of the interval logics via tiling: generic construction cont'd

Each ID-interval must have the right number of tiles
D. Della Monica

Undecidability of the interval logics via tiling: generic construction cont'd

Each ID-interval must have the right number of tiles
The most challenging part usually is to ensure that the consecutive ID-intervals match vertically: the Above-Neighbour relation.

Undecidability of the interval logics via tiling: generic construction cont'd

Each ID-interval must have the right number of tiles
The most challenging part usually is to ensure that the consecutive ID-intervals match vertically: the Above-Neighbour relation.

For that, auxiliary propositional letter up _rel can be used to connecting (endpoints of) two intervals representing tiles that are above connected in the octant

Undecidability of the interval logics via tiling: generic construction completed

Eventually, we encode the given Octant tiling problem by specifying the matching conditions between intervals that are right-connected or above-connected.

Undecidability of the interval logics via tiling: generic construction completed

Eventually, we encode the given Octant tiling problem by specifying the matching conditions between intervals that are right-connected or above-connected.

The specific part of the construction is to use the given fragment of HS to set the chain of unit intervals and to express all necessary properties of IDs, the propositional letters for correspondence intervals, and the tile matching conditions.

Summary of (un)decidability results and outlook

- In summary: interval logics are generally undecidable, even under very weak assumptions.
D. Della Monica

Summary of (un)decidability results and outlook

- In summary: interval logics are generally undecidable, even under very weak assumptions.
- In particular, most fragments of HS ($\sim 90 \%$) have been proved undecidable over most of the natural classes of interval structures.
D. Della Monica

Summary of (un)decidability results and outlook

- In summary: interval logics are generally undecidable, even under very weak assumptions.
- In particular, most fragments of HS ($\sim 90 \%$) have been proved undecidable over most of the natural classes of interval structures.
- There are still some currently unknown cases ($<8 \%$), and some are conjectured undecidable (over general and special classes), e.g., $\mathrm{L}^{*} \mathrm{D}^{*}$, where $X^{*} \in\{X, \bar{X}\}$; etc.

Summary of (un)decidability results and outlook

- In summary: interval logics are generally undecidable, even under very weak assumptions.
- In particular, most fragments of HS ($\sim 90 \%$) have been proved undecidable over most of the natural classes of interval structures.
- There are still some currently unknown cases ($<8 \%$), and some are conjectured undecidable (over general and special classes), e.g., $\mathrm{L}^{*} \mathrm{D}^{*}$, where $X^{*} \in\{X, \bar{X}\}$; etc.
- Not all results transfer readily between the strict and the non-strict semantics, and between the classes of all, dense, discrete, etc. interval structures.

Summary of (un)decidability results and outlook

- In summary: interval logics are generally undecidable, even under very weak assumptions.
- In particular, most fragments of HS ($\sim 90 \%$) have been proved undecidable over most of the natural classes of interval structures.
- There are still some currently unknown cases ($<8 \%$), and some are conjectured undecidable (over general and special classes), e.g., $\mathrm{L}^{*} \mathrm{D}^{*}$, where $X^{*} \in\{X, \bar{X}\}$; etc.
- Not all results transfer readily between the strict and the non-strict semantics, and between the classes of all, dense, discrete, etc. interval structures.
- More statistics are available on the web page: https://itl.dimi.uniud.it/content/logic-hs

Outline

Introduction
 The Halpern and Shoham's logic HS

Expressiveness of HS

The satisfiability problem for HS Undecidability

Classical extensions
Metric extensions
Hybrid extensions
First-order extensions

Summary and perspectives
D. Della Monica

Outline

Introduction
 The Halpern and Shoham's logic HS
 Expressiveness of HS
 The satisfiability problem for HS Undecidability

Classical extensions
Metric extensions
Hybrid extensions
First-order extensions

Summary and perspectives
D. Della Monica

PNL: syntax and semantics

Syntax

- PNL:

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi|\langle\mathrm{A}\rangle \varphi|\langle\overline{\mathrm{A}}\rangle \varphi
$$

D. Della Monica

PNL: syntax and semantics

Syntax

- PNL:

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi|\langle\mathrm{A}\rangle \varphi|\langle\overline{\mathrm{A}}\rangle \varphi
$$

Semantics

- Operators meets $(\langle\mathrm{A}\rangle)$ and met-by $(\langle\overline{\mathrm{A}}\rangle)$:
meets:

D. Della Monica

PNL: syntax and semantics

Syntax

- PNL:

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi|\langle\mathrm{A}\rangle \varphi|\langle\overline{\mathrm{A}}\rangle \varphi
$$

Semantics

- Operators meets $(\langle\mathrm{A}\rangle)$ and met-by $(\langle\overline{\mathrm{A}}\rangle)$:
meets:

D. Della Monica

PNL: syntax and semantics

Syntax

- PNL:

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi|\langle\mathrm{A}\rangle \varphi|\langle\overline{\mathrm{A}}\rangle \varphi
$$

Semantics

- Operators meets $(\langle\mathrm{A}\rangle)$ and met-by $(\langle\overline{\mathrm{A}}\rangle)$:
meets:

D. Della Monica

PNL: syntax and semantics

Syntax

- PNL:

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi|\langle\mathrm{A}\rangle \varphi|\langle\overline{\mathrm{A}}\rangle \varphi
$$

Semantics

- Operators meets $(\langle\mathrm{A}\rangle)$ and met-by $(\langle\overline{\mathrm{A}}\rangle)$:

D. Della Monica

Metric interval logics

Two types of metric extensions of interval logics over the integers:
D. Della Monica

Metric interval logics

Two types of metric extensions of interval logics over the integers:

1. Extensions of the modal operators: $\langle A\rangle^{=k},\langle A\rangle^{>k},\langle A\rangle^{\left[k, k^{\prime}\right]}, \ldots$
D. Della Monica

Metric interval logics

Two types of metric extensions of interval logics over the integers:

1. Extensions of the modal operators: $\langle A\rangle^{=k},\langle A\rangle^{>k},\langle A\rangle^{\left[k, k^{\prime}\right]}, \ldots$
2. Atomic propositions for length constraints: len $>_{k}$, len $=k, \ldots$
D. Della Monica

Metric interval logics

Two types of metric extensions of interval logics over the integers:

1. Extensions of the modal operators: $\langle A\rangle^{=k},\langle A\rangle^{>k},\langle A\rangle^{\left[k, k^{\prime}\right]}, \ldots$
2. Atomic propositions for length constraints: len $>_{k}$, len $=k, \ldots$

The former are definable in terms of the latter in PNL, e.g.:

$$
\langle A\rangle^{>k} p:=\langle A\rangle\left(p \wedge \operatorname{len}_{>k}\right)
$$

Metric interval logics

Two types of metric extensions of interval logics over the integers:

1. Extensions of the modal operators: $\langle A\rangle^{=k},\langle A\rangle^{>k},\langle A\rangle^{\left[k, k^{\prime}\right]}, \ldots$
2. Atomic propositions for length constraints: len $>_{k}$, len $=k, \ldots$

The former are definable in terms of the latter in PNL, e.g.:

$$
\langle A\rangle^{>k} p:=\langle A\rangle\left(p \wedge \text { len }_{>\mathrm{k}}\right) .
$$

MPNL: PNL extended with integer constraints for interval lengths.

Decidability of metric interval logic

Theorem Satisfiability in MPNL on \mathbb{N} is decidable. It is NEXPTIME-complete if the metric constraints are represented in unary, and in between EXPSPACE and 2NEXPTIME if they are represented in binary.
(D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, G. Sciavicco Metric Propositional Neighborhood Interval Logics: expressiveness, decidability, and undecidability, Proc. of the European Conference on Artificial Intelligence (ECAI), 2010.

Decidability of metric interval logic

Theorem Satisfiability in MPNL on \mathbb{N} is decidable. It is NEXPTIME-complete if the metric constraints are represented in unary, and in between EXPSPACE and 2NEXPTIME if they are represented in binary.
D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, G. Sciavicco Metric Propositional Neighborhood Interval Logics: expressiveness, decidability, and undecidability, Proc. of the European Conference on Artificial Intelligence (ECAI), 2010.

