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At the beginning...

At the beginning, it was the darkness...

Then, logicians made the light,

they became curious,

and moved toward the darkness...

... as close as they could
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Interval-based temporal reasoning: origins and applications

Interval-based temporal reasoning: reasoning about time, where the
primary concept is ‘time interval’, rather than ‘time instant’.

Origins:

◮ Philosophy, in particular philosophy and ontology of time.

◮ Linguistics: analysis of progressive tenses, semantics of natural
languages.

◮ Artificial intelligence: temporal knowledge representation,
temporal planning, theory of events, etc.

◮ Computer science: specification and design of hardware
components, concurrent real-time processes, temporal
databases, etc.
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Motivations

Some properties are intrinsically related to a time interval instead of
a (set of) time instant, each of which has not duration.

Think about the event: “traveling from A to B”:

◮ it is true over a precise interval of time

◮ it is not true over any other interval (starting/ending interval,
inner interval, ecc.)

Several philosophical and logical paradoxes disappear:

◮ Zeno’s flying arrow paradox (“if at each instant the flying
arrow stands still, how is movement possible?”)

◮ The dividing instant dilemma (“if the light is on and it is turned
off, what is its state at the instant between the two events?”)

The truth of a formula over an interval does not necessarily depend
on its truth over subintervals.
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Interval temporal reasoning and temporal ontologies

Interval-based temporal reasoning is subject to the same ontological
dilemmas regarding the nature of Time as the instant-based
temporal reasoning:

◮ linear or branching?

◮ discrete or dense?

◮ with or without beginning/end?, etc.

New issues arise regarding the nature of the intervals:

◮ Can intervals be unbounded?

◮ Are intervals with coinciding endpoints admissible or not?
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Intervals and interval structures

D = 〈D, <〉: partially ordered set.

An interval in D: ordered pair [a, b], where a, b ∈ D and a ≤ b.

If a < b then [a, b] is a strict interval; [a, a] is a point interval.

I(D): the interval structure over D, consisting of the set of all
intervals over D.

In this talk I will restrict attention to linear interval structures,
i.e. interval structures over linear orders.

In particular, standard interval structures on N,Z,Q, and R with
their usual orders.
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Binary interval relations on linear orders

Later

After (right neighbour)

Overlaps (to right)

Ends

During (subinterval)

Begins

6 relations + their inverses + equality = 13 Allen’s relations.

J. F. Allen

Maintaining knowledge about temporal intervals.

Communications of the ACM, volume 26(11), pages 832-843, 1983.
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Halpern-Shoham’s modal logic of interval relations
Every interval relation gives rise to a modal operator over relational
interval structures. Thus, a multimodal logic arises:

J. Halpern and Y. Shoham

A propositional modal logic of time intervals.

Journal of the ACM, volume 38(4), pages 935-962, 1991.

non-strict semantics:
All modalities are definable in terms

of 〈B〉,〈E〉,〈B〉,〈E〉

HS ≡ BEBE

strict semantics:
Also needed additional modalities

〈A〉,〈A〉

HS ≡ BEBE + AA

〈A〉

〈A〉

Syntax of Halpern-Shoham’s logic, hereafter called HS :

φ ::= p | ¬φ | φ ∧ ψ | 〈B〉φ | 〈E〉φ | 〈B〉φ | 〈E〉φ
(

| 〈A〉φ | 〈A〉φ
)

.
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Models for propositional interval logics

AP : a set of atomic propositions (over intervals).

Non-strict interval model:

M+ = 〈I(D)+,V 〉,

where V : AP 7→ 2I(D)
+
.

Strict interval model:

M− = 〈I(D)−,V 〉,

where V : AP 7→ 2I(D)
−
.
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Formal semantics of HS

〈B〉: M, [d0, d1] 
 〈B〉φ iff there exists d2 such that d0 ≤ d2 < d1 and
M, [d0, d2] 
 φ.

〈B〉: M, [d0, d1] 
 〈B〉φ iff there exists d2 such that d1 < d2 and
M, [d0, d2] 
 φ.

current interval:

〈B〉φ:
φ

〈B〉φ:
φ
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Formal semantics of HS

〈B〉: M, [d0, d1] 
 〈B〉φ iff there exists d2 such that d0 ≤ d2 < d1 and
M, [d0, d2] 
 φ.

