
An interval temporal logic characterization
of extended ω-regular languagesI

Dario Della Monicaa,∗, Angelo Montanaria, Pietro Salab

aUniversità di Udine, Udine (Italy)
bUniversità di Verona, Verona (Italy)

Abstract

Some extensions of ω-regular languages have been proposed in the literature to

express asymptotic properties of ω-words which are not captured by ω-regular

languages. They include ωB-regular languages, that extend ω-regular languages

with boundedness, ωS-regular languages, that enrich ω-regular ones with strong

unboundedness, ωBS-regular languages, that combine ωB- and ωS-regular ones,

and ωT -regular languages, that include meaningful languages which are not

ωBS-regular. Formal definitions of extended ω-regular languages have been

given in terms of both suitable classes of automata and extended ω-regular

expressions, while satisfactory temporal logic counterparts are still missing. In

this paper, we give a characterization of them in terms of interval temporal

logics by providing an explicit encoding of expressions into formulas.

Keywords: Temporal logic, ω-regular expressions, expressiveness

2010 MSC: 00-01, 99-00

1. Introduction

In this paper, we explore the relationships between extended ω-regular lan-

guages and temporal logic by providing an encoding of language expressions

into formulas of suitable interval temporal logics.

IThis work was supported by the Department Strategic Plan (PSD) of the University of
Udine – Interdepartmental Project on Artificial Intelligence (2021-25) and by the GNCS 2022
project “Elaborazione del Linguaggio Naturale e Logica Temporale per la Formalizzazione di
Testi”. The paper is an extended and revised version of [1] and [2].
∗dario.dellamonica@uniud.it (corresponding author)

Preprint submitted to Journal of LATEX Templates March 11, 2023

ω-regular languages are a natural setting for the specification and verifica-5

tion of nonterminating finite-state systems. Since the seminal work by Büchi,

McNaughton, and Rabin in the sixties [3, 4, 5], much has been done on the

theory and the application of ω-regular languages. Equivalent characterizations

of ω-regular languages have been given in terms of formal languages, automata,

and classical and temporal logic. However, while the consensus on what features10

regular languages of finite words must exhibit is unanimous (it largely relies on

Myhill-Nerode theorem [6]), the notion of ω-regular languages is more contro-

versial. In the last years, it has been shown that ω-regular languages can be

extended in meaningful ways, preserving their decidability and (some of their)

closure properties [7, 8, 9, 10].15

The proposed extensions pair the Kleene star (.)∗ with some variants of it.

The bounding exponent B of ωB-regular languages, denoted by (.)B , constrains

the language L in the expression LB to be iterated only a bounded number of

times, the bound being fixed for the whole ω-word [10]. The unbounding expo-

nent S of ωS-regular languages, denoted by (.)S , when applied to a language20

L, forces the number of iterations of L to tend to infinity, that is, for every

k > 0, it constrains the number of times the argument L is repeated at most

k times to be finite [10]. The exponents (.)B and (.)S can be freely mixed in

ωBS-regular languages (the combination of ωB- and ωS-regular ones) [10]. The

union of the classes of ωB- and ωS-regular languages is properly included in the25

class of ωBS-regular ones [9], as witnessed by the ωBS-regular language L over

the alphabet {a, b} consisting of those ω-words featuring infinitely many occur-

rences of b’s and such that the sequence of the distances between consecutive b’s

contains only finitely many values occurring infinitely often. As it will become

clear when formal definitions will be given, such a language is captured by the30

ωBS-regular expression (aBb+aSb)ω, but it cannot be encoded by means of the

union of languages generated by ωB- and ωS-regular expressions. The existence

of non-ωBS-regular languages (like, e.g., the complement L̄ of L above) that are

the complements of some ωBS-regular ones and express natural asymptotic be-

haviours motivated the search for other classes of extended ω-regular languages.35

2

In [11], ωT -regular languages, which are based on a different extension of (.)∗,

denoted by (.)T , and include meaningful non-ωBS-regular languages such as L̄,
have been studied.

Besides those in terms of ωB-, ωS-, ωBS-, and ωT -regular expressions,

equivalent characterizations of the above languages have been given in terms of40

automata and classical logic (extensions of the monadic second-order theory of

one successor S1S). Temporal logic counterparts are still missing. As a matter

of fact, encodings of ωB- and ωS-regular languages in interval temporal logics

were proposed in [1] and [12], respectively. Unfortunately, as we will show later,

both of them are flawed. Here, we provide a fix, and, in addition, give an interval45

temporal logic characterization of ωT -regular languages.

Interval temporal logic (ITL) is a general framework for representing and

reasoning about time. ITLs are characterized by high expressiveness (they over-

come various limitations of point-based temporal logics) and high computational

complexity (formulas translate into binary relations over the underlying linear50

order). One of the first ITLs proposed in the literature is Moszkowski’s Propo-

sitional ITL (PITL), which was successfully applied to hardware specification

and verification [13]. The application of interval-based formalisms to temporal

reasoning in AI was first investigated by Allen [14]. A systematic logical study

of interval representation and reasoning started with Halpern and Shoham’s55

work on the logic HS featuring one modality for each Allen relation [15]. While

decidability is a common feature of point-based temporal logics, undecidability

rules over ITLs. The first such undecidability results were obtained for PITL

by Moszkowski [16]. General undecidability results for HS are given in [15] and

further sharpened in [17]. For a long time, these results have discouraged the60

search for practical applications and further theoretical investigation on ITLs.

This bleak picture started lightening up in the last years when various non-trivial

decidable fragments of HS have been identified (see, e.g., [18, 19, 20, 21]).

In this paper, we focus on the HS fragment AB, whose modalities correspond

to Allen’s relationsmeets (modality 〈A〉) and begun by (modality 〈B〉), and some65

extensions of it with modalities for the inverse relations met by (modality 〈Ā〉)

3

and begins (modality 〈B̄〉). In [1], Montanari and Sala have proved that reg-

ular (resp., ω-regular) languages can be defined in AB, interpreted over finite

linear orders (resp., N).1 Here, we show that extended ω-regular languages

can be captured by suitable extensions of AB, by means of formulas that pair70

atomic propositions corresponding to the elements of the alphabet of the ex-

tended ω-regular language and auxiliary atomic propositions. More precisely,

we show that (i) ωB-regular languages can be encoded in ABĀ, that extends

AB with the past modality 〈Ā〉, (ii) ωS-regular languages can be encoded in

AB enriched with an equivalence relation ∼, namely AB∼, and (iii) ωT -regular75

languages are captured by ABĀ∼, the extension of AB with both modality

〈Ā〉 and equivalence relation ∼. A distinctive feature of the encodings is that

they do not resort to any counter, that is, checking the satisfaction of bounded-

ness/unboundedness conditions in ITL does not require the precision in length

measurements given by counters (in fact, some abstraction over counters, that80

allows one to consider orders of magnitude rather than exact values, is exploited

also in the automaton-based characterizations of extended ω-regular languages).

The paper is organized as follows. In Section 2, we provide some background

knowledge on extended ω-regular languages and ITLs. Then, in Section 3,

we prove some useful properties of extended (ω-)regular languages. Next, in85

Section 4, we describe in detail the encodings of regular and ω-regular languages

in AB. In Section 5, we point out the main issues that must be addressed

to lift the encoding of Section 4 to extended ω-regular languages. Finally, in

Sections 6, 7, and 8, we show how to enrich the encoding of ω-regular languages

into AB in order to capture the increased expressive power of extended ω-90

regular languages. Conclusions provide an assessment of the work done and

outline directions of future work.

1In fact, they make use of the logic ABB̄, but it can be shown that modality 〈B̄〉 simplifies

the encoding, but it is inessential.

4

2. Preliminaries

In this section, we provide some background knowledge about extended ω-

regular languages and interval temporal logics. Let N be the set of natural95

numbers and N>0 = N \ {0}. Further, for an infinite sequence ~u and i ∈ N>0,

we denote by ui its i-th element.

2.1. Extended ω-regular languages

In the following, we give a short account of extended ω-regular languages in

terms of the extended ω-regular expressions that define them. For a detailed100

one, we refer the reader to [11]. Extended ω-regular expressions are built on

top of the corresponding extended regular ones, just as ω-regular expressions are

built on top of regular ones. Intuitively, extended regular expressions differ from

regular ones as they allow constructors from the set {(.)B , (.)S , (.)T }. Formally,

let Σ be a finite, nonempty alphabet. Then, BST -regular expressions over Σ105

are captured by the grammar:

e ::= ∅ | a | e · e | e+ e | e∗ | eB | eS | eT , where a ∈ Σ.

Sometimes, we will omit the operator ·, thus writing, e.g., ee for e · e.
In the following, we provide the semantics of BST -regular expressions. Un-

like standard regular expressions, the semantics of extended regular ones is given110

in terms of languages of infinite sequences of finite words, that make it possible

to force suitable constraints that capture the intended meaning of (.)B , (.)S ,

and (.)T . Intuitively, according to its standard semantics, a regular expression

e corresponds to a regular language of finite words, say it LRE
e . According to

the semantics given in this paper, instead, the regular expression e identifies the115

set L(e) of infinite sequences whose elements are finite words from LRE
e , i.e.,

L(e) = {~w | wi ∈ LRE
e }. As an example, we have that L(a) = {(a, a, a, . . .)}

and L(a∗) = {~w | wi is a sequence of a’s of any length}. Roughly speaking, the

constructor (.)∗ produces sequences of words by grouping together arbitrarily

many consecutive elements of a sequence generated by the argument language.120

The constructors (.)B , (.)S , and (.)T behave similarly, the difference being that

5

the number of consecutive elements that are grouped together is not arbitrary,

but suitably constrained in the limit (see the formal definition below for more

details). As an example, we have that L(aB) = {~w | wi is a sequence of a’s and

there is an upper bound to the length of wi, for all i}.125

In order to ease the definition of the semantics of extended regular expres-

sions, we introduce the notions of concatenation and shuffle of two word se-

quences, as well as the one of f -aggregation of a word sequence, for a given

nondecreasing function f : N → N>0, with f(0) = 1. The first two notions are

used in the semantic clauses for the operators · and +, respectively, while the130

third one comes handy in the definition of the semantics for the constructors

(.)∗, (.)B , (.)S , and (.)T .

The concatenation of two word sequences ~u and ~v, denoted by ~u� ~v, is the
word sequence ~w = (u1 · v1, u2 · v2, . . .), that is, wi = ui · vi for all i ∈ N>0,

where · is the classic word concatenation operator from regular expressions.135

Roughly speaking, ~w is obtained from the component-wise application of the

word concatenation operator · to ~u and ~v.

The notion of shuffle [11] of two word sequences is based on the notion

of selection function, namely a function g : N>0 → {1, 2}. Intuitively, given

a selection function g, the g-shuffle of word sequences ~v1 and ~v2, denoted by140

~v1 +g ~v
2, is the word sequence whose i-th element is taken from ~v1 if g(i) = 1

and from ~v2 otherwise. The order in which elements of ~v1 (resp., ~v2) appear in

~v1 +g ~v
2 is the same as they appear in ~v1 (resp., ~v2), but possibly at different

positions. As an example, if ~v1 = (a, aa, aaa, . . .), ~v2 = (b, bb, bbb, . . .), and g is

a selection function such that g(1) = g(3) = 1 and g(2) = 2, then we have that145

~v1 +g ~v
2 is a sequence of the form (a, b, aa, . . .), where the 1st element of ~v2

(resp., 2nd element of ~v1) is the 2nd (resp., 3rd) element of the g-shuffle of ~v1 and

~v2. This is formalized as follows. First, we denote by 1′s-upto(g, i) the number

of positions, up to i, where the value of function g is 1, i.e., 1′s-upto(g, i) =

|{j | g(j) = 1 and 1 ≤ j ≤ i}|; analogously, we denote by 2′s-upto(g, i) the150

number of positions, up to i, where the value of function g is 2. Intuitively,

1′s-upto(g, i) (resp., 2′s-upto(g, i)) denotes the number of element of ~u (resp.,

6

~v) that have been selected by g to appear in the prefix of ~u +g ~v of length i.

Therefore, they can be used to determine (the position of) the word in sequence

~u (resp., ~v) that appears in position i of sequence ~w.155

The g-shuffle ~u +g ~v is the word sequence ~w, where, for all i ∈ N>0,

wi =

 u1′s-upto(g,i) if g(i) = 1

v2′s-upto(g,i) if g(i) = 2

We say that an infinite word sequence ~w is a shuffle of ~u and ~v if there is a

selection function g such that ~w is the g-shuffle of ~u and ~v. Notice that the set

of selection functions includes those g that eventually converge to either 1 or 2,160

i.e., there exists k ∈ N>0 such that g(x) = 1 (resp., g(x) = 2) for all x > k.

Finally, given a nondecreasing function f : N → N>0, with f(0) = 1, the

f -aggregation of a word sequence ~u is the sequence (uf(0)uf(0)+1 . . . uf(1)−1,

uf(1) . . . uf(2)−1, . . .). For the sake of readability, we denote by F the set of

nondecreasing functions f : N → N>0, with f(0) = 1. Given a function f ∈ F ,165

it is convenient to denote by δf = 〈δf (i)〉i∈N>0
the sequence of the deltas of

f , that is, the difference between consecutive values returned by f . Formally,

δf (i) = f(i)− f(i− 1).

In order to provide the semantics of BST -regular expressions, we need to

precisely state the notions of B-, S-, and T -sequences.170

An infinite sequence 〈ni〉i∈N>0
of natural numbers is said to be

• a B-sequence if it is bounded, i.e., there exists b ∈ N such that ni < b for

all i ∈ N>0;

• an S-sequence if it is strongly unbounded, i.e., its limit inferior is infinite

(equivalently, no value occurs infinitely often in the sequence), or, more175

formally, for every n ∈ N there is k ∈ N such that ni > n for all i > k;

• a T -sequence if it features infinitely many values occurring infinitely often,

i.e., there exist infinitely many n ∈ N and infinitely many i ∈ N>0 such

that ni = n.

We are now ready to define the formal semantics of BST -regular expressions:180

7

• L(∅) = ∅;
• for a ∈ Σ, L(a) only contains the infinite sequence of the one-letter word

a, that is, L(a) = {(a, a, a, . . .)};
• L(e1 · e2) = {~w | ~w is the concatenation of ~u and ~v, with ~u ∈ L(e1) and

~v ∈ L(e2)};185

• L(e1 + e2) = {~w | ~w is a shuffle of ~u and ~v, with ~u,~v ∈ L(e1) ∪ L(e2)};2

• L(e∗) = {~w | ~w is the f -aggregation of ~u, with ~u ∈ L(e) and f ∈ F};
• L(eB) = {~w | ~w is the f -aggregation of ~u, with ~u ∈ L(e) and f ∈ F such

that δf is a B-sequence};
• L(eS) = {~w | ~w is the f -aggregation of ~u, with ~u ∈ L(e) and f ∈ F such190

that δf is an S-sequence};
• L(eT) = {~w | ~w is the f -aggregation of ~u, with ~u ∈ L(e) and f ∈ F such

that δf is a T -sequence}.
The ω-constructor (.)ω turns languages of infinite word sequences into lan-

guages of ω-words by simply concatenating the words in the sequence into a195

single (infinite) word. Formally:

• L(eω) = {w | |w| =∞, w = u1u2u3 . . ., and ~u ∈ L(e)}.

2It is worth pointing out that previous work, e.g., [9], uses a different semantics for the

operator +, based on the mixing, rather than the shuffling, of two sequences. Given a selection

function g, the g-mix of two sequences ~v1 and ~v2 features elements taken from either ~v1 or

~v2, according to g, analogously to the g-shuffle; however, unlike the g-shuffle, the position

of elements of ~v1 and ~v2 included in the g-mix is preserved, but some elements of one or

both sequences can be discarded. For instance, consider again the example where ~v1 =

(a, aa, aaa, . . .), ~v2 = (b, bb, bbb, . . .), and g is a selection function such that g(1) = g(3) = 1

and g(2) = 2. The g-mix of ~v1 and ~v2 is a sequence of the form (a, bb, aaa, . . .), where the 1st

(resp., 2nd, 3rd) element of the g-mix is the 1st element of ~v1 (resp., 2nd element of ~v2, 3rd

element of ~v1), and the 1st and 3rd element of ~v2 and the 2nd element of ~v1 are discarded,

that is, they do not appear in the g-mix. Finally, we observe that the two semantics for

the + operator are equivalent (in the sense that the same languages are generated) in the

context of ωBS-expressions [11]. The g-shuffle operator was introduced in [11] to avoid some

anomalous behaviors caused by the constructor (.)T , that was first proposed in that paper.

As an example, the equivalence eT = eT + eT only holds with the semantics of + based on

the shuffle operation (see [11] for an in-depth discussion).

8

It is worth noticing that it is possible for a language to contain word sequences

featuring an infinite suffix of the empty words, e.g., the word sequence ~v =

(ε, ε, ε, . . .) belongs to the language generated by the expression a∗. By blindly200

concatenating words in ~v, we obtain the empty word, which should not be

included in the language of (e∗)ω. This explains the presence of the condition

|w| =∞ in the definition above.

ωBST -expressions are defined by the following grammar:

E ::= E + E | R · E | eω205

where R is a regular expression, e is a BST -regular expression, and + and

· denote, respectively, union and concatenation of word languages (formally,

L(E1 +E2) = L(E1)∪L(E2) and L(E1 ·E2) = {u · v | u ∈ L(E1), v ∈ L(E2)}).3

From now on, to keep the notation light and with a little abuse of notation, we

sometimes identify a language L(e) with the expression e defining it, and, as we210

did for languages of word sequences, we sometimes omit the operator · between
word languages. Moreover, in order to distinguish, through the notation, lan-

guages of words and languages of word sequence, we often use lowercase (resp.,

uppercase) letters e, e1, . . . , (resp., E, E1, . . . , R, R1, . . .) for languages of word

sequences (resp., words). Finally, when referring to an ωBST -regular expres-215

sion, without loss of generality, we assume that it has the form R1e
ω
1 +. . .+Rke

ω
k ,

where Ri is a regular expression and ei is a BST -regular expression, for all i.

A B-regular expression (resp., ωB-regular expression) is a BST -regular ex-

pression (resp., ωBST -regular expression) with no occurrences of constructors

(.)S and (.)T . Other classes of extended regular and extended ω-regular expres-220

sions, namely S-, T -, BS-, BT -, ST -, ωS-, ωT -, ωBS-, ωBT -, and ωST -regular

expressions, are defined analogously.

3Notice the abuse of notation with respect to the previous definition of the operators +

and · over languages of word sequences.

9

2.1.1. Parse trees

In order to prove the correctness of the proposed encodings, we introduce

and formally define the notion of E parse tree for w, with w being a (ω-)word225

belonging to the language defined by the (ω-)regular expression E.

Hereafter, for a (ω)BST -regular expression E, we fix a sequence, denoted by

sub(E), of its sub-expressions partially ordered according to their complexity

(sub-expression relation), i.e., sub(E) is a sequence 〈e1, e2, . . . , en〉, where en =

E and if ei is a sub-expression of ej , then i < j. Notice that, in general, there230

are more than one such sequences; any of them can be used. Moreover, each

occurrence of the same sub-expression in E has a distinct corresponding element

in sub(E), that is, if the same sub-expression occurs more than once in E, then it

occurs more than once in sub(E) as well. Formally, sub(E) is a topological sort

of the directed acyclic graph representing the sub-expression relation (with rep-235

etitions) of the expression E. If, for instance (see also Figure 1), E = (a∗ba∗c)ω,

then we can fix sub(E) = 〈a, b, a, a∗, a∗, a∗b, a∗ba∗, c, a∗ba∗c, (a∗ba∗c)ω〉, where
the two sub-expressions a and a∗ occur twice; more precisely, e1 = a refers, say,

to the first occurrence of a in E, e2 = b to the only occurrence of b, and e3 = a

to the second occurrence of a; similarly, e4 and e5 refer to the first and second240

occurrence of a∗ in E, respectively, while e10 refers to the whole expression.

Given a (possibly infinite) word w = w1w2 . . . and two indexes i, j ∈ N>0,

with i, j ≤ |w| + 1 (|w| = ∞ if w is an ω-word), we define the finite sub-word

w[i, j) = wi . . . wj−1 (w[i, j) = ε if j ≤ i). Moreover, we denote by w[i, ω) the

(possibly infinite) suffix of w starting at wi.245

For a (ω-)word w and a (ω-)regular expression E, with w ∈ L(E), we say

that a tuple τEw = (Nodes,Edges, e-idx, s, f) is an E parse tree for w if the

following conditions hold:

• the pair (Nodes,Edges) is a tree;

• e-idx : Nodes→ {1, . . . , |sub(E)|};250

10

• s, f : Nodes→ {1, . . . , |w|+ 1} such that s(n) ≤ f(n) for all n ∈ Nodes;4

• if r is the root of the tree (Nodes,Edges), then ee-idx(r) = E and w[s(r), f(r)) =

w (note that f(r)− s(r) = |w|);

• for each n ∈ Nodes, it holds that s(n) < ω, and, additionally,

(i) if ee-idx(n) = a, for some a ∈ Σ, then n is a leaf, ws(n) = a, and255

f(n) = s(n) + 1;

(ii) if ee-idx(n) = ε, then n is a leaf and f(n) = s(n);

(iii) if ee-idx(n) = ej + ek, then n has exactly one child n′ in the tree

(Nodes,Edges) such that e-idx(n′) ∈ {j, k}, and (s(n), f(n)) =

(s(n′), f(n′));260

(iv) if ee-idx(n) = ejek, then n has exactly two children n′, n′′ in the tree

(Nodes,Edges) such that e-idx(n′) = j, e-idx(n′′) = k, f(n′) =

s(n′′), and (s(n), f(n)) = (s(n′), f(n′′));

(v) if ee-idx(n) = e∗j , then either n is a leaf and s(n) = f(n) or f(n) < ω

and n has exactly h children n1, . . . , nh, with h ∈ N>0, in the tree265

(Nodes,Edges), such that e-idx(n1) = . . . = e-idx(nh) = j, f(nk) =

s(nk+1), for all k ∈ {1, . . . , h−1}, and (s(n), f(n)) = (s(n1), f(nh));

(vi) if ee-idx(n) = eωj , then n has infinitely many children 〈nh〉h∈N>0

such that e-idx(nh) = j, f(nh) = s(nh+1), for every h ∈ N>0, and

(s(n), f(n)) = (s(n1), ω).270

An example of the proposed notation is shown in Figure 1, which depicts

the E parse tree for w = aabaaacbac . . . and E = (a∗ba∗c)ω. Intuitively, an E

parse trees for w witnesses the membership of the (ω-)word w in the (ω-)regular

language L(E).

In order to formally state the relationship between a (ω)BST -regular ex-275

pression E and an E parse tree, we need to identify (in the parse tree) the

4Note that if w is an infinite word, then the co-domain of both s and f is N>0 ∪ {ω}.

11

e10 , (a∗ba∗c)ω

n0

e9 , a∗ba∗c

n1

e9 , a∗ba∗c

n13 . . .
.

a∗ba∗ c

a∗ba∗ c

a∗b e5 , a∗

n8

a∗b
e5 , a∗

n18

e4 , a∗

n4

b
a

a
a

e4 , a∗

n16

b
a

a a

w

i

a

1

a

2
b

3

a

4

a

5

a

6

c

7
b

8

a

9

c

10

. . .

. . .

w[1, ω)

w[1, 8) w[8, 11)

w[1, 3) w[4, 7) w[8, 8) w[9, 10)

s(
n

4
)

=
1

s(n1) = 1

s(n0) = 1

s(
n

8
)

=
4 s(
n

1
6
)

=
8

s(
n

1
3
)

=
8

f
(n

1
6
)

=
8

f
(n

1
3
)

=
11

f
(n

0
)

=
ω

s(
n

1
8
)

=
9

f
(n

1
8
)

=
10

f(n1) = 8

f(n8) = 7

f
(n

4
)

=
3

Figure 1: Parse tree witnessing the membership of w = aabaaacbac . . . in L(E), with E =

(a∗ba∗c)ω .

sequences of the number of iterations generated by the iteration constructors

(.)∗, (.)B , (.)S , and (.)T . To this end, for every ei, ej ∈ sub(E), with ei = (ej)
op

and op ∈ {∗, B, S, T}, and every word w ∈ L(E), with τ being an E parse tree

for w, we denote by τ -count(i) the sequence of the numbers of children of nodes280

corresponding to ei, that is, nodes n with e-idx(n) = i, ordered according to

a DFS visit of τ . We will often omit the prefix specifying the parse tree, and

simply write, e.g., count(i) for τ -count(i).

As an example, consider once more the word w = aabaaacbac . . . belonging

to the language of E = (a∗ba∗c)ω (see Figure 1), and the above-given sequence285

sub(E) = 〈a, b, a, a∗, a∗, a∗b, a∗ba∗, c, a∗ba∗c, (a∗ba∗c)ω〉. The root node of the

(unique) parse tree witnessing the membership of w in L(E) corresponds to

e10 = E; the root features an infinite number of children, each of them cor-

12

responding to e9 = (a∗ba∗c). The complete structure of the first two children

of the root is depicted in Figure 1. The sequences count(4) and count(5) are,290

respectively, 〈2, 0, . . .〉 and 〈3, 1, . . .〉.
We are now ready to formalize the relationship between words in L(E) and

E parse trees, for any given (ω)BST -regular expression E, through the following

lemma, whose simple proof is omitted, where E∗ denotes the expression obtained

from E by replacing B-, S-, and T -constructors by ∗-constructors.295

Lemma 1. Let w be a (ω-)word. Then,

(a) if E is a (ω-)regular expression, then w ∈ L(E) if and only if there exists

an E parse tree for w;

(b) if E is an ωB-regular expression, then w ∈ L(E) if and only if there exists an

E∗ parse tree for w such that count(i) is a B-sequence for every ei ∈ sub(E)300

with ei = eBj ;

(c) if E is an ωS-regular expression, then w ∈ L(E) if and only if there exists

an E∗ parse tree for w such that count(i) is either a finite sequence or an

S-sequence, for every ei ∈ sub(E) with ei = eSj ;

(d) if E is an ωT -regular expression, then w ∈ L(E) if and only if there exists305

an E∗ parse tree for w such that count(i) is either a finite sequence or a

T -sequence, for every ei ∈ sub(E) with ei = eTj .

When dealing with the B-constructor, we can ignore empty strings gener-

ated by the argument expression, as formalized by the following lemma, whose

simple proof is omitted. Let E be a (ω-)regular expression, w be a (ω-)word,310

and τ = (Nodes,Edges, e-idx, s, f) be an E parse tree for w. We denote by

∗-ε-children(E, τ) the set of nodes n corresponding to an expression that is the

argument of a ∗-constructor in E and such that s(n) = f(n). Formally, we have:

∗-ε-children(E, τ) = {n ∈ Nodes | s(n) = f(n) and e-idx(n) = j

for some ei ∈ sub(E), with ei = e∗j}
315

13

Moreover, we denote by τε-free the tree structure obtained from τ by removing

nodes in ∗-ε-children(E, τ).

Lemma 2. Let E be an (ω-)regular expression and w be a (ω-)word. If τ is an

E parse tree for w, then so is τε-free . Moreover, if τ -count(i) is a B-sequence,

then so is τε-free-count(i), for all i.320

2.2. Interval temporal logics AB, ABĀ, AB∼, and ABĀ∼

In what follows, we define syntax and semantics of the interval temporal

logics AB, ABĀ, AB∼, and ABĀ∼. As a preliminary step, we define the notion

of (labeled) interval structure, which is common to all the logics we consider.

We identify any given ordinal N ≤ ω with the prefix of N of length N , that is,325

N = {0, 1, . . . , N−1} if N < ω, and N = N if N = ω, and we accordingly define

the associated interval structure (or, simply, structure) I(N) as the set of all

closed intervals [i, j], with i, j ∈ N and i ≤ j. A special role will be played by

point intervals (or, simply, points) and unit intervals, i.e., intervals of the forms

[i, i] and [i, i + 1], for some i ∈ N , respectively. Given a nonempty set Prop330

of proposition letters, a labeled interval structure over Prop is a pair (I(N), V),

where I(N) is a (possibly infinite) interval structure and V : I(N) → P(Prop)

is a valuation function providing an interpretation of proposition letters, i.e.,

a function that assigns to every interval the set of proposition letters that are

true on it.335

2.2.1. The logic AB

AB features modalities 〈A〉 and 〈B〉, that correspond to Allen’s relations

meets (denoted by A) and begun by (denoted by B), respectively. It is a rela-

tively small, but quite expressive, fragment of the Halpern and Shoham’s interval

temporal logic HS [15], and its satisfiability problem is EXPSPACE-complete340

over both finite linear orders and N [20]. Formally, given a nonempty set Prop
of proposition letters, formulas of AB are defined as follows:

ϕ := p | ϕ ∨ ϕ | ¬ϕ | 〈A〉ϕ | 〈B〉ϕ,

14

where p ∈ Prop. We use the shorthands ϕ ∧ ψ for ¬(¬ϕ ∨ ¬ψ), [X]ϕ for

¬〈X〉¬ϕ, with X ∈ {A,B}, ⊥ for p ∧ ¬p, and > for p ∨ ¬p. Formulas of345

AB are interpreted over labeled interval structures endowed with Allen’s rela-

tions A and B. Allen’s relations A and B are defined as follows. Given two

intervals [i, j], [i′, j′] ∈ I(N), we say that: (a) [i, j]A[i′, j′] if and only if j = i′;

(b) [i, j]B[i′, j′] if and only if i = i′ and j′ < j. AB semantics is given in terms

of interval models (or simply models) M = 〈I(N), A,B, V 〉, where (I(N), V) is350

a (possibly infinite) labeled interval structure. Truth of AB formulas over an

interval [i, j] belonging to a model M is inductively defined as follows:

• M, [i, j] |= p if and only if p ∈ V ([i, j]), for p ∈ Prop;

• M, [i, j] |= ¬ϕ if and only if it is not the case that M, [i, j] |= ϕ;

• M, [i, j] |= ϕ ∨ ψ if and only if M, [i, j] |= ϕ or M, [i, j] |= ψ;355

• M, [i, j] |= 〈X〉ϕ if and only if there exists an interval [i′, j′] such that

[i, j]X[i′, j′] and M, [i′, j′] |= ϕ, for X ∈ {A,B}.

Given M = 〈I(N), A,B, V 〉 and ϕ, M satisfies ϕ if there is [i, j] ∈ I(N) such

that M, [i, j] |= ϕ, and ϕ is satisfiable if there is an interval model M that

satisfies it.360

It is immediate to see that point and unit intervals are captured by AB

(and thus by all the logics we deal with) by means of formulas π , [B]⊥ and

unit , 〈B〉> ∧ [B][B]⊥, respectively.5

Hereafter, we use modalities [G] (globally) and [init] (every initial inter-

val), which are definable in AB as follows: (i) [G]ϕ , [B][A]ϕ∧[A][A]ϕ, and365

(ii) [init]ϕ , [B](π → [A]ϕ) ∧ (π → [A]ϕ). When evaluated on [x, y], [G]ϕ

forces ϕ to be true over all intervals [w, z], for some w, z, with w ≥ x; in par-

ticular, when evaluated on [0, y], it forces ϕ to be true on all intervals. When

evaluated on [x, y], [init]ϕ forces ϕ to be true on all intervals [x, z], for some

5Even though the symbol π for point intervals is not particularly evocative, it is a long-

established notation in the context of the interval temporal logic HS.

15

z; in particular, when evaluated on [0, y], it forces ϕ to be true on all initial370

intervals, that is, all prefixes of the linear order.

2.2.2. The logic ABĀ

ABĀ is obtained from AB by adding the (past) modality 〈Ā〉 for the Allen

relationmet by (denoted by Ā). Unlike what happens with point-based temporal

logics, the addition of past operators to interval ones usually increases both their375

expressiveness and their computational complexity (see, for instance, [22]). This

is the case with ABĀ: its satisfiability problem is still decidable, but non-

primitive recursive, over finite linear orders, and undecidable over N [21]. ABĀ

syntax extends that of AB in the obvious way. ABĀ formulas are interpreted

on modelsM = 〈I(N), A,B, Ā, V 〉, and the truth of a formula ϕ over an interval380

[i, j] of M is defined by means of the semantic clauses for AB defined above,

together with the following one:

• M, [i, j] |= 〈Ā〉ϕ if and only if there exists an interval [i′, j′] such that

[i, j]Ā[i′, j′] and M, [i′, j′] |= ϕ.

where, for any pair of intervals [i, j], [i′, j′] ∈ I(N), [i, j]Ā[i′, j′] if and only if385

i = j′.