Exact complexity is an open problem

Relative expressive power of logics in MPNL

D. Della Monica

Relative expressive power of logics in MPNL

D．Della Monica

Relative expressive power of logics in MPNL

D. Della Monica

Relative expressive power of logics in MPNL

Decidability of MPNL: by small model property
Comparing expressiveness of metric fragments: by bisimulations
D. Della Monica

Outline

Introduction
 The Halpern and Shoham's logic HS
 Expressiveness of HS
 The satisfiability problem for HS Undecidability

Classical extensions
Metric extensions
Hybrid extensions
First-order extensions

Summary and perspectives
D. Della Monica

Extending PNL

PNL

D. Della Monica

Extending PNL

NEXPTIME-co

PNL
D. Della Monica

[^0]
Extending PNL

D. Della Monica

Extending PNL

Undecidable

D. Della Monica

Extending PNL

D. Della Monica

Possible hybrid extension of PNL and MPNL

Nominals are definable in PNL (Basic Hybrid PNL)
D. Della Monica

Possible hybrid extension of PNL and MPNL

Binders over state variables (intervals) (Strongly Hybrid MPNL) lead to undecidability

Nominals are definable in PNL (Basic Hybrid PNL)
D. Della Monica

Possible hybrid extension of PNL and MPNL

Binders over state variables (intervals)
(Strongly Hybrid MPNL) lead to undecidability

Nominals are definable in PNL (Basic Hybrid PNL)
D. Della Monica

Possible hybrid extension of PNL and MPNL

Binders over state variables (intervals)
(Strongly Hybrid MPNL) lead to undecidability

Nominals are definable in PNL (Basic Hybrid PNL)
D. Della Monica

Weakly Hybrid MPNL (WHMPNL)

Metric constraints of MPNL use constants

$$
\operatorname{len}_{=5}, \operatorname{len}_{>2}, \ldots
$$

WHMPNL allows one to store the length of the current interval and to refer to it in sub-formulae

$$
\downarrow_{x}(\ldots|=| x), \downarrow_{x}(\ldots|\leq| x), \ldots
$$

D. Della Monica

WHMPNL fragments

Remark

- Constant metric constraints are inter-definable
- Hybrid metric constraints ARE NOT!!!
(e.g.: you cannot define len ${ }_{\leq x}$ in terms of len $n_{=x}$)

WHMPNL fragments

Remark

- Constant metric constraints are inter-definable
- Hybrid metric constraints ARE NOT!!! (e.g.: you cannot define len n_{x} in terms of len $=x$)

Possible choices:

1. which subset of hybrid constraints among $\{<, \leq,=, \geq,>\}$

WHMPNL fragments

Remark

- Constant metric constraints are inter-definable
- Hybrid metric constraints ARE NOT!!! (e.g.: you cannot define len $_{\leq x}$ in terms of len $_{=x}$)

Possible choices:

1. which subset of hybrid constraints among $\{<, \leq,=, \geq,>\}$
2. constant metric constraints are allowed or not (WHPNL or WHMPNL)

WHMPNL fragments

Remark

- Constant metric constraints are inter-definable
- Hybrid metric constraints ARE NOT!!! (e.g.: you cannot define len $n_{\leq x}$ in terms of len $n_{=x}$)

Possible choices:

1. which subset of hybrid constraints among $\{<, \leq,=, \geq,>\}$
2. constant metric constraints are allowed or not (WHPNL or WHMPNL)
3. how many length variables

WHMPNL fragments

Remark

- Constant metric constraints are inter-definable
- Hybrid metric constraints ARE NOT!!! (e.g.: you cannot define len $n_{\leq x}$ in terms of len $n_{=x}$)

Possible choices:

1. which subset of hybrid constraints among $\{<, \leq,=, \geq,>\}$
2. constant metric constraints are allowed or not (WHPNL or WHMPNL)
3. how many length variables

	set of hybrid constraints	constant constraints	\# of length variables
$W H M P N L(<, \leq,=, \geq,>)$	$\{<, \leq,=, \geq,>\}$	YES	unbounded
$W H P N L(<,=)$	$\{<,=\}$	NO	unbounded
$W H P N L(<)_{1}$	$\{<\}$	NO	1

D. Della Monica

WHMPNL fragments

Remark

- Constant metric constraints are inter-definable
- Hybrid metric constraints ARE NOT!!! (e.g.: you cannot define len $n_{\leq x}$ in terms of len $n_{=x}$)

Possible choices:

1. which subset of hybrid constraints among $\{<, \leq,=, \geq,>\}$
2. constant metric constraints are allowed or not (WHPNL or WHMPNL)
3. how many length variables

	set of hybrid constraints	constant constraints	\# of length variables
WHMPNL $(<, \leq,=, \geq,>)$	$\{<, \leq,=, \geq,>\}$	YES	unbounded
WHPNL $(<,=)$	$\{<,=\}$	NO	unbounded
WHPNL $(<)_{1}$	$\{<\}$	NO	1

The fragment $W H P N L(=)_{1}$

Reduction from the Finite Tiling Problem

This is the problem of establishing whether, for a given finite set of tile types $\mathcal{T}=\left\{t_{1}, \ldots, t_{k}\right\}$, there exists a finite rectangle \mathcal{R} having the border colored with a fixed color \square such that \mathcal{T} can tile \mathcal{R} respecting the color constraints.