〈B〉: M, [d0, d1] 
 〈B〉φ iff there exists d2 such that d1 < d2 and
M, [d0, d2] 
 φ.

〈E〉: M, [d0, d1] 
 〈E〉φ iff there exists d2 such that d0 < d2 ≤ d1 and
M, [d2, d1] 
 φ.

〈E〉: M, [d0, d1] 
 〈E〉φ iff there exists d2 such that d2 < d0 and
M, [d2, d1] 
 φ.

〈A〉: M, [d0, d1] 
 〈A〉φ iff there exists d2 such that d1 < d2 and
M, [d1, d2] 
 φ.

〈A〉: M, [d0, d1] 
 〈A〉φ iff there exists d2 such that d2 < d0 and
M, [d2, d0] 
 φ.

current interval:

〈A〉φ:
φ

〈A〉φ:
φ
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〈L〉: M, [d0, d1] 
 〈L〉φ iff there exists d2, d3 such that d1 < d2 < d3 and
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 φ.
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Formal semantics of HS - contd’

〈L〉: M, [d0, d1] 
 〈L〉φ iff there exists d2, d3 such that d1 < d2 < d3 and
M, [d2, d3] 
 φ.

〈L〉: M, [d0, d1] 
 〈L〉φ iff there exists d2, d3 such that d2 < d3 < d0 and
M, [d2, d3] 
 φ.

〈D〉: M, [d0, d1] 
 〈D〉φ iff there exists d2, d3 such that d0 < d2 < d3 < d1 and
M, [d2, d3] 
 φ.

〈D〉: M, [d0, d1] 
 〈D〉φ iff there exists d2, d3 such that d2 < d0 < d1 < d3 and
M, [d2, d3] 
 φ.

〈O〉: M, [d0, d1] 
 〈O〉φ iff there exists d2, d3 such that d0 < d2 < d1 < d3 and
M, [d2, d3] 
 φ.

〈O〉: M, [d0, d1] 
 〈O〉φ iff there exists d2, d3 such that d2 < d0 < d3 < d1 and
M, [d2, d3] 
 φ.

current interval:

〈O〉φ:
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φ
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Defining the other interval modalities in HS

A useful new symbol is the modal constant π for point-intervals:

M, [d0, d1] 
 π iff d0 = d1.

It is definable as either [B ]⊥ or [E ]⊥, so it is only needed in weaker
fragments of HS.

In general, it is possible defining HS modalities in terms of others



D. Della Monica

The zoo of fragments of HS

Technically, there are 212 = 4096 fragments of HS
Of them, several hundreds are of essentially different expressiveness



D. Della Monica

The zoo of fragments of HS

Technically, there are 212 = 4096 fragments of HS
Of them, several hundreds are of essentially different expressiveness

Each of these, considered with respect to some parameters:

1. over special classes of interval structures (all, dense, discrete, finite, etc.)

2. with strict or non-strict semantics

3. including or excluding π operator (whenever it cannot be defined)
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Comparing the expressiveness of fragments of HS

Expressiveness classification problem: classify the fragments of HS
with respect to their expressiveness, relative to important classes of
interval models.
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The problem of comparing expressive power of HS fragments
L1, L2 HS-fragments

L1 {≺,≡,≻, 6≈} L2

does L1 translate
into L2?

does L2 translate
into L1?

does L2 translate
into L1?

≡ ≺ ≻ 6≈

yes no

yes no yes no
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Truth-preserving translation

There exists a truth-preserving translation of L1 into L2

iff
L2 is at least as expressive as L1

(L1 � L2)

For each modal operator 〈X 〉 of L1 there exists a L2-formula ϕ s.t.

〈X 〉p ≡ ϕ

212 fragments... 212·(212−1)
2 comparisons
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Inter-definability equations

Notation: X1X2 . . .Xn will denote the fragment of

HS containing the modalities 〈X1〉, 〈X2〉, . . . , 〈Xn〉

〈L〉p ≡ 〈A〉〈A〉p 〈L〉 ⊑ A 〈L〉 ⊑ A

〈O〉p ≡ 〈E 〉〈B〉p 〈O〉 ⊑ EB 〈O〉 ⊑ EB

〈D〉p ≡ 〈E 〉〈B〉p 〈D〉 ⊑ EB 〈D〉 ⊑ EB

〈L〉p ≡ 〈B〉[E ]〈B〉〈E 〉p 〈L〉 ⊑ BE 〈L〉 ⊑ BE

Soundness and completeness???