2.2.3. The logic AB∼
AB∼ is obtained from AB by adding an equivalence relation ∼ over the

points of the model. From the computational point of view, AB∼ behaves simi-

larly to ABĀ: the satisfiability problem for AB∼ is non-primitive recursive over390

finite linear orders, while decidability is lost over N [12]. Formally, the language

of AB is extended with a new symbol ∼, and formulas are built according to

the syntax:

ϕ := p | ∼ | ϕ ∨ ϕ | ¬ϕ | 〈A〉ϕ | 〈B〉ϕ,
where p ∈ Prop. The semantics of AB∼ formulas is given in terms of models395

M = 〈I(N), A,B,∼, V 〉, where ∼ is an equivalence relation on N . Truth is

defined as for AB formulas, with an additional semantic clause for ∼:

16

• M, [i, j] |=∼ if and only if i ∼ j.

Notice that, since ∼ is an equivalence relation, for every modelM and points

i, j, k in M , the following properties hold:400

1. M, [i, i] |=∼ (by reflexivity of ∼), and

2. if M, [i, j] |=∼ and M, [j, k] |=∼, then M, [i, k] |=∼ (by transitivity of ∼).

2.2.4. The logic ABĀ∼
Syntax and semantics of ABĀ∼ are obtained from those of ABĀ and AB∼

by merging them in the obvious way.405

2.3. Linking ω-words and interval structures

In order to encode word languages into logical formulas, we need to establish

a correspondence between words and models of the considered logic. In the

following, we show how to interpret (ω-)words as labeled interval structures,

and vice versa.410

In order to represent (ω-)words by means of labeled interval structures, we

introduce a proposition letter for every symbol of the alphabet (thus, Σ ⊆ Prop),
and then we define a suitable formula (see formula ϕΣ, defined in Section 4) to

restrict to interval models built over labeled interval structures where exactly

one symbol of the alphabet Σ holds true in each unit interval, so to have a415

natural mapping from models to words over Σ.

For a (possibly infinite) word w = w1w2 . . . over a finite alphabet Σ and

a labeled interval structure S = 〈I(N), V 〉 over Prop, we say that w and S

are compatible, denoted by w ≈ S (or, equivalently, S ≈ w), if N = |w| + 1,

Σ ⊆ Prop, and V : I(N)→ P(Prop) is such that on each unit interval only the420

proper letter (among those in Σ) holds, that is, V ([i−1, i])∩Σ = {wi} for every
i ∈ {1, . . . , |w|}, and no letter from Σ holds over any non-unit interval, that is,

V ([i, j]) ∩ Σ = ∅, for every i, j with j − i 6= 1.

This notion can be lifted to cope with models in the natural way. We say

that a word w and an interval model M are compatible, denoted by w ≈M (or,425

17

equivalently, M ≈ w) if w and the labeled interval structure over which M is

built are compatible.

3. Some useful properties of BST -regular languages

In this section, we prove some properties of BST -regular languages that will

be later exploited to analyze the proposed encodings. Proofs can be found in430

Appendix A.

To begin with, we note that operations +g, for any selection function g, are

not commutative, i.e., ~u +g ~v is in general not the same as ~v +g ~u. However,

for every pair of word sequences ~u,~v and every selection function g there is

a selection function g′, defined as g′(i) = 3 − g(i) for all i ∈ N>0, such that435

~u +g ~v = ~v +g′ ~u. Therefore, the shuffle operation is indeed commutative, that

is, if ~w is a shuffle of ~u and ~v, then it is also a shuffle of ~v and ~u, which amounts

to say e1 + e2 = e2 + e1 for every pair of BST -regular expressions e1 and e2.

Similarly, it can be easily shown that the shuffle operation is also associative:

given three word sequences ~u, ~v, and ~w, and two selection functions f and f ′,440

it holds that (~u +f ~v) +f ′ ~w = ~u +g (~v +g′ ~w) for suitably defined selection

functions g and g′. Thus, we have that (e1 + e2) + e3 = e1 + (e2 + e3) for every

triple of BST -regular expressions e1, e2, and e3.

Next, we first demonstrate the idempotence of the shuffle operator, that

is, L(e) = L(e + e) holds for every BST-regular expression e (Corollary 1),445

which immediately follows from the next proposition. Then, we present an

additional result (Corollary 2), that follows from Proposition 2 and shows that

the constraints imposed by S- and T -constructors can be ignored, to a certain

extent, when applied to word sequences featuring infinitely many empty strings.

This will be made clearer in Sections 7 and 8. We conclude the section by450

remarking that BST -regular expressions enjoy prefix independence, which makes

it possible to ignore the constraints imposed by B-, S-, and T -constructors in

specific situations that will be clarified later.

18

Proposition 1. Let e be a BST-regular expression. If ~u,~v ∈ L(e) and ~w is a

shuffle of ~u and ~v, then ~w ∈ L(e) as well.455

Corollary 1 (shuffle idempotence). L(e) = L(e + e), for every BST-regular

expression e.

We now establish a technical result that will be useful in the following. Let

~ε = (ε, ε, ε, ε, . . .) be the infinite sequence of empty strings. Moreover, let us say

that a selection function g : N>0 → {1, 2} is non-i-convergent, with i ∈ {1, 2},460

if for every j ∈ N>0, there is k > j such that g(k) 6= i.

We define the ε-pumpings of a word sequence ~u as the word sequences ~u +g ~ε,

for all non-2-convergent selection functions g, if ~u features infinitely many empty

strings; otherwise, the only ε-pumping of ~u is ~u itself. Intuitively, an ε-pumping

of a word sequence featuring infinitely many empty strings is obtained by in-465

jecting (possibly infinitely many) finite sequences of ε’s at arbitrary positions of

the original sequence.

The following result states that BST -regular languages are closed under the

operation of “pumping” (possibly infinitely many) empty strings at arbitrary

positions of word sequences featuring infinitely many empty strings. Let Lε(e) =470

{~v | ~v is an ε-pumping of ~u and ~u ∈ L(e)} be the language that extends L(e)

with the ε-pumpings of all of its sequences.

Proposition 2. It hold that L(e) = Lε(e), for every BST -regular expression e.

Thanks to the above proposition, we can now state the following property.

Corollary 2. Let e be a BST -regular expression. If ~u is the f -aggregation475

of ~v, for a function f ∈ F and a word sequence ~v ∈ L(e) featuring infinitely

many empty strings, then ~u ∈ L(eS). If, in addition, there is at least one value

occurring infinitely often in δf , then ~u ∈ L(eT) as well.

Before concluding the section, we believe it is useful to point out that BST -

regular expressions enjoy the property of prefix independence, which, intuitively,480

states that, in order to verify that a word sequence behaves according to the

19

B-, S-, or T -constructor, one can basically focus on any of its suffixes (see

Proposition 6 in [11]), or, equivalently, it is not possible to refute a word sequence

by just looking at any finite prefix. As a consequence, when encoding a sub-

expression ei = eopj , with op ∈ {∗, B, S, T}, of a BST -regular expression E, it485

is not necessary to guarantee the satisfaction of the constraints imposed by B-,

S-, and T -constructors (they can be treated as the standard ∗-constructor) over
models featuring only finitely many occurrences of expr i intervals. Intuitively,

models of this kind arise from expressions where ei occurs under the scope of

the shuffle operator. As an example, consider the expression E = (aopb+ c∗d)ω,490

with op ∈ {∗, B, S, T}. There are words in L(E) featuring only finitely many

b’s, as the shuffle operator can postpone forever the selection of sub-words in

the language of one of its operands, specifically aopb, thus possibly ignoring

an entire (infinite) suffix of a word sequence belonging to the language of aopb.

Since, by prefix independence, a word sequence cannot be refuted due to a finite495

prefix, when encoding such an expression in a logical formula, we can treat aopb

as it were a∗b for those models with only finitely many b’s. This property will

be exploited in Sections 7 and 8, by imposing suitable guards on the formulas

that encode the S- and T -constructors, respectively, so that they only affect

models featuring infinitely many b’s.500

4. Encoding regular and ω-regular languages in AB

In this section, we provide a detailed account of the encodings of regular and

ω-regular languages in AB (Theorems 2 and 3 – a short account can be found

in [1]). These encodings produce AB formulas of the form ϕΣ ∧ ϕE , where ϕΣ

is a very simple formula ensuring that each unit interval [i, i + 1] has a unique505

atomic proposition (from Σ) true on it, and ϕE is obtained, in a bottom-up

fashion, from the given (ω-)regular expression E. The intuitive idea here is

to use, for each occurrence i of a sub-expression ei of E, two auxiliary atomic

propositions, expr i and exprendi , to identify the interval whose associated finite

word should be recognized by the sub-expression ei. A suitable combination of510

20

the AB modalities then ensures that the word is indeed correctly recognized.

The translation of the atomic constructs and the alternation is immediate; that

of concatenation and Kleene star is quite more elaborated.

In order to map interval temporal logic formulas into (ω-)languages, in Sec-

tion 2.3 we have established a correspondence between words and interval models515

that is based on the assumption that interval models are built over a set Prop
of proposition letters which includes a proposition letter for every symbol of

the alphabet Σ (in symbols, Σ ⊆ Prop) and that exactly one such letter holds

true in each unit interval (and no interval other than unit intervals satisfies any

such proposition letter). Thus, the first step of our encoding consists in defining520

formula ϕΣ, which forces models to satisfy these assumptions:

ϕΣ = [G]
((

unit ↔ ∨
a∈Σ a

)
∧ ∧a∈Σ

(
a → ∧

b∈Σ\{a} ¬b
))

.

Next, to give a logical characterization of an expression E, we make use of

two proposition letters expr i and exprendi for each sub-expression ei in sub(E),

including E itself. Let us stress that two occurrences ei and ej of the same525

sub-expression are associated with two different pairs of proposition letters

(expr i/exprendi and expr j/exprendj). Suitable formulas are then exploited to

force the propagation of such proposition letters in a top-down fashion follow-

ing the semantics of (ω-)regular expressions.

As an example, if an interval [a, b] is labeled with expr i (meaning that expr i530

is true on it) and ei is the expression ej + ek, then, through a suitable formula,

we constrain [a, b] to be labeled with expr j or exprk as well; if, instead, ei is

the expression (ej)
∗, then, by means of a different formula, we force [a, b] to be

partitioned into sub-intervals labeled with expr j , that is, we force the existence

of finitely many points c0, c1, . . . , cm, with a = c0 < c1 < . . . < cm = b, such535

that [ch, ch+1] is labeled with expr j for each h ∈ {0, . . . ,m− 1}, unless a = b.

By suitably combining all such formulas, we encode an (ω-)regular expres-

sion E into a formula ϕ that is satisfied exactly by those interval models that

are compatible (according to the definition given in Section 2.3) with words

belonging to the language of E.540

21

4.1. Encoding regular languages in AB

Let R be a regular expression on Σ. We show how to encode R into an AB

formula over the finite set of proposition letters Prop, which includes Σ.

As anticipated, for each ei ∈ sub(E), we introduce two proposition letters

expr i and exprendi . For each i, we force exprendi to be true exactly at the right545

endpoint of expr i intervals and we prevent points that are strictly contained

in an expr i interval to satisfy exprendi (this also implies that an expr i interval

cannot end inside another one). This condition is expressed by the formula:

ϕend
expri

= [G]((exprendi → π) ∧
(expr i → 〈A〉exprendi ∧ [B](¬π → [A]¬exprendi))) ∧

[init](〈A〉exprendi → 〈A〉(π ∧ expr i) ∨ 〈B〉〈A〉(¬π ∧ expr i)) ∧

[G](〈A〉exprendi ∧ 〈B〉(¬π ∧ expr i) →
〈B〉(¬π ∧ 〈A〉(¬π ∧ expr i))).

The first conjunct (lines 1 and 2) forces (i) exprendi to hold at point intervals550

only, (ii) the right endpoint of any expr i interval to be labeled with exprendi ,

and (iii) no point strictly contained in an expr i interval to be labeled with

exprendi . The rest of the formula forces every exprendi point interval to be the

right endpoint of an expr i interval. More precisely, the second conjunct (line 3)

constrains every exprendi point interval x to be an expr i point interval as well or555

to have an expri non-point interval [y, y′], with y < y′, that starts before it, that

is, y < x. Notice that y′ ≤ x; otherwise, the exprendi point x would fall strictly

inside the expr i interval [y, y′], which is not possible. Finally, the third conjunct

(lines 4 and 5) forces x to be the right endpoint of an expr i interval. To prove

it, let [y, y′] be the unique expr i non-point interval such that there is no expr i560

non-point interval [w, z], with y < w < x. Towards a contradiction, assume

that [y, y′] does not end in x, that is, y′ < x, and consider the interval [y, x]. It

satisfies the antecedent of the implication (〈A〉exprendi ∧ 〈B〉(¬π ∧ expr i)) and

thus it must satisfy the consequent as well (〈B〉(¬π ∧ 〈A〉(¬π ∧ expr i))), which

imposes the existence of an expr i non-point interval [w, z], with y < w < x, thus565

leading to a contradiction.

22

The next formula ϕ6∩expri
prevents an expr i interval from starting within

another one (thus, two expr i intervals cannot intersect each other):

ϕ6∩expri
= [G](expr i → [B](¬π → [A]¬expr i)).

Finally, formulas ϕexpri
are defined by induction on the complexity of the570

corresponding expressions ei.

• If ei = ∅, we put ϕexpri
= [G](expr i → ⊥).

• If ei = a, for some a ∈ Σ, we put ϕexpri
= [G](expr i → a).

• If ei = ε, we put ϕexpri
= [G](expr i → π).

• If ei = ej + ek, we put ϕexpri
= [G](expr i ↔ (expr j ∨ exprk)).575

• If ei = ejek, then we constrain every expr i interval to be partitioned in

two adjacent sub-intervals satisfying expr j and exprk, respectively. This

is done by means of the formula:

Theorem 1. d

Proposition 1. Let e be a BST-regular expression. If ~u,~v ∈ L(e) and ~w580

is a shuffle of ~u and ~v, then ~w ∈ L(e) as well.

Theorem 1. d
ϕexpri

= [G](expr j → 〈A〉exprk)

∧ [G](exprk → (exprendj ∨ 〈B〉exprendj) ∧ 〈A〉exprendi)

∧ [G]((expr j ∨ exprk) → [B](¬π → [A]¬exprendi))

∧ [G]((expr j ∧ exprk) → π ∧ expr i)

∧ [G](expr i → (〈B〉(π ∧ expr j) ∧ exprk))

∨ 〈B〉(¬π ∧ expr j)

∨ (expr j ∧ 〈A〉(π ∧ exprk))

∧ [G]((〈A〉expr j → 〈A〉expr i)
∧ (〈A〉(¬π ∧ expr j) → 〈A〉(¬π ∧ expr i)))

∧ [G](exprk ∧ 〈B〉exprendi → expr i).

The first four conjuncts (lines 1–4) state properties of the two sub-intervals:

every expr j interval is followed by an exprk interval (line 1), every exprk585

interval is preceded by an expr j interval (i.e., there are expr j intervals

ending at all starting points of exprk ones) and it ends where an expr i

interval ends (line 2), no expr i interval ends (strictly) inside an expr j or

23

(a)

. . .
x

exprj
exprendj

. . .
y

exprendi

exprendk
. . .

expri, exprk
(c1)

. . .
x

. . .
y

exprendi

exprk
exprendj

exprendk
. . .

expri, exprj

(b)

. . .
x z

exprendj
. . .

y

exprendi

exprendk
.

expri

exprj exprk

(c2)

.
x

expri
exprj
exprk
exprendi

exprendj

exprendk

Figure 2: Interval configurations for the encoding of the concatenation operator.

an exprk interval (line 3), and an expr j interval is not an exprk interval

(and vice versa) unless it is a point interval and satisfies expr i as well (line590

4). By making use of the above properties, the fifth conjunct (lines 5–7)

distinguishes three possible ways of partitioning an expr i interval: (i) it

is started by an expr j point and coincides with an exprk interval (line 5 –

Figure 2(a)), (ii) it is started by a non-point expr j interval (line 6 – Fig-

ure 2(b)), or (iii) it coincides with an expr j interval and it is ended by an595

exprk point, including the case in which there is a point interval satisfying

expr i, expr j , and exprk (line 7 – Figures 2(c1) and 2(c2)). In case (ii),

the existence of an exprk non-point interval, adjacent to the expr j interval

and ending exactly where the expr i interval ends, is a consequence of the

first four conjuncts. The next to last conjunct (lines 8 and 9) ensures that600

every expr j interval occurs as a (not necessarily strict) prefix of an expr i

interval (recall that no expri interval ends inside an exprj one), while

24

(a)

.
x

expri
exprendi

(b)

. . .
x

. . .
y

exprendi

exprendj
. . .

expri, exprj

(c)

. . .
x x1

exprendj

xn

exprendj
. . .

y

exprendi

exprendj
.

expri

exprj exprj
. . .

Figure 3: Interval configurations for the encoding of the Kleene star contructor.

the last conjunct (line 10) states that if an exprk interval is immediately

preceded by an expri one, then it is itself an expri interval. This last

property, together with the previous ones, guarantees that every exprk in-605

terval occurs as a (not necessarily strict) suffix of an expr i interval. This

is due to the facts that (i) every exprk interval is preceded by an expr j

one, (ii) every expr j interval is a prefix of an expr i one, and (iii) no expri

interval ends inside an exprk one. Observe that, as a consequence, we have

that an expr j interval and an exprk one do not intersect (except for the610

intersections consisting of a single point that is not inside any of the two

intervals), and thus the partition into expr j and exprk intervals is unique

for every expr i interval.

• If ei = e∗j , then we constrain every expr i interval to be partitioned into a

finite number of adjacent expr j sub-intervals. We distinguish three cases:615

(i) zero expr j intervals, that is, the expr i interval is a point interval,

corresponding to the empty string, that does not contain any expr j interval

(Figure 3(a)), (ii) one expr j intervals, that is, the expr i interval is also an

25

expr j interval (Figure 3(b)), and (iii) an arbitrary, but finite, number of

expr j intervals (Figure 3(c)). Formally, we state the requested conditions620

by means of the formula:
ϕexpri

= [G](expr i → π ∨ expr j ∨ (〈B〉expr j ∧
[B](〈A〉exprendj → 〈A〉(¬π ∧ expr j))))

∧ [G](expr j → [B](¬π → [A]¬exprendi))

∧ [init](〈A〉expr j ∧ ¬〈A〉expr i → 〈B〉〈A〉(¬π ∧ expr i))

∧ [G](〈A〉expr j ∧ 〈B〉(¬π ∧ expr i) →
〈A〉expr i ∨ 〈B〉(¬π ∧ 〈A〉(¬π ∧ expr i)))

∧ [G](expr i ∧ 〈A〉(¬π ∧ expr j) → 〈A〉expr i)
∧ [G](〈A〉(¬π ∧ expr j) ∧ 〈A〉expr i → 〈A〉(¬π ∧ expr i)).

The first conjunct (lines 1 and 2) encodes the three above cases via three

disjuncts (one for each possible scenario). The rest of the formula guar-

antees that every interval on which expr j holds occurs inside an interval625

on which expr i holds. More precisely, the second conjunct (line 3) states

that no expr i interval ends (strictly) inside an expr j interval. The third,

fourth, and fifth conjuncts (lines 4–7) guarantee that for every expr j in-

terval [x, y] there is an expr i interval [w, z] for which at least one of the

following properties holds: (i) [w, z] starts at x (i.e., w = x) (ii) [w, z]630

ends at x and [x, y] is a point interval (i.e., z = x = y) (iii) [w, z] contains

(strictly) x (i.e., w < x < z). Assume, towards a contradiction, that for

some expr j interval [x, y] there is no such an expr i interval [w, z]. Then,

the third conjunct (line 4) imposes the existence of an expr i non-point

interval [w, z], with w < x. Without loss of generality, let [w, z] be the635

unique expr i non-point interval such that there is no other expr i non-point

interval [w′, z′], with w < w′ < x. Since, by assumption, [w, z] does not

contain x, it holds that z ≤ x. If z < x, then interval [w, x] satisfies

the antecedent of the implication in the fourth conjunct (lines 5 and 6),

namely 〈A〉expr j ∧ 〈B〉(¬π ∧ expr i) (line 5), and thus it must also satisfy640

its consequent, namely 〈A〉expr i ∨ 〈B〉(¬π ∧ 〈A〉(¬π ∧ expr i)) (line 6).

The latter imposes the existence of an expr i interval starting at x or an

26

expr i non-point interval [w′, z′], with w < w′ < x, thus leading to a con-

tradiction. If, instead, z = x, then, by assumption, [x, y] cannot be a point

interval. Thus, interval [w, x] satisfies the antecedent of the implication in645

the fifth conjunct (line 7), namely expr i ∧ 〈A〉(¬π ∧ expr j), and thus it

must also satisfy its consequent, namely 〈A〉expr i. The latter imposes the

existence of an expr i interval starting at x, thus leading to a contradiction.

This allows us to conclude that, for every expr j interval [x, y] there is an

expr i interval [w, z] that satisfies at least one among properties (i), (ii),650

and (iii) above. Clearly, this suffices to guarantee that every expr j point

interval occurs within an expr i interval. To guarantee that the property

also holds for expr j non-point interval, let us assume x < y. In such a

case, either property (i) (w = x) or property (iii) (w < x < z) above

holds. Thanks to the last conjunct (line 8), if x = w, then there is an655

expr i interval [x, z′], with z′ > x. Hence, we can conclude that there ex-

ists an expr i interval [w, z], with w ≤ x < z. The desired property follows

from the fact that no expr i interval ends inside an expr j one.

Now, let ϕR be the following formula:

ϕR = exprn ∧ [A]π ∧
∧

ei∈sub(R)

ϕexpri
∧

∧
ei∈sub(R)

ϕend
expri

∧
∧

ei∈sub(R)

ϕ 6∩expri
.

The following theorem holds (the proof is given in Appendix B).

Theorem 2. Let R be a regular expression over Σ. Then, L(R) = {w ∈ Σ∗ |660

w ≈M andM = 〈I(N), A,B, V 〉 is a model such thatM, [0, N−1] |= ϕR ∧ ϕΣ}.

4.2. Encoding ω-regular languages in AB

The encoding of regular expressions can be lifted to ω-regular ones. Since

we are forced to work with finite intervals, the formula encoding an ω-regular

expression intuitively behaves as follows. An ω-regular expression E can be seen665

as the alternation (+) of a finite number of expressions of the form Reω, i.e., E =

R1e
ω
1 + . . .+Rke

ω
k , where, for all i, Ri is regular. Formulas encoding expressions

Ei = Rie
ω
i , with i ∈ {1, . . . , k}, are meant to hold true on a certain finite prefix

27

of N, that represents the finite word captured by Ri, and use modality 〈A〉 to
describe properties of the infinite suffix. Then, the encoding of E consists of670

the disjunction of the formulas encoding the sub-expressions Ei.

Formally, the encoding of an ω-regular expression E into an AB formula is

defined inductively. The base case is given by regular sub-expressions, whose

encoding has been illustrated in the previous section. Thus, we only need to

specify how to handle the ω-constructor, as well as alternation and concatena-675

tion (when the second operand is an ω-regular expression).

• If ei = ej + ek, where ej and ek are ω-regular expressions, then ϕexpri
=

ϕexprj
∨ ϕexprk

.

• If ei = ejek, where ej is a regular expression and ek is an ω-regular one,

then ϕexpri
= expr j ∧ 〈A〉ϕexprk

.680

• If ei = eωj , where ej is a regular expression, then

ϕexpri
= expr j ∧ 〈A〉(¬π ∧ expr j) ∧ [A][A](expr j → 〈A〉(¬π ∧ expr j)).

Now, let ϕE be the formula:

ϕE =
∧

ei∈sub(E)

ϕexpri
∧

∧
ei∈sub(E)

ϕend
expri

∧
∧

ei∈sub(E)

ϕ6∩expri
.

The following theorem holds [1].

Theorem 3. Let E be an ω-regular expression over Σ. Then, L(E) = {w ∈ Σω |
w ≈M and M is a model such that M, [0, n] |= ϕE ∧ ϕΣ for some n ∈ N}.685

5. Beyond ω-regular languages

In the next sections, we provide the encodings of ωB-, ωS-, and ωT -regular

expressions into suitable extensions of AB by building on the encodings of regu-

lar and ω-regular expressions in AB given in Section 4. The only new ingredients

when stepping from ω-regular languages to ωB-, ωS-, and ωT -regular ones are690

the B-, S-, and T -constructor, respectively. Thus, the main problem is to define

formulas ϕexpri
encoding expressions ei of the form eBj , eSj , and eTj . Any such

formula is a conjunction of two sub-formulas, a local one, which is the same used

28

for expressions of the form e∗j , and a global one, which guarantees the fulfillment

of the constraints imposed by the B-, S-, and T -constructor, respectively.695

Analogously to what we have done in Section 4.1 for regular languages (The-

orem 2) and in Section 4.2 for ω-regular ones (Theorem 3), in the following

sections we provide the three main results of the paper, that is, we show how to

encode ωB-regular, ωS-regular, and ωT -regular expressions by means of, respec-

tively, ABĀ, AB∼, and ABĀ∼ formulas. In Section 6, we show that for every700

ωB-regular expression E, there is an ABĀ formula ϕ such that L(E) = L(ϕ)

(Theorem 4), where L(ϕ) is the ω-language of words that are compatible with

interval models satisfying ϕ, according to the relation ≈ of compatibility formal-

ized in Section 2.3. Analogous results are presented for ωS-regular expressions

in Section 7 (Theorem 5) and ωT -regular expressions in Section 8 (Theorem 6).705

Detailed proofs are given in Appendix C, Appendix D, and Appendix E.

Formulas resulting from the encodings given in Sections 6, 7, and 8 have the

form ϕ = ϕΣ ∧ ϕE∗ ∧
∧

(i,j)∈Z(E) Φ
(i,j)
Z , with Z ∈ {B,S, T}, where:

• ϕΣ∧ϕE∗ is the AB formula encoding, as shown in Section 4, the ω-regular

expression E∗, obtained from the ωZ-regular expression E by replacing710

each application of a Z-constructor (.)Z by the Kleene star (.)∗;

• Z(E) is the set of indexes (i, j) for which there are sub-expressions ei and

ej in E such that ei = (ej)
Z ;

• Φ
(i,j)
Z is an ABĀ, AB∼, or ABĀ∼ formula (depending on whether Z is

equal to B, S, or T , respectively), forcing the constraints on the number715

of occurrences of words recognized by the sub-expression ej , as prescribed

by the semantics of the Z-constructor.

It is worth noticing that the correctness of the encodings of ωS- and ωT -

regular expressions hinge upon the property of S- and T -regular languages stated

in Corollary 2, as well as the property of prefix independence (see Section 3).720

29

Remark. As a matter of fact, an encoding of ωB-regular (resp., ωS-regular)

expressions in ABĀ (resp., AB∼) formulas was proposed in [1] (resp., [12]).6

Unfortunately, both encodings were flawed. In [2], we provide a counter-example

showing that the encoding of ωB-regular expressions in ABĀ formulas proposed

in [1] is incorrect (a similar counterexample can be given for the encoding of725

ωS-regular expressions in AB∼ formulas proposed in [12]).

6. ωB-regular languages in ABĀ

In this section, we build, for every ωB-expression E and every ei, ej ∈
sub(E), with ei = eBj , a formula Φ

(i,j)
B that forces models to satisfy the bound-

edness constraint that the B-constructor imposes on ω-words.730

Let B(E) = {(i, j) | ei, ej ∈ sub(E),with ei = (ej)
B}. To force the proper

behaviour of the B-constructor, for every (i,j) ∈ B(E) we partition the interval

model into intervals so that, eventually, the number of expr j intervals starting

in the elements (i.e., intervals) of the partition is non-increasing. We also im-

pose that no expr i interval contains an entire element of such partition. The735

boundedness constraint imposed by the B-constructor is then verified, since ev-

ery expr i interval spans at most two elements of the partition and thus there

is a bound to the number of expr j intervals in it. Intuitively, to force such a

configuration we use the additional proposition letters phj , blj , and pj . Propo-

sition letter blj defines the partition of the interval model, with each pair of740

consecutive blj points identifying an element of the partition, while phj is used

to label points where expr j intervals start. Then, proposition letter pj defines

a sequence of surjective functions (one for each element of the partition) from

phj points of an element of the partition to phj points of the next element of

the partition, thus ensuring that the number of expr j intervals starting in the745

elements of the partition is non-increasing. Technically, this is done by forcing

6The encodings given in [1] and [12] actually use languages ABB̄Ā and ABB̄∼, that extend,

respectively, ABĀ and AB∼ with modality 〈B̄〉. Such a modality simplifies the encodings,

but it is not necessary.

30

the interval model to satisfy the following properties, expressed by means of

suitable ABĀ formulas:

1. phj and blj may only label left endpoints of expr j intervals which are not

left endpoints of expr i ones, but they cannot label the same points:750

[G]((phj ∨ blj → π ∧ 〈A〉expr j ∧ ¬〈A〉expr i) ∧ (phj → ¬blj));

2. there exists n ∈ N such that every n′ > n which is the left endpoint of an

expr j interval, but not the left endpoint of an expr i one, is labeled with

either phj or blj :

〈A〉[A](〈A〉expr j ∧ [A]¬expr i → 〈A〉(phj ∨ blj));755

3. in between two consecutive blj points x and y, with x < y, there exists at

least one point z, with x < z < y, such that z is the left endpoint of an

expr i interval:

[G](〈B〉blj ∧ 〈A〉blj → 〈B〉(¬π ∧ 〈A〉expr i));

4. every phj point is the left endpoint of exactly one pj interval:760

[G](phj → 〈A〉pj) ∧ [G](pj → ¬〈B〉pj);

5. every pj interval is begun by a phj point and strictly contains exactly one

blj point:

[G](pj → 〈B〉phj ∧ 〈B〉(¬π ∧ 〈A〉blj) ∧ [B](〈A〉blj → ¬〈B〉〈A〉blj));

6. every phj point x such that there exists a blj point y, with y < x, is the765

right endpoint of at least one pj interval:

[G](〈A〉phj ∧ 〈B〉blj → 〈A〉〈Ā〉pj).