D. Della Monica

The fragment $W H P N L(=)_{1}$

Reduction from the Finite Tiling Problem

This is the problem of establishing whether, for a given finite set of tile types $\mathcal{T}=\left\{t_{1}, \ldots, t_{k}\right\}$, there exists a finite rectangle \mathcal{R} having the border colored with a fixed color \square such that \mathcal{T} can tile \mathcal{R} respecting the color constraints.

D. Della Monica

Outline

Introduction
 The Halpern and Shoham's logic HS
 Expressiveness of HS
 The satisfiability problem for HS Undecidability

Classical extensions
Metric extensions
Hybrid extensions
First-order extensions

Summary and perspectives
D. Della Monica

Extending PNL

Undecidable

PNL +

any HS operator

D. Della Monica

Extending PNL

Extending PNL

Extending PNL

First-Order together with Propositional

FORPNL

First-Order Right Propositional Neighborhood Logic
D. Della Monica

First-Order together with Propositional

FORPNL

First-Order Right Propositional Neighborhood Logic

D. Della Monica

First-Order together with Propositional

FORMNL

First-Order Right Proposal Neighborhood Logic

D. Della Monica

First-Order together with Propositional

FORPNL

First-Order Right Propositional Neighborhood Logic

D. Della Monica

First-Order together with Propositional

FORPNL

First-Order Right Propositional Neighborhood Logic

1. Propositional (modal) setting

D. Della Monica

First-Order together with Propositional

F ORPNL

First-Order Right Propositional Neighborhood Logic

1. Propositional (modal) setting
2. First-Order setting

- predicates over elements
- existential and universal quantifications

D. Della Monica

First-Order together with Propositional

F ORPNL

First-Order Right Propositional Neighborhood Logic

1. Propositional (modal) setting
2. First-Order setting

- predicates over elements
- existential and universal quantifications

D. Della Monica

First-Order together with Propositional

F ORPNL

First-Order Right Propositional Neighborhood Logic

1. Propositional (modal) setting
2. First-Order setting

- predicates over elements
- existential and universal quantifications

D. Della Monica

First-Order together with Propositional

FORPNL

First-Order Right Propositional Neighborhood Logic

1. Propositional (modal) setting
2. First-Order setting

- predicates over elements
- existential and universal quantifications

3. Propositional (modal) + First-Order setting

D. Della Monica

Parameters of the logic

- Temporal domain: discrete, dense, finite, bounded, unbounded, ...

Parameters of the logic

- Temporal domain: discrete, dense, finite, bounded, unbounded, ...
- First-order domain: finite, infinite, expanding, ...
D. Della Monica

Parameters of the logic

- Temporal domain: discrete, dense, finite, bounded, unbounded, ...
- First-order domain: finite, infinite, expanding, ...
- First-order constructs:
- predicates $P(\ldots), Q(\ldots), \ldots$
- individual variables x, y, \ldots
- individual constants a, b, \ldots
- function $f(\ldots), g(\ldots), \ldots$
- quantifiers
- terms t_{1}, t_{2}, \ldots (variables, constants, and functions)

Parameters of the logic

- Temporal domain: discrete, dense, finite, bounded, unbounded, ...
- First-order domain: finite, infinite, expanding, ...
- First-order constructs:
- predicates $P(\ldots), Q(\ldots), \ldots$
- individual variables x, y, \ldots
- individual constants a, b, \ldots
- function $f(\ldots), g(\ldots), \ldots$
- quantifiers
- terms t_{1}, t_{2}, \ldots (variables, constants, and functions)

Parameters of the logic

- Temporal domain: discrete, dense, finite, bounded, unbounded, ...
- First-order domain: finite, infinite, expanding, ...
- First-order constructs:
- predicates $P(\ldots), Q(\ldots), \ldots$
- individual variables x, y, \ldots
- individual constants a, b, \ldots
- function $f(\ldots), g(\ldots), \ldots$
- quantifiers
- terms t_{1}, t_{2}, \ldots (variables, constants, and functions)