Soundness: all equations are valid SIMPLE
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〈L〉p ≡ 〈B〉[E ]〈B〉〈E 〉p 〈L〉 ⊑ BE 〈L〉 ⊑ BE

Soundness and completeness???

Soundness: all equations are valid SIMPLE

Completeness:
there are no more
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inter-definability equations
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Bisimulation between interval structures
Z ⊆ M1 × M2 is a bisimulations wrt the fragment X1X2 . . .Xn iff

1. Z -related intervals satisfy the same propositional letters, i.e.:

(i1, i2) ∈ Z ⇒ (p is true over i1 ⇔ p is true over i2)

2. the bisimulation relation is “preserved” by modal operators,
i.e., for every modal operator 〈X 〉:

(i1, i2) ∈ Z

(i1, i
′
1) ∈ X

}

⇒ ∃i ′2 s.t.

{

(i ′1, i
′
2) ∈ Z

(i2, i
′
2) ∈ X

M1

M2

i1

i2

i ′1

i ′2

Z

X

Z
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Bisimulation between interval structures - cont’d

Theorem Let Z be a bisimulation between M1 and M2 for the
language L and let i1 and i2 be intervals in M1 and M2,
respectively. Then, truth of L-formulae is preserved by Z , i.e.,

If (i1, i2) ∈ Z , then for every formula ϕ of L:

M1, i1 
 ϕ iff M2, i2 
 ϕ
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Suppose that we want to prove:

〈X 〉 is not definable in terms of L

We must provide:

1. two models M1 and M2

2. a bisimulation Z ⊆ M1 × M2 wrt fragment L

3. two interval i1 ∈ M1 and i2 ∈ M2 such that

a. i1 and i2 are Z -related
b. M1, i1 
 〈X 〉p and M2, i2 
 ¬〈X 〉p

By contradiction

If 〈X 〉 is definable in terms of L, then 〈X 〉p is.
Truth of 〈X 〉p should have been preserved by Z , but 〈X 〉p is true in
i1 (in M1) and false in i2 (in M2) ⇒ contradiction
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An example: the operator 〈D〉

Semantics:

M, [a, b] 
 〈D〉ϕ
def
⇔ ∃c , d such that a < c < d < b and M, [c , d ] 
 ϕ

〈D〉ϕ

ϕ

Operator 〈D〉 is definable in terms of BE 〈D〉ϕ ≡ 〈B〉〈E 〉ϕ

To prove that 〈D〉 is not definable in terms of any other fragment,
we must prove that:

1) 〈D〉 is not definable in terms of ALBOALBEDO

2) 〈D〉 is not definable in terms of ALEOALBEDO
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Bisimulation wrt A (AP = {p}):
◮ models: M1 = 〈I(N),V1〉,M2 = 〈I(N),V2〉

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9



D. Della Monica

〈D〉 is not definable in terms of A
A bisimulation wrt fragment A but not D

Bisimulation wrt A (AP = {p}):
◮ models: M1 = 〈I(N),V1〉,M2 = 〈I(N),V2〉

◮ V1(p) = {[1, 2]}

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

p



D. Della Monica

〈D〉 is not definable in terms of A
A bisimulation wrt fragment A but not D

Bisimulation wrt A (AP = {p}):
◮ models: M1 = 〈I(N),V1〉,M2 = 〈I(N),V2〉

◮ V1(p) = {[1, 2]}
◮ V2(p) = ∅

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

p

¬p



D. Della Monica

〈D〉 is not definable in terms of A
A bisimulation wrt fragment A but not D

Bisimulation wrt A (AP = {p}):
◮ models: M1 = 〈I(N),V1〉,M2 = 〈I(N),V2〉

◮ V1(p) = {[1, 2]}
◮ V2(p) = ∅

◮ bisimulation relation Z : ([x , y ], [w , z]) ∈ Z iff

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

p

¬p



D. Della Monica

〈D〉 is not definable in terms of A
A bisimulation wrt fragment A but not D

Bisimulation wrt A (AP = {p}):
◮ models: M1 = 〈I(N),V1〉,M2 = 〈I(N),V2〉

◮ V1(p) = {[1, 2]}
◮ V2(p) = ∅

◮ bisimulation relation Z : ([x , y ], [w , z]) ∈ Z iff

1. [x , y ] = [w , z] = [0, 3]