Figure 4 gives a graphical account of the above properties. Properties 1–2

guarantee that, from a point on, say it n, the points that are the left endpoint

of an expr j interval, but not of an expr i one, are exactly those labeled with770

either phj or blj . The suffix starting at n can be seen as a (possibly finite or

even empty) sequence of slices [n0, n1], [n1, n2] . . ., where {n0 < n1 < . . .} is the

31

… …

exprn

<latexit sha1_base64="CXFq5tLHn3qT7t86U2Q5FFE92PQ=">AAACEHicbZDLSgMxFIYz9VbrrerSzeAguCozIqi7ohuXFewF2qFk0tM2NpchyahlmHcQd/ok7sStb+CDuDdtZ6GtB0J+/v8ccvJFMaPa+P6XU1haXlldK66XNja3tnfKu3sNLRNFoE4kk6oVYQ2MCqgbahi0YgWYRwya0ehqkjfvQWkqxa0ZxxByPBC0Twk21mrAY6y6olv2/Io/LXdRBLnwUF61bvm705Mk4SAMYVjrduDHJkyxMpQwyEqdREOMyQgPoG2lwBx0mE63zdwj6/TcvlT2CONO3d8TKeZaj3lkOzk2Qz2fTcz/snZi+udhSkWcGBBk9lA/Ya6R7uTrbo8qIIaNrcBEUburS4ZYYWIsoFJHwAORnGPRSzuSZe0gtLdlN0GbekGWlSynYJ7KomicVILTysXNqVe9zIkV0QE6RMcoQGeoiq5RDdURQXfoCb2gV+fZeXPenY9Za8HJZ/bRn3I+fwAQKp3L</latexit>

exprn

<latexit sha1_base64="CXFq5tLHn3qT7t86U2Q5FFE92PQ=">AAACEHicbZDLSgMxFIYz9VbrrerSzeAguCozIqi7ohuXFewF2qFk0tM2NpchyahlmHcQd/ok7sStb+CDuDdtZ6GtB0J+/v8ccvJFMaPa+P6XU1haXlldK66XNja3tnfKu3sNLRNFoE4kk6oVYQ2MCqgbahi0YgWYRwya0ehqkjfvQWkqxa0ZxxByPBC0Twk21mrAY6y6olv2/Io/LXdRBLnwUF61bvm705Mk4SAMYVjrduDHJkyxMpQwyEqdREOMyQgPoG2lwBx0mE63zdwj6/TcvlT2CONO3d8TKeZaj3lkOzk2Qz2fTcz/snZi+udhSkWcGBBk9lA/Ya6R7uTrbo8qIIaNrcBEUburS4ZYYWIsoFJHwAORnGPRSzuSZe0gtLdlN0GbekGWlSynYJ7KomicVILTysXNqVe9zIkV0QE6RMcoQGeoiq5RDdURQXfoCb2gV+fZeXPenY9Za8HJZ/bRn3I+fwAQKp3L</latexit>

exprn

<latexit sha1_base64="CXFq5tLHn3qT7t86U2Q5FFE92PQ=">AAACEHicbZDLSgMxFIYz9VbrrerSzeAguCozIqi7ohuXFewF2qFk0tM2NpchyahlmHcQd/ok7sStb+CDuDdtZ6GtB0J+/v8ccvJFMaPa+P6XU1haXlldK66XNja3tnfKu3sNLRNFoE4kk6oVYQ2MCqgbahi0YgWYRwya0ehqkjfvQWkqxa0ZxxByPBC0Twk21mrAY6y6olv2/Io/LXdRBLnwUF61bvm705Mk4SAMYVjrduDHJkyxMpQwyEqdREOMyQgPoG2lwBx0mE63zdwj6/TcvlT2CONO3d8TKeZaj3lkOzk2Qz2fTcz/snZi+udhSkWcGBBk9lA/Ya6R7uTrbo8qIIaNrcBEUburS4ZYYWIsoFJHwAORnGPRSzuSZe0gtLdlN0GbekGWlSynYJ7KomicVILTysXNqVe9zIkV0QE6RMcoQGeoiq5RDdURQXfoCb2gV+fZeXPenY9Za8HJZ/bRn3I+fwAQKp3L</latexit>

exprn

<latexit sha1_base64="CXFq5tLHn3qT7t86U2Q5FFE92PQ=">AAACEHicbZDLSgMxFIYz9VbrrerSzeAguCozIqi7ohuXFewF2qFk0tM2NpchyahlmHcQd/ok7sStb+CDuDdtZ6GtB0J+/v8ccvJFMaPa+P6XU1haXlldK66XNja3tnfKu3sNLRNFoE4kk6oVYQ2MCqgbahi0YgWYRwya0ehqkjfvQWkqxa0ZxxByPBC0Twk21mrAY6y6olv2/Io/LXdRBLnwUF61bvm705Mk4SAMYVjrduDHJkyxMpQwyEqdREOMyQgPoG2lwBx0mE63zdwj6/TcvlT2CONO3d8TKeZaj3lkOzk2Qz2fTcz/snZi+udhSkWcGBBk9lA/Ya6R7uTrbo8qIIaNrcBEUburS4ZYYWIsoFJHwAORnGPRSzuSZe0gtLdlN0GbekGWlSynYJ7KomicVILTysXNqVe9zIkV0QE6RMcoQGeoiq5RDdURQXfoCb2gV+fZeXPenY9Za8HJZ/bRn3I+fwAQKp3L</latexit>

expri

<latexit sha1_base64="9aWIepYh3l8iIFwBeJG9D9652Ss=">AAACEHicbZDLSgMxFIYz9VbrrerSzeAguCozIqi7ohuXFewF2qFk0tM2NpchyahlmHcQd/ok7sStb+CDuDdtZ6GtB0J+/v8ccvJFMaPa+P6XU1haXlldK66XNja3tnfKu3sNLRNFoE4kk6oVYQ2MCqgbahi0YgWYRwya0ehqkjfvQWkqxa0ZxxByPBC0Twk21mrAY6y6tFv2/Io/LXdRBLnwUF61bvm705Mk4SAMYVjrduDHJkyxMpQwyEqdREOMyQgPoG2lwBx0mE63zdwj6/TcvlT2CONO3d8TKeZaj3lkOzk2Qz2fTcz/snZi+udhSkWcGBBk9lA/Ya6R7uTrbo8qIIaNrcBEUburS4ZYYWIsoFJHwAORnGPRSzuSZe0gtLdlN0GbekGWlSynYJ7KomicVILTysXNqVe9zIkV0QE6RMcoQGeoiq5RDdURQXfoCb2gV+fZeXPenY9Za8HJZ/bRn3I+fwAH553G</latexit>

expri

<latexit sha1_base64="9aWIepYh3l8iIFwBeJG9D9652Ss=">AAACEHicbZDLSgMxFIYz9VbrrerSzeAguCozIqi7ohuXFewF2qFk0tM2NpchyahlmHcQd/ok7sStb+CDuDdtZ6GtB0J+/v8ccvJFMaPa+P6XU1haXlldK66XNja3tnfKu3sNLRNFoE4kk6oVYQ2MCqgbahi0YgWYRwya0ehqkjfvQWkqxa0ZxxByPBC0Twk21mrAY6y6tFv2/Io/LXdRBLnwUF61bvm705Mk4SAMYVjrduDHJkyxMpQwyEqdREOMyQgPoG2lwBx0mE63zdwj6/TcvlT2CONO3d8TKeZaj3lkOzk2Qz2fTcz/snZi+udhSkWcGBBk9lA/Ya6R7uTrbo8qIIaNrcBEUburS4ZYYWIsoFJHwAORnGPRSzuSZe0gtLdlN0GbekGWlSynYJ7KomicVILTysXNqVe9zIkV0QE6RMcoQGeoiq5RDdURQXfoCb2gV+fZeXPenY9Za8HJZ/bRn3I+fwAH553G</latexit>

expri

<latexit sha1_base64="9aWIepYh3l8iIFwBeJG9D9652Ss=">AAACEHicbZDLSgMxFIYz9VbrrerSzeAguCozIqi7ohuXFewF2qFk0tM2NpchyahlmHcQd/ok7sStb+CDuDdtZ6GtB0J+/v8ccvJFMaPa+P6XU1haXlldK66XNja3tnfKu3sNLRNFoE4kk6oVYQ2MCqgbahi0YgWYRwya0ehqkjfvQWkqxa0ZxxByPBC0Twk21mrAY6y6tFv2/Io/LXdRBLnwUF61bvm705Mk4SAMYVjrduDHJkyxMpQwyEqdREOMyQgPoG2lwBx0mE63zdwj6/TcvlT2CONO3d8TKeZaj3lkOzk2Qz2fTcz/snZi+udhSkWcGBBk9lA/Ya6R7uTrbo8qIIaNrcBEUburS4ZYYWIsoFJHwAORnGPRSzuSZe0gtLdlN0GbekGWlSynYJ7KomicVILTysXNqVe9zIkV0QE6RMcoQGeoiq5RDdURQXfoCb2gV+fZeXPenY9Za8HJZ/bRn3I+fwAH553G</latexit>

expri

<latexit sha1_base64="9aWIepYh3l8iIFwBeJG9D9652Ss=">AAACEHicbZDLSgMxFIYz9VbrrerSzeAguCozIqi7ohuXFewF2qFk0tM2NpchyahlmHcQd/ok7sStb+CDuDdtZ6GtB0J+/v8ccvJFMaPa+P6XU1haXlldK66XNja3tnfKu3sNLRNFoE4kk6oVYQ2MCqgbahi0YgWYRwya0ehqkjfvQWkqxa0ZxxByPBC0Twk21mrAY6y6tFv2/Io/LXdRBLnwUF61bvm705Mk4SAMYVjrduDHJkyxMpQwyEqdREOMyQgPoG2lwBx0mE63zdwj6/TcvlT2CONO3d8TKeZaj3lkOzk2Qz2fTcz/snZi+udhSkWcGBBk9lA/Ya6R7uTrbo8qIIaNrcBEUburS4ZYYWIsoFJHwAORnGPRSzuSZe0gtLdlN0GbekGWlSynYJ7KomicVILTysXNqVe9zIkV0QE6RMcoQGeoiq5RDdURQXfoCb2gV+fZeXPenY9Za8HJZ/bRn3I+fwAH553G</latexit>

expri

<latexit sha1_base64="9aWIepYh3l8iIFwBeJG9D9652Ss=">AAACEHicbZDLSgMxFIYz9VbrrerSzeAguCozIqi7ohuXFewF2qFk0tM2NpchyahlmHcQd/ok7sStb+CDuDdtZ6GtB0J+/v8ccvJFMaPa+P6XU1haXlldK66XNja3tnfKu3sNLRNFoE4kk6oVYQ2MCqgbahi0YgWYRwya0ehqkjfvQWkqxa0ZxxByPBC0Twk21mrAY6y6tFv2/Io/LXdRBLnwUF61bvm705Mk4SAMYVjrduDHJkyxMpQwyEqdREOMyQgPoG2lwBx0mE63zdwj6/TcvlT2CONO3d8TKeZaj3lkOzk2Qz2fTcz/snZi+udhSkWcGBBk9lA/Ya6R7uTrbo8qIIaNrcBEUburS4ZYYWIsoFJHwAORnGPRSzuSZe0gtLdlN0GbekGWlSynYJ7KomicVILTysXNqVe9zIkV0QE6RMcoQGeoiq5RDdURQXfoCb2gV+fZeXPenY9Za8HJZ/bRn3I+fwAH553G</latexit>

… … … … … … … … … … … …… … … … … … …… … … … …………

pj

<latexit sha1_base64="6r1imYrqpU/nQwE62pwr3h5e8sY=">AAACDXicbZDLSgMxFIYz9VbrrerSTbAIrsqMCOqu6MZlRXuBmaFk0kwbm8uQZJQyzCOIO30Sd+LWZ/BB3Jtpu9DWAyE//38OOfmihFFtXPfLKS0tr6yuldcrG5tb2zvV3b22lqnCpIUlk6obIU0YFaRlqGGkmyiCeMRIJxpdFXnngShNpbgz44SEHA0EjSlGxlq3Se++V625dXdScFF4M1EDs2r2qt9BX+KUE2EwQ1r7npuYMEPKUMxIXglSTRKER2hAfCsF4kSH2WTVHB5Zpw9jqewRBk7c3xMZ4lqPeWQ7OTJDPZ8V5n+Zn5r4PMyoSFJDBJ4+FKcMGgmLf8M+VQQbNrYCYUXtrhAPkULYWDqVQJBHLDlHop8FkuW+F9rbgiu4ZjUvzyuWkzdPZVG0T+reaf3i5rTWuJwRK4MDcAiOgQfOQANcgyZoAQwG4Am8gFfn2Xlz3p2PaWvJmc3sgz/lfP4Aa4ScWg==</latexit>

pj

<latexit sha1_base64="6r1imYrqpU/nQwE62pwr3h5e8sY=">AAACDXicbZDLSgMxFIYz9VbrrerSTbAIrsqMCOqu6MZlRXuBmaFk0kwbm8uQZJQyzCOIO30Sd+LWZ/BB3Jtpu9DWAyE//38OOfmihFFtXPfLKS0tr6yuldcrG5tb2zvV3b22lqnCpIUlk6obIU0YFaRlqGGkmyiCeMRIJxpdFXnngShNpbgz44SEHA0EjSlGxlq3Se++V625dXdScFF4M1EDs2r2qt9BX+KUE2EwQ1r7npuYMEPKUMxIXglSTRKER2hAfCsF4kSH2WTVHB5Zpw9jqewRBk7c3xMZ4lqPeWQ7OTJDPZ8V5n+Zn5r4PMyoSFJDBJ4+FKcMGgmLf8M+VQQbNrYCYUXtrhAPkULYWDqVQJBHLDlHop8FkuW+F9rbgiu4ZjUvzyuWkzdPZVG0T+reaf3i5rTWuJwRK4MDcAiOgQfOQANcgyZoAQwG4Am8gFfn2Xlz3p2PaWvJmc3sgz/lfP4Aa4ScWg==</latexit>

pj

<latexit sha1_base64="6r1imYrqpU/nQwE62pwr3h5e8sY=">AAACDXicbZDLSgMxFIYz9VbrrerSTbAIrsqMCOqu6MZlRXuBmaFk0kwbm8uQZJQyzCOIO30Sd+LWZ/BB3Jtpu9DWAyE//38OOfmihFFtXPfLKS0tr6yuldcrG5tb2zvV3b22lqnCpIUlk6obIU0YFaRlqGGkmyiCeMRIJxpdFXnngShNpbgz44SEHA0EjSlGxlq3Se++V625dXdScFF4M1EDs2r2qt9BX+KUE2EwQ1r7npuYMEPKUMxIXglSTRKER2hAfCsF4kSH2WTVHB5Zpw9jqewRBk7c3xMZ4lqPeWQ7OTJDPZ8V5n+Zn5r4PMyoSFJDBJ4+FKcMGgmLf8M+VQQbNrYCYUXtrhAPkULYWDqVQJBHLDlHop8FkuW+F9rbgiu4ZjUvzyuWkzdPZVG0T+reaf3i5rTWuJwRK4MDcAiOgQfOQANcgyZoAQwG4Am8gFfn2Xlz3p2PaWvJmc3sgz/lfP4Aa4ScWg==</latexit>

pj

<latexit sha1_base64="6r1imYrqpU/nQwE62pwr3h5e8sY=">AAACDXicbZDLSgMxFIYz9VbrrerSTbAIrsqMCOqu6MZlRXuBmaFk0kwbm8uQZJQyzCOIO30Sd+LWZ/BB3Jtpu9DWAyE//38OOfmihFFtXPfLKS0tr6yuldcrG5tb2zvV3b22lqnCpIUlk6obIU0YFaRlqGGkmyiCeMRIJxpdFXnngShNpbgz44SEHA0EjSlGxlq3Se++V625dXdScFF4M1EDs2r2qt9BX+KUE2EwQ1r7npuYMEPKUMxIXglSTRKER2hAfCsF4kSH2WTVHB5Zpw9jqewRBk7c3xMZ4lqPeWQ7OTJDPZ8V5n+Zn5r4PMyoSFJDBJ4+FKcMGgmLf8M+VQQbNrYCYUXtrhAPkULYWDqVQJBHLDlHop8FkuW+F9rbgiu4ZjUvzyuWkzdPZVG0T+reaf3i5rTWuJwRK4MDcAiOgQfOQANcgyZoAQwG4Am8gFfn2Xlz3p2PaWvJmc3sgz/lfP4Aa4ScWg==</latexit>

pj

<latexit sha1_base64="6r1imYrqpU/nQwE62pwr3h5e8sY=">AAACDXicbZDLSgMxFIYz9VbrrerSTbAIrsqMCOqu6MZlRXuBmaFk0kwbm8uQZJQyzCOIO30Sd+LWZ/BB3Jtpu9DWAyE//38OOfmihFFtXPfLKS0tr6yuldcrG5tb2zvV3b22lqnCpIUlk6obIU0YFaRlqGGkmyiCeMRIJxpdFXnngShNpbgz44SEHA0EjSlGxlq3Se++V625dXdScFF4M1EDs2r2qt9BX+KUE2EwQ1r7npuYMEPKUMxIXglSTRKER2hAfCsF4kSH2WTVHB5Zpw9jqewRBk7c3xMZ4lqPeWQ7OTJDPZ8V5n+Zn5r4PMyoSFJDBJ4+FKcMGgmLf8M+VQQbNrYCYUXtrhAPkULYWDqVQJBHLDlHop8FkuW+F9rbgiu4ZjUvzyuWkzdPZVG0T+reaf3i5rTWuJwRK4MDcAiOgQfOQANcgyZoAQwG4Am8gFfn2Xlz3p2PaWvJmc3sgz/lfP4Aa4ScWg==</latexit>

pj

<latexit sha1_base64="6r1imYrqpU/nQwE62pwr3h5e8sY=">AAACDXicbZDLSgMxFIYz9VbrrerSTbAIrsqMCOqu6MZlRXuBmaFk0kwbm8uQZJQyzCOIO30Sd+LWZ/BB3Jtpu9DWAyE//38OOfmihFFtXPfLKS0tr6yuldcrG5tb2zvV3b22lqnCpIUlk6obIU0YFaRlqGGkmyiCeMRIJxpdFXnngShNpbgz44SEHA0EjSlGxlq3Se++V625dXdScFF4M1EDs2r2qt9BX+KUE2EwQ1r7npuYMEPKUMxIXglSTRKER2hAfCsF4kSH2WTVHB5Zpw9jqewRBk7c3xMZ4lqPeWQ7OTJDPZ8V5n+Zn5r4PMyoSFJDBJ4+FKcMGgmLf8M+VQQbNrYCYUXtrhAPkULYWDqVQJBHLDlHop8FkuW+F9rbgiu4ZjUvzyuWkzdPZVG0T+reaf3i5rTWuJwRK4MDcAiOgQfOQANcgyZoAQwG4Am8gFfn2Xlz3p2PaWvJmc3sgz/lfP4Aa4ScWg==</latexit>

pj

<latexit sha1_base64="6r1imYrqpU/nQwE62pwr3h5e8sY=">AAACDXicbZDLSgMxFIYz9VbrrerSTbAIrsqMCOqu6MZlRXuBmaFk0kwbm8uQZJQyzCOIO30Sd+LWZ/BB3Jtpu9DWAyE//38OOfmihFFtXPfLKS0tr6yuldcrG5tb2zvV3b22lqnCpIUlk6obIU0YFaRlqGGkmyiCeMRIJxpdFXnngShNpbgz44SEHA0EjSlGxlq3Se++V625dXdScFF4M1EDs2r2qt9BX+KUE2EwQ1r7npuYMEPKUMxIXglSTRKER2hAfCsF4kSH2WTVHB5Zpw9jqewRBk7c3xMZ4lqPeWQ7OTJDPZ8V5n+Zn5r4PMyoSFJDBJ4+FKcMGgmLf8M+VQQbNrYCYUXtrhAPkULYWDqVQJBHLDlHop8FkuW+F9rbgiu4ZjUvzyuWkzdPZVG0T+reaf3i5rTWuJwRK4MDcAiOgQfOQANcgyZoAQwG4Am8gFfn2Xlz3p2PaWvJmc3sgz/lfP4Aa4ScWg==</latexit>

pj

<latexit sha1_base64="6r1imYrqpU/nQwE62pwr3h5e8sY=">AAACDXicbZDLSgMxFIYz9VbrrerSTbAIrsqMCOqu6MZlRXuBmaFk0kwbm8uQZJQyzCOIO30Sd+LWZ/BB3Jtpu9DWAyE//38OOfmihFFtXPfLKS0tr6yuldcrG5tb2zvV3b22lqnCpIUlk6obIU0YFaRlqGGkmyiCeMRIJxpdFXnngShNpbgz44SEHA0EjSlGxlq3Se++V625dXdScFF4M1EDs2r2qt9BX+KUE2EwQ1r7npuYMEPKUMxIXglSTRKER2hAfCsF4kSH2WTVHB5Zpw9jqewRBk7c3xMZ4lqPeWQ7OTJDPZ8V5n+Zn5r4PMyoSFJDBJ4+FKcMGgmLf8M+VQQbNrYCYUXtrhAPkULYWDqVQJBHLDlHop8FkuW+F9rbgiu4ZjUvzyuWkzdPZVG0T+reaf3i5rTWuJwRK4MDcAiOgQfOQANcgyZoAQwG4Am8gFfn2Xlz3p2PaWvJmc3sgz/lfP4Aa4ScWg==</latexit>

exprend
n

<latexit sha1_base64="bhyw8KVQFjdPHphFxHxEn1DosHc=">AAACFnicbZC7SgNBFIZn4y3GW9TSZjEIVmFXBLUL2lhGMBfIrmF29iQZMpdlZlYNy76G2OmT2ImtrQ9i7+RSaOKBYX7+/xzO4YsSRrXxvC+nsLS8srpWXC9tbG5t75R395papopAg0gmVTvCGhgV0DDUMGgnCjCPGLSi4dU4b92D0lSKWzNKIOS4L2iPEmysFcBjou4yEHHeFd1yxat6k3IXhT8TFTSrerf8HcSSpByEIQxr3fG9xIQZVoYSBnkpSDUkmAxxHzpWCsxBh9nk5tw9sk7s9qSyTxh34v6eyDDXesQj28mxGej5bGz+l3VS0zsPMyqS1IAg00W9lLlGumMAbkwVEMNGVmCiqL3VJQOsMDEWUykQ8EAk51jEWSBZ3vFD+1uCY8BZxc/zkuXkz1NZFM2Tqn9avbg5rdQuZ8SK6AAdomPkozNUQ9eojhqIoAQ9oRf06jw7b8678zFtLTizmX30p5zPHzu5oJQ=</latexit>

exprend
i

<latexit sha1_base64="wsQ69yWn19xCfEA3vfQmYem4hpA=">AAACF3icbZDLSsNAFIYn3q23qks3wSK4KokI6k5047KCvUATy2RyWgfnEmcmagl5DnGnT+JO3Lr0Qdw7abPQ1gPD/Pz/OZzDFyWMauN5X87M7Nz8wuLScmVldW19o7q51dIyVQSaRDKpOhHWwKiApqGGQSdRgHnEoB3dnhd5+x6UplJcmWECIccDQfuUYGOtEB4TdZ2BiPMerfSqNa/ujcqdFn4paqisRq/6HcSSpByEIQxr3fW9xIQZVoYSBnklSDUkmNziAXStFJiDDrPR0bm7Z53Y7UtlnzDuyP09kWGu9ZBHtpNjc6Mns8L8L+umpn8cZlQkqQFBxov6KXONdAsCbkwVEMOGVmCiqL3VJTdYYWIsp0og4IFIzrGIs0CyvOuH9rcIC8JZzc/zgpM/SWVatA7q/mH95PKwdnpWEltCO2gX7SMfHaFTdIEaqIkIukNP6AW9Os/Om/PufIxbZ5xyZhv9KefzB24toKM=</latexit>

exprend
j

<latexit sha1_base64="tr3Kfk6gWSMw8olMT6LQbLaNGOw=">AAACF3icbZDLSsNAFIYnXmu8VV26CRbBVUlEUHdFNy4r2FZoY5lMTnR0LnFmopaQ5xB3+iTuxK1LH8S9k9qFth4Y5uf/z+EcvihlVBvf/3Smpmdm5+YrC+7i0vLKanVtva1lpgi0iGRSnUdYA6MCWoYaBuepAswjBp3o5rjMO3egNJXizAxSCDm+FDShBBtrhfCQqoscRFz0r91+tebX/WF5kyIYiRoaVbNf/erFkmQchCEMa90N/NSEOVaGEgaF28s0pJjc4EvoWikwBx3mw6MLb9s6sZdIZZ8w3tD9PZFjrvWAR7aTY3Olx7PS/C/rZiY5CHMq0syAID+Lkox5RnolAS+mCohhAyswUdTe6pErrDAxlpPbE3BPJOdYxHlPsqIbhPa3CEvCeS0oipJTME5lUrR368Fe/fB0r9Y4GhGroE20hXZQgPZRA52gJmohgm7RI3pGL86T8+q8Oe8/rVPOaGYD/Snn4xtv1aCk</latexit>

exprend
i

<latexit sha1_base64="wsQ69yWn19xCfEA3vfQmYem4hpA=">AAACF3icbZDLSsNAFIYn3q23qks3wSK4KokI6k5047KCvUATy2RyWgfnEmcmagl5DnGnT+JO3Lr0Qdw7abPQ1gPD/Pz/OZzDFyWMauN5X87M7Nz8wuLScmVldW19o7q51dIyVQSaRDKpOhHWwKiApqGGQSdRgHnEoB3dnhd5+x6UplJcmWECIccDQfuUYGOtEB4TdZ2BiPMerfSqNa/ujcqdFn4paqisRq/6HcSSpByEIQxr3fW9xIQZVoYSBnklSDUkmNziAXStFJiDDrPR0bm7Z53Y7UtlnzDuyP09kWGu9ZBHtpNjc6Mns8L8L+umpn8cZlQkqQFBxov6KXONdAsCbkwVEMOGVmCiqL3VJTdYYWIsp0og4IFIzrGIs0CyvOuH9rcIC8JZzc/zgpM/SWVatA7q/mH95PKwdnpWEltCO2gX7SMfHaFTdIEaqIkIukNP6AW9Os/Om/PufIxbZ5xyZhv9KefzB24toKM=</latexit>

exprend
j

<latexit sha1_base64="tr3Kfk6gWSMw8olMT6LQbLaNGOw=">AAACF3icbZDLSsNAFIYnXmu8VV26CRbBVUlEUHdFNy4r2FZoY5lMTnR0LnFmopaQ5xB3+iTuxK1LH8S9k9qFth4Y5uf/z+EcvihlVBvf/3Smpmdm5+YrC+7i0vLKanVtva1lpgi0iGRSnUdYA6MCWoYaBuepAswjBp3o5rjMO3egNJXizAxSCDm+FDShBBtrhfCQqoscRFz0r91+tebX/WF5kyIYiRoaVbNf/erFkmQchCEMa90N/NSEOVaGEgaF28s0pJjc4EvoWikwBx3mw6MLb9s6sZdIZZ8w3tD9PZFjrvWAR7aTY3Olx7PS/C/rZiY5CHMq0syAID+Lkox5RnolAS+mCohhAyswUdTe6pErrDAxlpPbE3BPJOdYxHlPsqIbhPa3CEvCeS0oipJTME5lUrR368Fe/fB0r9Y4GhGroE20hXZQgPZRA52gJmohgm7RI3pGL86T8+q8Oe8/rVPOaGYD/Snn4xtv1aCk</latexit>

hAiexpri

<latexit sha1_base64="0CDIm5I18izqdqe5dwjdOU9YGXs=">AAACJHicbZDLSgMxFIYz3q23qhvBTbAIrsqMFNSdl41LBWsLnaFk0tMazGVIMmoZxqcRd/ok7sSFG9/CvZm2C209EPLz/+dwki9OODPW9z+9qemZ2bn5hcXS0vLK6lp5fePaqFRTqFPFlW7GxABnEuqWWQ7NRAMRMYdGfHtW5I070IYpeWX7CUSC9CTrMkqss9rlrZAT2eOAT0I9FPCQ6DYrtcsVv+oPCk+KYCQqaFQX7fJ32FE0FSAt5cSYVuAnNsqItoxyyEthaiAh9Jb0oOWkJAJMlA1+kONd53RwV2l3pMUD9/dERoQxfRG7TkHsjRnPCvO/rJXa7mGUMZmkFiQdLuqmHFuFCxy4wzRQy/tOEKqZeyumN0QTah20UijhniohiOxkoeJ5K4jc7XgWuLNKkOcFp2CcyqS43q8GterRZa1yfDoitoC20Q7aQwE6QMfoHF2gOqLoET2hF/TqPXtv3rv3MWyd8kYzm+hPeV8/uhOk2g==</latexit>

hAiexpri

<latexit sha1_base64="0CDIm5I18izqdqe5dwjdOU9YGXs=">AAACJHicbZDLSgMxFIYz3q23qhvBTbAIrsqMFNSdl41LBWsLnaFk0tMazGVIMmoZxqcRd/ok7sSFG9/CvZm2C209EPLz/+dwki9OODPW9z+9qemZ2bn5hcXS0vLK6lp5fePaqFRTqFPFlW7GxABnEuqWWQ7NRAMRMYdGfHtW5I070IYpeWX7CUSC9CTrMkqss9rlrZAT2eOAT0I9FPCQ6DYrtcsVv+oPCk+KYCQqaFQX7fJ32FE0FSAt5cSYVuAnNsqItoxyyEthaiAh9Jb0oOWkJAJMlA1+kONd53RwV2l3pMUD9/dERoQxfRG7TkHsjRnPCvO/rJXa7mGUMZmkFiQdLuqmHFuFCxy4wzRQy/tOEKqZeyumN0QTah20UijhniohiOxkoeJ5K4jc7XgWuLNKkOcFp2CcyqS43q8GterRZa1yfDoitoC20Q7aQwE6QMfoHF2gOqLoET2hF/TqPXtv3rv3MWyd8kYzm+hPeV8/uhOk2g==</latexit>

exprend
j

<latexit sha1_base64="tr3Kfk6gWSMw8olMT6LQbLaNGOw=">AAACF3icbZDLSsNAFIYnXmu8VV26CRbBVUlEUHdFNy4r2FZoY5lMTnR0LnFmopaQ5xB3+iTuxK1LH8S9k9qFth4Y5uf/z+EcvihlVBvf/3Smpmdm5+YrC+7i0vLKanVtva1lpgi0iGRSnUdYA6MCWoYaBuepAswjBp3o5rjMO3egNJXizAxSCDm+FDShBBtrhfCQqoscRFz0r91+tebX/WF5kyIYiRoaVbNf/erFkmQchCEMa90N/NSEOVaGEgaF28s0pJjc4EvoWikwBx3mw6MLb9s6sZdIZZ8w3tD9PZFjrvWAR7aTY3Olx7PS/C/rZiY5CHMq0syAID+Lkox5RnolAS+mCohhAyswUdTe6pErrDAxlpPbE3BPJOdYxHlPsqIbhPa3CEvCeS0oipJTME5lUrR368Fe/fB0r9Y4GhGroE20hXZQgPZRA52gJmohgm7RI3pGL86T8+q8Oe8/rVPOaGYD/Snn4xtv1aCk</latexit>

phj

<latexit sha1_base64="k/a4Ct1wJjt34lmlkSlZ3O33dAE=">AAACDnicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYC7VAymUwbm8uQZJQyzCuIO30Sd+LWV/BB3JtpZ6GtB0J+/v8ccvIFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvQJowKkjbUMNIL1YE8YCRbjC5zvPuA1GaSnFnpjHxORoJGlGMTG7F4+H9sFpz6+6s4LLwClEDRbWG1e9BKHHCiTCYIa37nhsbP0XKUMxIVhkkmsQIT9CI9K0UiBPtp7NdM3hinRBGUtkjDJy5vydSxLWe8sB2cmTGejHLzf+yfmKiCz+lIk4MEXj+UJQwaCTMPw5Dqgg2bGoFworaXSEeI4WwsXgqA0EeseQciTAdSJb1Pd/ellwONq15WVaxnLxFKsuic1b3GvXL20ateVUQK4MjcAxOgQfOQRPcgBZoAwzG4Am8gFfn2Xlz3p2PeWvJKWYOwZ9yPn8APbaczA==</latexit>

exprend
j

<latexit sha1_base64="tr3Kfk6gWSMw8olMT6LQbLaNGOw=">AAACF3icbZDLSsNAFIYnXmu8VV26CRbBVUlEUHdFNy4r2FZoY5lMTnR0LnFmopaQ5xB3+iTuxK1LH8S9k9qFth4Y5uf/z+EcvihlVBvf/3Smpmdm5+YrC+7i0vLKanVtva1lpgi0iGRSnUdYA6MCWoYaBuepAswjBp3o5rjMO3egNJXizAxSCDm+FDShBBtrhfCQqoscRFz0r91+tebX/WF5kyIYiRoaVbNf/erFkmQchCEMa90N/NSEOVaGEgaF28s0pJjc4EvoWikwBx3mw6MLb9s6sZdIZZ8w3tD9PZFjrvWAR7aTY3Olx7PS/C/rZiY5CHMq0syAID+Lkox5RnolAS+mCohhAyswUdTe6pErrDAxlpPbE3BPJOdYxHlPsqIbhPa3CEvCeS0oipJTME5lUrR368Fe/fB0r9Y4GhGroE20hXZQgPZRA52gJmohgm7RI3pGL86T8+q8Oe8/rVPOaGYD/Snn4xtv1aCk</latexit>

hAipj

<latexit sha1_base64="NLnmUHhMmi3XnidowzJAxBnzUKY=">AAACK3icbVDLSgMxFM3UV62vqksXBovgqsxIQd1V3bisYFXoDCWT3tZoHkOSUcowS79G3OmXuFLc+gnuTR/gox4IHM459yY5ccKZsb7/6hWmpmdm54rzpYXFpeWV8urauVGpptCkiit9GRMDnEloWmY5XCYaiIg5XMQ3xwP/4ha0YUqe2X4CkSA9ybqMEuukdnkz5ET2OOBQudhgS3aYh3qkJe3rdrniV/0h8CQJxqSCxmi0y59hR9FUgLSUE2NagZ/YKCPaMsohL4WpgYTQG9KDlqOSCDBRNvxIjred0sFdpd2RFg/VnxMZEcb0ReySgtgr89cbiP95rdR296OMySS1IOnoom7KsVV40AruMA3U8r4jhGrm3orpFdGEWtddKZRwR5UQRHayUPG8FUTZd1+VIM9LrqfgbyuT5Hy3GtSqB6e1Sv1o3FgRbaAttIMCtIfq6AQ1UBNRdI8e0BN69h69F+/Nex9FC954Zh39gvfxBaLgqIA=</latexit>

blj

<latexit sha1_base64="QEbedqoHh7H2EJthnluHgWO+crQ=">AAACDnicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYC7VAymUwbm8uQZJQyzCuIO30Sd+LWV/BB3JtpZ6GtB0J+/v8ccvIFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvQJowKkjbUMNIL1YE8YCRbjC5zvPuA1GaSnFnpjHxORoJGlGMTG4FbHg/rNbcujsruCy8QtRAUa1h9XsQSpxwIgxmSOu+58bGT5EyFDOSVQaJJjHCEzQifSsF4kT76WzXDJ5YJ4SRVPYIA2fu74kUca2nPLCdHJmxXsxy87+sn5jowk+piBNDBJ4/FCUMGgnzj8OQKoINm1qBsKJ2V4jHSCFsLJ7KQJBHLDlHIkwHkmV9z7e3JZeDTWtellUsJ2+RyrLonNW9Rv3ytlFrXhXEyuAIHINT4IFz0AQ3oAXaAIMxeAIv4NV5dt6cd+dj3lpyiplD8Keczx8tDpzC</latexit>

Figure 4: Example of the structure we are enforcing by means of formula Φ
(i,j)
B for an expres-

sion E = (en)ω , where en contains the sub-expression ei = eBj (dashed intervals represent

exprj intervals).

ordered set of blj points greater than n. Now, let [nk, nk+1]phj
be the set of phj

points x laying strictly in between nk and nk+1; recall that, by properties 1–2,

these are exactly the left endpoints of expr j intervals that are not left endpoints775

of expr i ones. By properties 4–6, pj encodes a series of surjective functions

fk : [nk, nk+1]phj
→ [nk+1, nk+2]phj

, with k ≥ 0, linking the phj points of pairs

of consecutive slices.7 It follows that |[n0, n1]phj
| ≥ |[n1, n2]phj

| ≥ . . ., that is,

the sequence is not increasing. Finally, property 3 imposes that, for every k,

there is at least one point x, with nk < x < nk+1, which is the left endpoint780

of an expr i interval. Then, every expr i interval starting after n spans at most

two adjacent slices, and thus it contains at most |[n0, n1]phj
| ∗ 2 many expr j

intervals, thus providing a bound, as required by the B-constructor.