Parameters of the logic

- Temporal domain: discrete, dense, finite, bounded, unbounded, ...
- First-order domain: finite, infinite, expanding, ...
- First-order constructs:
- predicates $P(\ldots), Q(\ldots), \ldots$
- individual variables x, y, \ldots
- individual constants a, b, \ldots
- function $f(\ldots), g(\ldots), \ldots$
- quantifiers
- terms t_{1}, t_{2}, \ldots (variables, constants, and functions)
terms = variables

Parameters of the logic

- Temporal domain: discrete, dense, finite, bounded, unbounded, ...
- First-order domain: finite, infinite, expanding, ...
- First-order constructs:
- predicates $P(\ldots), Q(\ldots), \ldots$
- individual variables x, y, \ldots
- individual constants a, b, \ldots
- function $f(\ldots), g(\ldots), \ldots$
- quantifiers
- terms t_{1}, t_{2}, \ldots (variables, constants, and functions)

$$
\text { terms }=\text { variables }
$$

for tight undecidability only 1 variable (no free variables)

D. Della Monica

Undecidability of FORPNL

Reduction from the Finite Tiling Problem
This is the problem of establishing whether, for a given finite set of tile types $\mathcal{T}=\left\{t_{1}, \ldots, t_{k}\right\}$, there exists a finite rectangle \mathcal{R} having the border colored with a fixed color \square such that \mathcal{T} can tile \mathcal{R} respecting the color constraints.

D. Della Monica

Undecidability of FORPNL

Reduction from the Finite Tiling Problem
This is the problem of establishing whether, for a given finite set of tile types $\mathcal{T}=\left\{t_{1}, \ldots, t_{k}\right\}$, there exists a finite rectangle \mathcal{R} having the border colored with a fixed color \square such that \mathcal{T} can tile \mathcal{R} respecting the color constraints.

D. Della Monica

Undecidability of FORPNL

Reduction from the Finite Tiling Problem
This is the problem of establishing whether, for a given finite set of tile types $\mathcal{T}=\left\{t_{1}, \ldots, t_{k}\right\}$, there exists a finite rectangle \mathcal{R} having the border colored with a fixed color \square such that \mathcal{T} can tile \mathcal{R} respecting the color constraints.

It is possible to simulate HS operators $\langle\mathrm{B}\rangle\langle\mathrm{E}\rangle\langle\mathrm{D}\rangle$
D. Della Monica

Extending PNL: the final picture

Outline

Introduction
 The Halpern and Shoham's logic HS
 Expressiveness of HS
 The satisfiability problem for HS Undecidability
 Classical extensions
 Metric extensions
 Hybrid extensions
 First-order extensions

Summary and perspectives
D. Della Monica

Summary and perspectives

This talk outlined several major topics in the area of interval logics:
D. Della Monica

Summary and perspectives

This talk outlined several major topics in the area of interval logics:

- Expressiveness of HS fragments

Summary and perspectives

This talk outlined several major topics in the area of interval logics:

- Expressiveness of HS fragments
- Undecidability of HS fragments

Summary and perspectives

This talk outlined several major topics in the area of interval logics:

- Expressiveness of HS fragments
- Undecidability of HS fragments
- Classical extension of PNL
D. Della Monica

Summary and perspectives

This talk outlined several major topics in the area of interval logics:

- Expressiveness of HS fragments
- Undecidability of HS fragments
- Classical extension of PNL

The main research agenda so far: to complete the classifications of expressiveness and (un)decidability of fragments of HS.
D. Della Monica

Summary and perspectives

This talk outlined several major topics in the area of interval logics:

- Expressiveness of HS fragments
- Undecidability of HS fragments
- Classical extension of PNL

The main research agenda so far: to complete the classifications of expressiveness and (un)decidability of fragments of HS.

Not discussed, and not yet explored, but important:

Summary and perspectives

This talk outlined several major topics in the area of interval logics:

- Expressiveness of HS fragments
- Undecidability of HS fragments
- Classical extension of PNL

The main research agenda so far: to complete the classifications of expressiveness and (un)decidability of fragments of HS.