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

p

¬p



D. Della Monica

〈D〉 is not definable in terms of A
A bisimulation wrt fragment A but not D

Bisimulation wrt A (AP = {p}):
◮ models: M1 = 〈I(N),V1〉,M2 = 〈I(N),V2〉

◮ V1(p) = {[1, 2]}
◮ V2(p) = ∅

◮ bisimulation relation Z : ([x , y ], [w , z]) ∈ Z iff

1. [x , y ] = [w , z] = [0, 3]
2. [x , y ] = [w , z] and x ≥ 3

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

p

¬p



D. Della Monica

〈D〉 is not definable in terms of A
A bisimulation wrt fragment A but not D

Bisimulation wrt A (AP = {p}):
◮ models: M1 = 〈I(N),V1〉,M2 = 〈I(N),V2〉

◮ V1(p) = {[1, 2]}
◮ V2(p) = ∅

◮ bisimulation relation Z : ([x , y ], [w , z]) ∈ Z iff

1. [x , y ] = [w , z] = [0, 3]
2. [x , y ] = [w , z] and x ≥ 3

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

p

¬p

M1, [0, 3] 
 〈D〉p and M2, [0, 3] 
 ¬〈D〉p



D. Della Monica

〈D〉 is not definable in terms of A
A bisimulation wrt fragment A but not D

Bisimulation wrt A (AP = {p}):
◮ models: M1 = 〈I(N),V1〉,M2 = 〈I(N),V2〉

◮ V1(p) = {[1, 2]}
◮ V2(p) = ∅

◮ bisimulation relation Z : ([x , y ], [w , z]) ∈ Z iff

1. [x , y ] = [w , z] = [0, 3]
2. [x , y ] = [w , z] and x ≥ 3

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

p

¬p

M1, [0, 3] 
 〈D〉p and M2, [0, 3] 
 ¬〈D〉p ⇒ the thesis
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The satisfiability problem for HS

Satisfiability problem for a logic L Given an L-formula ϕ, is ϕ
satisfiable, i.e., there exists a model and an interval in which ϕ is
true?

L is decidable (wrt the satisfiability problem)
iff

for each formula it is possible to answer the question
there exists a terminating algorithm that answer yes / not for any ϕ

Expressive enough, yet decidable, HS fragments

Classification of all HS fragments wrt (un)decidability
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Maximal decidable HS fragments

◮ PNL (≡ AA) in general case

D. Bresolin, V. Goranko, A. Montanari, G. Sciavicco

Propositional Interval Neighborhood Logic: Decidability,
Expressiveness, and Undecidable Extensions.

Annals of Pure and Applied Logics, 2009, 161, 289-304.
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Maximal decidable HS fragments

◮ PNL (≡ AA) in general case

◮ ABBL (and AEEL) in general case

D. Bresolin, A. Montanari, P. Sala, G. Sciavicco

What’s decidable about Halpern and Shoham’s interval logic?
The maximal fragment ABBL.

LICS 2011, 2011.



D. Della Monica

Maximal decidable HS fragments

◮ PNL (≡ AA) in general case

◮ ABBL (and AEEL) in general case

◮ ABBA (and AEEA) over finite structures

A. Montanari, G. Puppis, P. Sala

Maximal Decidable Fragments of Halpern and Shoham’s
Modal Logic of Intervals.

ICALP 2010, 2010, LNCS 6199, 2010, 345-356.
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Maximal decidable HS fragments

◮ PNL (≡ AA) in general case

◮ ABBL (and AEEL) in general case

◮ ABBA (and AEEA) over finite structures

◮ DDBBLL over Q

P. Sala

PhD thesis

2010
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Weakest undecidable HS fragments

AD,AD,AD,AD [in this thesis]

BE,BE,BE,BE [in this thesis]

O (and O) [in this thesis]

D (and D) over discrete [Michaliszyn, Marcinkowski]

The Ultimate Undecidability Result

for the Halpern-Shoham Logic

LICS 2011
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The Octant Tiling Problem
This is the problem of establishing whether a given finite set of tile
types T = {t1, . . . , tk} can tile the 2nd octant of the integer plane:

O = {(i , j) : i , j ∈ N ∧ 0 ≤ i ≤ j},

while respecting the color constraints.

Proposition The Octant Tiling Problem is undecidable.

Proof: by reduction from the tiling problem for N× N, using
König’s Lemma.
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Undecidability of the interval logics via tiling:
generic construction

1. Encoding of the octant

2. Encoding of the neighborhood relations
◮ Right-neighborhood relation SIMPLE
◮ Above-neighborhood relation HARD

Encoding of the octant

◮ Force the existence of a unique infinite chain of unit-intervals
on the linear order, which covers an initial segment of the
interval model. (propositional letter u)

Unit intervals are used to place tiles and delimiting symbols.

◮ ID-intervals are then introduced to represent the layers of tiles.
(propositional letter Id)
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Undecidability of the interval logics via tiling:
generic construction cont’d

Each ID-interval must have the right number of tiles

The most challenging part usually is to ensure that the consecutive
ID-intervals match vertically: the Above-Neighbour relation.

For that, auxiliary propositional letter up_rel can be used to
connecting (endpoints of) two intervals representing tiles that are
above connected in the octant
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Undecidability of the interval logics via tiling:
generic construction completed

Eventually, we encode the given Octant tiling problem by specifying
the matching conditions between intervals that are right-connected
or above-connected.

The specific part of the construction is to use the given fragment of
HS to set the chain of unit intervals and to express all necessary
properties of IDs, the propositional letters for correspondence
intervals, and the tile matching conditions.
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Summary of (un)decidability results and outlook

◮ In summary: interval logics are generally undecidable, even
under very weak assumptions.

◮ In particular, most fragments of HS (∼ 90%) have been
proved undecidable over most of the natural classes of interval
structures.

◮ There are still some currently unknown cases (< 8%), and
some are conjectured undecidable (over general and special
classes), e.g., L∗D∗, where X ∗ ∈ {X ,X}; etc.

◮ Not all results transfer readily between the strict and the
non-strict semantics, and between the classes of all, dense,
discrete, etc. interval structures.

◮ More statistics are available on the web page:
https://itl.dimi.uniud.it/content/logic-hs
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Two types of metric extensions of interval logics over the integers:

1. Extensions of the modal operators: 〈A〉=k , 〈A〉>k , 〈A〉[k,k
′], . . .

2. Atomic propositions for length constraints: len>k, len=k, . . .

The former are definable in terms of the latter in PNL, e.g.:

〈A〉>kp := 〈A〉(p ∧ len>k).

MPNL: PNL extended with integer constraints for interval lengths.
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NEXPTIME-complete if the metric constraints are represented in
unary, and in between EXPSPACE and 2NEXPTIME if they are
represented in binary.

D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, G. Sciavicco

Metric Propositional Neighborhood Interval Logics: expressiveness,
decidability, and undecidability, Proc. of the European Conference on
Artificial Intelligence (ECAI), 2010.
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Theorem Satisfiability in MPNL on N is decidable. It is
NEXPTIME-complete if the metric constraints are represented in
unary, and in between EXPSPACE and 2NEXPTIME if they are
represented in binary.

D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, G. Sciavicco

Metric Propositional Neighborhood Interval Logics: expressiveness,
decidability, and undecidability, Proc. of the European Conference on
Artificial Intelligence (ECAI), 2010.

Exact complexity is an open problem



D. Della Monica

Relative expressive power of logics in MPNL

MPNL<

MPNL=

MPNL>

MPNL()

MPNL=
l MPNL

()

l



D. Della Monica

Relative expressive power of logics in MPNL

MPNLε ≡ PNL

MPNL<,ε MPNL>,ε

MPNL=,ε MPNL<,> MPNL(),ε

MPNL[]

MPNL

MPNL<

MPNL=

MPNL>

MPNL()

MPNL=
l MPNL

()

l



D. Della Monica

Relative expressive power of logics in MPNL

MPNLε ≡ PNL

MPNL<,ε MPNL>,ε

MPNL=,ε MPNL<,> MPNL(),ε

MPNL[]

MPNL

MPNL<

MPNL=

MPNL>

MPNL()

MPNL=
l MPNL

()

l

in 2NEXPTIME

EXPSPACE -hard

NEXPTIME -complete



D. Della Monica

Relative expressive power of logics in MPNL

MPNLε ≡ PNL

MPNL<,ε MPNL>,ε

MPNL=,ε MPNL<,> MPNL(),ε

MPNL[]

MPNL

MPNL<

MPNL=

MPNL>

MPNL()

MPNL=
l MPNL

()

l

in 2NEXPTIME

EXPSPACE -hard

NEXPTIME -complete

Decidability of MPNL: by small model property
Comparing expressiveness of metric fragments: by bisimulations



D. Della Monica

Outline

Introduction
The Halpern and Shoham’s logic HS

Expressiveness of HS

The satisfiability problem for HS
Undecidability

Classical extensions
Metric extensions
Hybrid extensions
First-order extensions

Summary and perspectives



D. Della Monica

Extending PNL

PNL



D. Della Monica

Extending PNL

PNL

NEXPTIME-co



D. Della Monica

Extending PNL

PNL

PNL +
any HS operator

NEXPTIME-co



D. Della Monica

Extending PNL

PNL

PNL +
any HS operator

NEXPTIME-co

Undecidable



D. Della Monica

Extending PNL

PNL

PNL +
any HS operator

MPNL

NEXPTIME-co

Undecidable



D. Della Monica

Extending PNL

PNL

PNL +
any HS operator

MPNL

NEXPTIME-co

Undecidable

between EXPSPACE
and 2NEXPTIME



D. Della Monica

Extending PNL

PNL

PNL +
any HS operator

MPNL MPNL+

NEXPTIME-co

Undecidable

between EXPSPACE
and 2NEXPTIME



D. Della Monica

Extending PNL

PNL

PNL +
any HS operator

MPNL MPNL+

NEXPTIME-co

Undecidable

between EXPSPACE
and 2NEXPTIME

Undecidable



D. Della Monica

Extending PNL

PNL

PNL +
any HS operator

MPNL MPNL+

Hybrid Extensions

NEXPTIME-co

Undecidable

between EXPSPACE
and 2NEXPTIME

Undecidable



D. Della Monica

Extending PNL

PNL

PNL +
any HS operator

MPNL MPNL+

Hybrid Extensions

NEXPTIME-co

Undecidable

between EXPSPACE
and 2NEXPTIME

Undecidable

???



D. Della Monica

Possible hybrid extension of PNL and MPNL

Nominals are definable in PNL
(Basic Hybrid PNL)



D. Della Monica

Possible hybrid extension of PNL and MPNL

Binders over state variables (intervals)
(Strongly Hybrid MPNL)

lead to undecidability

Nominals are definable in PNL
(Basic Hybrid PNL)



D. Della Monica

Possible hybrid extension of PNL and MPNL

Binders over state variables (intervals)
(Strongly Hybrid MPNL)

lead to undecidability

Nominals are definable in PNL
(Basic Hybrid PNL)



D. Della Monica

Possible hybrid extension of PNL and MPNL

Binders over state variables (intervals)
(Strongly Hybrid MPNL)

lead to undecidability

Binders over length of intervals
(Weakly Hybrid MPNL)

Nominals are definable in PNL
(Basic Hybrid PNL)
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Weakly Hybrid MPNL (WHMPNL)

Metric constraints of MPNL use constants

len=5, len>2, . . .

WHMPNL allows one to store the length of the current
interval and to refer to it in sub-formulae

↓x (. . . |=|x), ↓x (. . . |≤|x), . . .
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First-Order together with Propositional

F O R P N L

First-Order Right Propositional Neighborhood Logic

1. Propositional (modal) setting

2. First-Order setting
◮ predicates over elements
◮ existential and universal

quantifications

3. Propositional (modal) +
First-Order setting

w1

w2

w3
d1

d2

d3

w4

Propositional (modal)
domain

First-Order
domain
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◮ Temporal domain: discrete, dense, finite, bounded,
unbounded, . . .

◮ First-order domain: finite, infinite, expanding, . . .

◮ First-order constructs:
◮ predicates P(. . .),Q(. . .), . . .
◮ individual variables x , y , . . .
◮ individual constants a, b, . . .
◮ function f (. . .), g(. . .), . . .
◮ quantifiers
◮ terms t1, t2, . . . (variables, constants, and functions)

terms = variables

for tight undecidability only 1 variable (no free variables)
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Undecidability of FORPNL

Reduction from the Finite Tiling Problem
This is the problem of establishing whether, for a given finite set of tile
types T = {t1, . . . , tk}, there exists a finite rectangle R having the
border colored with a fixed color such that T can tile R respecting the
color constraints.

It is possible to simulate HS operators 〈B〉 〈E〉 〈D〉



D. Della Monica

Extending PNL: the final picture

PNL

PNL +
any HS operator

Metric
PNL

MPNL+

Hybrid Extensions

First-Order Extensions
NEXPTIME-co

Undecidable

between EXPSPACE
and 2NEXPTIME

Undecidable

Undecidable

Undecidable



D. Della Monica

Outline

Introduction
The Halpern and Shoham’s logic HS

Expressiveness of HS

The satisfiability problem for HS
Undecidability

Classical extensions
Metric extensions
Hybrid extensions
First-order extensions

Summary and perspectives



D. Della Monica

Summary and perspectives

This talk outlined several major topics in the area of interval logics:



D. Della Monica

Summary and perspectives

This talk outlined several major topics in the area of interval logics:

◮ Expressiveness of HS fragments



D. Della Monica

Summary and perspectives

This talk outlined several major topics in the area of interval logics:

◮ Expressiveness of HS fragments

◮ Undecidability of HS fragments



D. Della Monica

Summary and perspectives

This talk outlined several major topics in the area of interval logics:

◮ Expressiveness of HS fragments

◮ Undecidability of HS fragments

◮ Classical extension of PNL



D. Della Monica

Summary and perspectives

This talk outlined several major topics in the area of interval logics:

◮ Expressiveness of HS fragments

◮ Undecidability of HS fragments

◮ Classical extension of PNL

The main research agenda so far: to complete the classifications of
expressiveness and (un)decidability of fragments of HS.



D. Della Monica

Summary and perspectives

This talk outlined several major topics in the area of interval logics:

◮ Expressiveness of HS fragments

◮ Undecidability of HS fragments

◮ Classical extension of PNL

The main research agenda so far: to complete the classifications of
expressiveness and (un)decidability of fragments of HS.

Not discussed, and not yet explored, but important:



D. Della Monica

Summary and perspectives

This talk outlined several major topics in the area of interval logics:

◮ Expressiveness of HS fragments

◮ Undecidability of HS fragments

◮ Classical extension of PNL

The main research agenda so far: to complete the classifications of
expressiveness and (un)decidability of fragments of HS.

Not discussed, and not yet explored, but important:

◮ Model checking of Interval logics



D. Della Monica

Summary and perspectives

This talk outlined several major topics in the area of interval logics:

◮ Expressiveness of HS fragments

◮ Undecidability of HS fragments

◮ Classical extension of PNL

The main research agenda so far: to complete the classifications of
expressiveness and (un)decidability of fragments of HS.

Not discussed, and not yet explored, but important:

◮ Model checking of Interval logics

◮ Automata-based techniques for interval logics
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Exams and attended courses

◮ Exams
◮ International Lipari Summer School 2008 on “Algorithms:

Science and Engineering” 14 - 25 July 2008, Lipari; 1.5 Credits
◮ “Constraint Programming and NMR Constraints for

Determining Protein Structure”, A. Dovier
◮ GAMES Spring School 2009
◮ “Systems Biology”, A. Policriti/M. Miculan
◮ “Computational Complexity (Complessità computazionale)”, R.

Rizzi
◮ “Introduction to Software Configuration Management”, L.

Bendix

◮ Other courses
◮ “(Meta-)Modeling with UML and OCL”, M. Gogolla
◮ “Data Mining and Mathematical Programming”, P. Serafini
◮ “Sistemi Reattivi: automi, logica, algoritmi” (Master Course),

A. Montanari
◮ English course for academic purposes (CLAV)
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Other activities

◮ Summer school
◮ International Lipari Summer School 2008 on “Algorithms:

Science and Engineering”
◮ GAMES Spring School 2009 (Bertinoro)

◮ Visiting
◮ Oct - Dec 2009: University of Murcia - Murcia, Spain (G.

Sciavicco)
◮ Sept - Nov 2010: Technical University of Denmark (DTU) -

Lyngby, Copenhagen, Denmark (V. Goranko)

◮ Events organization
◮ Annual Workshop of the ESF Networking Programme on

Games for Design and Verification (GAMES 2009)
◮ First International Symposium on Games, Automata, Logics

and Formal Verification (GandALF 2010)
◮ Second International Symposium on Games, Automata, Logics

and Formal Verification (GandALF 2011)
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The end.
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