Now, for every (i, j) ∈ B(E), let Φ
(i,j)
B be the conjunction of the above

formulas. The following theorem holds, where, in conformity with the notation785

introduced in Section 2.1.1, immediately before Lemma 1, we denote by E∗ the

expression obtained from E by replacing B-constructors with ∗-constructors.

Theorem 4. Let E be an ωB-regular expression over Σ. Then, L(E) = {w ∈
Σω | w ≈M andM is a model such thatM, [0, n] |= ϕE∗∧ϕΣ∧

∧
(i,j)∈B(E) Φ

(i,j)
B

for some n ∈ N}.790

7As a matter of fact, the image of one such function fk might also include elements not

belonging to [nk+1, nk+2]phj
; however, properties 4–6 guarantee that [nk+1, nk+2]phj

is in-

cluded in the image, which is enough for our purposes.

32

7. ωS-regular languages in AB∼

In analogy to the previous section, for every ωS-expression E and every

ei, ej ∈ sub(E), with ei = (ej)
S , we build a formula Φ

(i,j)
S that forces models

to satisfy the strongly unboundedness constraint the S-constructor imposes on

ω-words. As already pointed out at the end of Section 3, it makes sense to force795

the behavior of the S-constructor (the same applies with the T -constructor in

the next section) only in those models featuring infinitely many expr i intervals.

Scenarios where there are only finitely many expr i intervals are easier to deal

with, as one can simply ignore the constraints imposed by the S-constructor,

by suitably guarding the formula that encodes them. Roughly speaking, one800

can treat the S-constructor as if it were the ∗-constructor in all those models

featuring only finitely many expr i intervals. Thus, the formulas we present in

the following assume that there are infinitely many expr i intervals, and scenarios

with only finitely many expr i intervals are dealt with by suitably guarding them.

An additional, analogous simplification applies when considering models fea-805

turing infinitely many expr j points, which correspond to empty strings belong-

ing to the language of ej . Thanks to Corollary 2, if a model features infinitely

many expr j points, then the S-constructor behaves as the ∗-constructor, and, as
a consequence, we can ignore the constraint that it imposes on ω-words. Thus,

formulas Φ
(i,j)
S , that we are going to define, also assume that there are only810

finitely many expr j points, and are suitably guarded in order to have no effect

over models featuring infinitely many expr j points.

Let S(E) = {(i, j) | ei, ej ∈ sub(E),with ei = (ej)
S}. To force the proper

behaviour of the S-constructor, we make use of the atomic symbol ∼, which is

a special proposition letter encoding some equivalence relation between points815

of the interval structure. Moreover, for every (i, j) ∈ S(E), we introduce two

proposition letters, namely phj and newj . The idea of the encoding is to label

with phj some of the point intervals inside expr i intervals and use such phj

intervals to establish a lower bound to the number of expr j intervals occurring

inside expr i intervals. More precisely, if an expr i interval contains n points820

33

labeled with phj , then it must contain at least n intervals labeled with expr j .

Then, by forcing the sequence of the numbers of phj points contained in each

expr i interval to be nondecreasing and (by means of the proposition letter newj)

unbounded, we guarantee the strong unboundedness constraint imposed by the

S-constructor. More technically, by means of suitable AB∼ formulas, we force825

the following properties:

1. phj may only label left endpoints of expr j intervals which are neither left

nor right endpoints of expr i ones (together with the fact that an expr j

interval can only occur inside an expr i one, this implies that a phj point

can only occur strictly inside an expr i interval):830

[G](phj → π ∧ 〈A〉expr j ∧ ¬〈A〉expr i ∧ ¬exprendi);

2. phj intervals are ∼-equivalent to other phj intervals only, and if two dis-

tinct phj points x and y belong to the same expr i interval, then x 6∼ y

(equivalently, if x ∼ y, then x and y belong to two distinct expr i intervals):

[G](∼→ (〈B〉phj ↔ 〈A〉phj) ∧ (〈B〉phj → 〈B〉(¬π ∧ 〈A〉exprendi)));835

3. for every expr i interval [n, n′] that strictly contains at least one phj point,

there is another expr i interval that starts not earlier than n′ and contains

a phj point; moreover, for each phj point in [n, n′], there is a phj point y,

with x ∼ y, belonging to the next expr i interval [n′′, n′′′], that is, there is

not another expr i interval starting in between n and n′′′:840

[G](phj → 〈A〉(¬π∧ ∼ ∧[B](〈A〉exprendi → [B][A]¬exprendi)));

4. newj points are phj points; moreover, if x is a newj point, then there is

no point y such that y < x and y ∼ x; finally, every phj point is eventually
followed by a distinct newj point:

[G] ((newj → phj) ∧ (¬π ∧ ∼→ [A]¬newj) ∧ (phj → 〈A〉(¬π ∧ 〈A〉newj))) .845

A graphical account of the properties imposed by the above formulas is

given in Figure 5. Thanks to properties 1 and 2, every phj point must fall

strictly inside an expr i interval and it is only ∼-equivalent to other phj points.

34

… …… …

exprend
n

<latexit sha1_base64="bhyw8KVQFjdPHphFxHxEn1DosHc=">AAACFnicbZC7SgNBFIZn4y3GW9TSZjEIVmFXBLUL2lhGMBfIrmF29iQZMpdlZlYNy76G2OmT2ImtrQ9i7+RSaOKBYX7+/xzO4YsSRrXxvC+nsLS8srpWXC9tbG5t75R395papopAg0gmVTvCGhgV0DDUMGgnCjCPGLSi4dU4b92D0lSKWzNKIOS4L2iPEmysFcBjou4yEHHeFd1yxat6k3IXhT8TFTSrerf8HcSSpByEIQxr3fG9xIQZVoYSBnkpSDUkmAxxHzpWCsxBh9nk5tw9sk7s9qSyTxh34v6eyDDXesQj28mxGej5bGz+l3VS0zsPMyqS1IAg00W9lLlGumMAbkwVEMNGVmCiqL3VJQOsMDEWUykQ8EAk51jEWSBZ3vFD+1uCY8BZxc/zkuXkz1NZFM2Tqn9avbg5rdQuZ8SK6AAdomPkozNUQ9eojhqIoAQ9oRf06jw7b8678zFtLTizmX30p5zPHzu5oJQ=</latexit>

exprend
j

<latexit sha1_base64="tr3Kfk6gWSMw8olMT6LQbLaNGOw=">AAACF3icbZDLSsNAFIYnXmu8VV26CRbBVUlEUHdFNy4r2FZoY5lMTnR0LnFmopaQ5xB3+iTuxK1LH8S9k9qFth4Y5uf/z+EcvihlVBvf/3Smpmdm5+YrC+7i0vLKanVtva1lpgi0iGRSnUdYA6MCWoYaBuepAswjBp3o5rjMO3egNJXizAxSCDm+FDShBBtrhfCQqoscRFz0r91+tebX/WF5kyIYiRoaVbNf/erFkmQchCEMa90N/NSEOVaGEgaF28s0pJjc4EvoWikwBx3mw6MLb9s6sZdIZZ8w3tD9PZFjrvWAR7aTY3Olx7PS/C/rZiY5CHMq0syAID+Lkox5RnolAS+mCohhAyswUdTe6pErrDAxlpPbE3BPJOdYxHlPsqIbhPa3CEvCeS0oipJTME5lUrR368Fe/fB0r9Y4GhGroE20hXZQgPZRA52gJmohgm7RI3pGL86T8+q8Oe8/rVPOaGYD/Snn4xtv1aCk</latexit>

exprend
i

<latexit sha1_base64="wsQ69yWn19xCfEA3vfQmYem4hpA=">AAACF3icbZDLSsNAFIYn3q23qks3wSK4KokI6k5047KCvUATy2RyWgfnEmcmagl5DnGnT+JO3Lr0Qdw7abPQ1gPD/Pz/OZzDFyWMauN5X87M7Nz8wuLScmVldW19o7q51dIyVQSaRDKpOhHWwKiApqGGQSdRgHnEoB3dnhd5+x6UplJcmWECIccDQfuUYGOtEB4TdZ2BiPMerfSqNa/ujcqdFn4paqisRq/6HcSSpByEIQxr3fW9xIQZVoYSBnklSDUkmNziAXStFJiDDrPR0bm7Z53Y7UtlnzDuyP09kWGu9ZBHtpNjc6Mns8L8L+umpn8cZlQkqQFBxov6KXONdAsCbkwVEMOGVmCiqL3VJTdYYWIsp0og4IFIzrGIs0CyvOuH9rcIC8JZzc/zgpM/SWVatA7q/mH95PKwdnpWEltCO2gX7SMfHaFTdIEaqIkIukNP6AW9Os/Om/PufIxbZ5xyZhv9KefzB24toKM=</latexit>

exprend
j

<latexit sha1_base64="tr3Kfk6gWSMw8olMT6LQbLaNGOw=">AAACF3icbZDLSsNAFIYnXmu8VV26CRbBVUlEUHdFNy4r2FZoY5lMTnR0LnFmopaQ5xB3+iTuxK1LH8S9k9qFth4Y5uf/z+EcvihlVBvf/3Smpmdm5+YrC+7i0vLKanVtva1lpgi0iGRSnUdYA6MCWoYaBuepAswjBp3o5rjMO3egNJXizAxSCDm+FDShBBtrhfCQqoscRFz0r91+tebX/WF5kyIYiRoaVbNf/erFkmQchCEMa90N/NSEOVaGEgaF28s0pJjc4EvoWikwBx3mw6MLb9s6sZdIZZ8w3tD9PZFjrvWAR7aTY3Olx7PS/C/rZiY5CHMq0syAID+Lkox5RnolAS+mCohhAyswUdTe6pErrDAxlpPbE3BPJOdYxHlPsqIbhPa3CEvCeS0oipJTME5lUrR368Fe/fB0r9Y4GhGroE20hXZQgPZRA52gJmohgm7RI3pGL86T8+q8Oe8/rVPOaGYD/Snn4xtv1aCk</latexit>

exprend
i

<latexit sha1_base64="wsQ69yWn19xCfEA3vfQmYem4hpA=">AAACF3icbZDLSsNAFIYn3q23qks3wSK4KokI6k5047KCvUATy2RyWgfnEmcmagl5DnGnT+JO3Lr0Qdw7abPQ1gPD/Pz/OZzDFyWMauN5X87M7Nz8wuLScmVldW19o7q51dIyVQSaRDKpOhHWwKiApqGGQSdRgHnEoB3dnhd5+x6UplJcmWECIccDQfuUYGOtEB4TdZ2BiPMerfSqNa/ujcqdFn4paqisRq/6HcSSpByEIQxr3fW9xIQZVoYSBnklSDUkmNziAXStFJiDDrPR0bm7Z53Y7UtlnzDuyP09kWGu9ZBHtpNjc6Mns8L8L+umpn8cZlQkqQFBxov6KXONdAsCbkwVEMOGVmCiqL3VJTdYYWIsp0og4IFIzrGIs0CyvOuH9rcIC8JZzc/zgpM/SWVatA7q/mH95PKwdnpWEltCO2gX7SMfHaFTdIEaqIkIukNP6AW9Os/Om/PufIxbZ5xyZhv9KefzB24toKM=</latexit>

exprend
j

<latexit sha1_base64="tr3Kfk6gWSMw8olMT6LQbLaNGOw=">AAACF3icbZDLSsNAFIYnXmu8VV26CRbBVUlEUHdFNy4r2FZoY5lMTnR0LnFmopaQ5xB3+iTuxK1LH8S9k9qFth4Y5uf/z+EcvihlVBvf/3Smpmdm5+YrC+7i0vLKanVtva1lpgi0iGRSnUdYA6MCWoYaBuepAswjBp3o5rjMO3egNJXizAxSCDm+FDShBBtrhfCQqoscRFz0r91+tebX/WF5kyIYiRoaVbNf/erFkmQchCEMa90N/NSEOVaGEgaF28s0pJjc4EvoWikwBx3mw6MLb9s6sZdIZZ8w3tD9PZFjrvWAR7aTY3Olx7PS/C/rZiY5CHMq0syAID+Lkox5RnolAS+mCohhAyswUdTe6pErrDAxlpPbE3BPJOdYxHlPsqIbhPa3CEvCeS0oipJTME5lUrR368Fe/fB0r9Y4GhGroE20hXZQgPZRA52gJmohgm7RI3pGL86T8+q8Oe8/rVPOaGYD/Snn4xtv1aCk</latexit>

hAiexpri

<latexit sha1_base64="0CDIm5I18izqdqe5dwjdOU9YGXs=">AAACJHicbZDLSgMxFIYz3q23qhvBTbAIrsqMFNSdl41LBWsLnaFk0tMazGVIMmoZxqcRd/ok7sSFG9/CvZm2C209EPLz/+dwki9OODPW9z+9qemZ2bn5hcXS0vLK6lp5fePaqFRTqFPFlW7GxABnEuqWWQ7NRAMRMYdGfHtW5I070IYpeWX7CUSC9CTrMkqss9rlrZAT2eOAT0I9FPCQ6DYrtcsVv+oPCk+KYCQqaFQX7fJ32FE0FSAt5cSYVuAnNsqItoxyyEthaiAh9Jb0oOWkJAJMlA1+kONd53RwV2l3pMUD9/dERoQxfRG7TkHsjRnPCvO/rJXa7mGUMZmkFiQdLuqmHFuFCxy4wzRQy/tOEKqZeyumN0QTah20UijhniohiOxkoeJ5K4jc7XgWuLNKkOcFp2CcyqS43q8GterRZa1yfDoitoC20Q7aQwE6QMfoHF2gOqLoET2hF/TqPXtv3rv3MWyd8kYzm+hPeV8/uhOk2g==</latexit>

hAiexpri

<latexit sha1_base64="0CDIm5I18izqdqe5dwjdOU9YGXs=">AAACJHicbZDLSgMxFIYz3q23qhvBTbAIrsqMFNSdl41LBWsLnaFk0tMazGVIMmoZxqcRd/ok7sSFG9/CvZm2C209EPLz/+dwki9OODPW9z+9qemZ2bn5hcXS0vLK6lp5fePaqFRTqFPFlW7GxABnEuqWWQ7NRAMRMYdGfHtW5I070IYpeWX7CUSC9CTrMkqss9rlrZAT2eOAT0I9FPCQ6DYrtcsVv+oPCk+KYCQqaFQX7fJ32FE0FSAt5cSYVuAnNsqItoxyyEthaiAh9Jb0oOWkJAJMlA1+kONd53RwV2l3pMUD9/dERoQxfRG7TkHsjRnPCvO/rJXa7mGUMZmkFiQdLuqmHFuFCxy4wzRQy/tOEKqZeyumN0QTah20UijhniohiOxkoeJ5K4jc7XgWuLNKkOcFp2CcyqS43q8GterRZa1yfDoitoC20Q7aQwE6QMfoHF2gOqLoET2hF/TqPXtv3rv3MWyd8kYzm+hPeV8/uhOk2g==</latexit>

⇠

<latexit sha1_base64="h9WByS2YXB/RicFBmAoEg6NONqI=">AAACDnicbZDLSsNAFIYn9VbjrerSTTAIrkoigrorunFZwV4gCWUymbZD5xJmJkoJeQVxp0/iTtz6Cj6IeydtFtp6YJif/z+HOfPFKSVKe96XVVtZXVvfqG/aW9s7u3uN/YOuEplEuIMEFbIfQ4Up4bijiaa4n0oMWUxxL57clHnvAUtFBL/X0xRHDI44GRIEdWmFirBBw/Wa3qycZeFXwgVVtQeN7zARKGOYa0ShUoHvpTrKodQEUVzYYaZwCtEEjnBgJIcMqyif7Vo4J8ZJnKGQ5nDtzNzfEzlkSk1ZbDoZ1GO1mJXmf1mQ6eFllBOeZhpzNH9omFFHC6f8uJMQiZGmUyMgksTs6qAxlBBpg8cOOX5EgjHIkzwUtAj8yNyGXAk2d/2isA0nf5HKsuieNf3z5tXdudu6rojVwRE4BqfABxegBW5BG3QAAmPwBF7Aq/VsvVnv1se8tWZVM4fgT1mfP0Q2nNA=</latexit>

⇠

<latexit sha1_base64="h9WByS2YXB/RicFBmAoEg6NONqI=">AAACDnicbZDLSsNAFIYn9VbjrerSTTAIrkoigrorunFZwV4gCWUymbZD5xJmJkoJeQVxp0/iTtz6Cj6IeydtFtp6YJif/z+HOfPFKSVKe96XVVtZXVvfqG/aW9s7u3uN/YOuEplEuIMEFbIfQ4Up4bijiaa4n0oMWUxxL57clHnvAUtFBL/X0xRHDI44GRIEdWmFirBBw/Wa3qycZeFXwgVVtQeN7zARKGOYa0ShUoHvpTrKodQEUVzYYaZwCtEEjnBgJIcMqyif7Vo4J8ZJnKGQ5nDtzNzfEzlkSk1ZbDoZ1GO1mJXmf1mQ6eFllBOeZhpzNH9omFFHC6f8uJMQiZGmUyMgksTs6qAxlBBpg8cOOX5EgjHIkzwUtAj8yNyGXAk2d/2isA0nf5HKsuieNf3z5tXdudu6rojVwRE4BqfABxegBW5BG3QAAmPwBF7Aq/VsvVnv1se8tWZVM4fgT1mfP0Q2nNA=</latexit>

⇠

<latexit sha1_base64="h9WByS2YXB/RicFBmAoEg6NONqI=">AAACDnicbZDLSsNAFIYn9VbjrerSTTAIrkoigrorunFZwV4gCWUymbZD5xJmJkoJeQVxp0/iTtz6Cj6IeydtFtp6YJif/z+HOfPFKSVKe96XVVtZXVvfqG/aW9s7u3uN/YOuEplEuIMEFbIfQ4Up4bijiaa4n0oMWUxxL57clHnvAUtFBL/X0xRHDI44GRIEdWmFirBBw/Wa3qycZeFXwgVVtQeN7zARKGOYa0ShUoHvpTrKodQEUVzYYaZwCtEEjnBgJIcMqyif7Vo4J8ZJnKGQ5nDtzNzfEzlkSk1ZbDoZ1GO1mJXmf1mQ6eFllBOeZhpzNH9omFFHC6f8uJMQiZGmUyMgksTs6qAxlBBpg8cOOX5EgjHIkzwUtAj8yNyGXAk2d/2isA0nf5HKsuieNf3z5tXdudu6rojVwRE4BqfABxegBW5BG3QAAmPwBF7Aq/VsvVnv1se8tWZVM4fgT1mfP0Q2nNA=</latexit>

⇠

<latexit sha1_base64="h9WByS2YXB/RicFBmAoEg6NONqI=">AAACDnicbZDLSsNAFIYn9VbjrerSTTAIrkoigrorunFZwV4gCWUymbZD5xJmJkoJeQVxp0/iTtz6Cj6IeydtFtp6YJif/z+HOfPFKSVKe96XVVtZXVvfqG/aW9s7u3uN/YOuEplEuIMEFbIfQ4Up4bijiaa4n0oMWUxxL57clHnvAUtFBL/X0xRHDI44GRIEdWmFirBBw/Wa3qycZeFXwgVVtQeN7zARKGOYa0ShUoHvpTrKodQEUVzYYaZwCtEEjnBgJIcMqyif7Vo4J8ZJnKGQ5nDtzNzfEzlkSk1ZbDoZ1GO1mJXmf1mQ6eFllBOeZhpzNH9omFFHC6f8uJMQiZGmUyMgksTs6qAxlBBpg8cOOX5EgjHIkzwUtAj8yNyGXAk2d/2isA0nf5HKsuieNf3z5tXdudu6rojVwRE4BqfABxegBW5BG3QAAmPwBF7Aq/VsvVnv1se8tWZVM4fgT1mfP0Q2nNA=</latexit>

⇠

<latexit sha1_base64="h9WByS2YXB/RicFBmAoEg6NONqI=">AAACDnicbZDLSsNAFIYn9VbjrerSTTAIrkoigrorunFZwV4gCWUymbZD5xJmJkoJeQVxp0/iTtz6Cj6IeydtFtp6YJif/z+HOfPFKSVKe96XVVtZXVvfqG/aW9s7u3uN/YOuEplEuIMEFbIfQ4Up4bijiaa4n0oMWUxxL57clHnvAUtFBL/X0xRHDI44GRIEdWmFirBBw/Wa3qycZeFXwgVVtQeN7zARKGOYa0ShUoHvpTrKodQEUVzYYaZwCtEEjnBgJIcMqyif7Vo4J8ZJnKGQ5nDtzNzfEzlkSk1ZbDoZ1GO1mJXmf1mQ6eFllBOeZhpzNH9omFFHC6f8uJMQiZGmUyMgksTs6qAxlBBpg8cOOX5EgjHIkzwUtAj8yNyGXAk2d/2isA0nf5HKsuieNf3z5tXdudu6rojVwRE4BqfABxegBW5BG3QAAmPwBF7Aq/VsvVnv1se8tWZVM4fgT1mfP0Q2nNA=</latexit>

⇠

<latexit sha1_base64="h9WByS2YXB/RicFBmAoEg6NONqI=">AAACDnicbZDLSsNAFIYn9VbjrerSTTAIrkoigrorunFZwV4gCWUymbZD5xJmJkoJeQVxp0/iTtz6Cj6IeydtFtp6YJif/z+HOfPFKSVKe96XVVtZXVvfqG/aW9s7u3uN/YOuEplEuIMEFbIfQ4Up4bijiaa4n0oMWUxxL57clHnvAUtFBL/X0xRHDI44GRIEdWmFirBBw/Wa3qycZeFXwgVVtQeN7zARKGOYa0ShUoHvpTrKodQEUVzYYaZwCtEEjnBgJIcMqyif7Vo4J8ZJnKGQ5nDtzNzfEzlkSk1ZbDoZ1GO1mJXmf1mQ6eFllBOeZhpzNH9omFFHC6f8uJMQiZGmUyMgksTs6qAxlBBpg8cOOX5EgjHIkzwUtAj8yNyGXAk2d/2isA0nf5HKsuieNf3z5tXdudu6rojVwRE4BqfABxegBW5BG3QAAmPwBF7Aq/VsvVnv1se8tWZVM4fgT1mfP0Q2nNA=</latexit>

⇠

<latexit sha1_base64="h9WByS2YXB/RicFBmAoEg6NONqI=">AAACDnicbZDLSsNAFIYn9VbjrerSTTAIrkoigrorunFZwV4gCWUymbZD5xJmJkoJeQVxp0/iTtz6Cj6IeydtFtp6YJif/z+HOfPFKSVKe96XVVtZXVvfqG/aW9s7u3uN/YOuEplEuIMEFbIfQ4Up4bijiaa4n0oMWUxxL57clHnvAUtFBL/X0xRHDI44GRIEdWmFirBBw/Wa3qycZeFXwgVVtQeN7zARKGOYa0ShUoHvpTrKodQEUVzYYaZwCtEEjnBgJIcMqyif7Vo4J8ZJnKGQ5nDtzNzfEzlkSk1ZbDoZ1GO1mJXmf1mQ6eFllBOeZhpzNH9omFFHC6f8uJMQiZGmUyMgksTs6qAxlBBpg8cOOX5EgjHIkzwUtAj8yNyGXAk2d/2isA0nf5HKsuieNf3z5tXdudu6rojVwRE4BqfABxegBW5BG3QAAmPwBF7Aq/VsvVnv1se8tWZVM4fgT1mfP0Q2nNA=</latexit>

⇠

<latexit sha1_base64="h9WByS2YXB/RicFBmAoEg6NONqI=">AAACDnicbZDLSsNAFIYn9VbjrerSTTAIrkoigrorunFZwV4gCWUymbZD5xJmJkoJeQVxp0/iTtz6Cj6IeydtFtp6YJif/z+HOfPFKSVKe96XVVtZXVvfqG/aW9s7u3uN/YOuEplEuIMEFbIfQ4Up4bijiaa4n0oMWUxxL57clHnvAUtFBL/X0xRHDI44GRIEdWmFirBBw/Wa3qycZeFXwgVVtQeN7zARKGOYa0ShUoHvpTrKodQEUVzYYaZwCtEEjnBgJIcMqyif7Vo4J8ZJnKGQ5nDtzNzfEzlkSk1ZbDoZ1GO1mJXmf1mQ6eFllBOeZhpzNH9omFFHC6f8uJMQiZGmUyMgksTs6qAxlBBpg8cOOX5EgjHIkzwUtAj8yNyGXAk2d/2isA0nf5HKsuieNf3z5tXdudu6rojVwRE4BqfABxegBW5BG3QAAmPwBF7Aq/VsvVnv1se8tWZVM4fgT1mfP0Q2nNA=</latexit>

exprn

<latexit sha1_base64="CXFq5tLHn3qT7t86U2Q5FFE92PQ=">AAACEHicbZDLSgMxFIYz9VbrrerSzeAguCozIqi7ohuXFewF2qFk0tM2NpchyahlmHcQd/ok7sStb+CDuDdtZ6GtB0J+/v8ccvJFMaPa+P6XU1haXlldK66XNja3tnfKu3sNLRNFoE4kk6oVYQ2MCqgbahi0YgWYRwya0ehqkjfvQWkqxa0ZxxByPBC0Twk21mrAY6y6olv2/Io/LXdRBLnwUF61bvm705Mk4SAMYVjrduDHJkyxMpQwyEqdREOMyQgPoG2lwBx0mE63zdwj6/TcvlT2CONO3d8TKeZaj3lkOzk2Qz2fTcz/snZi+udhSkWcGBBk9lA/Ya6R7uTrbo8qIIaNrcBEUburS4ZYYWIsoFJHwAORnGPRSzuSZe0gtLdlN0GbekGWlSynYJ7KomicVILTysXNqVe9zIkV0QE6RMcoQGeoiq5RDdURQXfoCb2gV+fZeXPenY9Za8HJZ/bRn3I+fwAQKp3L</latexit>

exprn

<latexit sha1_base64="CXFq5tLHn3qT7t86U2Q5FFE92PQ=">AAACEHicbZDLSgMxFIYz9VbrrerSzeAguCozIqi7ohuXFewF2qFk0tM2NpchyahlmHcQd/ok7sStb+CDuDdtZ6GtB0J+/v8ccvJFMaPa+P6XU1haXlldK66XNja3tnfKu3sNLRNFoE4kk6oVYQ2MCqgbahi0YgWYRwya0ehqkjfvQWkqxa0ZxxByPBC0Twk21mrAY6y6olv2/Io/LXdRBLnwUF61bvm705Mk4SAMYVjrduDHJkyxMpQwyEqdREOMyQgPoG2lwBx0mE63zdwj6/TcvlT2CONO3d8TKeZaj3lkOzk2Qz2fTcz/snZi+udhSkWcGBBk9lA/Ya6R7uTrbo8qIIaNrcBEUburS4ZYYWIsoFJHwAORnGPRSzuSZe0gtLdlN0GbekGWlSynYJ7KomicVILTysXNqVe9zIkV0QE6RMcoQGeoiq5RDdURQXfoCb2gV+fZeXPenY9Za8HJZ/bRn3I+fwAQKp3L</latexit>

expri

<latexit sha1_base64="9aWIepYh3l8iIFwBeJG9D9652Ss=">AAACEHicbZDLSgMxFIYz9VbrrerSzeAguCozIqi7ohuXFewF2qFk0tM2NpchyahlmHcQd/ok7sStb+CDuDdtZ6GtB0J+/v8ccvJFMaPa+P6XU1haXlldK66XNja3tnfKu3sNLRNFoE4kk6oVYQ2MCqgbahi0YgWYRwya0ehqkjfvQWkqxa0ZxxByPBC0Twk21mrAY6y6tFv2/Io/LXdRBLnwUF61bvm705Mk4SAMYVjrduDHJkyxMpQwyEqdREOMyQgPoG2lwBx0mE63zdwj6/TcvlT2CONO3d8TKeZaj3lkOzk2Qz2fTcz/snZi+udhSkWcGBBk9lA/Ya6R7uTrbo8qIIaNrcBEUburS4ZYYWIsoFJHwAORnGPRSzuSZe0gtLdlN0GbekGWlSynYJ7KomicVILTysXNqVe9zIkV0QE6RMcoQGeoiq5RDdURQXfoCb2gV+fZeXPenY9Za8HJZ/bRn3I+fwAH553G</latexit>

expri

<latexit sha1_base64="9aWIepYh3l8iIFwBeJG9D9652Ss=">AAACEHicbZDLSgMxFIYz9VbrrerSzeAguCozIqi7ohuXFewF2qFk0tM2NpchyahlmHcQd/ok7sStb+CDuDdtZ6GtB0J+/v8ccvJFMaPa+P6XU1haXlldK66XNja3tnfKu3sNLRNFoE4kk6oVYQ2MCqgbahi0YgWYRwya0ehqkjfvQWkqxa0ZxxByPBC0Twk21mrAY6y6tFv2/Io/LXdRBLnwUF61bvm705Mk4SAMYVjrduDHJkyxMpQwyEqdREOMyQgPoG2lwBx0mE63zdwj6/TcvlT2CONO3d8TKeZaj3lkOzk2Qz2fTcz/snZi+udhSkWcGBBk9lA/Ya6R7uTrbo8qIIaNrcBEUburS4ZYYWIsoFJHwAORnGPRSzuSZe0gtLdlN0GbekGWlSynYJ7KomicVILTysXNqVe9zIkV0QE6RMcoQGeoiq5RDdURQXfoCb2gV+fZeXPenY9Za8HJZ/bRn3I+fwAH553G</latexit>

expri

<latexit sha1_base64="9aWIepYh3l8iIFwBeJG9D9652Ss=">AAACEHicbZDLSgMxFIYz9VbrrerSzeAguCozIqi7ohuXFewF2qFk0tM2NpchyahlmHcQd/ok7sStb+CDuDdtZ6GtB0J+/v8ccvJFMaPa+P6XU1haXlldK66XNja3tnfKu3sNLRNFoE4kk6oVYQ2MCqgbahi0YgWYRwya0ehqkjfvQWkqxa0ZxxByPBC0Twk21mrAY6y6tFv2/Io/LXdRBLnwUF61bvm705Mk4SAMYVjrduDHJkyxMpQwyEqdREOMyQgPoG2lwBx0mE63zdwj6/TcvlT2CONO3d8TKeZaj3lkOzk2Qz2fTcz/snZi+udhSkWcGBBk9lA/Ya6R7uTrbo8qIIaNrcBEUburS4ZYYWIsoFJHwAORnGPRSzuSZe0gtLdlN0GbekGWlSynYJ7KomicVILTysXNqVe9zIkV0QE6RMcoQGeoiq5RDdURQXfoCb2gV+fZeXPenY9Za8HJZ/bRn3I+fwAH553G</latexit>

expri

<latexit sha1_base64="9aWIepYh3l8iIFwBeJG9D9652Ss=">AAACEHicbZDLSgMxFIYz9VbrrerSzeAguCozIqi7ohuXFewF2qFk0tM2NpchyahlmHcQd/ok7sStb+CDuDdtZ6GtB0J+/v8ccvJFMaPa+P6XU1haXlldK66XNja3tnfKu3sNLRNFoE4kk6oVYQ2MCqgbahi0YgWYRwya0ehqkjfvQWkqxa0ZxxByPBC0Twk21mrAY6y6tFv2/Io/LXdRBLnwUF61bvm705Mk4SAMYVjrduDHJkyxMpQwyEqdREOMyQgPoG2lwBx0mE63zdwj6/TcvlT2CONO3d8TKeZaj3lkOzk2Qz2fTcz/snZi+udhSkWcGBBk9lA/Ya6R7uTrbo8qIIaNrcBEUburS4ZYYWIsoFJHwAORnGPRSzuSZe0gtLdlN0GbekGWlSynYJ7KomicVILTysXNqVe9zIkV0QE6RMcoQGeoiq5RDdURQXfoCb2gV+fZeXPenY9Za8HJZ/bRn3I+fwAH553G</latexit>

expri

<latexit sha1_base64="9aWIepYh3l8iIFwBeJG9D9652Ss=">AAACEHicbZDLSgMxFIYz9VbrrerSzeAguCozIqi7ohuXFewF2qFk0tM2NpchyahlmHcQd/ok7sStb+CDuDdtZ6GtB0J+/v8ccvJFMaPa+P6XU1haXlldK66XNja3tnfKu3sNLRNFoE4kk6oVYQ2MCqgbahi0YgWYRwya0ehqkjfvQWkqxa0ZxxByPBC0Twk21mrAY6y6tFv2/Io/LXdRBLnwUF61bvm705Mk4SAMYVjrduDHJkyxMpQwyEqdREOMyQgPoG2lwBx0mE63zdwj6/TcvlT2CONO3d8TKeZaj3lkOzk2Qz2fTcz/snZi+udhSkWcGBBk9lA/Ya6R7uTrbo8qIIaNrcBEUburS4ZYYWIsoFJHwAORnGPRSzuSZe0gtLdlN0GbekGWlSynYJ7KomicVILTysXNqVe9zIkV0QE6RMcoQGeoiq5RDdURQXfoCb2gV+fZeXPenY9Za8HJZ/bRn3I+fwAH553G</latexit>

exprend
j

<latexit sha1_base64="tr3Kfk6gWSMw8olMT6LQbLaNGOw=">AAACF3icbZDLSsNAFIYnXmu8VV26CRbBVUlEUHdFNy4r2FZoY5lMTnR0LnFmopaQ5xB3+iTuxK1LH8S9k9qFth4Y5uf/z+EcvihlVBvf/3Smpmdm5+YrC+7i0vLKanVtva1lpgi0iGRSnUdYA6MCWoYaBuepAswjBp3o5rjMO3egNJXizAxSCDm+FDShBBtrhfCQqoscRFz0r91+tebX/WF5kyIYiRoaVbNf/erFkmQchCEMa90N/NSEOVaGEgaF28s0pJjc4EvoWikwBx3mw6MLb9s6sZdIZZ8w3tD9PZFjrvWAR7aTY3Olx7PS/C/rZiY5CHMq0syAID+Lkox5RnolAS+mCohhAyswUdTe6pErrDAxlpPbE3BPJOdYxHlPsqIbhPa3CEvCeS0oipJTME5lUrR368Fe/fB0r9Y4GhGroE20hXZQgPZRA52gJmohgm7RI3pGL86T8+q8Oe8/rVPOaGYD/Snn4xtv1aCk</latexit>

phj

<latexit sha1_base64="k/a4Ct1wJjt34lmlkSlZ3O33dAE=">AAACDnicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYC7VAymUwbm8uQZJQyzCuIO30Sd+LWV/BB3JtpZ6GtB0J+/v8ccvIFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvQJowKkjbUMNIL1YE8YCRbjC5zvPuA1GaSnFnpjHxORoJGlGMTG7F4+H9sFpz6+6s4LLwClEDRbWG1e9BKHHCiTCYIa37nhsbP0XKUMxIVhkkmsQIT9CI9K0UiBPtp7NdM3hinRBGUtkjDJy5vydSxLWe8sB2cmTGejHLzf+yfmKiCz+lIk4MEXj+UJQwaCTMPw5Dqgg2bGoFworaXSEeI4WwsXgqA0EeseQciTAdSJb1Pd/ellwONq15WVaxnLxFKsuic1b3GvXL20ateVUQK4MjcAxOgQfOQRPcgBZoAwzG4Am8gFfn2Xlz3p2PeWvJKWYOwZ9yPn8APbaczA==</latexit>

exprend
j

<latexit sha1_base64="tr3Kfk6gWSMw8olMT6LQbLaNGOw=">AAACF3icbZDLSsNAFIYnXmu8VV26CRbBVUlEUHdFNy4r2FZoY5lMTnR0LnFmopaQ5xB3+iTuxK1LH8S9k9qFth4Y5uf/z+EcvihlVBvf/3Smpmdm5+YrC+7i0vLKanVtva1lpgi0iGRSnUdYA6MCWoYaBuepAswjBp3o5rjMO3egNJXizAxSCDm+FDShBBtrhfCQqoscRFz0r91+tebX/WF5kyIYiRoaVbNf/erFkmQchCEMa90N/NSEOVaGEgaF28s0pJjc4EvoWikwBx3mw6MLb9s6sZdIZZ8w3tD9PZFjrvWAR7aTY3Olx7PS/C/rZiY5CHMq0syAID+Lkox5RnolAS+mCohhAyswUdTe6pErrDAxlpPbE3BPJOdYxHlPsqIbhPa3CEvCeS0oipJTME5lUrR368Fe/fB0r9Y4GhGroE20hXZQgPZRA52gJmohgm7RI3pGL86T8+q8Oe8/rVPOaGYD/Snn4xtv1aCk</latexit>

phj

<latexit sha1_base64="k/a4Ct1wJjt34lmlkSlZ3O33dAE=">AAACDnicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYC7VAymUwbm8uQZJQyzCuIO30Sd+LWV/BB3JtpZ6GtB0J+/v8ccvIFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvQJowKkjbUMNIL1YE8YCRbjC5zvPuA1GaSnFnpjHxORoJGlGMTG7F4+H9sFpz6+6s4LLwClEDRbWG1e9BKHHCiTCYIa37nhsbP0XKUMxIVhkkmsQIT9CI9K0UiBPtp7NdM3hinRBGUtkjDJy5vydSxLWe8sB2cmTGejHLzf+yfmKiCz+lIk4MEXj+UJQwaCTMPw5Dqgg2bGoFworaXSEeI4WwsXgqA0EeseQciTAdSJb1Pd/ellwONq15WVaxnLxFKsuic1b3GvXL20ateVUQK4MjcAxOgQfOQRPcgBZoAwzG4Am8gFfn2Xlz3p2PeWvJKWYOwZ9yPn8APbaczA==</latexit>

newj

<latexit sha1_base64="uQfZP1eJIh1ai4+7RKAI1EalZ6U=">AAACD3icbZDLSsNAFIYn9VbrrerSTTAIrkoiBXVXdOOygmkLaSiTybQdO5cwM1FKyDOIO30Sd+LWR/BB3Dtps9DWA8P8/P85zJkvSihR2nW/rMrK6tr6RnWztrW9s7tX3z/oKJFKhH0kqJC9CCpMCce+JpriXiIxZBHF3WhyXeTdBywVEfxOTxMcMjjiZEgQ1MbyOX4c3A/qjttwZ2UvC68UDiirPah/92OBUoa5RhQqFXhuosMMSk0QxXmtnyqcQDSBIxwYySHDKsxmy+b2iXFieyikOVzbM/f3RAaZUlMWmU4G9VgtZoX5XxakengRZoQnqcYczR8aptTWwi5+bsdEYqTp1AiIJDG72mgMJUTa8Kn1DQokGIM8zvqC5oEXmtugK8hmjpfnNcPJW6SyLDpnDa/ZuLxtOq2rklgVHIFjcAo8cA5a4Aa0gQ8QIOAJvIBX69l6s96tj3lrxSpnDsGfsj5/ACDlnUg=</latexit>

Figure 5: Example of the structure we are enforcing by means of formula Φ
(i,j)
S for an ex-

pression E = (en)ω , where en contains the sub-expression ei = eSj (dashed intervals represent

exprj intervals).

Therefore, thanks to property 3, we are able to guarantee that, if there is a phj

point (which must fall strictly inside an expr i interval), then there is an infinite850

sequence of non-overlapping expr i intervals, each of them containing at least one

phj point (and thus being a non-point interval). For each such expr i intervals

and each phj point inside it, there is a phj point y in the next expr i interval in

the sequence such that x ∼ y. Additionally, thanks again to property 2, such a

phj point y is unique, that is, there cannot be another phj point y′ in the same855

expr i interval as y such that x ∼ y′; analogously, there cannot be two distinct

phj points x, x′ belonging to the same expri interval such that both x ∼ y and

x′ ∼ y hold. Roughly speaking, ∼ establishes infinitely many injective functions

fk (k ∈ N) from the set of phj points in the kth expr i interval to the set of phj

points in the (k + 1)th expr i interval.860

As a consequence, properties 1–3 ensure that, as long as there is a phj point

in the model, the sequence of the numbers of phj points contained in each expr i

interval is nondecreasing. Notice that properties 1–3 also force the existence of a

point in the model starting from which no more expr i points occur. Property 4

forces the sequence of numbers of phj points in each expr i to be unbounded865

as well, by forcing the existence of infinitely many special phj points, labeled

with newj , that are ∼-equivalent only to points that follow them in the model

(formally, if x is a newj point, then there is no y < x with y ∼ x). The

existence of infinitely many newj points produces the effect of having infinitely

many non-surjective functions in the aforementioned set {fh}h∈N of injective870

functions, thus implying that the numbers of phj points contained in every

35

expr i is unbounded.

Finally, thanks to property 1, we have that the number of expr j interval

contained in an expr i is actually greater than the number of phj points contained

in that expr i interval. Therefore, as long as there is a phj point in the model,875

the behaviour of the S-constructor is correctly captured.

As a last observation, we emphasize that establishing a nondecreasing un-

bounded sequence that represents a lower bound to the number of expr j intervals

occurring in an expr i one is enough to satisfy the constraints imposed by the

S-constructor. Indeed, as shown in Figure 5, there can be expr j intervals whose880

left endpoint is not labeled with phj , meaning that the number of expr j intervals

can be greater than the number of phj points; more precisely, it can fluctuate

but it cannot go below a certain threshold which eventually grows indefinitely.

As pointed out above, the presence of a phj point causes the existence of in-

finitely many expr i intervals and finitely many expr i points. Thus, to complete885

the encoding, the formula we are building must also admit models featuring

finitely many expr i intervals or infinitely many expr i points. As for the former

class of models, featuring only finitely many expr i intervals, we made already

clear that we can simply treat the S-constructor as the ∗-constructor. As for

the second class of models, instead, observe that the presence of infinitely many890

expr i points that are not expr j points would break the strongly unbounded-

ness constraint imposed by the S-constructor. Thus, models featuring infinitely

many expr i points must feature infinitely many expr j points as well. As already

noted, also in this case it is possible to ignore the constraints imposed by the

S-constructor, thanks to Corollary 2.895

Therefore, to complete the encoding, it suffices to add a formula (to be put

in conjunction with the above ones) that constrains the model to feature at

least one phj point if it features infinitely many expr i intervals, but only finitely

many expr j points:

[G]〈A〉〈A〉expr i ∧ 〈A〉[A][A](expr j → ¬π)→ 〈B〉〈A〉〈A〉phj .900

For all (i, j) ∈ S(E), let Φ
(i,j)
S be the conjunction of the above formulas. The

following theorem holds (in analogy to the previous sections, we denote by E∗ the

36

expression obtained from E by replacing S-constructors with ∗-constructors).

Theorem 5. Let E be an ωS-regular expression over Σ. Then, L(E) = {w ∈
Σω | w ≈M and M is a model such that M, [0, n] |= ϕE∗∧ϕΣ∧

∧
(i,j)∈S(E) Φ

(i,j)
S905

for some n ∈ N}.

8. ωT -regular languages in ABĀ∼

As in the previous sections, we build here, for every ωT -expression E and

every ei, ej ∈ sub(E), with ei = (ej)
T , a formula Φ

(i,j)
T that forces models to

satisfy the constraint the T -constructor imposes on ω-words.910

To start with, we observe that, as in the case of the S-constructor, it is not

necessary to impose any constraint over models featuring only finitely many

expr i intervals. Additionally, by Corollary 2, if a model features infinitely many

expr j points, then we are allowed to verify a simpler constraint, that is, there

are infinitely many expr i intervals containing exactly k many expr j intervals,915

for some k > 0. This will be explained in more detail later in the section.

Let T (E) = {(i, j) | ei, ej ∈ sub(E),with ei = (ej)
T }. To encode ωT -regular

languages in ABĀ∼, we first show that a particular class of models over N

can be captured by a conjunction of ABĀ∼ formulas Φ
(i,j)
∞ , for (i, j) ∈ T (E),

which make use of proposition letters phj , blj , pj , qj , and conf j , as well as the920

proposition letter ∼, representing an equivalence relation over N. Models of such

a class (see Figure 6) are partitioned, for every (i, j) ∈ T (E), into configurations

(intervals whose endpoints are consecutive conf j points). Every configuration

is partitioned in blocks (intervals whose endpoints are consecutive blj points),

which, in turn, contain phj points. Proposition letter ∼ is used to force phj925

points belonging to the same block to be equivalent, and phj points belonging

to different blocks of the same configuration not to be equivalent. Propositional

letter pj is then used to encode partial surjective functions from phj points of

a block to phj points of the next block in the same configuration, if any; this

ensures that, within each configuration, blocks contain a decreasing number of930

phj points. Every block (belonging to a configuration) is associated to a block in

37

0
… …

> > > > > >

�

<latexit sha1_base64="0tMzfz/okIUrqv/Xd1R0bsXWLXo=">AAACDnicbZDLSgMxFIYz9VbrrerSzWARXJUZKai7ohuXFewFOkPJpKdtaC5jklHKMK8g7vRJ3IlbX8EHcW+m7UJbD4T8/P855OSLYka18bwvp7Cyura+UdwsbW3v7O6V9w9aWiaKQJNIJlUnwhoYFdA01DDoxAowjxi0o/F1nrcfQGkqxZ2ZxBByPBR0QAk2uRUM4b5XrnhVb1rusvDnooLm1eiVv4O+JAkHYQjDWnd9LzZhipWhhEFWChINMSZjPISulQJz0GE63TVzT6zTdwdS2SOMO3V/T6SYaz3hke3k2Iz0Ypab/2XdxAwuwpSKODEgyOyhQcJcI938426fKiCGTazARFG7q0tGWGFiLJ5SIOCRSM6x6KeBZFnXD+1tyeVg04qfZSXLyV+ksixaZ1W/Vr28rVXqV3NiRXSEjtEp8tE5qqMb1EBNRNAIPaEX9Oo8O2/Ou/Mxay0485lD9Keczx8wRpzE</latexit>

�

<latexit sha1_base64="0tMzfz/okIUrqv/Xd1R0bsXWLXo=">AAACDnicbZDLSgMxFIYz9VbrrerSzWARXJUZKai7ohuXFewFOkPJpKdtaC5jklHKMK8g7vRJ3IlbX8EHcW+m7UJbD4T8/P855OSLYka18bwvp7Cyura+UdwsbW3v7O6V9w9aWiaKQJNIJlUnwhoYFdA01DDoxAowjxi0o/F1nrcfQGkqxZ2ZxBByPBR0QAk2uRUM4b5XrnhVb1rusvDnooLm1eiVv4O+JAkHYQjDWnd9LzZhipWhhEFWChINMSZjPISulQJz0GE63TVzT6zTdwdS2SOMO3V/T6SYaz3hke3k2Iz0Ypab/2XdxAwuwpSKODEgyOyhQcJcI938426fKiCGTazARFG7q0tGWGFiLJ5SIOCRSM6x6KeBZFnXD+1tyeVg04qfZSXLyV+ksixaZ1W/Vr28rVXqV3NiRXSEjtEp8tE5qqMb1EBNRNAIPaEX9Oo8O2/Ou/Mxay0485lD9Keczx8wRpzE</latexit>

�

<latexit sha1_base64="0tMzfz/okIUrqv/Xd1R0bsXWLXo=">AAACDnicbZDLSgMxFIYz9VbrrerSzWARXJUZKai7ohuXFewFOkPJpKdtaC5jklHKMK8g7vRJ3IlbX8EHcW+m7UJbD4T8/P855OSLYka18bwvp7Cyura+UdwsbW3v7O6V9w9aWiaKQJNIJlUnwhoYFdA01DDoxAowjxi0o/F1nrcfQGkqxZ2ZxBByPBR0QAk2uRUM4b5XrnhVb1rusvDnooLm1eiVv4O+JAkHYQjDWnd9LzZhipWhhEFWChINMSZjPISulQJz0GE63TVzT6zTdwdS2SOMO3V/T6SYaz3hke3k2Iz0Ypab/2XdxAwuwpSKODEgyOyhQcJcI938426fKiCGTazARFG7q0tGWGFiLJ5SIOCRSM6x6KeBZFnXD+1tyeVg04qfZSXLyV+ksixaZ1W/Vr28rVXqV3NiRXSEjtEp8tE5qqMb1EBNRNAIPaEX9Oo8O2/Ou/Mxay0485lD9Keczx8wRpzE</latexit>

⇠

<latexit sha1_base64="h9WByS2YXB/RicFBmAoEg6NONqI=">AAACDnicbZDLSsNAFIYn9VbjrerSTTAIrkoigrorunFZwV4gCWUymbZD5xJmJkoJeQVxp0/iTtz6Cj6IeydtFtp6YJif/z+HOfPFKSVKe96XVVtZXVvfqG/aW9s7u3uN/YOuEplEuIMEFbIfQ4Up4bijiaa4n0oMWUxxL57clHnvAUtFBL/X0xRHDI44GRIEdWmFirBBw/Wa3qycZeFXwgVVtQeN7zARKGOYa0ShUoHvpTrKodQEUVzYYaZwCtEEjnBgJIcMqyif7Vo4J8ZJnKGQ5nDtzNzfEzlkSk1ZbDoZ1GO1mJXmf1mQ6eFllBOeZhpzNH9omFFHC6f8uJMQiZGmUyMgksTs6qAxlBBpg8cOOX5EgjHIkzwUtAj8yNyGXAk2d/2isA0nf5HKsuieNf3z5tXdudu6rojVwRE4BqfABxegBW5BG3QAAmPwBF7Aq/VsvVnv1se8tWZVM4fgT1mfP0Q2nNA=</latexit>

⇠

<latexit sha1_base64="h9WByS2YXB/RicFBmAoEg6NONqI=">AAACDnicbZDLSsNAFIYn9VbjrerSTTAIrkoigrorunFZwV4gCWUymbZD5xJmJkoJeQVxp0/iTtz6Cj6IeydtFtp6YJif/z+HOfPFKSVKe96XVVtZXVvfqG/aW9s7u3uN/YOuEplEuIMEFbIfQ4Up4bijiaa4n0oMWUxxL57clHnvAUtFBL/X0xRHDI44GRIEdWmFirBBw/Wa3qycZeFXwgVVtQeN7zARKGOYa0ShUoHvpTrKodQEUVzYYaZwCtEEjnBgJIcMqyif7Vo4J8ZJnKGQ5nDtzNzfEzlkSk1ZbDoZ1GO1mJXmf1mQ6eFllBOeZhpzNH9omFFHC6f8uJMQiZGmUyMgksTs6qAxlBBpg8cOOX5EgjHIkzwUtAj8yNyGXAk2d/2isA0nf5HKsuieNf3z5tXdudu6rojVwRE4BqfABxegBW5BG3QAAmPwBF7Aq/VsvVnv1se8tWZVM4fgT1mfP0Q2nNA=</latexit>

⇠

<latexit sha1_base64="h9WByS2YXB/RicFBmAoEg6NONqI=">AAACDnicbZDLSsNAFIYn9VbjrerSTTAIrkoigrorunFZwV4gCWUymbZD5xJmJkoJeQVxp0/iTtz6Cj6IeydtFtp6YJif/z+HOfPFKSVKe96XVVtZXVvfqG/aW9s7u3uN/YOuEplEuIMEFbIfQ4Up4bijiaa4n0oMWUxxL57clHnvAUtFBL/X0xRHDI44GRIEdWmFirBBw/Wa3qycZeFXwgVVtQeN7zARKGOYa0ShUoHvpTrKodQEUVzYYaZwCtEEjnBgJIcMqyif7Vo4J8ZJnKGQ5nDtzNzfEzlkSk1ZbDoZ1GO1mJXmf1mQ6eFllBOeZhpzNH9omFFHC6f8uJMQiZGmUyMgksTs6qAxlBBpg8cOOX5EgjHIkzwUtAj8yNyGXAk2d/2isA0nf5HKsuieNf3z5tXdudu6rojVwRE4BqfABxegBW5BG3QAAmPwBF7Aq/VsvVnv1se8tWZVM4fgT1mfP0Q2nNA=</latexit>

blj

<latexit sha1_base64="QEbedqoHh7H2EJthnluHgWO+crQ=">AAACDnicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYC7VAymUwbm8uQZJQyzCuIO30Sd+LWV/BB3JtpZ6GtB0J+/v8ccvIFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvQJowKkjbUMNIL1YE8YCRbjC5zvPuA1GaSnFnpjHxORoJGlGMTG4FbHg/rNbcujsruCy8QtRAUa1h9XsQSpxwIgxmSOu+58bGT5EyFDOSVQaJJjHCEzQifSsF4kT76WzXDJ5YJ4SRVPYIA2fu74kUca2nPLCdHJmxXsxy87+sn5jowk+piBNDBJ4/FCUMGgnzj8OQKoINm1qBsKJ2V4jHSCFsLJ7KQJBHLDlHIkwHkmV9z7e3JZeDTWtellUsJ2+RyrLonNW9Rv3ytlFrXhXEyuAIHINT4IFz0AQ3oAXaAIMxeAIv4NV5dt6cd+dj3lpyiplD8Keczx8tDpzC</latexit>

blj

<latexit sha1_base64="QEbedqoHh7H2EJthnluHgWO+crQ=">AAACDnicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYC7VAymUwbm8uQZJQyzCuIO30Sd+LWV/BB3JtpZ6GtB0J+/v8ccvIFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvQJowKkjbUMNIL1YE8YCRbjC5zvPuA1GaSnFnpjHxORoJGlGMTG4FbHg/rNbcujsruCy8QtRAUa1h9XsQSpxwIgxmSOu+58bGT5EyFDOSVQaJJjHCEzQifSsF4kT76WzXDJ5YJ4SRVPYIA2fu74kUca2nPLCdHJmxXsxy87+sn5jowk+piBNDBJ4/FCUMGgnzj8OQKoINm1qBsKJ2V4jHSCFsLJ7KQJBHLDlHIkwHkmV9z7e3JZeDTWtellUsJ2+RyrLonNW9Rv3ytlFrXhXEyuAIHINT4IFz0AQ3oAXaAIMxeAIv4NV5dt6cd+dj3lpyiplD8Keczx8tDpzC</latexit>

blj

<latexit sha1_base64="QEbedqoHh7H2EJthnluHgWO+crQ=">AAACDnicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYC7VAymUwbm8uQZJQyzCuIO30Sd+LWV/BB3JtpZ6GtB0J+/v8ccvIFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvQJowKkjbUMNIL1YE8YCRbjC5zvPuA1GaSnFnpjHxORoJGlGMTG4FbHg/rNbcujsruCy8QtRAUa1h9XsQSpxwIgxmSOu+58bGT5EyFDOSVQaJJjHCEzQifSsF4kT76WzXDJ5YJ4SRVPYIA2fu74kUca2nPLCdHJmxXsxy87+sn5jowk+piBNDBJ4/FCUMGgnzj8OQKoINm1qBsKJ2V4jHSCFsLJ7KQJBHLDlHIkwHkmV9z7e3JZeDTWtellUsJ2+RyrLonNW9Rv3ytlFrXhXEyuAIHINT4IFz0AQ3oAXaAIMxeAIv4NV5dt6cd+dj3lpyiplD8Keczx8tDpzC</latexit>

blj

<latexit sha1_base64="QEbedqoHh7H2EJthnluHgWO+crQ=">AAACDnicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYC7VAymUwbm8uQZJQyzCuIO30Sd+LWV/BB3JtpZ6GtB0J+/v8ccvIFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvQJowKkjbUMNIL1YE8YCRbjC5zvPuA1GaSnFnpjHxORoJGlGMTG4FbHg/rNbcujsruCy8QtRAUa1h9XsQSpxwIgxmSOu+58bGT5EyFDOSVQaJJjHCEzQifSsF4kT76WzXDJ5YJ4SRVPYIA2fu74kUca2nPLCdHJmxXsxy87+sn5jowk+piBNDBJ4/FCUMGgnzj8OQKoINm1qBsKJ2V4jHSCFsLJ7KQJBHLDlHIkwHkmV9z7e3JZeDTWtellUsJ2+RyrLonNW9Rv3ytlFrXhXEyuAIHINT4IFz0AQ3oAXaAIMxeAIv4NV5dt6cd+dj3lpyiplD8Keczx8tDpzC</latexit>

blj

<latexit sha1_base64="QEbedqoHh7H2EJthnluHgWO+crQ=">AAACDnicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYC7VAymUwbm8uQZJQyzCuIO30Sd+LWV/BB3JtpZ6GtB0J+/v8ccvIFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvQJowKkjbUMNIL1YE8YCRbjC5zvPuA1GaSnFnpjHxORoJGlGMTG4FbHg/rNbcujsruCy8QtRAUa1h9XsQSpxwIgxmSOu+58bGT5EyFDOSVQaJJjHCEzQifSsF4kT76WzXDJ5YJ4SRVPYIA2fu74kUca2nPLCdHJmxXsxy87+sn5jowk+piBNDBJ4/FCUMGgnzj8OQKoINm1qBsKJ2V4jHSCFsLJ7KQJBHLDlHIkwHkmV9z7e3JZeDTWtellUsJ2+RyrLonNW9Rv3ytlFrXhXEyuAIHINT4IFz0AQ3oAXaAIMxeAIv4NV5dt6cd+dj3lpyiplD8Keczx8tDpzC</latexit>

blj

<latexit sha1_base64="QEbedqoHh7H2EJthnluHgWO+crQ=">AAACDnicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYC7VAymUwbm8uQZJQyzCuIO30Sd+LWV/BB3JtpZ6GtB0J+/v8ccvIFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvQJowKkjbUMNIL1YE8YCRbjC5zvPuA1GaSnFnpjHxORoJGlGMTG4FbHg/rNbcujsruCy8QtRAUa1h9XsQSpxwIgxmSOu+58bGT5EyFDOSVQaJJjHCEzQifSsF4kT76WzXDJ5YJ4SRVPYIA2fu74kUca2nPLCdHJmxXsxy87+sn5jowk+piBNDBJ4/FCUMGgnzj8OQKoINm1qBsKJ2V4jHSCFsLJ7KQJBHLDlHIkwHkmV9z7e3JZeDTWtellUsJ2+RyrLonNW9Rv3ytlFrXhXEyuAIHINT4IFz0AQ3oAXaAIMxeAIv4NV5dt6cd+dj3lpyiplD8Keczx8tDpzC</latexit>

blj

<latexit sha1_base64="QEbedqoHh7H2EJthnluHgWO+crQ=">AAACDnicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYC7VAymUwbm8uQZJQyzCuIO30Sd+LWV/BB3JtpZ6GtB0J+/v8ccvIFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvQJowKkjbUMNIL1YE8YCRbjC5zvPuA1GaSnFnpjHxORoJGlGMTG4FbHg/rNbcujsruCy8QtRAUa1h9XsQSpxwIgxmSOu+58bGT5EyFDOSVQaJJjHCEzQifSsF4kT76WzXDJ5YJ4SRVPYIA2fu74kUca2nPLCdHJmxXsxy87+sn5jowk+piBNDBJ4/FCUMGgnzj8OQKoINm1qBsKJ2V4jHSCFsLJ7KQJBHLDlHIkwHkmV9z7e3JZeDTWtellUsJ2+RyrLonNW9Rv3ytlFrXhXEyuAIHINT4IFz0AQ3oAXaAIMxeAIv4NV5dt6cd+dj3lpyiplD8Keczx8tDpzC</latexit>

blj

<latexit sha1_base64="QEbedqoHh7H2EJthnluHgWO+crQ=">AAACDnicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYC7VAymUwbm8uQZJQyzCuIO30Sd+LWV/BB3JtpZ6GtB0J+/v8ccvIFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvQJowKkjbUMNIL1YE8YCRbjC5zvPuA1GaSnFnpjHxORoJGlGMTG4FbHg/rNbcujsruCy8QtRAUa1h9XsQSpxwIgxmSOu+58bGT5EyFDOSVQaJJjHCEzQifSsF4kT76WzXDJ5YJ4SRVPYIA2fu74kUca2nPLCdHJmxXsxy87+sn5jowk+piBNDBJ4/FCUMGgnzj8OQKoINm1qBsKJ2V4jHSCFsLJ7KQJBHLDlHIkwHkmV9z7e3JZeDTWtellUsJ2+RyrLonNW9Rv3ytlFrXhXEyuAIHINT4IFz0AQ3oAXaAIMxeAIv4NV5dt6cd+dj3lpyiplD8Keczx8tDpzC</latexit>

confj

<latexit sha1_base64="cAIL/T5a3UjeyMGIgJXU7kDq7gk=">AAACEHicbZDLSgMxFIYz9VbrrerSTbAIrsqMCOqu6MZlBXuBmaFk0kybNpchyShlmHcQd/ok7sStb+CDuDfTdqGtB0J+/v8ccvJFCaPauO6XU1pZXVvfKG9WtrZ3dveq+wdtLVOFSQtLJlU3QpowKkjLUMNIN1EE8YiRTjS+KfLOA1GaSnFvJgkJORoIGlOMjLXaWIq4N+pVa27dnRZcFt5c1MC8mr3qd9CXOOVEGMyQ1r7nJibMkDIUM5JXglSTBOExGhDfSoE40WE23TaHJ9bpw1gqe4SBU/f3RIa41hMe2U6OzFAvZoX5X+anJr4MMyqS1BCBZw/FKYNGwuLrsE8VwYZNrEBYUbsrxEOkEDYWUCUQ5BFLzpHoZ4Fkue+F9rbsCrRZzcvziuXkLVJZFu2zundev7o7rzWu58TK4Agcg1PggQvQALegCVoAgxF4Ai/g1Xl23px352PWWnLmM4fgTzmfP9/kna4=</latexit>

confj

<latexit sha1_base64="cAIL/T5a3UjeyMGIgJXU7kDq7gk=">AAACEHicbZDLSgMxFIYz9VbrrerSTbAIrsqMCOqu6MZlBXuBmaFk0kybNpchyShlmHcQd/ok7sStb+CDuDfTdqGtB0J+/v8ccvJFCaPauO6XU1pZXVvfKG9WtrZ3dveq+wdtLVOFSQtLJlU3QpowKkjLUMNIN1EE8YiRTjS+KfLOA1GaSnFvJgkJORoIGlOMjLXaWIq4N+pVa27dnRZcFt5c1MC8mr3qd9CXOOVEGMyQ1r7nJibMkDIUM5JXglSTBOExGhDfSoE40WE23TaHJ9bpw1gqe4SBU/f3RIa41hMe2U6OzFAvZoX5X+anJr4MMyqS1BCBZw/FKYNGwuLrsE8VwYZNrEBYUbsrxEOkEDYWUCUQ5BFLzpHoZ4Fkue+F9rbsCrRZzcvziuXkLVJZFu2zundev7o7rzWu58TK4Agcg1PggQvQALegCVoAgxF4Ai/g1Xl23px352PWWnLmM4fgTzmfP9/kna4=</latexit>

confj

<latexit sha1_base64="cAIL/T5a3UjeyMGIgJXU7kDq7gk=">AAACEHicbZDLSgMxFIYz9VbrrerSTbAIrsqMCOqu6MZlBXuBmaFk0kybNpchyShlmHcQd/ok7sStb+CDuDfTdqGtB0J+/v8ccvJFCaPauO6XU1pZXVvfKG9WtrZ3dveq+wdtLVOFSQtLJlU3QpowKkjLUMNIN1EE8YiRTjS+KfLOA1GaSnFvJgkJORoIGlOMjLXaWIq4N+pVa27dnRZcFt5c1MC8mr3qd9CXOOVEGMyQ1r7nJibMkDIUM5JXglSTBOExGhDfSoE40WE23TaHJ9bpw1gqe4SBU/f3RIa41hMe2U6OzFAvZoX5X+anJr4MMyqS1BCBZw/FKYNGwuLrsE8VwYZNrEBYUbsrxEOkEDYWUCUQ5BFLzpHoZ4Fkue+F9rbsCrRZzcvziuXkLVJZFu2zundev7o7rzWu58TK4Agcg1PggQvQALegCVoAgxF4Ai/g1Xl23px352PWWnLmM4fgTzmfP9/kna4=</latexit>

blj

<latexit sha1_base64="QEbedqoHh7H2EJthnluHgWO+crQ=">AAACDnicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYC7VAymUwbm8uQZJQyzCuIO30Sd+LWV/BB3JtpZ6GtB0J+/v8ccvIFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvQJowKkjbUMNIL1YE8YCRbjC5zvPuA1GaSnFnpjHxORoJGlGMTG4FbHg/rNbcujsruCy8QtRAUa1h9XsQSpxwIgxmSOu+58bGT5EyFDOSVQaJJjHCEzQifSsF4kT76WzXDJ5YJ4SRVPYIA2fu74kUca2nPLCdHJmxXsxy87+sn5jowk+piBNDBJ4/FCUMGgnzj8OQKoINm1qBsKJ2V4jHSCFsLJ7KQJBHLDlHIkwHkmV9z7e3JZeDTWtellUsJ2+RyrLonNW9Rv3ytlFrXhXEyuAIHINT4IFz0AQ3oAXaAIMxeAIv4NV5dt6cd+dj3lpyiplD8Keczx8tDpzC</latexit>

phj

<latexit sha1_base64="k/a4Ct1wJjt34lmlkSlZ3O33dAE=">AAACDnicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYC7VAymUwbm8uQZJQyzCuIO30Sd+LWV/BB3JtpZ6GtB0J+/v8ccvIFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvQJowKkjbUMNIL1YE8YCRbjC5zvPuA1GaSnFnpjHxORoJGlGMTG7F4+H9sFpz6+6s4LLwClEDRbWG1e9BKHHCiTCYIa37nhsbP0XKUMxIVhkkmsQIT9CI9K0UiBPtp7NdM3hinRBGUtkjDJy5vydSxLWe8sB2cmTGejHLzf+yfmKiCz+lIk4MEXj+UJQwaCTMPw5Dqgg2bGoFworaXSEeI4WwsXgqA0EeseQciTAdSJb1Pd/ellwONq15WVaxnLxFKsuic1b3GvXL20ateVUQK4MjcAxOgQfOQRPcgBZoAwzG4Am8gFfn2Xlz3p2PeWvJKWYOwZ9yPn8APbaczA==</latexit>

. . .

<latexit sha1_base64="29piqOSS2PuE/RciD88j0NPxdb8=">AAACEHicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYCnaFkMmkbm8uQZJQyzDuIO30Sd+LWN/BB3JtpZ6GtB0J+/v8ccvKFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvRJowKkjbUMNIL1YE8ZCRbji5zvPuA1GaSnFnpjEJOBoJOqQYGWt1fBZJowfVmlt3ZwWXhVeIGiiqNah++5HECSfCYIa07ntubIIUKUMxI1nFTzSJEZ6gEelbKRAnOkhn22bwxDoRHEpljzBw5v6eSBHXespD28mRGevFLDf/y/qJGV4EKRVxYojA84eGCYNGwvzrMKKKYMOmViCsqN0V4jFSCBsLqOIL8ogl50hEqS9Z1vcCe1t2Odq05mVZxXLyFqksi85Z3WvUL28bteZVQawMjsAxOAUeOAdNcANaoA0wuAdP4AW8Os/Om/PufMxbS04xcwj+lPP5A/8jncE=</latexit>

phj

<latexit sha1_base64="k/a4Ct1wJjt34lmlkSlZ3O33dAE=">AAACDnicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYC7VAymUwbm8uQZJQyzCuIO30Sd+LWV/BB3JtpZ6GtB0J+/v8ccvIFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvQJowKkjbUMNIL1YE8YCRbjC5zvPuA1GaSnFnpjHxORoJGlGMTG7F4+H9sFpz6+6s4LLwClEDRbWG1e9BKHHCiTCYIa37nhsbP0XKUMxIVhkkmsQIT9CI9K0UiBPtp7NdM3hinRBGUtkjDJy5vydSxLWe8sB2cmTGejHLzf+yfmKiCz+lIk4MEXj+UJQwaCTMPw5Dqgg2bGoFworaXSEeI4WwsXgqA0EeseQciTAdSJb1Pd/ellwONq15WVaxnLxFKsuic1b3GvXL20ateVUQK4MjcAxOgQfOQRPcgBZoAwzG4Am8gFfn2Xlz3p2PeWvJKWYOwZ9yPn8APbaczA==</latexit>

. . .

<latexit sha1_base64="29piqOSS2PuE/RciD88j0NPxdb8=">AAACEHicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYCnaFkMmkbm8uQZJQyzDuIO30Sd+LWN/BB3JtpZ6GtB0J+/v8ccvKFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvRJowKkjbUMNIL1YE8ZCRbji5zvPuA1GaSnFnpjEJOBoJOqQYGWt1fBZJowfVmlt3ZwWXhVeIGiiqNah++5HECSfCYIa07ntubIIUKUMxI1nFTzSJEZ6gEelbKRAnOkhn22bwxDoRHEpljzBw5v6eSBHXespD28mRGevFLDf/y/qJGV4EKRVxYojA84eGCYNGwvzrMKKKYMOmViCsqN0V4jFSCBsLqOIL8ogl50hEqS9Z1vcCe1t2Odq05mVZxXLyFqksi85Z3WvUL28bteZVQawMjsAxOAUeOAdNcANaoA0wuAdP4AW8Os/Om/PufMxbS04xcwj+lPP5A/8jncE=</latexit>

phj

<latexit sha1_base64="k/a4Ct1wJjt34lmlkSlZ3O33dAE=">AAACDnicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYC7VAymUwbm8uQZJQyzCuIO30Sd+LWV/BB3JtpZ6GtB0J+/v8ccvIFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvQJowKkjbUMNIL1YE8YCRbjC5zvPuA1GaSnFnpjHxORoJGlGMTG7F4+H9sFpz6+6s4LLwClEDRbWG1e9BKHHCiTCYIa37nhsbP0XKUMxIVhkkmsQIT9CI9K0UiBPtp7NdM3hinRBGUtkjDJy5vydSxLWe8sB2cmTGejHLzf+yfmKiCz+lIk4MEXj+UJQwaCTMPw5Dqgg2bGoFworaXSEeI4WwsXgqA0EeseQciTAdSJb1Pd/ellwONq15WVaxnLxFKsuic1b3GvXL20ateVUQK4MjcAxOgQfOQRPcgBZoAwzG4Am8gFfn2Xlz3p2PeWvJKWYOwZ9yPn8APbaczA==</latexit>

. . .

<latexit sha1_base64="29piqOSS2PuE/RciD88j0NPxdb8=">AAACEHicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYCnaFkMmkbm8uQZJQyzDuIO30Sd+LWN/BB3JtpZ6GtB0J+/v8ccvKFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvRJowKkjbUMNIL1YE8ZCRbji5zvPuA1GaSnFnpjEJOBoJOqQYGWt1fBZJowfVmlt3ZwWXhVeIGiiqNah++5HECSfCYIa07ntubIIUKUMxI1nFTzSJEZ6gEelbKRAnOkhn22bwxDoRHEpljzBw5v6eSBHXespD28mRGevFLDf/y/qJGV4EKRVxYojA84eGCYNGwvzrMKKKYMOmViCsqN0V4jFSCBsLqOIL8ogl50hEqS9Z1vcCe1t2Odq05mVZxXLyFqksi85Z3WvUL28bteZVQawMjsAxOAUeOAdNcANaoA0wuAdP4AW8Os/Om/PufMxbS04xcwj+lPP5A/8jncE=</latexit>

phj

<latexit sha1_base64="k/a4Ct1wJjt34lmlkSlZ3O33dAE=">AAACDnicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYC7VAymUwbm8uQZJQyzCuIO30Sd+LWV/BB3JtpZ6GtB0J+/v8ccvIFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvQJowKkjbUMNIL1YE8YCRbjC5zvPuA1GaSnFnpjHxORoJGlGMTG7F4+H9sFpz6+6s4LLwClEDRbWG1e9BKHHCiTCYIa37nhsbP0XKUMxIVhkkmsQIT9CI9K0UiBPtp7NdM3hinRBGUtkjDJy5vydSxLWe8sB2cmTGejHLzf+yfmKiCz+lIk4MEXj+UJQwaCTMPw5Dqgg2bGoFworaXSEeI4WwsXgqA0EeseQciTAdSJb1Pd/ellwONq15WVaxnLxFKsuic1b3GvXL20ateVUQK4MjcAxOgQfOQRPcgBZoAwzG4Am8gFfn2Xlz3p2PeWvJKWYOwZ9yPn8APbaczA==</latexit>

. . .

<latexit sha1_base64="29piqOSS2PuE/RciD88j0NPxdb8=">AAACEHicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYCnaFkMmkbm8uQZJQyzDuIO30Sd+LWN/BB3JtpZ6GtB0J+/v8ccvKFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvRJowKkjbUMNIL1YE8ZCRbji5zvPuA1GaSnFnpjEJOBoJOqQYGWt1fBZJowfVmlt3ZwWXhVeIGiiqNah++5HECSfCYIa07ntubIIUKUMxI1nFTzSJEZ6gEelbKRAnOkhn22bwxDoRHEpljzBw5v6eSBHXespD28mRGevFLDf/y/qJGV4EKRVxYojA84eGCYNGwvzrMKKKYMOmViCsqN0V4jFSCBsLqOIL8ogl50hEqS9Z1vcCe1t2Odq05mVZxXLyFqksi85Z3WvUL28bteZVQawMjsAxOAUeOAdNcANaoA0wuAdP4AW8Os/Om/PufMxbS04xcwj+lPP5A/8jncE=</latexit>

phj

<latexit sha1_base64="k/a4Ct1wJjt34lmlkSlZ3O33dAE=">AAACDnicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYC7VAymUwbm8uQZJQyzCuIO30Sd+LWV/BB3JtpZ6GtB0J+/v8ccvIFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvQJowKkjbUMNIL1YE8YCRbjC5zvPuA1GaSnFnpjHxORoJGlGMTG7F4+H9sFpz6+6s4LLwClEDRbWG1e9BKHHCiTCYIa37nhsbP0XKUMxIVhkkmsQIT9CI9K0UiBPtp7NdM3hinRBGUtkjDJy5vydSxLWe8sB2cmTGejHLzf+yfmKiCz+lIk4MEXj+UJQwaCTMPw5Dqgg2bGoFworaXSEeI4WwsXgqA0EeseQciTAdSJb1Pd/ellwONq15WVaxnLxFKsuic1b3GvXL20ateVUQK4MjcAxOgQfOQRPcgBZoAwzG4Am8gFfn2Xlz3p2PeWvJKWYOwZ9yPn8APbaczA==</latexit>

. . .

<latexit sha1_base64="29piqOSS2PuE/RciD88j0NPxdb8=">AAACEHicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYCnaFkMmkbm8uQZJQyzDuIO30Sd+LWN/BB3JtpZ6GtB0J+/v8ccvKFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvRJowKkjbUMNIL1YE8ZCRbji5zvPuA1GaSnFnpjEJOBoJOqQYGWt1fBZJowfVmlt3ZwWXhVeIGiiqNah++5HECSfCYIa07ntubIIUKUMxI1nFTzSJEZ6gEelbKRAnOkhn22bwxDoRHEpljzBw5v6eSBHXespD28mRGevFLDf/y/qJGV4EKRVxYojA84eGCYNGwvzrMKKKYMOmViCsqN0V4jFSCBsLqOIL8ogl50hEqS9Z1vcCe1t2Odq05mVZxXLyFqksi85Z3WvUL28bteZVQawMjsAxOAUeOAdNcANaoA0wuAdP4AW8Os/Om/PufMxbS04xcwj+lPP5A/8jncE=</latexit>

phj

<latexit sha1_base64="k/a4Ct1wJjt34lmlkSlZ3O33dAE=">AAACDnicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYC7VAymUwbm8uQZJQyzCuIO30Sd+LWV/BB3JtpZ6GtB0J+/v8ccvIFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvQJowKkjbUMNIL1YE8YCRbjC5zvPuA1GaSnFnpjHxORoJGlGMTG7F4+H9sFpz6+6s4LLwClEDRbWG1e9BKHHCiTCYIa37nhsbP0XKUMxIVhkkmsQIT9CI9K0UiBPtp7NdM3hinRBGUtkjDJy5vydSxLWe8sB2cmTGejHLzf+yfmKiCz+lIk4MEXj+UJQwaCTMPw5Dqgg2bGoFworaXSEeI4WwsXgqA0EeseQciTAdSJb1Pd/ellwONq15WVaxnLxFKsuic1b3GvXL20ateVUQK4MjcAxOgQfOQRPcgBZoAwzG4Am8gFfn2Xlz3p2PeWvJKWYOwZ9yPn8APbaczA==</latexit>

. . .

<latexit sha1_base64="29piqOSS2PuE/RciD88j0NPxdb8=">AAACEHicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYCnaFkMmkbm8uQZJQyzDuIO30Sd+LWN/BB3JtpZ6GtB0J+/v8ccvKFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvRJowKkjbUMNIL1YE8ZCRbji5zvPuA1GaSnFnpjEJOBoJOqQYGWt1fBZJowfVmlt3ZwWXhVeIGiiqNah++5HECSfCYIa07ntubIIUKUMxI1nFTzSJEZ6gEelbKRAnOkhn22bwxDoRHEpljzBw5v6eSBHXespD28mRGevFLDf/y/qJGV4EKRVxYojA84eGCYNGwvzrMKKKYMOmViCsqN0V4jFSCBsLqOIL8ogl50hEqS9Z1vcCe1t2Odq05mVZxXLyFqksi85Z3WvUL28bteZVQawMjsAxOAUeOAdNcANaoA0wuAdP4AW8Os/Om/PufMxbS04xcwj+lPP5A/8jncE=</latexit>

phj

<latexit sha1_base64="k/a4Ct1wJjt34lmlkSlZ3O33dAE=">AAACDnicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYC7VAymUwbm8uQZJQyzCuIO30Sd+LWV/BB3JtpZ6GtB0J+/v8ccvIFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvQJowKkjbUMNIL1YE8YCRbjC5zvPuA1GaSnFnpjHxORoJGlGMTG7F4+H9sFpz6+6s4LLwClEDRbWG1e9BKHHCiTCYIa37nhsbP0XKUMxIVhkkmsQIT9CI9K0UiBPtp7NdM3hinRBGUtkjDJy5vydSxLWe8sB2cmTGejHLzf+yfmKiCz+lIk4MEXj+UJQwaCTMPw5Dqgg2bGoFworaXSEeI4WwsXgqA0EeseQciTAdSJb1Pd/ellwONq15WVaxnLxFKsuic1b3GvXL20ateVUQK4MjcAxOgQfOQRPcgBZoAwzG4Am8gFfn2Xlz3p2PeWvJKWYOwZ9yPn8APbaczA==</latexit>

. . .

<latexit sha1_base64="29piqOSS2PuE/RciD88j0NPxdb8=">AAACEHicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYCnaFkMmkbm8uQZJQyzDuIO30Sd+LWN/BB3JtpZ6GtB0J+/v8ccvKFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvRJowKkjbUMNIL1YE8ZCRbji5zvPuA1GaSnFnpjEJOBoJOqQYGWt1fBZJowfVmlt3ZwWXhVeIGiiqNah++5HECSfCYIa07ntubIIUKUMxI1nFTzSJEZ6gEelbKRAnOkhn22bwxDoRHEpljzBw5v6eSBHXespD28mRGevFLDf/y/qJGV4EKRVxYojA84eGCYNGwvzrMKKKYMOmViCsqN0V4jFSCBsLqOIL8ogl50hEqS9Z1vcCe1t2Odq05mVZxXLyFqksi85Z3WvUL28bteZVQawMjsAxOAUeOAdNcANaoA0wuAdP4AW8Os/Om/PufMxbS04xcwj+lPP5A/8jncE=</latexit>

phj

<latexit sha1_base64="k/a4Ct1wJjt34lmlkSlZ3O33dAE=">AAACDnicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYC7VAymUwbm8uQZJQyzCuIO30Sd+LWV/BB3JtpZ6GtB0J+/v8ccvIFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvQJowKkjbUMNIL1YE8YCRbjC5zvPuA1GaSnFnpjHxORoJGlGMTG7F4+H9sFpz6+6s4LLwClEDRbWG1e9BKHHCiTCYIa37nhsbP0XKUMxIVhkkmsQIT9CI9K0UiBPtp7NdM3hinRBGUtkjDJy5vydSxLWe8sB2cmTGejHLzf+yfmKiCz+lIk4MEXj+UJQwaCTMPw5Dqgg2bGoFworaXSEeI4WwsXgqA0EeseQciTAdSJb1Pd/ellwONq15WVaxnLxFKsuic1b3GvXL20ateVUQK4MjcAxOgQfOQRPcgBZoAwzG4Am8gFfn2Xlz3p2PeWvJKWYOwZ9yPn8APbaczA==</latexit>

. . .

<latexit sha1_base64="29piqOSS2PuE/RciD88j0NPxdb8=">AAACEHicbZDLSgMxFIYz9VbrrerSTbAIrsqMFNRd0Y3LCvYCnaFkMmkbm8uQZJQyzDuIO30Sd+LWN/BB3JtpZ6GtB0J+/v8ccvKFMaPauO6XU1pZXVvfKG9WtrZ3dveq+wcdLROFSRtLJlUvRJowKkjbUMNIL1YE8ZCRbji5zvPuA1GaSnFnpjEJOBoJOqQYGWt1fBZJowfVmlt3ZwWXhVeIGiiqNah++5HECSfCYIa07ntubIIUKUMxI1nFTzSJEZ6gEelbKRAnOkhn22bwxDoRHEpljzBw5v6eSBHXespD28mRGevFLDf/y/qJGV4EKRVxYojA84eGCYNGwvzrMKKKYMOmViCsqN0V4jFSCBsLqOIL8ogl50hEqS9Z1vcCe1t2Odq05mVZxXLyFqksi85Z3WvUL28bteZVQawMjsAxOAUeOAdNcANaoA0wuAdP4AW8Os/Om/PufMxbS04xcwj+lPP5A/8jncE=</latexit>

Figure 6: Example of the type of structure we enforce by means of formula Φ
(i,j)
∞ .

the next configuration, and phj points belonging to associated blocks are forced

to be equivalent (using proposition letter ∼). This ensures that two blocks

cannot be associated to the same block in the next configuration. Moreover,

formula Φ
(i,j)
∞ constrains every configuration to contain at least one block not935

associated to any block in previous configurations. Thus, configurations feature

an increasing number of blocks, and there are infinitely many infinite chains of

blocks belonging to consecutive configurations. Similarly to pj , propositional

letter qj encodes (possibly partial) surjective functions from phj points of a

block to phj points of the block associated with it in the next configuration; this940

ensures that the number of phj points in a block is not smaller than the number

of phj points in its associated block (in the next configuration). Therefore, given

an infinite chain of associated blocks, the number of phj points contained in its

blocks eventually converges to a constant value. We have, then, infinitely many

chains, each of which converges to a number of phj points.945

At this point, for every (i, j) ∈ T (E), we can force, by means of formula

Φinj , every chain to have infinitely many bijective correspondences between the

phj points of one of its blocks and the exprendj intervals contained in an expr i

interval. This amounts to force the behaviour of the T -constructor. Formally,

we want to characterize, through ABĀ∼ formula Φ
(i,j)
∞ , the models that satisfy950

the following properties:

1. phj , blj , and conf j only appear as labels of points, phj and blj never occur

together in the same labeling, and conf j only appears in a labeling con-

taining also blj , that is, a configuration (i.e., an interval whose endpoints

38

are consecutive conf j points) features one or more blocks (i.e., intervals955

whose endpoints are consecutive blj points):

[G]((blj ∨ phj → π) ∧ (conf j → blj) ∧ (phj → ¬blj));

2. there are infinitely many conf j points, that is, there are infinitely many

configurations:

[G]〈A〉〈A〉conf j ;960

3. between two consecutive blj points there is at least one phj point and all

phj points falling inside the same block also belong to the same equivalence

class, that is, each block is associated with exactly one equivalence class

of phj points:

[G](〈B〉blj ∧ 〈A〉blj → 〈B〉(¬π ∧ 〈A〉phj)) ∧965

[G](〈B〉phj ∧ 〈A〉phj ∧ [B][A]¬blj →∼);

4. phj points are only ∼-equivalent to other phj points and, for every pair

of distinct phj points x and y, if there is a blj point but no conf j point

between them, then x 6∼ y, that is, pairs of distinct blocks in the same

configuration represent distinct equivalence classes of phj points:970

[G](∼ → (〈B〉phj ↔ 〈A〉phj)) ∧

[G](∼ ∧〈B〉phj ∧ 〈B〉(¬π ∧ 〈A〉blj)→ 〈B〉〈A〉conf j);

5. pj intervals connect phj points belonging to consecutive blocks inside the

same configuration; more precisely, for every phj point x of a block that

is not the first block of a configuration, there is a distinguished phj point975

y in the previous block (belonging to the same configuration) such that

[y, x] is a pj interval, where by distinguished we mean that there cannot

be two distinct phj points x, x′ and a point y such that [y, x] and [y, x′]

are pj intervals; every block contains at least one phj point (the last one)

that is not connected to any phj point in the future (notice that, as a980

consequence, the number of phj points in a block is greater than the

number of phj points in the next block of the same configuration, if any,

39

i.e., for every configuration, the finite sequence given by the numbers of phj

points featured in each block of that configuration is strictly decreasing):

[G](pj → 〈B〉phj ∧ 〈A〉phj ∧ [B]¬pj ∧ [B][A]¬conf j∧985

〈B〉〈A〉blj ∧ [B](〈A〉blj → [B][A]¬blj)) ∧

[G](phj ∧ 〈Ā〉(〈B〉blj ∧ [B][A]¬conf j)→ 〈Ā〉pj);

[G](phj ∧ [A](¬π∧ ∼→ 〈B〉〈A〉blj)→ [A]¬pj) ∧

6. for every phj point x there is a phj point y > x such that x ∼ y and

there is exactly one conf j point between x and y, that is, an equivalence990

class (corresponding to a block) in a configuration is witnessed in all the

following configurations:

[G](phj → 〈A〉(∼ ∧〈B〉〈A〉conf j ∧ [B](〈A〉conf j → [B][A]¬conf j)));

7. every configuration contains at least one phj point x such that there is

no point y with y < x and y ∼ x (observe that this implies that every995

configuration features a block that starts a new equivalence class, and

thus the infinite sequence of numbers of blocks in configurations is strictly

increasing):

[G](conf j → 〈A〉(〈A〉phj ∧ [B](¬π → [A]¬conf j) ∧ 〈A〉[Ā]¬ ∼));

8. for every phj point x belonging to a block b that does not start a new1000

equivalence class, that is, such that there is a unique block b′ associated

with the same equivalence class as b in the previous configuration, there

is a distinguished phj point y belonging to block b′ such that [y, x] is a

qj interval (once again, here distinguished means that there cannot be

two points x, x′ such that [y, x] and [y, x′] are qj intervals for some y –1005

this means that, for every equivalence class, the sequence given by the

numbers of phj points contained in each block of that equivalence class is

non-increasing):

[G](qj → ∼ ∧[B]¬qj ∧ 〈B〉〈A〉conf j ∧ [B](〈A〉conf j → [B][A]¬conf j)) ∧

[G](phj ∧ 〈Ā〉(∼ ∧〈B〉〈A〉blj)→ 〈Ā〉qj).1010

40

Let Φ
(i,j)
∞ be the conjunction of the above formulas. A graphical account of

the structure enforced by Φ
(i,j)
∞ is given in Figure 6. Notice that there may be

points not labeled with any of phj , blj , and conf j .

Thanks to Φ
(i,j)
∞ , a model can be seen as an infinite sequence of configurations

[conf 0
j , conf

1
j], [conf 1

j , conf
2
j], For every x ∈ N, [conf xj , conf

x+1
j] contains a1015

finite sequence of nj(x) + 1, with nj : N → N, sets blkx,0
j , . . . , blk

x,nj(x)
j of

phi points each one associated with exactly one equivalence class, i.e., points

in blkx,y
j belong to the same equivalence class, for every y ∈ {0, . . . , nj(x)}.

More precisely, nj(x) + 1 is the number of blocks in the x-th configuration

[conf xj , conf
x+1
j] and blkx,y

j is the set of phj points in the y-th block of the x-th1020

configuration. For every (i, j) ∈ T (E), the following properties hold:

(P1) function nj(x) is strictly increasing (property 7);

(P2) for every x ∈ N, sequence 〈|blkx,y
j |〉0≤y≤n(x) is strictly decreasing (prop-

erty 5);

(P3) for every phj point w, it is possible to identify a configuration index x1025

(referring to the x-th configuration in the model) and an infinite sequence

of indexes 〈yk〉k∈N (referring to positions of blocks in consecutive config-

urations starting from the x-th configuration, i.e., yk refers to the yk-th

block in the (x + k)-th configuration), such that [w]∼ =
⋃

k∈N blkx+k,yk

j

(property 6) and sequence 〈|blkx+k,yk

j |〉k∈N is non-increasing (property 8);1030

Property (P3) states that, for every equivalence class [w]∼ of phj points, there

is a configuration such that [w]∼ is witnessed by exactly one block in each of

the successive configurations. Moreover, it states that the blocks that witness

[w]∼ feature a non-increasing number of points. Let x and 〈y0, y1, y2, . . .〉 be,
respectively, the index and the infinite sequence of indexes such that [w]∼ =1035 ⋃

k∈N blkx+k,yk

j , whose existence is guaranteed by property (P3). Since the

number of points in each block (in particular, in blkx,y0

j) is finite, there is k′ ∈ N

for which |blkx+k′,yk′
j | = |blkx+k′+1,yk′+1

j | = . . ., i.e., sequence 〈|blkx+k,yk

j |〉k∈N
converges to a single value, called the value of the equivalence class [w]∼ and

41

denoted by val(w). By (P2), it holds that for any two phj points w and w′,1040

with w 6∼ w′, i.e., w and w′ belong to distinct equivalence classes, it holds that

val(w) 6= val(w′); otherwise, there would eventually be a configuration featur-

ing two distinct blocks with the same number of phj points, which contradicts

(P2). Finally, (P1) guarantees that the number of distinct equivalence classes

is infinite. Therefore, the image of val is infinite, i.e., there are infinitely many1045

natural numbers n with val(w) = n for some w.

We say that a block is instantiated with an expr i interval when the block

contains an expr i interval that, in turn, embeds all the phj points falling in that

block and, in addition, the set of phj points in the block and the set of points

starting an expr j interval within the expr i interval coincide. An instantiation1050

of an equivalence class with an expr i interval is an instantiation of a block

witnessing that equivalence class with the expr i interval. Since an instantiation

of a block with an expr i interval establishes a bijective correspondence between

the phj points in the block and the expr j intervals in the expr i interval, it

is clear that enforcing the behaviour imposed by the T -constructor amounts1055

to force all the equivalence classes to have infinitely many instantiations with

expr i intervals. Indeed, if an equivalence class [w]∼ is instantiated infinitely

often, there are infinitely many expr i intervals containing exactly val(w) many

expr j intervals. Since the number of equivalence classes is infinite and they

have all distinct values val(·), the behaviour of the T -constructor is correctly1060

encoded.

In what follows we show how to force all the equivalence classes to be instan-

tiated infinitely many times with expr i intervals by means of ABĀ∼ formula

Φinj . For an expr i interval [x, y], let pointsj([x, y]) = {z | x ≤ z ≤ y and

M, [z, z′] |= expr j for some z′}, and, for a phj point w, let us denote by xw and1065

σw = 〈y0, y1, y2, . . .〉, respectively, the index and the infinite sequence of indexes

such that [w]∼ =
⋃

k∈N blkxw+k,yk

j (existence of xw and σw is guaranteed by

property (P3)). For every equivalence class [w]∼ of phj points, formula Φinj

forces the existence of an infinite sub-sequence 〈yk1
, yk2

, yk3
, . . .〉 of σw such that

the ykh
-th block of the (xw + kh)-th configuration is instantiated with an expr i1070

42

interval, i.e., each equivalence class is instantiated infinitely many times. To

this end, we use proposition letter inj to mark the infinite sequence of blocks

to be instantiated with an expr i interval; more precisely, we force inj to hold

true exactly on points starting expr j intervals contained in blocks of the rele-

vant sequence. For (i, j) ∈ T (E), let Φinj be the conjunction of the following1075

formulas:

• inj appears only as the label of phj points that begin expr j intervals:

[G](inj → phj ∧ 〈A〉expr j);

• either none or all of the phj points in a block are inj points as well:

[G]((〈B〉phj ∧ 〈A〉phj ∧ [B][A]¬blj)→ (〈A〉inj ↔ 〈B〉inj));1080

• if an expr i interval contains an inj point, then the expr j intervals within

it begin with an inj point:

[G](expr i ∧ 〈B〉〈A〉inj → [B](〈A〉expr j → 〈A〉inj)).

• every block containing inj points encloses an expr i interval that, in turn,

contains all the inj points belonging to that block:1085

[G](expr i ∧ 〈B〉〈A〉inj → [B][A]¬blj∧

[Ā]([B][A]¬blj → [B][A]¬inj)∧

[A]([B][A]¬blj → [B][A]¬inj));

At this point, formula [G](phj → 〈A〉(¬π ∧ ∼ ∧〈A〉inj)) forces every equiv-

alence class, that is, every phj point, to be instantiated infinitely many times

with expr i intervals. Thus, the conjunction of this last formula with formulas

Φ
(i,j)
∞ and Φinj above forces models to behave accordingly to the T -constructor.

However, as it is the case with the S-constructor, there are models that do not1090

satisfy such a conjunction but, still, may encode words belonging to the lan-

guage of the ωT -regular expression we are trying to encode. This is the case

with models featuring only finitely many expr i intervals and models featuring

infinitely many expr j points. Obviously, models in the former class do not sat-

isfy the above conjunction (that forces the existence of infinitely many expr i1095

43

intervals), but they can anyway correspond to words belonging to the language

because, as already pointed out, in these cases the T -constructor behaves as the

∗-constructor, due to prefix independence property. Consider, instead, models

that feature infinitely many expr j points and do not satisfy the above conjunc-

tion, i.e., do not instantiate all equivalence classes infinitely many times with1100

expr i intervals. Thanks to Corollary 2, in this scenario the behaviour enforced

by the T -constructor is preserved as long as at least one equivalence class is

instantiated infinitely many times with expr i intervals.

Thus, we can now define formulas Φ
(i,j)
T , for (i, j) ∈ T (E), as follows, where

the first disjunct captures models featuring only finitely many expr i intervals,1105

the second one models featuring infinitely many expr j points, and the third one

deals with all other scenarios.
〈A〉[A][A]¬expr i∨(
Φ

(i,j)
∞ ∧ Φinj ∧ [G]〈A〉〈A〉(π ∧ expr j) ∧

〈B〉〈A〉〈A〉inj ∧ [G](inj → 〈A〉(¬π ∧ ∼ ∧ 〈A〉inj))
)
∨(

Φ
(i,j)
∞ ∧ Φinj ∧ 〈A〉[A][A](expr j → ¬π) ∧ [G](phj → 〈A〉(¬π ∧ ∼ ∧〈A〉inj))

)
.

The following theorem holds (once more, E∗ is obtained from E by replacing

T -constructors by ∗-constructors).1110

Theorem 6. Let E be an ωT -regular expression over Σ. Then, L(E) = {w ∈
Σω | w ≈M and M is a model such that M, [0, n] |= ϕE∗∧ϕΣ∧

∧
(i,j)∈T (E) Φ

(i,j)
T

for some n ∈ N}.

9. Conclusions

In this paper, we filled a gap in the study of extended ω-regular languages1115

by providing a temporal logic characterization of ωB-, ωS-, and ωT -regular lan-

guages. We identified interval temporal logic as a suitable candidate for such a

role. We first provided an encoding of regular and ω-regular languages into the

interval temporal logic AB of Allen’s relations meets and begun by. Then, we

showed how to enrich AB in order to turn ωB-, ωS-, and ωT -regular expressions1120

into formulas of suitable interval temporal logics. We focused on B-, S-, and

44

T -constructors in isolation, but the proposed encodings can be easily merged to

deal with their combinations (ωBS-, ωBT -, ωST -, and ωBST -regular expres-

sions). As for future work, we are looking for syntactic and/or semantic frag-

ments of the considered interval temporal logics that preserve (un)satisfiability1125

of the resulting formulas and behave better from a computational point of view.

45

Appendix A. Proofs of Section 3

Proposition 1. Let e be a BST-regular expression. If ~u,~v ∈ L(e) and ~w is a

shuffle of ~u and ~v, then ~w ∈ L(e) as well.

Proof. The proof is by induction on the size of BST -regular expressions. If1130

e = ∅, then the claim follows straightforwardly, since the antecedent of the

implication is false. If e = a for some a ∈ Σ, then we have that ~u = ~v = ~w =

(a, a, a, . . .) ∈ L(a).

Now, let ~u,~v ∈ L(e) and ~w = ~u +g ~v, for a selection function g. This means

that ~w ∈ L(e+ e). We show that ~w ∈ L(e).1135

If e = e1 ·e2, then there are word sequences ~u′, ~v′ ∈ L(e1) and ~u′′, ~v′′ ∈ L(e2)

such that ~u = ~u′ � ~u′′ and ~v = ~v′ � ~v′′, i.e., ~u (resp., ~v) corresponds to the

application component-wise of the word concatenation operator · to ~u′ and ~u′′

(resp., ~v′ and ~v′′). It is easy to see that ~w = (~u′ +g
~v′)�(~u′′ +g

~v′′). By inductive

hypothesis, ~u′ +g
~v′ ∈ L(e1) and ~u′′ +g

~v′′ ∈ L(e2), thus ~w ∈ L(e1 · e2) = L(e).1140

If e = e1 + e2, then we have that ~w ∈ L((e1 + e2) + (e1 + e2)). By commu-

tativity and associativity of the shuffle operation, it holds that L((e1 + e2) +

(e1 +e2)) = L((e1 +e1)+(e2 +e2)), which means that there are word sequences
~w′, ~w′′ ∈ L(e1 + e1) ∪ L(e2 + e2) such that ~w is a shuffle of ~w′ and ~w′′. In turn,
~w′ is a shuffle of two word sequences ~u′ and ~v′, both belonging to L(e1) or both1145

belonging to L(e2); similarly, ~w′′ is a shuffle of two word sequences ~u′′ and ~v′′,

both belonging to L(e1) or both belonging to L(e2). By inductive hypothesis,
~w′, ~w′′ ∈ L(e1) ∪ L(e2), and, since ~w is a shuffle of ~w′ and ~w′′, we can conclude

that ~w ∈ L(e1 + e2) = L(e).

If e = (e1)op , with op ∈ {∗, B, S, T}, then there are word sequences ~t, ~z ∈1150

L(e1) and functions f, f ′ ∈ F , such that ~u is the f -aggregation of ~t and ~v is

the f ′-aggregation of ~z. Moreover, if op = B (resp., S, T), then δf and δf ′ are

B-sequences (resp., S-, T -sequences).

It is possible to define a selection function g′ and a function f ′′ ∈ F such

that ~w is the f ′′-aggregation of ~t +g′ ~z. Intuitively, g′ chooses elements from1155

sequences ~t and ~z so to reflect the order, established by the selection function g,

46

in which such elements appear in ~w (even though in ~w they appear aggregated

according to f , for elements of ~t, and f ′, for elements of ~z). In other words,

g′ chooses elements from ~t and ~z so that the infinitary concatenation, into an

infinite word, of all finite words of the resulting word sequence ~t +g′ ~z is equal to1160

the infinite word resulting from the infinitary concatenation of all finite words

of the word sequence ~w. Analogously, f ′′ aggregates elements of ~t +g′ ~z so to

reflect the concatenation produced by f and f ′, thus obtaining exactly ~w, that

is, f ′′ emulates f (resp., f ′) when aggregating consecutive elements of ~t +g′ ~z

belonging to ~t (resp., ~z).1165

Towards a formal definition of g′ and f ′′, recall that 1′s-upto(g, i) (resp.,

2′s-upto(g, i)) determines the position of the word in ~u (resp., ~v) that appears

in position i of sequence ~w. First, g′ : N>0 → 1, 2 is the function corresponding

to the sequence s over {1, 2} built as follows. Start with the empty sequence s0,

and, for every i ∈ N>0, sequence si is obtained from si−1 by appending1170

• δf (1′s-upto(g, i)) many 1’s, if g(i) = 1,

• δf ′(2′s-upto(g, i)) many 2’s, if g(i) = 2.

Next, f ′′ is defined as follows:

• f ′′(0) = 1,

• f ′′(i) =

 f ′′(i− 1) + δf (1′s-upto(g, i)) if g(i) = 1

f ′′(i− 1) + δf ′(2
′s-upto(g, i)) if g(i) = 2

, for all i ∈ N>0.1175

We show that if δf ′ are B-sequences (resp., S-, T -sequences), so is δf ′′ .

Clearly, every value in δf ′′ also appears in δf or δf ′ . Therefore, if δf and δf ′

are B-sequences, so is δf ′′ . As a matter of fact, the above property can be

generalized to suffixes of δf , δf ′ , and δf ′′ , as follows: for every i ∈ N>0 there

is j ∈ N>0 such that every value in the suffix of δf ′′ starting at position j also1180

appears in the suffix of δf starting at position i or in the one of δf ′ starting at

the same position. Therefore, if δf and δf ′ are B-sequences, so is δf ′′ . Moreover,

observe that for at least one among δf and δf ′ , let us call it δ̂, it holds that

every value in δ̂ also appears in δf ′′ . Therefore, if δ̂ is a T -sequence so is δf ′′ .

47

Finally, since ~w is the f ′′-aggregation of the word sequence ~t +g′ ~z, which,1185

by inductive hypothesis, belongs to L(e1), we conclude that ~w ∈ L(e).

Corollary 1 (shuffle idempotence). L(e) = L(e + e), for every BST-regular

expression e.

Proof. L(e) ⊆ L(e+e) holds trivially, while L(e+e) ⊆ L(e) follows immediately

from Proposition 1.1190

Proposition 2. It hold that L(e) = Lε(e), for every BST -regular expression e.

Proof. Clearly, it holds that L(e) ⊆ Lε(e). To prove the converse inclusion,

that is, Lε(e) ⊆ L(e), we proceed by induction on the size of BST -regular

expressions.

If e = ∅ (resp., e = a), then L(e) = ∅ = Lε(e) (resp., L(e) = {(a, a, a, . . .)} =1195

Lε(e)), and the thesis follows trivially.

Let ~u ∈ L(e) and ~v be an ε-pumping of ~u. We show that ~v ∈ L(e). If ~u

does not feature infinitely many empty strings, then the unique ε-pumping of

~u is ~u itself, and the thesis trivially follows. Thus, let us assume that ~u fea-

tures infinitely many empty strings, and let g be the non-2-convergent selection1200

function such that ~v = ~u +g ~ε.

If e = e1 · e2, then there are word sequences ~u′ ∈ L(e1) and ~u′′ ∈ L(e2) such

that ~u is the concatenation of ~u′ and ~u′′, i.e., ~u = ~u′ � ~u′′. Since ~u features

infinitely many empty strings, so do both ~u′ and ~u′′. Therefore, (~u′ +g ~ε)

(resp., (~u′′ +g ~ε)) is an ε-pumping of ~u′ (resp., ~u′′), which means that (~u′ +g1205

~ε) ∈ Lε(e1) and (~u′′ +g ~ε) ∈ Lε(e2). By inductive hypothesis, we have that

(~u′ +g ~ε) ∈ Lε(e1) = L(e1) and (~u′′ +g ~ε) ∈ Lε(e2) = L(e2). It is not difficult

to see that ~u +g ~ε = (~u′ +g ~ε)� (~u′′ +g ~ε), hence ~v = ~u +g ~ε ∈ L(e).

If e = e1 + e2, then there are word sequences ~u′, ~u′′ ∈ L(e1) ∪ L(e2) such

that ~u is a shuffle of ~u′ and ~u′′, i.e., ~u = ~u′ +g′
~u′′ for a selection function1210

g′. Since ~u features infinitely many empty strings, so does at least one among
~u′ and ~u′′. Assume, without loss of generality, that ε occurs infinitely often

in ~u′ and that ~u′ ∈ L(e1). By commutativity and associativity of the shuffle

48

operation (see Section 3), there are two selection functions g′′ and g′′′ such that

(~u′ +g′
~u′′) +g ~ε = (~u′ +g′′ ~ε) +g′′′

~u′′. It is also not difficult to convince1215

oneself that function g′′ can be defined so to be non-2-convergent. Therefore,

since ~u′ features infinitely many empty strings, ~u′ +g′′ ~ε ∈ Lε(e1). By inductive

hypothesis, we have that ~u′ +g′′ ~ε ∈ Lε(e1) = L(e1) ⊆ L(e1) ∪ L(e2), which

implies (~u′ +g′′ ~ε) +g′′′
~u′′ ∈ L(e). The thesis follows from the observation that

~v = ~u +g ~ε = (~u′ +g′
~u′′) +g ~ε.1220

If e = (e1)op , with op ∈ {∗, B, T}, then ~u is the f -aggregation of ~u′, for a

sequence ~u′ ∈ L(e1) and a function f ∈ F , with δf being a B-sequence (resp.,

T -sequence) if op = B (resp., op = T). It is not difficult to devise a function

f ′ ∈ F such that ~u +g ~ε is the f ′-aggregation of ~u′. Intuitively, f ′ creates new

empty strings via vacuous aggregations, that is, aggregating together 0 words1225

from sequence ~u′ into empty strings. This results in a sequence δf ′ that can be

obtained from δf by inserting 0’s in correspondence of the empty strings added

to ~u by g to obtain ~v (via the operation ~u +g ~ε), which means that, if δf is a

B-sequence (resp., T -sequence), so is δf ′ . Therefore, we have that ~v = ~u +g ~ε

is the f ′-aggregation of ~u′, hence ~v ∈ L(e).1230

If e = (e1)S , then ~u is the f -aggregation of ~u′, for a sequence ~u′ ∈ L(e1)

and a function f ∈ F , with δf being an S-sequence. Since ~u features infinitely

many empty strings, so does ~u′, or δf would contain infinitely many 0’s, which

is in contradiction with it being an S-sequence. It is not difficult to devise a

non-2-convergent selection function g′ such that ~u′ +g′ ~ε contains finite sub-1235

sequences of empty strings of increasing lengths at positions corresponding to

empty strings added to ~u by g to obtain ~v (via the operation ~u +g ~ε). In

other words, g′ creates in ~u′ +g′ ~ε a finite sub-sequence of consecutive ε’s in

correspondence of each of the empty string added in ~v by g, and such sub-

sequences have increasing lengths. Then, there is a function f ′ such that ~u +g ~ε1240

is the f ′-aggregation of ~u′ +g′ ~ε. Intuitively, f ′ mimics f when aggregating

words of ~u′ to form words occurring in ~u, while it aggregates into empty strings

the sub-sequences of consecutive ε’s created by g′ via the operation ~u′ +g′ ~ε.

Since such sequences have increasing lengths, δf ′ preserves the property of being

49

an S-sequence. Moreover, ~u′ +g′ ~ε ∈ Lε(e1), because ~u′ features infinitely many1245

empty strings. By inductive hypothesis, ~u′ +g′ ~ε ∈ Lε(e1) = L(e1), and thus

~v = ~u +g ~ε ∈ L(e).

Corollary 2. Let e be a BST -regular expression. If ~u is the f -aggregation

of ~v, for a function f ∈ F and a word sequence ~v ∈ L(e) featuring infinitely

many empty strings, then ~u ∈ L(eS). If, in addition, there is at least one value1250

occurring infinitely often in δf , then ~u ∈ L(eT) as well.

Proof. To begin with, observe that, since ~v features infinitely many empty

strings, the sequence obtained injecting sequences of empty strings of increasing

lengths after every word in ~v is an ε-pumping of ~v. More formally, the se-

quence ~v′ = (v1, ε, v2, ε, ε, v3, ε, ε, ε, . . .) is an ε-pumping of ~v. It is not difficult1255

to see that there is a function f ′, with δf ′ being an S-sequence, such that the

f ′-aggregation of ~v′ coincides with the f -aggregation of ~v; therefore, ~u is the

f ′-aggregation of ~v′. Clearly, ~v′ ∈ Lε(e), and, by Proposition 2, ~v′ ∈ L(e), hence

~u ∈ L(eS).

In order to conclude the proof, note that the existence of a value k occurring1260

infinitely often in δf means that ~v contains infinitely many sub-sequences of

k many consecutive words that f aggregates together into a word in ~u. Let
~vi = (v1

1 , v
1
2 , . . . , v

1
k), for i ∈ N>0, be all such sub-sequences of ~v. Further,

let ~εi be the finite sequence featuring i many empty strings, for all i ∈ N>0.

Finally, consider the sequence ~v′ obtained by injecting sequences ~ε1, ~ε1, ~ε2, ~ε1,1265

~ε2, ~ε3, ~ε1, ~ε2, ~ε3, , ~ε4, . . . , immediately after, respectively, ~v1, ~v2, ~v3, ~v4, ~v5,
~v6, ~v7, ~v8, ~v9, ~v10, Since ~v features infinitely many empty strings, we have

that ~v′ is an ε-pumping of ~v, meaning that ~v′ ∈ Lε(e). It is not difficult, now,

to see that there is a function f ′, with δf ′ being a T -sequence, such that the

f ′-aggregation of ~v′ coincides with the f -aggregation of ~v; therefore, ~u is the1270

f ′-aggregation of ~v′. Intuitively, f ′ aggregates the newly added sequences of

empty strings together with the corresponding sub-sequences ~vi, and thus δf ′

features infinitely many occurrences of k+i, for every i ∈ N>0. By Proposition 2,
~v′ ∈ Lε(e) implies ~v′ ∈ L(e), hence ~u ∈ L(eT).

50

Appendix B. Soundness of the encoding of regular expressions1275

Thanks to Lemma 1(a), proving Theorem 2 amounts to establishing the

following correspondence between interval models and R parse trees for finite

words, with R being a regular expression (Lemmas 3 and 4 below).

Lemma 3. Let R be a regular expression over Σ and w ∈ Σ∗ be a finite word.

If there exists an R parse tree for w, then there is an interval model M =1280

〈I(N), A,B, V 〉 such that w ≈M and M, [0, N − 1] |= ϕR ∧ ϕΣ.

Proof. First of all, observe that if R = ∅, then no R parse tree for w exists, and

the claim is vacuously true.

Then, assume R 6= ∅, and let w = w1w2 . . . w|w| ∈ Σ∗ and τRw = (Nodes,

Edges, e-idx, s, f) be anR parse tree for w. We define modelM = 〈I(N), A,B, V 〉1285

and we show that w ≈ M and M, [0, N − 1] |= ϕR ∧ ϕΣ. First, we set

N = |w| + 1 = f(r), where r is the root of τRw . Recall that, if N < ω, then

I(N) = {[x, y] | x, y ∈ N and x ≤ y < N}.
For every [x, y] ∈ I(N), let expr -propositions [x,y] = {expre-idx(n) | n ∈

Nodes and [x, y] = [s(n) − 1, f(n) − 1]}; intuitively, it is meant to collect all1290

propositions expr i, for ei ∈ sub(R), that hold true in [x, y]. The valuation func-

tion V of the model M = 〈I(N), A,B, V 〉 can be defined as follows. For every

[x, y] ∈ I(N),

V ([x, y]) =



expr -propositions [x,y] if y − x > 1

expr -propositions [x,y] ∪ {wy} if y − x = 1

expr -propositions [x,y] ∪
{
exprende-idx(n) | n ∈ Nodes, y = f(n)− 1

}
if x = y

1295

As a general observation, notice that, since the labeling (of intervals with propo-

sition letters) imposed by V preserves the tree structure of τRw and since it is

never the case that two nodes n, n′ of the same type (i.e., e-idx(n) = e-idx(n′))

are one the ancestor of the other, we have that expr i intervals are pairwise

disjoint, for every ei ∈ sub(R).1300

51

By definition of V , it immediately follows that M ≈ w, which, in turn,

implies M, [0, |w|] |= ϕΣ (see definition of ϕΣ at page 21). To conclude the

proof, we still need to show that M, [0, |w|] |= ϕR. To this end, we show that

M, [0, |w|] makes true each conjunct of formula

ϕR = exprn ∧ [A]π ∧
∧

ei∈sub(R)

ϕexpri
∧

∧
ei∈sub(R)

ϕend
expri

∧
∧

ei∈sub(R)

ϕ6∩expri
.

We begin with the simplest cases. It clearly holds that M, [0, |w|] |= [A]π

since [0, |w|] is the maximal interval and then its only adjacent-to-the-right

interval in I(N) is the point [|w|, |w|]. Let us prove now thatM, [0, |w|] |= exprn,

that is, exprn ∈ V ([0, |w|]). Since τRw is an R parse tree for w, then for the root

r of τRw it holds that e-idx(r) = n, s(r) = 1, and f(r) = |w| + 1. Thus, by1305

definition of expr -propositions [x,y], it follows that exprn ∈ V ([0, |w|]). Instead,

the fact that M, [0, |w|] |= ∧
ei∈sub(R) ϕ

6∩
expri

immediately follows from the fact

that expr i intervals are pairwise disjoint, for every ei ∈ sub(R).

Let us now prove that M, [0, |w|] |= ϕend
expri

for every ei ∈ sub(R) (see def-

inition of ϕend
expri

at page 22). To this end, let us consider a generic index i1310

associated with a sub-expression ei ∈ sub(R). From the definition of V (case

x = y), it follows that exprendi holds exactly on points where an expr i interval

ends. Moreover, since expr i intervals do not intersect each other, it is easy to

see that M, [0, |w|] |= ϕend
expri

.

Finally, let us prove that M, [0, |w|] |= ϕexpri
for every ei ∈ sub(R). Let i1315

be a generic index associated with a sub-expression ei ∈ sub(R). Recall that

an interval [x, y] satisfies a proposition letter expr i if and only if there is a

node n with e-idx(n) = i, x = s(n) − 1 and y = f(n) − 1 (by definition of

expr -propositions [x,y]). We proceed case by case.

• If ei = a, for some a ∈ Σ, then we have ϕexpri
= [G](expr i → a). Let1320

[x, y] be an expr i interval and n be such that e-idx(n) = i, x = s(n) − 1

and y = f(n)−1. We show that a holds true in [x, y] as well. By definition

of parse tree, it holds that s(n) + 1 = f(n) and that ws(n) = a. Therefore,

we have x = y − 1 and y = s(n). By definition of V (case y − x = 1), we

52

have that a = ws(n) = wy ∈ V ([x, y]).1325

• If ei = ε, then we have ϕexpri
= [G](expr i → π). Let [x, y] be an expr i

interval and n be such that e-idx(n) = i, x = s(n)− 1 and y = f(n)− 1.

By definition of parse tree, it holds s(n) = f(n), which implies x = y.

Therefore, π holds true in [x, y] as well.

• If ei = ej + ek, then we have ϕexpri
= [G](expr i ↔ (expr j ∨ exprk)).1330

Since nodes n with e-idx(n) ∈ {j, k} only appear in τRw as children of

nodes n′ with e-idx(n′) = i, we have that every expr j (resp., exprk)

interval is an expr i interval as well, thus proving the right-to-left direction

of the equivalence. Now, let [x, y] be an expr i interval and let n be such

that e-idx(n) = i, x = s(n) − 1 and y = f(n) − 1. By definition of1335

parse tree, n has exactly one child n′ such that e-idx(n′) ∈ {j, k}, and
(s(n), f(n)) = (s(n′), f(n′)). It immediately follows from the definition of

V that either expr j or exprk holds true in [x, y].

• If ei = ejek, then we have

ϕexpri
= [G](expr j → 〈A〉exprk)

∧ [G](exprk → (exprendj ∨ 〈B〉exprendj) ∧ 〈A〉exprendi)

∧ [G]((expr j ∨ exprk) → [B](¬π → [A]¬exprendi))

∧ [G]((expr j ∧ exprk) → π ∧ expr i)

∧ [G](expr i → (〈B〉(π ∧ expr j) ∧ exprk))

∨ 〈B〉(¬π ∧ expr j)

∨ (expr j ∧ 〈A〉(π ∧ exprk))

∧ [G]((〈A〉expr j → 〈A〉expr i)
∧ (〈A〉(¬π ∧ expr j) → 〈A〉(¬π ∧ expr i)))

∧ [G](exprk ∧ 〈B〉exprendi → expr i).

1340

By definition of parse tree, we have that every node n with e-idx(n) = i

has two children n′, n′′ with e-idx(n′) = j and e-idx(n′′) = k, and such

that s(n) = s(n′), f(n′) = s(n′′), and f(n′′) = f(n); moreover, no other

53

node n′′′ exists with e-idx(n′′′) ∈ {j, k}. To satisfy the first conjunct of

ϕexpri
it is enough to observe that every expr j interval is immediately1345

followed by an exprk interval (by the definition of V and the one of parse

tree). The satisfaction of the second conjunct follows from the facts that

every exprk interval is immediately preceded by an expr j interval (by the

definition of V and the one of parse tree) and that every exprk interval

ends where an expr i interval ends (due to f(n′′) = f(n)). The third1350

conjunct holds because no expr i interval ends inside an expr j or an exprk

interval (as it is never the case that a node n′, with e-idx(n′) ∈ {j, k}, is
an ancestor of a node n, with e-idx(n) = i). As for the fourth conjunct,

if an interval [x, y] satisfies both expr j and exprk then there must be

two children n′, n′′ of a node n, with e-idx(n) = i, e-idx(n′) = j, and1355

e-idx(n′′) = k, such that s(n′) = s(n′′) and f(n′) = f(n′′). Therefore, it

holds that s(n) = s(n′) = s(n′′) = f(n′) = f(n′′) = f(n), which means

that expr i is true on [x, y] and that x = y, and thus π holds true over [x, y]

as well. To see that the fifth conjunct is satisfied, let [x, y] be an expr i

interval and n, n′, n′′ be three nodes such that e-idx(n) = i, e-idx(n′) = j,1360

e-idx(n′′) = k, s(n) = s(n′), f(n′) = s(n′′), and f(n′′) = f(n). By the

definition of V and the one of parse tree, there is a point z, with x ≤ z ≤ y,
such that [x, z] is an expr j interval and [z, y] is an exprk interval. It is easy

to see that if x = z (resp., x < z < y, z = y), then 〈B〉(π ∧ expr j)∧exprk
(resp., 〈B〉(¬π ∧ expr j), expr j ∧ 〈A〉(π ∧ exprk)) is true on [x, y], and1365

thus the implication holds true in [x, y] as well. To verify that the sixth

conjunct is true, recall that nodes n′ with e-idx(n′) = j can only occur

in τRw as left children of nodes n with e-idx(n) = i; then, it immediately

follows that expr j intervals can only occur in M as (not necessarily strict)

prefixes of expr i intervals. Finally, to check that the seventh conjunct1370

is satisfied, let [x, y] be an exprk interval, with x < y and x being an

exprendi point. Recall that nodes n′′ with e-idx(n′′) = k can only occur

in τRw as right children of nodes n with e-idx(n) = i; then, it immediately

follows that exprk intervals can only occur inM as (not necessarily strict)

54

suffixes of expr i intervals. Thus, [z, y] is an expr i interval, for some z ≤ x;1375

however, since x is an exprendi point, it cannot be z < x (or, there would

be an exprendi point inside an expr i interval, and thus two expr i intervals

that intersect). Thus, it must be z = x, meaning that [x, y] is an expr i

interval.

• if ei = e∗j we have:1380

ϕexpri
= [G](expr i → π ∨ expr j ∨ (〈B〉expr j ∧

[B](〈A〉exprendj → 〈A〉(¬π ∧ expr j))))

∧ [G](expr j → [B](¬π → [A]¬exprendi))

∧ [init](〈A〉expr j ∧ ¬〈A〉expr i → 〈B〉〈A〉(¬π ∧ expr i))

∧ [G](〈A〉expr j ∧ 〈B〉(¬π ∧ expr i) →
〈A〉expr i ∨ 〈B〉(¬π ∧ 〈A〉(¬π ∧ expr i)))

∧ [G](expr i ∧ 〈A〉(¬π ∧ expr j) → 〈A〉expr i)
∧ [G](〈A〉(¬π ∧ expr j) ∧ 〈A〉expr i → 〈A〉(¬π ∧ expr i)).

By definition of parse tree, for every node n with e-idx(n) = i, it holds

that either n is a leaf and s(n) = f(n) or f(n) < ω and n has h chil-

dren n1, . . . , nh, with h ∈ N>0, such that e-idx(n1) = . . . = e-idx(nh) = j,

f(nk) = s(nk+1), for all k ∈ {1, . . . , h−1}, and (s(n), f(n)) = (s(n1), f(nh)).1385

Clearly, the first conjunct holds true, with the three disjuncts of the right-

hand side of the implication corresponding to a node n, with e-idx(n) = i,

having zero, one, or more than one children. The second conjunct is sat-

isfied because no expr i interval ends inside an expr j interval. As for the

third conjunct, every node n, with e-idx(n) = j, is a child of a node n′1390

with e-idx(n′) = i, that means that for every expr j interval [x, y] there is

an expr i interval [w, z], with w ≤ x ≤ y ≤ z, and thus the third conjunct

holds true. In order to verify that the fourth conjunct is true, consider

an interval [x, y] on which it holds 〈A〉expr j ∧ 〈B〉(¬π ∧ expr i). Thus,

there are two nodes n, n′, with e-idx(n) = i, e-idx(n′) = j, s(n)−1 = x <1395

f(n) − 1 < s(n′) − 1 = y. By definition of parse tree, node n′ is a child

55

of a node n′′, with e-idx(n′′) = i. Thus, we have s(n′′) ≤ s(n′) ≤ f(n′) ≤
f(n′′). Since expr i intervals do not intersect, it must be f(n) ≤ s(n′′). If

s(n′′) = s(n′), then 〈A〉expr i holds; if s(n′′) < s(n′), then we have that

x = s(n) − 1 < f(n) − 1 ≤ s(n′′) − 1 < s(n′) − 1 = y ≤ f(n′′) − 1,1400

and 〈B〉(¬π ∧ 〈A〉(¬π ∧ expr i)) holds over [x, y]. To check that

the fifth conjunct is satisfied, it is enough to observe that, if [w, x] is

an expr i interval and an expr j interval [x, y], with x < y, starts at

x, then there are nodes n, n′, with e-idx(n) = i, e-idx(n′) = j, and

f(n) − 1 = s(n′) − 1 = x < y = f(n′) − 1. If [w, x] is a point inter-1405

val, then 〈A〉expr i holds on [w, z], and the fifth conjunct is verified. Thus,

we assume s(n) < f(n). By definition of parse tree, node n′ is a child of

a node n′′, with e-idx(n′′) = i and s(n′′) ≤ s(n′) < f(n′) ≤ f(n′′). Since

f(n) < f(n′′) holds and expr i intervals do not end one inside the other,

it cannot be s(n′′) < f(n), which implies s(n′) = f(n) ≤ s(n′′) ≤ s(n′).1410

Thus, it holds that s(n′) = s(n′′); consequently, 〈A〉expr i holds true in

every interval ending in x = s(n′)− 1. Finally, the sixth conjunct follows

from the fact that a node n′, with e-idx(n′) = j, is a child of a node n,

with e-idx(n) = i, and the fact that expr i intervals do not overlap.

Lemma 4. Let R be a regular expression over Σ and w ∈ Σ∗ be a finite word. If1415

there is an interval model M = 〈I(N), A,B, V 〉 such that w ≈M and M, [0, N−
1] |= ϕR ∧ ϕΣ, then there exists an R parse tree for w.

Proof. Recall that M, [0, N − 1] |= ϕR implies M, [0, N − 1] |= exprn ∧ ϕexpri
,

for every ei ∈ sub(R), and that R = en ∈ sub(R). To begin with, observe that

if R = ∅, then ϕexprn
= [G](exprn → ⊥), and thus no interval model M exists1420

such that M, [0, N − 1] |= ϕR ∧ ϕΣ, and the claim is vacuously true.

Therefore, assume R 6= ∅. We build, from M , an R parse tree for w. To

this end, we first show a more general property: for every [x, y] ∈ I(N) and

every ei ∈ sub(R), with expri ∈ V ([x, y]), there exists an ei parse tree for

w[x+ 1, y + 1). Then, given that R = en, the claim follows from the facts that1425

N = |w| + 1, by definition of w ≈ M , and exprn ∈ V ([0, N − 1]), since exprn

56

appears as a conjunct in ϕR. The proof is by structural induction on ei.

• If ei = a, for some a ∈ Σ, then ϕexpri
= [G](expr i → a). By expr i ∈

V ([x, y]) and M, [0, N − 1] |= ϕexpri
, we have that a ∈ V ([x, y]). By

M, [0, N − 1] |= ϕΣ, it holds that y = x + 1 and a′ /∈ V ([x, y]), for1430

any a′ ∈ Σ \ {a}. Moreover, by definition of w ≈ M , we have that

wx+1 = a. Let τ = ({r}, ∅, e-idx, s, f), where e-idx(r) = i, s(r) = x + 1,

and f(r) = s(r)+1 = y+1. Clearly, τ is an ei parse tree for w[s(r), f(r)) =

w[x+ 1, y + 1) = a.

• If ei = ε, then ϕexpri
= [G](expr i → π). By expr i ∈ V ([x, y]) and1435

M, [0, N − 1] |= ϕexpri
, we have that x = y. Let τ = ({r}, ∅, e-idx, s, f),

where e-idx(r) = i, and s(r) = f(r) = x+ 1. Clearly, τ is an ei parse tree

for w[s(r), f(r)) = w[x+ 1, y + 1) = ε.

• If ei = ej + ek, then ϕexpri
= [G](expr i ↔ (expr j ∨ exprk)). By

expr i ∈ V ([x, y]) andM, [0, N−1] |= ϕexpri
, we have that {exprj , exprk}∩1440

V ([x, y]) 6= ∅. Let us assume, without loss of generality, that exprj ∈
V ([x, y]). By inductive hypothesis, there exists an ej parse tree τ ′ =

(N ′, E′, e-idx′, s′, f ′) for w[x+1, y+1). Let r′ be the root of τ ′ and r be a

fresh node, i.e., r /∈ N ′. We define τ = (N ′∪{r}, E′∪{(r, r′)}, e-idx, s, f),

where e-idx, s, and f extend e-idx′, s′, and f ′, respectively, to the new1445

set of nodes N as follows: e-idx(r) = i, s(r) = s(r′), and f(r) = f(r′).

Clearly, τ is an ei parse tree for w[s(r), f(r)) = w[s(r′), f(r′)) = w[x +

1, y + 1).

• If ei = ejek, then

57

ϕexpri
= [G](expr j → 〈A〉exprk)

∧ [G](exprk → (exprendj ∨ 〈B〉exprendj) ∧ 〈A〉exprendi)

∧ [G]((expr j ∨ exprk) → [B](¬π → [A]¬exprendi))

∧ [G]((expr j ∧ exprk) → π ∧ expr i)

∧ [G](expr i → (〈B〉(π ∧ expr j) ∧ exprk))

∨ 〈B〉(¬π ∧ expr j)

∨ (expr j ∧ 〈A〉(π ∧ exprk))

∧ [G]((〈A〉expr j → 〈A〉expr i)
∧ (〈A〉(¬π ∧ expr j) → 〈A〉(¬π ∧ expr i)))

∧ [G](exprk ∧ 〈B〉exprendi → expr i).

1450

By expr i ∈ V ([x, y]) andM, [0, N−1] |= ϕexpri
, the fifth conjunct of ϕexpri

implies that there is a point z, with x ≤ z ≤ y, such that expr j ∈ V ([x, z]).

If x = z or z = y, the same conjunct also implies that exprk ∈ V ([z, y]).

If x < z < y, then the first conjunct guarantees the existence of a point

z′ ≥ z such that exprk ∈ V ([z, z′]). We show that z′ = y. On the one1455

hand, the second conjunct forces z′ to coincide with a point where an expr i

interval ends, and thus it cannot be z′ < y, as expri intervals do not end

inside each other. On the other hand, it cannot be z′ > y, or there would

be an expr i interval ending inside an exprk one, which is prevented by

the third conjunct. Thus, we have that z partitions [x, y] in two intervals1460

[x, z] and [z, y], with expr j ∈ V ([x, z]) and exprk ∈ V ([z, y]). By inductive

hypothesis, there are an ej parse tree τ ′ = (N ′, E′, e-idx′, s′, f ′) for w[x+

1, z+1) and an ek parse tree τ ′′ = (N ′′, E′′, e-idx′′, s′′, f ′′) for w[z+1, y+1).

Let r′ and r′′ be the roots of τ ′ and τ ′′, respectively, and let r be a fresh

node, i.e., r /∈ N ′ ∪ N ′′. We define τ = (N ′ ∪ N ′′ ∪ {r}, E′ ∪ E′′ ∪1465

{(r, r′), (r, r′′)}, e-idx, s, f), where e-idx, s, and f extend e-idx′ ∪ e-idx′′,
s′ ∪ s′′, and f ′ ∪ f ′′, respectively, to the new set of nodes N as follows:

e-idx(r) = i, s(r) = s(r′), and f(r) = f(r′′). Clearly, τ is an ei parse tree

for w[s(r), f(r)) = w[s(r′), f(r′′)) = w[x+ 1, y+ 1). Note that we did not

make use of some of the conjuncts of ϕexpri
. As a matter of fact, they1470

58

are needed to guarantee that expr j and exprk intervals are, respectively,

prefixes and suffixes of expr i intervals, which is useful for the encodings

given in the next sections.

• If ei = e∗j , then

ϕexpri
= [G](expr i → π ∨ expr j ∨ (〈B〉expr j ∧

[B](〈A〉exprendj → 〈A〉(¬π ∧ expr j))))

∧ [G](expr j → [B](¬π → [A]¬exprendi))

∧ [init](〈A〉expr j ∧ ¬〈A〉expr i → 〈B〉〈A〉(¬π ∧ expr i))

∧ [G](〈A〉expr j ∧ 〈B〉(¬π ∧ expr i) →
〈A〉expr i ∨ 〈B〉(¬π ∧ 〈A〉(¬π ∧ expr i)))

∧ [G](expr i ∧ 〈A〉(¬π ∧ expr j) → 〈A〉expr i)
∧ [G](〈A〉(¬π ∧ expr j) ∧ 〈A〉expr i → 〈A〉(¬π ∧ expr i)).

1475

By expr i ∈ V ([x, y]) and M, [0, N − 1] |= ϕexpri
, the first and the second

conjunct of ϕexpri
imply three possibilities: x = y, expr j ∈ V ([x, y]), or

there are finitely many points z0, z1, . . . , zk, for k ≥ 2,with x = z0 < z1 <

. . . < zk = y and expr j ∈ V ([zi−1, zi]), for every i ∈ {1, . . . , k}. If x = y,

we define τ = ({r}, ∅, e-idx, s, f), where e-idx(r) = i, and s(r) = f(r) =1480

x+ 1. Clearly, τ is an ei parse tree for w[s(r), f(r)) = w[x+ 1, y+ 1) = ε.

If expr j ∈ V ([x, y]), then, by inductive hypothesis, there exists an ej

parse tree τ ′ = (N ′, E′, e-idx′, s′, f ′) for w[x + 1, y + 1). Let r′ be the

root of τ ′ and r be a fresh node, i.e., r /∈ N ′. We define τ = (N ′ ∪
{r}, E′ ∪ {(r, r′)}, e-idx, s, f), where e-idx, s, and f extend e-idx′, s′, and1485

f ′, respectively, to the new set of nodes N as follows: e-idx(r) = i, s(r) =

s(r′), and f(r) = f(r′). Clearly, τ is an ei parse tree for w[s(r), f(r)) =

w[s(r′), f(r′)) = w[x+ 1, y + 1). Finally, if there are finitely many points

z0, z1, . . . , zk, for k ≥ 2, with x = z0 < z1 < . . . < zk = y and expr j ∈
V ([zi−1, zi]), for every i ∈ {1, . . . , k}, then, by inductive hypothesis, for1490

every i ∈ {1, . . . , k} there is an ej parse tree τi = (Ni, Ei, e-idxi, si, fi) for

w[zi−1+1, zi+1), with ri being the root of τi. Let r be a fresh node, i.e., r /∈

59

⋃
i∈{1,...,k}Ni. We define τ = (

⋃
i∈{1,...,k}Ni∪{r},

⋃
i∈{1,...,k}Ei∪{(r, ri) |

i ∈ {1, . . . , k}}, e-idx, s, f), where e-idx, s, and f extend
⋃

i∈{1,...,k} e-idxi,⋃
i∈{1,...,k} si, and

⋃
i∈{1,...,k} fi, respectively, to the new set of nodes N1495

as follows: e-idx(r) = i, s(r) = s(r1), and f(r) = f(rk). Clearly, τ is an

ei parse tree for w[s(r), f(r)) = w[s(r1), f(rk)) = w[x + 1, y + 1). Once

again, we did not make use of some of the conjuncts, which are needed to

force expr j intervals to only occur inside expr i ones. This property will

come handy for the encodings given in the next sections.1500

Theorem 2 immediately follows from Lemmas 1(a), 3, and 4.

Theorem 2. Let R be a regular expression over Σ. Then, L(R) = {w ∈ Σ∗ |
w ≈M andM = 〈I(N), A,B, V 〉 is a model such thatM, [0, N−1] |= ϕR ∧ ϕΣ}.

Appendix C. Soundness of the encoding of ωB-regular expressions

In order to prove the soundness of the encoding of ωB-regular expressions,1505

we establish a correspondence between interval models and E parse trees for

ω-words, with E being an ωB-regular expression, similar to the one given in Ap-

pendix B.

Lemma 5. Let E be an ωB-regular expression over Σ and w ∈ Σω be an infinite

word. If there exists an E∗ parse tree for w such that count(i) is a B-sequence,1510

for every ei ∈ sub(E), with ei = eBj , then there is an interval model M such

that w ≈M and M, [0, n] |= ϕE∗ ∧ ϕΣ ∧
∧

(i,j)∈B(E) Φ
(i,j)
B for some n ∈ N.

Proof. Let τ be an E∗ parse tree for w such that count(i) is a B-sequence for

every ei ∈ sub(E), with ei = eBj . Thanks to Lemma 2, we can assume, without

loss of generality, that τ does not contain nodes n such that s(n) = f(n) and1515

e-idx(n) = j, for any ei ∈ sub(E), with ei = e∗j .

By Theorem 3 and Lemma 1(a), there is a model M ′ = 〈I(N), A,B, Ā, V ′〉
such that w ≈ M ′ and M ′, [0, n] |= ϕE∗ ∧ ϕΣ, for some n ∈ N. We define

a new valuation function V that extends V ′ (i.e., V ′([x, y]) ⊆ V ([x, y]) for

all [x, y] ∈ I(N)) by providing an interpretation of the new proposition letters1520

60

phj , blj , and pj , used in the encoding given in Section 6, so that the resulting

model M = 〈I(N), A,B, Ā, V 〉 is such that w ≈ M and M, [0, n] |= ϕE∗ ∧
ϕΣ ∧

∧
(i,j)∈B(E) Φ

(i,j)
B . Since V extends V ′, it clearly holds that w ≈ M and

M, [0, n] |= ϕE∗ ∧ ϕΣ. Thus, we only have to show that M, [0, n] |= Φ
(i,j)
B , for

every (i, j) ∈ B(E). For the sake of conciseness, we only show how to define,1525

for a generic element (i, j) ∈ B(E), a valuation V such that the resulting model

satisfies Φ
(i,j)
B . Clearly the model resulting from the union of all valuations

defined for (i, j) ranging over B(E) satisfies
∧

(i,j)∈B(E) Φ
(i,j)
B . Thus, let (i, j) ∈

B(E) and B be the largest number occurring in count(i). Towards the definition

of V , we define sets Vblj/phj
, Vblj , Vphj

, and Vpj
, which, intuitively, are meant to1530

keep information about the (point) intervals where the new proposition letters

hold. More precisely, we let Vblj/phj
= {s(n) : n ∈ Nodes, e-idx(n) = j} \

{s(n) : n ∈ Nodes, e-idx(n) = i} be the set of candidate points where blj

or phj must hold true, that is, the points from which an expr j , but no expr i

interval, start. Note that, by assumption, it holds that s(n) < f(n) for every1535

node n ∈ Nodes with e-idx(n) = j. Therefore, Vblj/phj
is the set of children,

excluding the leftmost ones, of nodes n with e-idx(n) = i. We define now sets

Vblj and Vphj
as two disjoint subsets of Vblj/phj

. If Vblj/phj
is finite, the we let

Vblj = Vphj
= Vpj

= ∅. Otherwise, let seqVblj/phj
= 〈x1, x2, . . .〉 be the infinite

increasing sequence of elements of Vblj/phj
. We place in Vblj one element every1540

B many elements, with the remaining ones being placed in Vphj ; formally, we

define Vblj = {xh ∈ seqVphj/blj
| h ≡ 0 (mod B)} and Vphj = Vblj/phj

\Vblj . Note
that there are (B− 1) many phj points between consecutive blj points. Finally,

we define Vpj
= {[xh, xh+B] ∈ I(N) | xh ∈ seqVphj/blj

and h 6≡ 0 (mod B)}.
Notice that, if Vphj

= ∅ then Vpj
= ∅ as well. Intuitively, pj will hold true over1545

intervals connecting corresponding phj points in consecutive blocks of phj points

enclosed between consecutive blj points, i.e., if x, y, z are three consecutive blj

points, with x < y < z, and x1, . . . , xB−1 (resp., y1, . . . , yB−1) are the phj

points in between x and y (resp., in between y and z) increasingly ordered, then

[xh, yh] is a pj interval, for every h ∈ {1, . . . , B − 1}.1550

We are now ready to define the new valuation function V . For every [x, y] ∈

61

I(N), we define V ([x, y]) as the unique set such that

• V ′([x, y]) ⊆ V ([x, y]),

• blj ∈ V ([x, y]) if and only if x = y and x ∈ Vblj ,

• phj ∈ V ([x, y]) if and only if x = y and x ∈ Vphj
,1555

• pj ∈ V ([x, y]) if and only if [x, y] ∈ Vpj
.

It is easy to verify that, thanks to this definition of V , the interval model M =

〈I(N), A,B, Ā, V 〉 is such that formulas encoding properties 1–6 in Section 6 hold

true on [0, k] for every k ∈ N. In particular, observe that formula associated

with property 3 in Section 6, i.e., an expr i interval starts in between every1560

pair of consecutive blj points, is satisfied. Indeed, let x, y be a generic pair of

consecutive blj point, with x < y, and recall that every blj (resp., phj) point

interval [x, x] corresponds to a node n′, with e-idx(n′) = j, that is a child, but

not the leftmost one, of a node n with e-idx(n) = i; more precisely, it holds

[x, x] = [s(n′), s(n′)]. Then, since there are exactly (B − 1) many phj points1565

in between x and y, and given that every node n, with e-idx(n) = i, has at

most (B − 1) children, excluding the leftmost one, we have that there are, in

between x and y, at least two phj point intervals corresponding to nodes n′ and

m′ having different parent nodes, say n and m, respectively. Thus, we have

x < s(n′) < f(n′) ≤ f(n) ≤ s(m) and s(m′) < y. Moreover, it holds that1570

s(m) ≤ s(m′), and property 3 is fulfilled, as an expr i interval starts from point

s(m), with x < s(m) < y.

Therefore M, [0, n] |= Φ
(i,j)
B , and the thesis follows.

Lemma 6. Let E be an ωB-regular expression over Σ and w ∈ Σω be an

infinite word. If there is an interval model M such that w ≈M and M, [0, n] |=1575

ϕE∗ ∧ϕΣ ∧
∧

(i,j)∈B(E) Φ
(i,j)
B for some n ∈ N, then there exists an E∗ parse tree

for w such that count(i) is a B-sequence, for every ei ∈ sub(E), with ei = eBj .

Proof. Since w ≈M and M, [0, n] |= ϕE∗ ∧ ϕΣ, by Theorem 3 and Lemma 1(a)

it is possible to build from M an E∗ parse tree τ for w. In particular, it is

62

possible to build τ = (Nodes,Edges, e-idx, s, f) so that, for every (i, j) ∈ B(E)1580

and every node n ∈ Nodes, with e-idx(n) = i, the number of children of n

coincides with the number of expr j intervals contained in the expr i interval

[s(n)− 1, f(n)− 1]. Now, let (i, j) ∈ B(E). By M, [0, n] |= Φ
(i,j)
B , we have that

properties 1–6 from Section 6 hold with respect to M . Consequently, as shown

in Section 6 itself, it is possible to find a bound K ′ ∈ N and a point x ∈ N1585

such that every expr i interval starting after x contains at most K ′ many expr j

intervals. Since there are only finitely many expr i intervals starting not later

than x (as expr i intervals do not intersect each other), there is a bound K ∈ N

such that every expr i interval contains at mostK many expr j intervals. Thus, it

holds that max(count(i)) ≤ K, which means that count(i) is a B-sequence.1590

Theorem 4 immediately follows from Lemmas 1(b), 5, and 6.

Theorem 4. Let E be an ωB-regular expression over Σ. Then, L(E) = {w ∈
Σω | w ≈M andM is a model such thatM, [0, n] |= ϕE∗∧ϕΣ∧

∧
(i,j)∈B(E) Φ

(i,j)
B

for some n ∈ N}.

Appendix D. Soundness of the encoding of ωS-regular expressions1595

In this appendix, we prove the soundness of the encoding of ωS-regular

expressions in AB∼. We proceed analogously to the previous appendix.

Lemma 7. Let E be an ωS-regular expression over Σ and w ∈ Σω be an infinite

word. If there exists an E∗ parse tree for w such that count(i) is either a finite

sequence or an S-sequence, for every ei ∈ sub(E), with ei = eSj , then there is an1600

interval model M such that w ≈M and M, [0, n] |= ϕE∗ ∧ϕΣ∧
∧

(i,j)∈S(E) Φ
(i,j)
S

for some n ∈ N.

Proof. Let τ = (Nodes,Edges, e-idx, s, f) be an E∗ parse tree for w such that

count(i) is either finite or an S-sequence, i.e., no number occurs infinitely often

in it, for every ei ∈ sub(E), with ei = eSj1605

By Theorem 3 and Lemma 1(a), there is a model M ′ = 〈I(N), A,B,∼, V ′〉
such that w ≈ M ′ and M ′, [0, n] |= ϕE∗ ∧ ϕΣ, for some n ∈ N. We define

63

a new valuation function V that extends V ′ (i.e., V ′([x, y]) ⊆ V ([x, y]) for all

[x, y] ∈ I(N)) by providing an interpretation of the new proposition letters phj

and newj , as well as the one of ∼, used in the encoding given in Section 7,1610

so that the resulting model M = 〈I(N), A,B,∼, V 〉 is such that w ≈ M and

M, [0, n] |= ϕE∗ ∧ ϕΣ ∧
∧

(i,j)∈S(E) Φ
(i,j)
S . Since V extends V ′, it clearly holds

that w ≈ M and M, [0, n] |= ϕE∗ ∧ ϕΣ. Thus, we only have to show that

M, [0, n] |= Φ
(i,j)
S , for every (i, j) ∈ S(E). As in the previous section, it is enough

to show how to define a valuation function for a generic element of S(E). Thus,1615

let (i, j) ∈ S(E). If M ′, [0, n] 6|= [G]〈A〉〈A〉expr i ∧ 〈A〉[A][A](expr j → ¬π),

that is, there are only finitely many expr i intervals or infinitely many expr j

points, then, for every [x, y] ∈ I(N), we define V ([x, y]) = V ′([x, y]) if x 6= y,

and V ([x, y]) = V ′([x, y])∪{∼} otherwise , and it is immediate to see that Φ
(i,j)
S

is satisfied. Now, assume M ′, [0, n] |= [G]〈A〉〈A〉expr i ∧ 〈A〉[A][A](expr j →1620

¬π), that is, there are infinitely many expr i intervals but only finitely many

expr j points. Since M ′ is built from τ , we have that count(i) is infinite and

there are only finitely many nodes n such that e-idx(n) = j and s(n) = f(n).

Towards the definition of V , we introduce the following notation. For a node

n ∈ Nodes, we denote by |n| the number of children of n in τ . For h ∈ N>0, we1625

denote by nh the hth node n such that e-idx(n) = i, according to the ordering

produced by a DFS visit of τ . Moreover, we denote by nkh the kth child of nh,

for every k ∈ {1, . . . , |nh|}. Notice that e-idx(nkh) = j, for all h, k, and that,

since there are only finitely many expr j points in M , there exists an index h′

such that s(nkh) < f(nkh) holds for every h ≥ h′ and k ∈ {1, . . . , |nh|}. Observe,1630

also, that count(i) = 〈|nh|〉h∈N>0
. Since count(i) is an S-sequence, for every

natural number k there is a suffix of 〈|nh|〉h∈N>0 that only features numbers

greater than k. Thus, there exists an infinite increasing sequence of indexes

I = 〈I1, I2, . . .〉 such that I1 > h′ and, for every Im ∈ I, the suffix 〈|nh|〉h≥Im
of 〈|nh|〉h∈N>0

starting at Im only features numbers greater than m; formally1635

min(〈|nh|〉h≥Im) > m. Intuitively, if nh is such that h ≥ Im, then nh has more

than m children, and each such children nkh is such that s(nkh) < f(nkh).

We are now ready to define the new valuation function V . For every [x, y] ∈

64

I(N), we define V ([x, y]) as the unique set such that

• V ′([x, y]) ⊆ V ([x, y]),1640

• phj ∈ V ([x, y]) if and only if there is an index Im ∈ I and a node nkh, with

h ≥ Im and 2 ≤ k ≤ m, such that x = y = s(nkh),

• newj ∈ V ([x, y]) if and only if there is an index Im ∈ I such that x = y =

s(nmIm),

• ∼∈ V ([x, y]) if phj ∈ V [x, x], phj ∈ V [y, y], newj 6∈ V [y, y], and there are1645

nodes nkh and nk
′

h′ , with h′ = h + 1, k′ = k, x = s(nkh), and y = s(nk
′

h′)

– note that we only provide sufficient condition for the definition of ∼;
the full valuation is obtained by applying transitive closure (recall that ∼
encodes an equivalence relation).

It is easy to verify that, thanks to this definition of V , the interval model M =1650

〈I(N), A,B,∼, V 〉 is such that formulas encoding properties 1–4 in Section 7

hold true on [0, k] for every k ∈ N.

Therefore M, [0, n] |= Φ
(i,j)
S , and the thesis follows.

Lemma 8. Let E be an ωS-regular expression over Σ and w ∈ Σω be an

infinite word. If there is an interval model M such that w ≈M and M, [0, n] |=1655

ϕE∗ ∧ϕΣ ∧
∧

(i,j)∈S(E) Φ
(i,j)
S for some n ∈ N, then there exists an E∗ parse tree

for w such that count(i) is either a finite sequence or an S-sequence, for every

ei ∈ sub(E), with ei = eSj .

Proof. Since w ≈M andM, [0, n] |= ϕE∗∧ϕΣ, by Theorem 3 and Lemma 1(a) it

is possible to build fromM an E∗ parse tree τ for w. In particular, it is possible1660

to build τ = (Nodes,Edges, e-idx, s, f) so that, for every (i, j) ∈ S(E) and every

node n ∈ Nodes, with e-idx(n) = i, the number of children of n coincides with

the number of expr j intervals contained in the expr i interval [s(n) − 1, f(n) −
1]. Now, let (i, j) ∈ S(E). By M, [0, n] |= Φ

(i,j)
S , we have that M, [0, n] |=

[G]〈A〉〈A〉expr i ∧ 〈A〉[A][A](expr j → ¬π) → 〈B〉〈A〉〈A〉phj . We distin-1665

guish two possibilities, depending on whether M, [0, n] |= [G]〈A〉〈A〉expr i ∧

65

〈A〉[A][A](expr j → ¬π) or not. In the former case, M, [0, n] |= 〈B〉〈A〉〈A〉phj
holds as well, meaning that M features at least one phj point. We have already

shown in Section 7 that, as long as a model M features at lease one phj point,

properties 1–4 from Section 7 force it to also feature an infinite sequence of expr i1670

intervals that behave correctly according to the S-constructor. Therefore, such

a model M encodes an E∗ parse tree for w such that count(i) is an S-sequence.

If, instead, it is the case that M, [0, n] 6|= [G]〈A〉〈A〉expr i ∧ 〈A〉[A][A](expr j →
¬π), then there are only finitely many expr i intervals or infinitely many expr j

points. In the former case, count(i) is clearly finite, hence the thesis holds. In1675

the latter one, the thesis follows from Corollary 2 and Lemma 1(c).

Theorem 5 immediately follows from Lemmas 1(c), 7, and 8.

Theorem 5. Let E be an ωS-regular expression over Σ. Then, L(E) = {w ∈
Σω | w ≈M and M is a model such that M, [0, n] |= ϕE∗∧ϕΣ∧

∧
(i,j)∈S(E) Φ

(i,j)
S

for some n ∈ N}.1680

Appendix E. Soundness of the encoding of ωT -regular expressions

In this appendix, we prove the soundness of the encoding of ωT -regular

expressions in ABĀ∼. We follow the same path we followed in the previous

proofs of soundness.

Lemma 9. Let E be an ωT -regular expression over Σ and w ∈ Σω be an infinite1685

word. If there exists an E∗ parse tree for w such that count(i) is either a finite

sequence or a T -sequence, for every ei ∈ sub(E), with ei = eSj , then there is an

interval model M such that w ≈M and M, [0, n] |= ϕE∗ ∧ϕΣ∧
∧

(i,j)∈T (E) Φ
(i,j)
T

for some n ∈ N.

Proof. Let τ = (Nodes,Edges, e-idx, s, f) be an E∗ parse tree for w such that1690

count(i) is either finite or a T -sequence, i.e., it features infinitely many values

occurring infinitely often, for every ei ∈ sub(E), with ei = eTj .

By Theorem 3 and Lemma 1(a), there is a modelM ′ = 〈I(N), A,B, Ā,∼, V ′〉
such that w ≈M ′ and M ′, [0, n] |= ϕE∗ ∧ ϕΣ, for some n ∈ N. We define a new

66

valuation function V that extends V ′ (i.e., V ′([x, y]) ⊆ V ([x, y]) for all [x, y] ∈1695

I(N)) by providing an interpretation of the new proposition letters used in the en-

coding given in Section 8, so that the resulting modelM = 〈I(N), A,B, Ā,∼, V 〉
is such that w ≈M andM, [0, n] |= ϕE∗∧ϕΣ∧

∧
(i,j)∈T (E) Φ

(i,j)
T . Since V extends

V ′, it clearly holds that w ≈M andM, [0, n] |= ϕE∗∧ϕΣ. Thus, we only have to

show that M, [0, n] |= Φ
(i,j)
T , for every (i, j) ∈ T (E). As in the previous section,1700

it is enough to show how to define a valuation function for a generic element of

T (E). Thus, let (i, j) ∈ T (E). IfM ′, [0, n] |= 〈A〉[A][A]¬expr i (the first disjunct
of Φ

(i,j)
T is satisfied), then M ′, [0, n] |= Φ

(i,j)
T and we are done. Otherwise, there

are infinitely many expr i intervals, and thus count(i) is a T -sequence, meaning

that it features infinitely many values occurring infinitely often. It is possible to1705

provide an evaluation of proposition letters ∼, phj , blj , pj , qj , conf j , and inj , so
that both Φ

(i,j)
∞ and Φinj are satisfied. A formal definition would be too much

pedantic and technical, so we omit it. Intuitively, the interval model is divided

into configurations (intervals whose endpoints are consecutive conf j points),

and each configuration features one block (interval whose endpoints are consec-1710

utive blj points) more than the previous one. Each block in each configuration is

instantiated (using proposition letters phj and inj) with an expr i interval whose

number of children is one of the values occurring infinitely often in count(i). It

is not difficult to convince oneself that one such models satisfies Φ
(i,j)
∞ and Φinj .

Then, if model M ′ features infinitely many expr j points, then M satisfies the1715

second disjunct of Φ
(i,j)
T (Φ(i,j)

∞ ∧Φinj ∧ [G]〈A〉〈A〉(π ∧ expr j) ∧ 〈B〉〈A〉〈A〉inj ∧
[G](inj → 〈A〉(¬π ∧ ∼ ∧ 〈A〉inj))), otherwise it satisfies the third one

(Φ(i,j)
∞ ∧Φinj ∧ 〈A〉[A][A](expr j → ¬π) ∧ [G](phj → 〈A〉(¬π ∧ ∼ ∧〈A〉inj))).
Therefore M, [0, n] |= Φ

(i,j)
S , and the thesis follows.

Lemma 10. Let E be an ωT -regular expression over Σ and w ∈ Σω be an1720

infinite word. If there is an interval model M such that w ≈M and M, [0, n] |=
ϕE∗ ∧ϕΣ ∧

∧
(i,j)∈T (E) Φ

(i,j)
T for some n ∈ N, then there exists an E∗ parse tree

for w such that count(i) is either a finite sequence or a T -sequence, for every

ei ∈ sub(E), with ei = eSj .

67

Proof. Since w ≈M and M, [0, n] |= ϕE∗ ∧ ϕΣ, by Theorem 3 and Lemma 1(a)1725

it is possible to build from M an E∗ parse tree τ for w. In particular, it is

possible to build τ = (Nodes,Edges, e-idx, s, f) so that, for every (i, j) ∈ T (E)

and every node n ∈ Nodes, with e-idx(n) = i, the number of children of n

coincides with the number of expr j intervals contained in the expr i interval

[s(n) − 1, f(n) − 1]. Now, let (i, j) ∈ T (E). Since M, [0, n] |= Φ
(i,j)
T , we have1730

three possibilities, depending on whether the first, second, or third disjunct of

Φ
(i,j)
T holds true.

If the first disjunct (〈A〉[A][A]¬expr i) is true, then count(i) is finite, and we

are done. If the second disjunct (Φ(i,j)
∞ ∧ Φinj ∧ [G]〈A〉〈A〉(π ∧ expr j) ∧

〈B〉〈A〉〈A〉inj ∧ [G](inj → 〈A〉(¬π ∧ ∼ ∧ 〈A〉inj))) is satisfied, then there are1735

infinitely many expr j points and there is at least one value occurring infinitely

often in count(i); the thesis follows from Corollary 2, which establishes that τ

can be suitably adapted so to make count(i) a T -sequence. Finally, if the third

disjunct (Φ(i,j)
∞ ∧ Φinj ∧ 〈A〉[A][A](expr j → ¬π) ∧ [G](phj → 〈A〉(¬π ∧ ∼

∧〈A〉inj))) is fulfilled, then, as we have already shown in Section 8, there are in-1740

finitely many values occurring infinitely often in count(i), meaning that count(i)

is a T -sequence.

Theorem 6 below immediately follows from Lemmas 1(d), 9, and 10.

Theorem 6. Let E be an ωT -regular expression over Σ. Then, L(E) = {w ∈
Σω | w ≈M and M is a model such that M, [0, n] |= ϕE∗∧ϕΣ∧

∧
(i,j)∈T (E) Φ

(i,j)
T1745

for some n ∈ N}.

68

[1] A. Montanari, P. Sala, Interval logics and ωB-regular languages, in: Proc.

of the 7th LATA, Vol. 7810 of LNCS, Springer, 2013, pp. 431–443. doi:

10.1007/978-3-642-37064-9_38.

[2] D. Della Monica, A. Montanari, P. Sala, Extended omega-regular languages1750

and interval temporal logic, 22nd Italian Conference on Theoretical Com-

puter Science (ICTCS) (2021).

[3] J. R. Büchi, On a decision method in restricted second order arithmetic,

in: Logic, Methodology and Philosophy of Science (Proc. 1960 Internat.

Congr.), Stanford Univ. Press, Stanford, Calif., 1962, pp. 1–11.1755

[4] R. McNaughton, Testing and generating infinite sequences by a fi-

nite automaton, Inf. Control. 9 (5) (1966) 521–530. doi:10.1016/

S0019-9958(66)80013-X.

URL https://doi.org/10.1016/S0019-9958(66)80013-X

[5] M. O. Rabin, Decidability of second-order theories and automata on infinite1760

trees, Transactions of the American Mathematical Society 141.

URL http://www.jstor.org/stable/1995086

[6] J. Hopcroft, Introduction to automata theory, languages, and computation,

Addison-Wesley, Boston, 2001.

[7] M. Bojańczyk, A bounding quantifier, in: CSL, Vol. 3210 of LNCS,1765

Springer, 2004, pp. 41–55. doi:10.1007/978-3-540-30124-0_7.

[8] M. Bojańczyk, Weak MSO with the unbounding quantifier, Theory of Com-

puting Systems 48 (3) (2011) 554–576. doi:10.1007/s00224-010-9279-2.

[9] M. Bojańczyk, T. Colcombet, Bounds in ω-regularity, in: LICS, 2006, pp.

285–296. doi:10.1109/LICS.2006.17.1770

[10] M. Bojańczyk, T. Colcombet, Boundedness in languages of infinite words,

Logical Methods in Computer Science Volume 13, Issue 4.

69

http://dx.doi.org/10.1007/978-3-642-37064-9_38
http://dx.doi.org/10.1007/978-3-642-37064-9_38
http://dx.doi.org/10.1007/978-3-642-37064-9_38
https://doi.org/10.1016/S0019-9958(66)80013-X
https://doi.org/10.1016/S0019-9958(66)80013-X
https://doi.org/10.1016/S0019-9958(66)80013-X
http://dx.doi.org/10.1016/S0019-9958(66)80013-X
http://dx.doi.org/10.1016/S0019-9958(66)80013-X
http://dx.doi.org/10.1016/S0019-9958(66)80013-X
https://doi.org/10.1016/S0019-9958(66)80013-X
http://www.jstor.org/stable/1995086
http://www.jstor.org/stable/1995086
http://www.jstor.org/stable/1995086
http://www.jstor.org/stable/1995086
http://dx.doi.org/10.1007/978-3-540-30124-0_7
http://dx.doi.org/10.1007/s00224-010-9279-2
http://dx.doi.org/10.1109/LICS.2006.17

[11] D. Barozzini, D. de Frutos-Escrig, D. Della Monica, A. Montanari, P. Sala,

Beyond ω-regular languages: ωT -regular expressions and their automata

and logic counterparts, Theor. Comput. Sci. 813 (2020) 270–304.1775

[12] A. Montanari, P. Sala, Adding an equivalence relation to the interval logic

ABB̄: complexity and expressiveness, in: Proc. of the 28th LICS, IEEE

Computer Society, 2013, pp. 193–202. doi:10.1109/LICS.2013.25.

[13] B. C. Moszkowski, Z. Manna, Reasoning in interval temporal logic, in:

Proc. of Workshop on Logic of Programs, Vol. 164 of LNCS, Springer,1780

1983, pp. 371–382. doi:10.1007/3-540-12896-4_374.

[14] J. F. Allen, Maintaining knowledge about temporal intervals, Comm. of

the ACM 26 (11) (1983) 832–843. doi:10.1145/182.358434.

[15] J. Y. Halpern, Y. Shoham, A propositional modal logic of time intervals,

Journal of the ACM 38 (4) (1991) 935–962. doi:10.1145/115234.115351.1785

[16] B. C. Moszkowski, Reasoning about digital circuits, Ph.D. thesis, Depart-

ment of Computer Science, Stanford University, Stanford, CA (1983).

[17] K. Lodaya, Sharpening the undecidability of interval temporal logic, in:

Proc. of the 6th Asian Computing Science Conference – Advances in Com-

puting Science – ASIAN, Vol. 1961 of LNCS, Springer, 2000, pp. 290–298.1790

doi:10.1007/3-540-44464-5_21.

[18] D. Bresolin, D. Della Monica, A. Montanari, P. Sala, G. Sciavicco, Interval

temporal logics over strongly discrete linear orders: Expressiveness and

complexity, Theor. Comput. Sci. 560 (2014) 269–291.

[19] D. Bresolin, D. Della Monica, A. Montanari, P. Sala, G. Sciavicco, Decid-1795

ability and complexity of the fragments of the modal logic of Allen’s rela-

tions over the rationals, Inf. Comput. 266 (2019) 97–125. doi:10.1016/j.

ic.2019.02.002.

70

http://dx.doi.org/10.1109/LICS.2013.25
http://dx.doi.org/10.1007/3-540-12896-4_374
http://dx.doi.org/10.1145/182.358434
http://dx.doi.org/10.1145/115234.115351
http://dx.doi.org/10.1007/3-540-44464-5_21
http://dx.doi.org/10.1016/j.ic.2019.02.002
http://dx.doi.org/10.1016/j.ic.2019.02.002
http://dx.doi.org/10.1016/j.ic.2019.02.002

[20] A. Montanari, G. Puppis, P. Sala, G. Sciavicco, Decidability of the interval

temporal logic ABB̄ over the natural numbers, in: Proc. of the 27th STACS,1800

Vol. 5 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2010,

pp. 597–608. doi:10.4230/LIPIcs.STACS.2010.2488.

[21] A. Montanari, G. Puppis, P. Sala, Maximal decidable fragments of Halpern

and Shoham’s modal logic of intervals, in: Proc. of the 37th ICALP,

Part II, Vol. 6199 of LNCS, Springer, 2010, pp. 345–356. doi:10.1007/1805

978-3-642-14162-1_29.

[22] D. Della Monica, A. Montanari, P. Sala, The importance of the past in

interval temporal logics: The case of propositional neighborhood logic, in:

Logic Programs, Norms and Action - Essays in Honor of Marek J. Sergot

on the Occasion of His 60th Birthday, Vol. 7360 of LNCS, Springer, 2012,1810

pp. 79–102. doi:10.1007/978-3-642-29414-3_6.

71

http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2488
http://dx.doi.org/10.1007/978-3-642-14162-1_29
http://dx.doi.org/10.1007/978-3-642-14162-1_29
http://dx.doi.org/10.1007/978-3-642-14162-1_29
http://dx.doi.org/10.1007/978-3-642-29414-3_6

	Introduction
	Preliminaries
	Extended omega-regular languages
	Parse trees

	Interval temporal logics AB, ABAbar, AB~, and ABAbar~
	The logic AB
	The logic ABAbar
	The logic ABsim
	The logic ABAbarsim

	Linking omega-words and interval structures

	Some useful properties of BST-regular languages
	Encoding regular and omega-regular languages in AB
	Encoding regular languages in AB
	Encoding omega-regular languages in AB

	Beyond omega-regular languages
	omegaB-regular languages in ABAbar
	omegaS-regular languages in AB~
	omegaT-regular languages in ABAbar~
	Conclusions
	Proofs of Section 3
	Soundness of the encoding of regular expressions
	Soundness of the encoding of omegaB-regular expressions
	Soundness of the encoding of omegaS-regular expressions
	Soundness of the encoding of omegaT-regular expressions