Not discussed, and not yet explored, but important:

- Model checking of Interval logics
D. Della Monica

Summary and perspectives

This talk outlined several major topics in the area of interval logics:

- Expressiveness of HS fragments
- Undecidability of HS fragments
- Classical extension of PNL

The main research agenda so far: to complete the classifications of expressiveness and (un)decidability of fragments of HS.

Not discussed, and not yet explored, but important:

- Model checking of Interval logics
- Automata-based techniques for interval logics
D. Della Monica

Exams and attended courses

- Exams
- International Lipari Summer School 2008 on "Algorithms: Science and Engineering" 14-25 July 2008, Lipari; 1.5 Credits
- "Constraint Programming and NMR Constraints for Determining Protein Structure", A. Dovier
- GAMES Spring School 2009
- "Systems Biology", A. Policriti/M. Miculan
- "Computational Complexity (Complessità computazionale)", R. Rizzi
- "Introduction to Software Configuration Management", L. Bendix
- Other courses
- "(Meta-)Modeling with UML and OCL", M. Gogolla
- "Data Mining and Mathematical Programming", P. Serafini
- "Sistemi Reattivi: automi, logica, algoritmi" (Master Course),
A. Montanari
- English course for academic purposes (CLAV)

Other activities

- Summer school
- International Lipari Summer School 2008 on "Algorithms: Science and Engineering"
- GAMES Spring School 2009 (Bertinoro)
- Visiting
- Oct - Dec 2009: University of Murcia - Murcia, Spain (G. Sciavicco)
- Sept - Nov 2010: Technical University of Denmark (DTU) Lyngby, Copenhagen, Denmark (V. Goranko)
- Events organization
- Annual Workshop of the ESF Networking Programme on Games for Design and Verification (GAMES 2009)
- First International Symposium on Games, Automata, Logics and Formal Verification (GandALF 2010)
- Second International Symposium on Games, Automata, Logics and Formal Verification (GandALF 2011)

Publications

1. D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco. "Decidable and Undecidable Fragments of Halpern and Shohams Interval Temporal Logic: Towards a Complete Classification". In Proc. of 15th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2008), 2008.
2. D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco. "Undecidability of Interval Temporal Logics with the Overlap Modality". In Proc. of 16th International Symposium on Temporal Representation and Reasoning (TIME 2009), 2009.
3. D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco. "Undecidability of the Logic of Overlap Relation over Discrete Linear Orderings". Electronic Notes in Theoretical Computer Science (Proc. of the 6th Workshop on Methods for Modalities (M4M-6 2009), 2010.

Publications - contd'

4. D. Della Monica, V. Goranko, and G. Sciavicco. "Hybrid Metric Propositional Neighborhood Logics with Interval Length Binders". In Proc. of International Workshop on Hybrid Logic and Applications (HyLo 2010), 2010. To appear on ENTCS.
5. D. Della Monica and G. Sciavicco. "On First-Order Propositional Neighborhood Logics: a First Attempt". In Proc. of ECAI 2010 Workshop on Spatio-Temporal Dynamics (STeDY 2010), 2010.
6. D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco. "Metric Propositional Neighborhood Logics: Expressiveness, Decidability, and Undecidability". In Proc. of 19th European Conference on Artificial Intelligence (ECAI 2010), 2010.
7. D. Bresolin, D. Della Monica, A. Montanari, P. Sala, and G. Sciavicco. "A decidable spatial generalization of Metric Interval Temporal Logic". In Proc. of 17th International Symposium on Temporal Representation and Reasoning (TIME 2010), 201. Bella Monica

Publications - contd'

8. D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, G. Sciavicco. "Metric propositional neighborhood logics on natural numbers". Journal of Software \& Systems Modeling (doi: 10.1007/s10270-011-0195-y, online since February 2011).
9. D. Della Monica, V. Goranko, A. Montanari, G. Sciavicco. "Expressiveness of the Interval Logics of Allen's Relations on the Class of all Linear Orders: Complete Classification". accepted to IJCAI 2011.

Publications - contd'

8. D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, G. Sciavicco. "Metric propositional neighborhood logics on natural numbers". Journal of Software \& Systems Modeling (doi: 10.1007/s10270-011-0195-y, online since February 2011).
9. D. Della Monica, V. Goranko, A. Montanari, G. Sciavicco. "Expressiveness of the Interval Logics of Allen's Relations on the Class of all Linear Orders: Complete Classification". accepted to IJCAI 2011.

The end.

D. Della Monica

[^0]:

