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Abstract

In the last years, some extensions of ω-regular languages, namely, ωB-regular
(ω-regular languages extended with boundedness), ωS-regular (ω-regular lan-
guages extended with strong unboundedness), and ωBS-regular languages (the
combination of ωB- and ωS-regular ones), have been proposed in the litera-
ture. While the first two classes satisfy a generalized closure property, which
states that the complement of an ωB-regular (resp., ωS-regular) language is an
ωS-regular (resp., ωB-regular) one, the last class is not closed under complemen-
tation. The existence of non-ωBS-regular languages that are the complements
of some ωBS-regular ones and express fairly natural asymptotic behaviors mo-
tivates the search for other significant classes of extended ω-regular languages.
In this paper, we present the class of ωT -regular languages, which includes
meaningful languages that are not ωBS-regular. We define this new class of
languages in terms of ωT -regular expressions. Then, we introduce a new class
of automata (counter-check automata) and we prove that (i) their emptiness
problem is decidable in PTIME, and (ii) they are expressive enough to capture
ωT -regular languages. We also provide an encoding of ωT -regular expressions
into S1S+U. Finally, we investigate a stronger variant of ωT -regular languages
(ωTs-regular languages). We characterize the resulting class of languages in
terms of ωTs-regular expressions, and we show how to map it into a suitable
class of automata, called counter-queue automata. We conclude the paper with
a comparison of the expressiveness of ωT - and ωTs-regular languages and of the
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corresponding automata.

Keywords: ω-regular languages, ω-regular expressions, counter automata,
monadic second-order logic of one successor

1. Introduction

Regular languages of infinite words (ω-regular languages for short) play a
fundamental role in computer science, as they provide a natural setting for the
specification and verification of nonterminating finite-state systems. Since the
seminal work by Büchi [3], McNaughton [4], and Elgot and Rabin [5] in the5

sixties, a great research effort has been devoted to the theory and the appli-
cations of ω-regular languages. Equivalent characterisations of ω-regular lan-
guages have been given in terms of formal languages (ω-regular expressions),
automata (Büchi, Rabin, and Muller automata), classical logic (weak/strong
monadic second-order logic of one successor, WS1S/S1S for short), and tempo-10

ral logic (Quantified Linear Temporal Logic, Extended Temporal Logic) [6].
Recently, it has been shown that ω-regular languages can be extended in

some reasonable ways, preserving their decidability and some of their closure
properties [7, 8, 9, 10]. As an example, ω-regular languages can be extended
with the ability of constraining the distance between consecutive occurrences15

of a given symbol to be (un)bounded (in the limit). Boundedness comes into
play in the study of finitary fairness as opposed to the classic notion of fairness,
widely used in automated verification of concurrent systems. According to the
latter, no individual process in a multi-process system may be ignored for ever;
finitary fairness imposes the stronger constraint that every enabled transition is20

executed within at most b time-units, where b is an unknown, constant bound.
In [11], it is shown that finitary fairness enjoys some desirable mathematical
properties that are violated by the weaker notion of fairness, and yet it cap-
tures all reasonable schedulers’ implementations. The same property has been
investigated from a logical perspective in [12], where the logic PROMPT-LTL is25

introduced. Roughly speaking, PROMPT-LTL extends LTL with the prompt-
eventually operator, which states that an event will happen within the next
b time-units, b being an unknown, constant bound. An analogous extension
has been proposed for the propositional interval logic of temporal neighborhood
PNL in [13].30

From the point of view of formal languages, the proposed extensions pair
the Kleene star (.)∗ with bounded/unbounded variants of it. Intuitively, the
bounded exponent (.)B (akaB-constructor) constrains parts of the input word to
be of bounded size, while the strongly unbounded exponent (.)S (S-constructor)
forces parts of the input word to be arbitrarily large. The two extensions have35

been studied both in isolation (ωB- and ωS-regular expressions) and in con-
junction (ωBS-regular expressions). Equivalent characterisations of extended
ω-regular languages are given in [7, 8] in terms of automata (ωB-, ωS-, and
ωBS-automata) and classical logic (fragments of WS1S+U, i.e., the extension
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of WS1S with the unbounding quantifier U [14], that allows one to express40

properties which are satisfied by finite sets of arbitrarily large size).1 In [8],
the authors also show that the complement of an ωB-regular language is an
ωS-regular one and vice versa, and that ωBS-regular languages, featuring both
B- and S-constructors, strictly extend ωB- and ωS-regular languages and are
not closed under complementation.45

In this paper, we focus on those ω-languages which are complements of ωBS-
regular ones, but are not ωBS-regular. We start with an in-depth analysis of
one such language [8], that allows us to identify a new meaningful extension of
ω-regular languages including it (ωT -regular languages), obtained by adding a
new, fairly natural constructor (.)T to the standard constructors of ω-regular50

expressions. Among others, an interesting feature of (.)T is that pairing (.)B

and (.)S with it one can capture all possible ways of instantiating ∗-expressions
(this is not the case with (.)B and (.)S only). In view of that, it can be said
that (.)T “complements” (.)B and (.)S with respect to (.)∗.

We provide a characterization of ωT -regular languages in terms of ωT -regular55

expressions, which benefits from a generalization (conservative with respect to
ωBS-regular languages) of the semantics of the mix/shuffle operator + given
in [7, 8]. Moreover, we introduce a new class of automata, called counter-
check automata, that are expressive enough to capture ωT -regular languages,
and we show that their emptiness problem is decidable in PTIME. We also60

provide an encoding of ωT -regular expressions (languages) into S1S+U. Finally,
we study a stronger variant of (.)T , denoted by (.)Ts , and we show that, to a large
extent, the results obtained for (.)T can be replicated for it. In particular, it is
possible to introduce a new class of automata, called counter-queue automata,
that generalize counter-check ones, whose emptiness problem can be proved to65

be decidable in 2ETIME and which are expressive enough to capture ω-regular
languages extended with (.)Ts .

The paper is organized as follows. In Section 2, we introduce and discuss
existing extensions of ω-regular languages with a special attention to ωBS-
regular languages. Then, in Section 3, we define and study the new class of70

ωT -regular languages. Next, in Section 4, we define counter-check automata
(CCA), we prove that their emptiness problem is decidable in PTIME, and
we provide an encoding of ωT -regular languages into CCA. In Section 5, we
show that ωT -regular languages can be defined in S1S+U. In Section 6, we
define counter-queue automata (CQA), we prove that their emptiness problem75

is decidable in 2ETIME, and we provide an encoding of ωTs-regular languages
into CQA. Finally, in Section 7, we compare the expressiveness of ωT - and ωTs-
regular languages and of CCA and CQA. Conclusions provide an assessment of
the work done and outline future research directions.

This paper is an extended and merged version of [1] and [2]. A prelimi-80

nary partial account of the work on the T (resp., Ts) operator appeared in [1]
(resp., [2, 16]). Besides detailed proofs of all the results and many other specific

1Undecidability of full S1S+U has been shown in [15].
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improvements, which were missing in the conference papers [1, 2], we added
several results in Section 2 (among others, the interleaving semantics of the
shuffle operator + and the analysis of its relationships with the original mix one85

are completely new) and the whole Section 7 (comparison between T/CCA and
Ts/CQA).

2. Beyond ω-regularity: ωB-, ωS-, and ωBS-regular languages

In this section, we give a short account of the extensions of ω-regular lan-
guages proposed in the literature (details can be found in [7, 8, 9]).90

It is well known that ω-regular languages can be defined by means of ω-
regular expressions. By exploiting such a characterization, any ω-word of an ω-
regular language can be viewed as the concatenation of a finite prefix, belonging
to a regular language, and an infinite sequence of finite words of another regular
language (we call each of these words an ω-iteration). An interesting case is95

that of ω-iterations consisting of a finite sequence of words generated by an
occurrence of the Kleene star operator (.)∗, aka ∗-constructor, in the scope of the
ω-constructor (.)ω, e.g., the ω-regular expression (a∗b)ω generates the language
of ω-words featuring an infinite sequence of ω-iterations, each one consisting of
a finite (possibly empty) sequence of a’s followed by exactly one b. Given an ω-100

regular expression E featuring an occurrence of (.)∗ (sub-expression R∗) in the
scope of (.)ω and an ω-word w belonging to the language of E, we refer to the
sequences of the sizes of the (maximal) blocks of consecutive iterations of R in
the different ω-iterations as the sequences of exponents of R in (the ω-iterations
of) w.2 For instance, let w = abaabaaab . . . be an ω-word generated by (a∗b)ω.105

The sequence of exponents of a in w, which, in this case, is unique, is 1, 2, 3, . . ..
Sometimes, we will denote words in a compact way by explicitly indicating the
exponents of a sub-expression, e.g., we will write w as a1ba2ba3b . . ..

Given an expression E, let L(E) be the language defined by E. With a little
abuse of notation, we will sometimes identify a language with the expression110

defining it, and vice versa, e.g., we will write “language (a∗b)ω” for “language
L((a∗b)ω)”. Notice that (.)∗ allows one to impose the existence of a finite se-
quence of words (described by its argument expression) within each ω-iteration,
but it cannot be used to express properties of sequences of exponents of its argu-
ment expression in the ω-iterations of an ω-word. To overcome such a limitation,115

some meaningful extensions of ω-regular expressions have been investigated in
the last years, that make it possible to constrain the behavior of (.)∗ in the limit.

A first class of extended ω-regular languages is that of ωB-regular languages,
that allow one to impose boundedness conditions. ωB-regular expressions are
obtained from ω-regular ones by adding a variant of (.)∗, called B-constructor120

and denoted by (.)B , to be used in the scope of (.)ω. The bounded exponent
B allows one to constrain the argument R of the expression RB to be repeated

2We refer to sequences of exponents as, in general, there is more than one such sequence.
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in each ω-iteration a number of times less than a certain bound fixed for the
whole ω-word. As an example, the expression (aBb)ω denotes the language of ω-
words in (a∗b)ω for which there is an upper bound on the number of consecutive125

occurrences of a, that is, the sequence of exponents of a is bounded. As the
bound may vary from word to word, the language is not ω-regular.

The class of ωS-regular languages extends that of ω-regular ones with strong
unboundedness (also referred to as strict unboundedness in [8]). By analogy with
ωB-regular expressions, ωS-regular expressions are obtained from ω-regular130

ones by adding a variant of (.)∗, called S-constructor and denoted by (.)S ,
to be used in the scope of (.)ω. For every ωS-regular expression containing the
sub-expression RS and every natural number k > 0, the strongly unbounded
exponent S constrains the number of ω-iterations in which the argument R is
repeated at most k times to be finite. Let us consider ω-words that feature135

an infinite number of instantiations of the expression RS , that is, ω-words for
which there exists an infinite number of ω-iterations including a sequence of
consecutive R’s generated by RS . It can be easily checked that in these words
the sequence of exponents of R tends towards infinity, due to the S-constructor.
As an example, the expression (aSb)ω denotes the language of ω-words w in140

(a∗b)ω such that, for any k > 0, there exists a suffix of w that only features
maximal sequences of consecutive a’s that are longer than k.

Finally, ωBS-regular languages are generated by ωBS-regular expressions,
which pair the operators of ω-regular expressions with both (.)B and (.)S .

2.1. ωBS-regular expressions145

In the following, we give a detailed account of ωBS-regular expressions,
which are built on top of BS-regular expressions, just as ω-regular expressions
are built on top of regular ones. Let Σ be a finite, nonempty alphabet. A
BS-regular expression over Σ is defined by the grammar [8]:

e ::= ∅ | a | e · e | e+ e | e∗ | eB | eS , where a ∈ Σ150

Sometimes, we will omit the operator ·, thus writing, e.g., ee for e · e.
BS-regular expressions differ from regular ones in that they allow construc-

tors (.)B and (.)S . Since these operators constrain the behavior of the sequence
of ω-iterations in the limit, it is not possible to simply define the semantics
of BS-regular expressions in terms of languages of (finite) words, and then to155

obtain ωBS-regular languages through infinitely many, unrelated iterations of
such words. The semantics of BS-regular expressions is given in terms of lan-
guages of infinite sequences of finite words, and suitable constraints are imposed
on such sequences to capture the intended meaning of (.)B and (.)S .

Let N be the set of natural numbers and N>0 = N \ {0}. For an infinite160

sequence ~u of finite words over Σ and i ∈ N>0, we denote by ui the i-th element
of ~u. The semantics of BS-regular expressions over Σ is defined as follows:

• L(∅) = ∅;

• for a ∈ Σ, L(a) only contains the infinite sequence of the one-letter word
a, that is, L(a) = {(a, a, a, . . .)};165
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• L(e1 · e2) = {~w | ∀i.wi = ui · vi, ~u ∈ L(e1), ~v ∈ L(e2)};

• L(e1 + e2) = {~w | ∀i.wi ∈ {ui, vi}, ~u,~v ∈ L(e1) ∪ L(e2)};

• L(e∗) = {(uf(0)u2 . . . uf(1)−1, uf(1) . . . uf(2)−1, . . .) | ~u ∈ L(e) and f : N→
N>0 is a nondecreasing function with f(0) = 1};

• L(eB) = {(uf(0)u2 . . . uf(1)−1, uf(1) . . . uf(2)−1, . . .) | ~u ∈ L(e) and f : N→170

N>0 is a nondecreasing function, with f(0) = 1, such that ∃n ∈ N ∀i ∈
N.(f(i+ 1)− f(i) < n)};

• L(eS) = {(uf(0)u2 . . . uf(1)−1, uf(1) . . . uf(2)−1, . . .) | ~u ∈ L(e) and f : N→
N>0 is a nondecreasing function, with f(0) = 1, such that ∀n ∈ N ∃k ∈
N ∀i > k(f(i+ 1)− f(i) > n)}.175

It is worth noticing that the constructor + must not be thought of as performing
the union of two languages, but rather as a “shuffling operator” that mixes ω-
iterations belonging to the two different (sub)languages. Unlike the case of word
languages, indeed, when applied to languages of word sequences, it does not
return the union of the two argument languages. As an example, L(a)∪L(b) (180

L(a+b), as witnessed by the word sequence (a, b, a, b, a, b, . . .). In general, for all
BS-regular expressions e1, e2, it holds that L(e1) ∪ L(e2) ⊆ L(e1 + e2). Notice
also that e1 + e2 allows for mixing two word sequences ~u and ~v belonging to the
same expression e1 (or e2). This is necessary in order for the empty language to
behave as the identity, i.e., e + ∅ = e for all e (by imposing ~u ∈ e1 and ~v ∈ e2,185

the empty language behaves as the absorbing element, i.e., e+ ∅ = ∅ for all e).
Given a sequence ~v = (uf(0)u2 . . . uf(1)−1, uf(1) . . . uf(2)−1, . . .) ∈ eop , with

~u ∈ e and op ∈ {∗, B, S}, we define the sequence of exponents of e in ~v, denoted

by N(~v), as the sequence
(
f(i+1)−f(i)

)
i∈N

. While the ∗-constructor does not

impose any constraint on N(~v), the B-constructor forces it to be bounded (in190

such a case, we say that ~v enjoys the B-property) and the S-constructor forces it
to be strongly unbounded, that is, its limit inferior is infinite (equivalently, the
S-constructor imposes that no exponent occurs infinitely often in the sequence—
we say that ~v enjoys the S-property).

The ω-constructor turns languages of infinite word sequences into languages195

of ω-words. Let e be a BS-regular expression. The semantics of the ω-
constructor is defined as follows:

• L(eω) = {w | |w| =∞ and w = u1u2u3 . . . for some ~u ∈ L(e)}.

ωBS-expressions are defined by the following grammar (we denote languages
of word sequences by lowercase letters, such as e, e1, . . . , and languages of words200

by uppercase ones, such as E, E1, . . . , R, R1, . . . ):
E ::= E + E | R · E | eω

where R is a regular expression, e is a BS-regular expression, and + and
· respectively denote union and concatenation of word languages (formally,
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L(E1 +E2) = L(E1)∪L(E2) and L(E1 ·E2) = {u · v | u ∈ L(E1), v ∈ L(E2)}).3205

As we did for languages of word sequences, we will sometimes omit the operator
· between word languages.

2.2. The shuffle operator +

Some remarks are in order about the shuffle operator +. (As a matter of
fact, + is referred to as mix operator in [8, 9]; we find the term “shuffle” a better210

fit in view of the considerations below and the new conservative semantics of the
operator arising from them.) We already pointed out that its semantics is quite
different from the one it has in the realm of standard ω-regular expressions. In
the following, we state some fundamental properties of + that are instrumental
to a generalization of its semantics (see Section 3), which is conservative with215

respect to the one originally given in [8, 9].
To start with, we define the notion of selection function that allows us to

provide an alternative, equivalent characterization of +.
A selection function is a function g : N>0 → {1, 2}. We say that g is:

• 1-stable, if there is k ∈ N>0 such that g(x) = 1 for all x > k,220

• 2-stable, if there is k ∈ N>0 such that g(x) = 2 for all x > k, or

• alternating, if it is neither 1-stable nor 2-stable.

Definition 1 (mix/shuffle). Let g be a selection function, and ~v1 =
(v1

1 , v
1
2 , . . .) and ~v2 = (v2

1 , v
2
2 , . . .) be two word sequences. We define

g-mix (~v1, ~v2) as the word ~v = (v1, v2, . . .), where vi = v
g(i)
i for all i ∈225

N>0. We define g-shuffle(~v1, ~v2) as the word ~v = (v1, v2, . . .), where vi =

v
g(i)
|{j∈N>0|j≤i and g(j)=g(i)}| for all i ∈ N>0. Finally, we say that ~v is a mix (resp.,

shuffle) of ~v1 and ~v2 if there is a selection function g such that g-mix (~v1, ~v2) = ~v
(resp., g-shuffle(~v1, ~v2) = ~v).

Proposition 1. For any BS-regular expression e1 + e2, it holds that ~v =230

(v1, v2, . . .) ∈ L(e1 + e2) if and only if there are two word sequences ~v1 =
(v1

1 , v
1
2 , . . .) and ~v2 = (v2

1 , v
2
2 , . . .), with ~v1, ~v2 ∈ L(e1) ∪ L(e2), such that ~v is

a mix of ~v1 and ~v2.

Intuitively, there is a selection function g that, for every i ∈ N>0, picks the
element used to fill position i of ~v ∈ L(e1 +e2), which is the ith element of either235

~v1 or ~v2. Notice that elements that are not picked are discharged. Consider, for
instance, the expression e = a∗+b∗ and the word sequence ~v = (a1, b2, a3, b4, . . .).
Clearly, ~v ∈ L(e), as witnessed by sequences ~v1 = (a1, a2, a3, . . .) ∈ L(a∗) and
~v2 = (b1, b2, b3, . . .) ∈ L(b∗), and selection function g, with g(i) = 1 if i is
odd and g(i) = 2 if i is even. Elements a2, a4, a6, . . . (resp., b1, b3, b5) from240

sequence ~v1 (resp., ~v2) are discharged, meaning that they never appear in ~v.

3Notice the abuse of notation with the previous definition of the operators + and · over
languages of word sequences.

7



Roughly speaking, both sequences ~v1 and ~v2 contain holes, that is, finite blocks
of adjacent elements that are discarded.

The following subsequence and supersequence closure properties of BS-
regular expressions can be easily proved by structural induction.245

Proposition 2 (Subsequence closure for BS-regular expressions [9]). Let e be
a BS-regular expression and ~v ∈ L(e). Then, for every infinite subsequence ~u
of ~v, it holds that ~u ∈ L(e).

Notice that subsequence closure implies suffix closure (if a word sequence belongs
to a given BS-regular language, then all of its suffixes belong to it).250

Proposition 3 (Supersequence closure for BS-regular expressions). Let e be a
BS-regular expression and ~v ∈ L(e). Then, it is possible to extend ~v by inserting
arbitrarily many finite words at arbitrarily chosen positions (possibly infinitely
many) in such a way that the resulting sequence belongs to L(e).

It is worth pointing out that while subsequence closure is universal (it states255

a property of all subsequences), supersequence one is existential (it guarantees
the existence of supersequences).

Thanks to Propositions 2 and 3, Proposition 1 can be reformulated as follows.

Proposition 4. For any BS-regular expression e1 + e2, it holds that ~v =
(v1, v2, . . .) ∈ L(e1 + e2) if and only if there are two word sequences ~v1 =260

(v1
1 , v

1
2 , . . .) and ~v2 = (v2

1 , v
2
2 , . . .), with ~v1, ~v2 ∈ L(e1) ∪ L(e2), such that ~v is

a shuffle of ~v1 and ~v2.

Proposition 4 can be read as follows: a word sequence ~v belongs to the BS-
regular language e1 +e2 if it is witnessed by two sequences ~v1, ~v2 ∈ L(e1)∪L(e2)
and a selection function g that, in order to fill position i of ~v, chooses an element265

from either ~v1 or ~v2 without discharging any element (except, possibly, an entire
infinite suffix), that is, without creating any holes. However, the sequence ~v
cannot be, in general, built from these two sequences ~v1 and ~v2 by means of +.

The existence of two sequences in L(e1)∪L(e2) whose shuffle generates the
sequence in L(e1 + e2) is at the basis of the new semantics of + we will give270

in the next section. We will use it in the definition of ωT -regular languages;
moreover, by exploiting Proposition 4, we will prove that replacing the original
semantics of + by the new one does not change the class of languages captured
by ωBS-regular expressions.

2.3. ωBS-regular languages and closure under complementation275

One of the deepest technical result in the area is the following theorem, by
Bojańczyk and Colcombet [8].

Theorem 1 ([8, Theorem 4.1]). The complement of an ωS-regular language is
ωB-regular. The complement of an ωB-regular language is ωS-regular.

8



In [8], the authors also show that the inclusion of the classes of ωB- and280

ωS-regular languages in the class of ωBS-regular ones is strict, as witnessed
by the ωBS-regular language L = (aBb + aSb)ω consisting of those ω-words w
featuring infinitely many occurrences of b and such that there are only finitely
many numbers occurring infinitely often in the sequence of exponents of a in
w, that is, there is a bound k such that no h > k occurs infinitely often in285

the sequence of exponents of a in w, but infinitely many exponents may occur
finitely many times. L is neither ωB- nor ωS-regular. Moreover, they prove
that the class of ωBS-regular languages is not closed under complementation.
A counterexample is given precisely by L, whose complement is not ωBS-regular
(notice that, due to Theorem 1, ωBS-regular languages whose complement is290

not an ωBS-regular language are neither ωB- nor ωS-regular languages).
In this paper, we investigate those ω-languages that do not belong to the

class of ωBS-regular languages, but whose complement may belong to it. Let
us consider, for instance, the complement L of the language L above. Any word
w in L that features infinitely many occurrences of b, that is, w ∈ (a∗b)ω, is295

such that there are infinitely many natural numbers that occur infinitely often
in the sequence of exponents of a in w. By way of contradiction, suppose that
there are only finitely many of them and let k be the largest one. Now, w can
be viewed as an infinite sequence of ω-iterations, each of them characterised
by the corresponding exponent of a. If the exponent associated with an ω-300

iteration is greater than k, then it does not occur infinitely often, and thus the
ω-iteration is captured by the sub-expression aSb. Otherwise, if the exponent
is not greater than k, then the corresponding ω-iteration is captured by the
sub-expression aBb. As an example, the ω-word a1ba2ba1ba3ba1ba4b . . . does not
belong to L as 1 is the only exponent occurring infinitely often, while the ω-word305

a1ba2ba1ba2ba3ba1ba2ba3ba4b . . . does belong to it as infinitely many (actually
all) natural numbers occur infinitely often in the sequence of exponents.

3. The constructor (.)T and the class of ωT -regular languages

In this section, we define and study a new extension of the class of ω-
regular languages, called ωT -regular languages, which aims at capturing those310

ω-languages that are the complements of ωBS-regular ones while being not
ωBS-regular. As already pointed out, this is the case with the complement L
of the ωBS-regular language L = (aBb+ aSb)ω. To a large extent, ω-words be-
longing to L are characterised by sequences of exponents where infinitely many
exponents occur infinitely often. The class of ωT -regular languages includes315

those extended ω-regular languages that satisfy such a property.

3.1. ωT -regular expressions

The proposed extension of ω-regular languages has two main ingredients: a
new variant of (.)∗, called T -constructor and denoted by (.)T , to be used in the
scope of (.)ω, and a new semantics for the shuffle operator +, which is based on320

the results stated by Proposition 4.
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Intuitively, given an ωT -regular expression E and an ω-word w ∈ E, an
expression RT occurring in E forces the sequence of exponents of R in w to
feature infinitely many different elements occurring infinitely often. Formally,
the class of ωT -regular languages is the class of languages that can be expressed325

by ωT -regular expressions, which are in turn defined by the following grammar:

E ::= E + E | R · E | eω
e ::= ∅ | a | e · e | e+ e | e∗ | eT

where R is a regular expression and a ∈ Σ.
The sub-grammar rooted in the non-terminal e generates the T -regular ex-

pressions. From a syntactic point of view, T -regular expressions differ from330

BS-regular ones for the replacement of (.)B and (.)S by (.)T only. However, as
already pointed out, we give a different semantics for the shuffle operator +,
and thus, to define the semantics of T -regular expressions, we need to provide
the following two semantic clauses:

• L(e1 +e2) = {~w | ~w is a shuffle of ~u and ~v, for some ~u,~v ∈ L(e1)∪L(e2)};335

• L(eT ) = {(uf(0)u2 . . . uf(1)−1, uf(1) . . . uf(2)−1, . . .) | ~u ∈ L(e) and f : N→
N>0 is a nondecreasing function, with f(0) = 1, such that ∃ωn ∈ N ∀k ∈
N ∃i > k.(f(i+ 1)− f(i) = n)}

where e, e1, and e2 are word sequences and ∃ω is a shorthand for “there are
infinitely many”.340

For ~v = (uf(0)u2 . . . uf(1)−1, uf(1) . . . uf(2)−1, . . .) ∈ eT , with ~u ∈ e, we define
the sequence of exponents of e in ~v, denoted by N(~v), exactly as we did in
the case of BS-regular expressions. Moreover, for op ∈ {∗, B, S, T} and ~v =
(uf(0)u2 . . . uf(1)−1, uf(1) . . . uf(2)−1, . . .) ∈ eop , with ~u ∈ e, we denote by Ni(~v)
(resp., Nf (~v)) the set of exponents occurring infinitely (resp., finitely) many345

times in N(~v). For every ~v ∈ eT , it holds that the cardinality of Ni(~v) is
infinite, and thus the formal semantics of the T -constructor conforms with the
intuitive one outlined at the beginning of the section.

Let us consider again the language L. As we will prove shortly, L can
be expressed as the union of the languages (aT b)ω and (a∗b∗)∗aω, and thus it350

belongs to the class of ωT -regular languages. L is an example of an ωT -regular
language that is not ωBS-regular; examples of ωBS-regular languages that are
not ωT -regular are the languages (aBb)ω and (aSb)ω.

We conclude the section by observing that, from Proposition 4, it immedi-
ately follows that for any pair of BS-regular expressions e1 and e2, the languages355

defined by e1+e2 with the original and the new semantics of the shuffle operator
+ coincide, thus showing that the new definition of + is conservative with respect
to ωBS-regular languages. This is obviously not the case with T -regular expres-
sions. Consider the expression aT b+aT b. It trivially holds that aT b+aT b = aT b
(with the new semantics for +). On the contrary, aT b + aT b 6= aT b holds with360

the old semantics of +. Consider a pair of sequences ~v1 and ~v2 belonging to
aT b, where ~v1 (resp., ~v2) is such that the word ab (resp., aab) occurs at all odd
(resp., even) positions and the subsequence consisting of the elements at even
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(resp., odd) positions belongs to aT b. The word sequence featuring the word
ab at all odd positions and aab at all even ones belongs to aT b + aT b, but it365

does not belong to aT b. In general, it is possible to show that, with the old
semantics, for any T -regular expression e, e ⊆ e+ e.

3.2. The constructors B, S, and T and their relationships

In this section, we investigate the relationships among (.)B , (.)S , and (.)T .
Let us consider the expressions generated by the basic constructors of regular370

expressions paired with (.)B , (.)S , and (.)T (let us call them BST -regular ex-
pressions). Given a BST -regular expression e over an alphabet Σ, we denote by
reg(e) the set {u ∈ Σ∗ | u occurs in some sequence ~u ∈ L(e)}. It can be easily
checked that reg(e) = L(e′), where e′ is the regular expression obtained from
e by replacing every occurrence of (.)B , (.)S , and (.)T with the Kleene star. A375

sequence ~v = (v1, v2, . . .) is said to be e-compatible if vi ∈ reg(e) for all i.
The next proposition shows that (.)T satisfies a supersequence closure prop-

erty stronger than the one for BS-languages stated in Proposition 3.

Proposition 5 (Supersequence closure for T -regular expressions). Let e be a
T -regular expression and ~v ∈ L(e). Then, for every e-compatible sequence ~u of380

which ~v is a subsequence, it holds that ~u ∈ L(e).

BST -regular expressions satisfy a property of prefix independence, as for-
mally stated by the following proposition.

Proposition 6 (Prefix independence for BST -regular expressions). Let e be a
BST -regular expression. For every e-compatible sequence ~v = (v1, v2, . . .) and385

every finite prefix ~u = (u1, . . . , uh) of an e-compatible sequence, it holds that

~v ∈ L(e) if and only if ~u · ~v ∈ L(e).

Since prefix independence implies suffix closure, the above proposition extends
suffix closure to BST -regular languages.

As already pointed out in the introduction, one of the motivations for the390

proposal of the T -constructor stems from the fact that it somehow complements
the other two with respect to the Kleene star: while the B-constructor forces
the existence of finitely many exponents and the S-constructor constrains the
exponents to occur finitely many times, the T -constructor forces the existence of
infinitely many times exponents occurring infinitely many times. We can make395

such a claim more precise as follows. Let e be a BST -regular expression and
~u ∈ L(eop), with op ∈ {B,S, T}. If ~u ∈ L(eB), then N(~u) is bounded, while if
either ~u ∈ L(eS) or ~u ∈ L(eT ) it is unbounded; moreover, if ~u ∈ L(eS), then
Ni(~u) = ∅, while if ~u ∈ L(eT ), then Ni(~u) is infinite. The next proposition
shows that, when paired with (.)B and (.)S , (.)T makes it possible to define the400

Kleene star.4

4It is worth pointing out that the expression e in the statement is a standard regular
expression, that is, e does not feature any occurrence of the constructors B, S, and T , as the
formulation of the statement given in [1] (Proposition 1) was incorrect.
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Proposition 7. Let e be a (standard) regular expression. Then, it holds that
e∗ = eB + eS + eT .

Proof. As for inclusion L(eB+eS+eT ) ⊆ L(e∗), we observe that L(eB) ⊆ L(e∗),
L(eS) ⊆ L(e∗), and L(eT ) ⊆ L(e∗). Then, it trivially holds that L(eB + eS +405

eT ) ⊆ L(e∗ + e∗ + e∗) = L(e∗).
In order to prove the converse inclusion, we assume that ~v ∈ L(e∗) and show

that ~v ∈ L(eB + eS + eT ). By definition of e∗, ~v = (uf(0)u2 . . . uf(1)−1, uf(1) . . .
uf(2)−1, . . .), for a word sequence ~u ∈ L(e) and a nondecreasing function f :
N→ N>0, with f(0) = 1.410

Let N(~v) be the sequence of exponents (n1, n2, . . .) and let Nf (~v) and Ni(~v)
be the sets of exponents that respectively occur finitely and infinitely many
times in N(~v). We distinguish the following three cases.

If Ni(~v) is infinite, then ~v ∈ L(eT ) ⊆ L(eB + eS + eT ).
If both Ni(~v) and Nf (~v) are finite, then N(~v) is bounded, and thus ~v ∈415

L(eB) ⊆ L(eB + eS + eT ).
If Ni(~v) is finite and Nf (~v) is infinite, we extract from ~v the (infinite) sub-

sequence of words whose exponents belong to Nf (~v), say it ~u, and the (infinite)
subsequence of words whose exponents belong to Ni(~v), say it ~w. Each word in
~v clearly belongs either to ~u or to ~w. It is immediate to see that ~u belongs to420

L(eS) and ~w belongs to L(eB), and thus ~v ∈ L(eB + eS) ⊆ L(eB + eS + eT ).

The next proposition shows that, unlike (.)B and (.)S , (.)T is not idempotent.

Proposition 8 ((Non-)Idempotency). The following statements hold:

1. (eB)B = eB, for all BST -regular expressions e;

2. (eS)S = eS, for all BST -regular expressions e;425

3. (eT )T 6= eT , for some BST -regular expression e.

Proof. The truth of items 1 and 2 can be easily checked. To prove item 3, it
suffices to provide a counterexample: we show that (aT )T 6= aT , for a ∈ Σ. To
this end, let us consider the word sequence ~v = (a, a3, a3, a3, a6, a4, a10, a5, a6,
a9, a6, a10, a11, a7, a15, a13, a8, . . .) depicted in Figure 1. Such a sequence belongs430

to (aT )T , but not to aT , as no exponent occurs infinitely often. A detailed
account of the counter-example, in particular an explanation of the number
sequences that come into play, is in order.

Consider the word sequence ~u = (a, a, a, . . .) ∈ L(a). By grouping the
elements of ~u according to the sequence of exponents 1, 1, 2, 1, 2, 3, 1, 2, 3,435

4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, . . ., we obtain the word sequence ~w ∈ L(aT ) (see Fig-
ure 1(a) - top). By grouping the elements of ~w according to the sequence
of exponents 1, 2, 2, 1, 3, 1, 4, 1, 3, 2, 1, 4, 2, 1, 5, 2, 1, . . ., we obtain the word se-
quence ~v (see Figure 1(a) - bottom). The word sequence ~w can be viewed as the
concatenation of subsequences (a1, . . . , aj), for all j ≥ 1. To generate ~v from440

~w, we group the elements of any subsequence a1, . . . , aj as follows (the case
for j = 20 is depicted in Figure 1(b)). We start from the last position j and
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(a) Counter-example

~u =
(
a, a, a, a︸︷︷︸, a, a, a︸︷︷︸,a, a, a︸ ︷︷ ︸, a, a, a︸︷︷︸,a, a, a︸ ︷︷ ︸,a, a, a, a︸ ︷︷ ︸, a, a, a︸︷︷︸,a, a, a︸ ︷︷ ︸,a, a, a, a︸ ︷︷ ︸,a, a, a, a, a︸ ︷︷ ︸,. . .) ∈ L(a)︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸
1 1 2 1 2 3 1 2 3 4 1 2 3 4 5

~w =
(
a1,a1, a2, a1, a2, a3, a1, a2, a3, a4, a1, a2, a3, a4, a5, . . .

)
∈ L(aT )

~w =
(
a1,a

1
, a

2︸ ︷︷ ︸,a1, a2︸ ︷︷ ︸,a3,a1, a2, a3︸ ︷︷ ︸,a4,a1, a2, a3, a4︸ ︷︷ ︸,a5,a1, a2, a3︸ ︷︷ ︸,a4, a5︸ ︷︷ ︸,a6,a1, a2, a3, a4︸ ︷︷ ︸,a5, a6︸ ︷︷ ︸,a7, . . .︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸
1 2 2 1 3 1 4 1 3 2 1 4 2 1 . . .

. . .

~v =
(
a1, a3, a3, a3, a6, a4, a10, a5, a6, a9, a6, a10, a11, a7, . . .

. . . a
1
, a

2
, a

3
, a

4
, a

5︸ ︷︷ ︸,a6, a7︸ ︷︷ ︸,a8,. . .) ∈ L(aT )︸︷︷︸
. . . 5 2 1

. . .

. . . a15, a13, a8,. . .
)
∈L((aT )T )

(b) Detail of grouping a subsequence of ~w

a
1
, a

2
, a

3
, a

4
, a

5
, a

6
, a

7
, a

8
, a

9
, a

10︸ ︷︷ ︸,a11, a12, a13, a14︸ ︷︷ ︸,a15, a16, a17︸ ︷︷ ︸,a18, a19︸ ︷︷ ︸,a20︸︷︷︸
10 4 3 2 1

a55, a50, a48, a37, a20

Figure 1: A counter-example to the equality (aT )T = aT .

proceed backwardly. The last element aj is a singleton, unless
∑j−1
i=1 i < j (in

which case the whole sequence is grouped altogether). Then, the two elements

aj−2aj−1 are grouped together, unless
∑j−3
i=1 i < j (in which case the sequence445

a1, . . . , aj−1 is grouped together). Next, the three elements aj−5aj−4aj−3 are

grouped together, unless
∑j−6
i=1 i < j (in which case the sequence a1, . . . , aj−3 is

grouped together), and so on.
Such a construction can be formalized as follows. For all j ≥ 1, let kj

(we omit the subscript when clear from the context) be the largest number450

such that
∑j−∑k

h=1 h
i=1 i ≥ j. Note that this implies j >

∑k
h=1 h (otherwise∑j−∑k

h=1 h
i=1 i = 0 < j). The grouping procedure executes the following two steps:

(i) for all h ∈ {1, . . . , k}, aj−(
∑h
i=1 i)+1, . . . , aj−

∑h−1
i=1 i are grouped together, and

(ii) a1, . . . , aj−
∑k
i=1 i are grouped together. Since ~w ∈ L(aT ) and the above-

described sequence contains infinitely many exponents occurring infinitely often,455

it holds that ~v ∈ L((aT )T ).
To prove that ~v ∈ aS , and thus ~v /∈ aT , it suffices to show that:(

j − (
∑h
i=1 i) + 1

)
+ . . .+

(
j −∑h−1

i=1 i
)
≥ j

for all h ∈ {1, . . . , k}. Since j is strictly increasing, indeed, it immediately
follows that the sequence of a in ~v is strongly unbounded.460

Let us show that, for all h ∈ {1, . . . , k}, the stronger inequality
(
j−(

∑h
i=1 i)+
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1
)

+ . . .+
(
j −∑h−1

i=1 i
)
> j holds. First, we observe that

(
j − (

∑h
i=1 i) + 1

)
+

. . . +
(
j −∑h−1

i=1 i
)

=
∑−∑h−1

i=1 i

s=−(
∑h
i=1 i)+1

(j + s) =
∑−(

∑h−1
i=1 i)−1

s=−(
∑h
i=1 i)+1

(j + s) + (j −∑h−1
i=1 i). As

∑h
i=1 i < j for all h ∈ {1, . . . , k}, it holds that j − (

∑h
i=1 i) + 1

(i.e., the value of j + s when s assume the lowest possible value in the range465

of the summation
∑−(

∑h−1
i=1 i)−1

s=−(
∑h
i=1 i)+1

(j + s)) is greater than 1. Consequently, as s

increases, j+s becomes greater than 2, 3, and so on, that is, j−(
∑h
i=1 i)+2 > 2,

j− (
∑h
i=1 i) + 3 > 3, and so on. Since s ranges over h− 1 values ((−(

∑h−1
i=1 i)−

1)− (−(
∑h
i=1 i)+1)+1 = h−1), it holds that

∑−(
∑h−1
i=1 i)−1

s=−(
∑h
i=1 i)+1

(j+s) >
∑h−1
i=1 i,

and thus
∑−(

∑h−1
i=1 i)−1

s=−(
∑h
i=1 i)+1

(j + s) + (j −∑h−1
i=1 i) >

∑h−1
i=1 i+ (j −∑h−1

i=1 i) = j.470

Therefore, we have that ~v ∈ (aT )T \ aT , hence the thesis.

We conclude the section by formally proving that (aT b)ω + (a∗b)∗aω(= L) is
the complement of (aBb+ aSb)ω(= L), that is, L = {a, b}ω \ L.

First, we observe that (a∗b)∗aω is the language of those ω-words over {a, b}
that feature only finitely many occurrences of b. Since L only contains words475

featuring infinitely many occurrences of b, it holds that (a∗b)∗aω ⊆ {a, b}ω \ L.
We now introduce a fair version of the shuffle operator, denoted by #+, which,

intuitively, switches infinitely often between the two argument word sequences.

Definition 2 (fair shuffle). Let e1 and e2 be BST -regular expressions. The fair
shuffle operator, denoted by #+, is defined as follows:480

L(e1 #+ e2) = {~w | ~w = g-shuffle(~u,~v), for some ~u,~v ∈ L(e1) ∪ L(e2)
and some alternating selection function g}.

Let ] be the disjoint union. We have that:

L = (aBb)ω ] (aSb)ω ] (aBb#+ aSb)ω. (1)

The set (aBb)ω contains exactly those ω-words in (aBb+aSb)ω that from a given
position on consist of aBb blocks only. By Proposition 6 (prefix independence),
this amounts to say that the whole ω-word is made up of aBb blocks only. The
set (aSb)ω contains exactly those ω-words in (aBb + aSb)ω that from a given485

position on consist of aSb blocks only. Again, thanks to prefix independence, this
amounts to say that the whole ω-word is made up of aSb blocks only. Finally,
the set (aBb#+aSb)ω contains exactly those ω-words in (aBb+aSb)ω that feature
infinitely many occurrences of both aBb and aSb blocks.

Proposition 9. Let t ∈ {a, b}ω \ L be a word featuring an infinite number of490

occurrences of b. Then, t ∈ (aT b)ω.

Proof. Since t ∈ {a, b}ω and t contains an infinite number of b’s, we know that
t ∈ (a∗b)ω. Assume, towards a contradiction, that t /∈ (aT b)ω, that is, there
are only finitely many exponents of a that occur infinitely often (possibly no
one). We distinguish three cases. If no exponent occurs infinitely often, then495

t ∈ (aSb)ω ⊆ L (contradiction). If some exponent occurs infinitely often and
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finitely many exponents occur finitely often, then t ∈ (aBb)ω ⊆ L (contra-
diction). Finally, if some exponent occurs infinitely often and infinitely many
exponents occur finitely often, then the (sub-)sequence of a∗b blocks correspond-
ing to exponents occurring infinitely often, say t1, belongs to aBb and the (sub-)500

sequence of blocks discarded by the above sequence, say t2, belongs to aSb. It
immediately follows that t ∈ ((aBb) #+ (aSb))ω ⊆ L (contradiction).

3.3. A stronger variant of the T -constructor

A stronger variant of (.)T , called (.)Ts , that forces ω-words to feature in-
finitely many exponents, all of them occurring infinitely often, has also been505

proposed in the literature [2].
Ts-regular expressions differ from T -regular ones for the replacement of the

semantic clause for (.)T by the following one:

• L(eTs) = {(uf(0)u2 . . . uf(1)−1, uf(1) . . . uf(2)−1, . . .) | ~u ∈ L(e) and f :
N → N>0 is a nondecreasing function, with f(0) = 1, such that ∃ωn ∈510

N ∀k ∈ N ∃i > k.(f(i+1)−f(i) = n) and ∀n ∈ N ∀k ∈ N.(f(k+1)−f(k) =
n→ ∃i > k.f(i+ 1)− f(i) = n)}

where e is a word sequence.
ωTs-regular expressions are defined exactly the same way as ωT -regular ones.
Some results obtained for (.)T can be transferred to (.)Ts : non-idempotency515

holds for (.)Ts as well, and a suitable expression making use of (.)Ts , instead of
(.)T , can be given that captures the complement of L = (aBb+ aSb)ω.

There are, however, some significant differences between (.)T and (.)Ts .
First, (.)Ts does not satisfy the property of prefix independence. Let ~u =

(u1, u2, . . .) and ~v = (uh, uh+1, . . .) be two word sequences such that ~v is the520

infinite suffix of ~u starting at position h. For any Ts-regular expression, it
holds that if ~u belongs to the language, then ~v belongs to it as well, but not
(necessarily) vice versa. Moreover, it can be easily checked that the equality
e∗ = eB + eS + eT , stated by Proposition 7, does not hold anymore if we replace
eT by eTs . Last but not least, there is no immediate way to generalize the525

embedding (given in Section 5) of ωT -regular languages into S1S+U to ωTs-
regular ones (as a matter of fact, we strongly believe such a variant not to be
definable in S1S+U).

4. ωT -regular languages and counter-check automata (CCA)

In this section, we introduce a new class of automata, which we name530

counter-check automata (CCA), we prove that their emptiness problem is de-
cidable, and we provide a translation of ωT -regular expressions into CCA. In
the next section, we provide an encoding of ωT -regular expressions into S1S+U.

4.1. Counter-check automata (CCA)
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s0 s2 s4

s1 s3

a, (1, inc) ε, (2, inc)
ε, (2, check)

b, (1, check)

ε

ε
ε

ε

b
a

Figure 2: A CCA with 2 counters for the lan-
guage ((a∗b)∗aT b)ω .

To start with, we define CCA and535

we show that their emptiness prob-
lem is decidable in PTIME. Later,
we will show that they are expres-
sive enough to encode ωT -regular ex-
pressions. It is worth pointing out540

that CCA closely resemble B- and S-
automata [8, 9], the main difference
being that they allow for ε-transitions,
that is, transitions that do not con-
sume word symbols. It is not clear545

whether or not such transitions can be
avoided, as it happens with B- and S-
automata (as a matter of fact, this is the main obstacle towards an expressive
completeness result for CCA and ωT -regular languages). Moreover, unlike B-
and S-automata, which allow for one operation per counter at each transition,550

CCA allow for at most one counter operation per transition. Thanks to the
presence of ε-transitions, this does not cause any loss in expressive power.

A CCA is an automaton equipped with a fixed number of counters. A
transition can possibly increment or reset one of them (or do nothing). We refer
to reset operations as check operations to emphasize the fact that computations555

keep track of the evolution of counter values. CCA acceptance condition depends
on the sequences of checked values, that is, the values when a check operation
is performed, for all counters. An example of CCA is given in Figure 2.

Definition 3 (CCA). A counter-check automaton ( CCA) is a quintuple A =
(S,Σ, s0, N,∆), where S is a finite set of states, Σ is a finite alphabet, s0 ∈ S560

is the initial state, N ∈ N>0 is the number of counters, and ∆ ⊆ S × (Σ ∪
{ε})× S × ({1, . . . , N} × {no op, inc, check}) is a transition relation, subject to
the constraint: if (s, σ, s′, (k, op)) ∈ ∆ and op = no op, then k = 1.

A configuration of a CCA A = (S,Σ, s0, N,∆) is a pair (s,v), where s ∈ S
and v ∈ NN (v is called counter vector). For v ∈ NN and i ∈ {1, . . . , N}, let565

v[i] be the i-th component of v, that is, the value of the i-th counter.
Let A = (S,Σ, s0, N,∆) be a CCA. We define a ternary relation →A over

pairs of configurations and symbols in Σ ∪ {ε} such that for all configuration
pairs (s,v), (s′,v′) and σ ∈ Σ ∪ {ε}, (s,v) →σ

A (s′,v′) if and only if there is
δ = (s, σ, s′, (k, op)) ∈ ∆ such that v′[h] = v[h] for all h 6= k, and570

• if op = no op, then v′[k] = v[k];

• if op = inc, then v′[k] = v[k] + 1;

• if op = check, then v′[k] = 0.

In such a case, we say that (s,v) →σ
A (s′,v′) via δ. Let →∗A be the reflexive

and transitive closure of →σ
A (where we abstract away symbols in Σ ∪ {ε}).575
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s0 s1 s1 s3 s2 s2 s2 s2 s4 s0 s2 s2 s2 s4

0 1 2 3 0 1 2 0

0 0

vr1s

vr2s

ε a b ε

i1

a

i1

a

i1

a

c1

b

c2

ε ε a

i1

a

i1 c1

b
s0 s2 s2 s2 s4

s0 s2 s2 s2 s2 s4 s0 s2 s2 s4 s0 s2 s4 s0 s2 s2 s4 s0

0 1 2

0 1 2 3 0

i2

ε ε a

i1

a

i1

b

c1

ε a

i1

a

i1

a

i1

b

c1

ε

c2

ε a

i1

b

c1 i2

ε ε b

c1 i2

ε ε a

i1

b

c1 c2

ε
1 0 0 1 0

0 1 2 00

ε

c2

1

Figure 3: A prefix of a computation of the automaton in Figure 2. A configuration is char-
acterised by a circle (state) and the rounded-corner rectangles above it (counter vector). v[i]
is a counter vector component. Checked values for counters are highlighted in gray, with the
corresponding transitions being written in boldface.

The initial configuration of A is the pair (s0,v0), where v0[k] = 0 for
each k ∈ {1, . . . , N}. A computation of A is an infinite sequence of configu-
rations C = (s0,v0)(s1,v1) . . ., where, for all i ∈ N, (si,vi) →σi

A (si+1,vi+1)
for some σi ∈ Σ ∪ {ε}. An example is given in Figure 3. For a computation
C = (s0,v0)(s1,v1) . . . of A, we let check∞C,k (k ∈ {1, . . . , N}) denote the set580

{n ∈ N | ∀h∃i > h such that vi[k] = n and vi+1[k] = 0}, that is, check∞C,k is the
set of values of the k-th counter that are checked infinitely often along C. A good
computation of A is a computation C of A such that |check∞C,k| = +∞ for all
k ∈ {1, . . . , N}. Given two configurations (si,vi) and (sj ,vj) in C, with i ≤ j,
we say that (sj ,vj) is ε-reachable from (si,vi), written (si,vi) →∗εA (sj ,vj),585

if (sj′−1,vj′−1) →ε
A (sj′ ,vj′) for all j′ ∈ {i + 1, . . . , j}. Moreover, we use

(si,vi)→∗εA (s∞,v∞) as an abbreviation for (si,vi)→∗εA (sj ,vj) for all j ≥ i.
A run π of A on w is a good computation π = (s0,v0)(s1,v1) . . . for which

there is an increasing function f : N>0 → N ∪ {∞} (i.e., f(i) < f(i+ 1) unless
f(i+ 1) =∞), called trace of w in π with respect to A, such that:590

• (s0,v0)→∗εA (sf(1),vf(1)), and

• for all i ≥ 1, if f(i) 6= ∞ then (sf(i),vf(i)) →w[i]
A (sf(i)+1,vf(i)+1) and

(sf(i)+1,vf(i)+1)→∗εA (sf(i+1),vf(i+1)).

A run π of A on w is accepting if and only if f(i) 6= ∞ for all i, where f is
the trace of w in π with respect to A. Notice that, while the notion of run is595

defined also for finite words, accepting runs concern ω-words only. An ω-word
w ∈ Σω is accepted by A if and only if there is an accepting run of A on w. We
denote by L(A) the set of all ω-words in Σω that are accepted by A, and we say
that A accepts the language L(A). Figure 2 depicts a CCA with two counters
(N = 2) accepting the language ((a∗b)∗aT b)ω. (Note that an automaton for the600

same language with one counter only can be devised as well.)

4.2. Decidability of the emptiness problem for CCA

We now prove that the emptiness problem for CCA is decidable in PTIME.
The proof consists of 3 steps: (i) we replace general CCA by simple ones; (ii)
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we prove that their emptiness can be decided by checking the existence of finite605

witnesses of accepting runs; (iii) we show that the latter can be verified by
checking for emptiness a suitable NFA.

Simple CCA. To begin with, we define the notion of simple CCA.

Definition 4 (simple CCA). A CCA A = (S,Σ, s0, N,∆) is simple if
and only if for each s ∈ S, either |{(s, σ, s′, (k, op)) | (s, σ, s′, (k, op)) ∈610

∆ for some σ, s′, k, op}| = 1 or op = no op, k = 1, and σ = ε for all
(s, σ, s′, (k, op)) ∈ ∆.

Basically, the states of a simple CCA can be partitioned in two classes:
those in which it can fire exactly one action and those in which it makes a
nondeterministic choice. Moreover, for all pairs of configurations (s,v), (s′,v′)615

with (s,v) →σ
A (s′,v′), the transition δ ∈ ∆ that has been fired in (s,v) is

uniquely determined by s and s′. By exploiting ε-transitions, i.e., transitions of
the form (s, ε, s′, (k, op)), and by adding a suitable number of states, it can be
easily shown that every CCA A may be turned into a simple one A′, whose size
is polynomial in the size of A, such that L(A) = L(A′). W.l.o.g., in the rest of620

the section we restrict our attention to simple CCA.
The set of states of a CCA can be partitioned in four subsets: (i) the set of

states s from which only one transition of the form (s, σ, s′, (k, check)) can be
fired (checkk states); (ii) the set of states s from which only one transition of
the form (s, σ, s′, (k, inc)) can be fired (inck states); (iii) the set of states s from625

which only one transition of the form (s, σ, s′, (1, no op)), with σ 6= ε, can be
fired (sym states); (iv) the set of states s from which possibly many transitions
of the form (s, ε, s′, (1, no op)) can be fired (choice states).

Let A = (S,Σ, s0, N,∆) be a CCA. A prefix computation of A is a fi-
nite prefix of a computation of A. Formally, it is a finite sequence P =630

(s0,v0) . . . (sn,vn) such that, for all i ∈ {0, . . . , n−1}, (si,vi)→σi
A (si+1,vi+1),

for some σi ∈ Σ ∪ {ε}. We denote by PrefixesA the sets of all prefix compu-
tations of A. For every P = (s0,v0) . . . (sn,vn) ∈ PrefixesA, it holds that if
(sn,vn)→σ

A (s,v), for some s ∈ S, some counter vector v, and some σ ∈ Σ∪{ε},
then v is uniquely determined by sn and vn, that is, there is no v′ 6= v such635

that (sn,vn)→σ′
A (s,v′), for any s and σ′.

Finite witnesses of accepting runs. We show now how to decide CCA emptiness
by making use of the notion of accepting witness for a CCA.

Definition 5 (Accepting witness). Let A = (S,Σ, s0, N,∆) be a CCA. A prefix
computation P = (s0,v0) . . . (sn,vn) ∈ PrefixesA is an accepting witness for A640

if and only if there are 2N + 2 indexes begin < b1 < e1 < . . . < bN < eN < end
such that 0 ≤ begin, end ≤ n, and the following conditions hold:

1. a non-ε-transition can be fired from sbegin ;

2. sbegin = send and, for each k ∈ {1, . . . , N}, sbk = sek , sbk is an inck state,
and sj is not a checkk state for any j with bk ≤ j ≤ ek;645
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s0 ... sbegin ... sb1 ... se1 ... sbN ... seN ... sj1 ... sjN ... send
a
∈ Σ

τ
∈ Σ

∪ {
ε}

τ
∈ Σ

∪ {
ε}

c1 cN

=

=

NO check1

=

NO checkN

Figure 4: An accepting witness for a CCA.

3. for each k ∈ {1, . . . , N}, there is jk, with eN < jk < end, such that sjk is
a checkk state.

As usual, an accepting witness for A can be seen as a finite representation of
an accepting run of some ω-word on A (see Figure 4). Thus, deciding whether
a CCA A accepts a nonempty language amounts to searching PrefixesA for ac-650

cepting witnesses as formally stated by the next lemma, whose proof is straight-
forward and thus omitted.

Lemma 1. Let A be a CCA. Then, L(A) 6= ∅ if and only if PrefixesA contains
an accepting witness for A.

From CCA to NFA. Thanks to Lemma 1, deciding the (non)emptiness problem655

for a CCA A amounts to searching PrefixesA for an accepting witness. Since we
restricted ourselves to simple CCA, we can safely identify elements of PrefixesA
with their sequence of states and thus, by slightly abusing the notation, we
write, e.g., s0s1 . . . sn ∈ PrefixesA for (s0,v0) . . . (sn,vn) ∈ PrefixesA. Given
a CCA A, let Lw(A) be the language of finite words over the alphabet S (the660

set of states of A) that are accepting witnesses for A. It is easy to see that
L(A) 6= ∅ if and only if Lw(A) 6= ∅. In what follows, for a CCA A, we build
a nondeterministic finite automata (NFA) whose language is exactly Lw(A).
Since the (non)emptiness problem for NFA is decidable, so is the one for CCA.

In what follows, w.l.o.g., we restrict our attention to accepting witnesses for665

which the set of indexes required by item 3 of Definition 5 is ordered. More
precisely (we borrow the notation from Definition 5), we assume that there are
N indexes c1 < . . . < cN , with eN < c1 and cN < end , such that sck is a checkk
state, for each k ∈ {1, . . . , N} (this requirement strengthens the one imposed
by item 3 of Definition 5). Given a CCA A, it is easy to check that PrefixesA670

contains an accepting witness, as specified by Definition 5, if and only if it
contains one satisfying the additional ordering property above. Thus, Lemma 1
holds with respect to the new definition of accepting witness as well.

Given a CCA A, we apply the following steps to build an NFA N such
that L(N ) = Lw(A): (i) we build an NFA N ′ accepting finite words over675

the set of states of A that are potential accepting witnesses, i.e., they satisfy
conditions 1- 3 of Definition 5 but they might not be prefix computations; in
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Figure 5: A graphical account of the automaton N ′, where Snon-ε = {s′1, s′2, . . . , s′m} and
Sinck = {sk1 , sk2 , . . . , skpk}, with k ∈ {1, . . . , N}.

other words, such an automaton might as well accept words not belonging to
PrefixesA; (ii) since PrefixesA is a regular language, thanks to closure properties
of NFA, there exists an NFA N whose language is L(N ′)∩PrefixesA = Lw(A).680

Let A = (S,Σ, s0, N,∆) be a CCA. We define N ′ = 〈Q,ΣN ′ , δ, q0, F 〉 as
follows: ΣN ′ = S, F = {qend}, and Q = {q0, q

end} ∪ {qend
s′ | s′ ∈ Snon-ε} ∪⋃N

k=1{qks′ , q̂ks′ | s′ ∈ Snon-ε} ∪
⋃N
k=1{qks′s′′ | s′ ∈ Snon-ε, s

′′ ∈ Sinck}, where Snon-ε

is the set of states of S from which a non-ε-transition can be fired, and, for
k ∈ {1, . . . , N}, Sinck is the set of inck states in S. A graphical account of the685

behavior of the automaton N ′, in particular of its transition relation δ, is given
in Figure 5 (∗ stands for any symbol in S). It can be summarized as follows:

1. it nondeterministically guesses index begin when a symbol s′ ∈ Snon-ε is
read; the next state q1

s′ that it reaches stores information about the state
s′ of A being read to check, at a later stage (when index end is guessed),690

that sbegin = s′ = send ;

2. similarly, for each k ∈ {1, . . . , N}, it nondeterministically guesses indexes
bk and ek, when a symbol sk corresponding to an inck state of A is read;
once again, information about the state sk of A being read is stored in the
next state qks′sk that it reaches, in order to check that the same state sk is695
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read when ek is guessed (sbk = sk = sek); moreover, it forces the absence
of a checkk state in between indexes bk and ek;

3. it verifies the existence, after eN , of checkk states, for k ∈ {1, . . . , N}, in
the desired order;

4. it waits for the input symbol s′, that is, the same symbol read when begin700

was guessed; when such a symbol is read, it enters the final state qend .

Let Scheckk be the set of checkk states in S, and let Snon-ε and Sinck , with
k ∈ {1, . . . , N}, be the above-defined sets. We formally define δ as follows:

δ = {(q0, s, q0) | s ∈ S} ∪ {(q0, s
′, q1

s′) | s′ ∈ Snon-ε}
∪ ⋃Nk=1{(qks′ , s, qks′) | s′ ∈ Snon-ε, s ∈ S}
∪ ⋃Nk=1{(qks′ , sk, qks′sk) |s′ ∈ Snon-ε, s

k ∈ Sinck}
∪ ⋃Nk=1{(qks′sk , s, qks′sk) |s′ ∈ Snon-ε, s

k ∈ Sinck , s ∈ S \ Scheckk}
∪ ⋃N−1

k=1 {(qks′sk , sk, qk+1
s′ ) | s′ ∈ Snon-ε, s

k ∈ Sinck}
∪ {(qNs′sN , sN , q̂1

s′) | s′ ∈ Snon-ε, s
N ∈ SincN }

∪ ⋃Nk=1{(q̂ks′ , s, q̂ks′) | s′ ∈ Snon-ε, s ∈ S}
∪ ⋃N−1

k=1 {(q̂ks′ , sk, q̂k+1
s′ ) | s′ ∈ Snon-ε, s

k ∈ Scheckk}
∪ {(q̂Ns′ , sN , qend

s′ ) | s′ ∈ Snon-ε, s
N ∈ ScheckN }

∪ {(qend
s′ , s, qend

s′ ) | s′ ∈ Snon-ε, s ∈ S \ {s′}}
∪ {(qend

s′ , s′, qend) | s′ ∈ Snon-ε}.
Since the size of N ′ is polynomial in the size of A (|Q| ≤ 2 + 2 · N · |S| +705

N · |S|2 + |S|), we have a polynomial reduction from the emptiness problem for
CCA to the one for NFA.

Theorem 2. The emptiness problem for CCA is decidable in PTIME.

4.3. A translation of ωT -regular expressions into CCA

We now show how to translate ωT -regular expressions into CCA. To this710

end, we apply some preliminary rewriting to the input expression. In particu-
lar, we get rid of + in favor of #+ (see Definition 2), and we replace the Kleene
star (.)∗ (0 or more iterations of the the argument expression) by the combi-
nation of the operator for the empty string and the usual constructor (.)+ (1
or more iterations). While we only need these results to hold for ωT -regular715

languages, we state and prove them within the more general setting of ωBST -
regular languages.

The next proposition generalizes the notion of prefix independence to ωBST -
regular expressions (recall that, for a BST -regular expression e, reg(e) denotes
the regular expression obtained from e by replacing occurrences of B-, S-, and720

T -constructors with the Kleene star).

Proposition 10 (Prefix independence for ωBST -regular expressions). Let eω

be an ωBST -regular expression and u ∈ L((reg(e))∗). Then, for all v:

(a) if v ∈ L(eω), then u · v ∈ L(eω);
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(b) if u · v ∈ L(eω), then there are infinitely many suffixes of u · v belonging725

to L(eω).

Proof. Item (a) follows from prefix independence of BST -regular expressions
(Proposition 6). Item (b) follows from suffix closure of BST -regular expressions,
which in turn follows from prefix independence (again Proposition 6).

In order to remove the + operator from the input expression, we introduce730

two auxiliary operators:

• L(e1 I+ e2) = {~w | ~w = g-shuffle(~u,~v), for some ~u,~v ∈ L(e1) ∪ L(e2)
and some 1-stable selection function g};

• L(e1 J+ e2) = {~w | ~w = g-shuffle(~u,~v), for some ~u,~v ∈ L(e1) ∪ L(e2)
and some 2-stable selection function g};735

Let e be a BST -regular expression. We define elim+(e) as the set of all those
expressions obtained from e by replacing each occurrence of + by one among #+,
I+, and J+ e.g., elim+(a+ b+ c) = {aJ+ bJ+ c, aJ+ b#+ c, aJ+ bI+ c, a#+ bJ+ c, a#+
b#+ c, a#+ bI+ c, aI+ bJ+ c, aI+ b#+ c, aI+ bI+ c}. Clearly, |elim+(e)| = 3n, where
n is the number of occurrences of + in e. Moreover, for any e′ ∈ elim+(e), let740

elimI+,J+(e′) be the expression obtained from e′ by replacing each sub-expression
of the form e1 I+ e2 (resp., e1 J+ e2) by e1 (resp., e2).

Lemma 2. Let e be a BST -regular expression. It holds that:

L(e) =
⋃
e′∈elim+(e) L(e′).

Proof. By structural induction on e.745

Corollary 1. Let e be a BST -regular expression. It holds that:5

L(eω) = L
(∑

e′∈elim+(e)(e
′)ω
)
.

Lemma 3. Let e be a BST -regular expression. It holds that:

L
(∑

e′∈elim+(e)(e
′)ω
)

= L
(

(reg(e))∗ ·∑e′∈elim+(e)(elimI+,J+(e′))ω
)
.

Proof. We first prove the right-to-left inclusion, and then the opposite one.750

Right-to-left inclusion. Let v ∈ L
(

(reg(e))∗ ·∑e′∈elim+(e)(elimI+,J+(e′))ω
)

,

i.e., v = u · w for u ∈ L((reg(e))∗) and w ∈ L((elimI+,J+(e′))ω) for some e′ ∈
elim+(e). Since L(elimI+,J+(e′)) ⊆ L(e′) for all e′ ∈ elim+(e), we have that

w ∈ L
(∑

e′∈elim+(e)(e
′)ω
)

=(by Corollary 1) L(eω). Then, by Proposition 10(a),

it holds that v = u · w ∈ L(eω) = L
(∑

e′∈elim+(e)(e
′)ω
)

.755

Left-to-right inclusion. Let v ∈ L
(∑

e′∈elim+(e)(e
′)ω
)

, i.e., v = v1v2 . . .,

with ~v = (v1, v2, . . .) ∈ L(e′), for some e′ ∈ elim+(e). Let selection-functions

5In what follows, we overload the symbol Σ (already used to denote the alphabet) by using
it as summation symbol, as is customary.
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be the set of selection functions, associated with the occurrences of I+ and J+ in
e′, used to produce ~v, and let

max -index = max {i ∈ N>0 | g(i) 6= g(i+ 1), g ∈ selection-functions}.760

It is easy to see that the word sequence ~s = (vmax -index+1, vmax -index+2, . . .) ∈
L(elimI+,J+(e′)), which implies that vmax -index+1vmax -index+2 . . . ∈
L
(∑

e′∈elim+(e)(elimI+,J+(e′))ω
)

. Moreover, since, for all i, vi ∈ L(reg(e)),

it holds that v1v2 . . . vmax -index ∈ L((reg(e))∗). Therefore, v ∈
L
(

(reg(e))∗ ·∑e′∈elim+(e)(elimI+,J+(e′))ω
)

, hence the thesis.765

Corollary 2. Let e be a BST -regular expression. It holds that:

L(eω) = L
(

(reg(e))∗ ·∑e′∈elim+(e)(elimI+,J+(e′))ω
)
.

Let us now introduce the operator for the empty string ε and the constructor
(.)+, whose semantics are as follows:

• L(ε) = {(ε, ε, ε, . . .)};770

• L(e+) = {(uf(0)u2 . . . uf(1)−1, uf(1) . . . uf(2)−1, . . .) | ~u ∈ L(e) and f : N→
N>0 is an increasing function with f(0) = 1}.

The constant ε defines the language that contains only the word sequence whose
elements are the empty string ε (notice that the symbol ε is used to denote both
the empty word and an expression operator); the constructor (.)+ is similar to775

the Kleene star, the only difference being that (.)+ does not allow for empty
strings (0-iterations). It is immediate to see that the following equivalence holds:

L(e∗) = L(ε+ e+).
We now suitably rewrite the input expression by making use of ε and e+.

Lemma 4. Every ωBST -regular expression E can be rewritten into an ωBST -780

regular expression E′, where all occurrences of the operators + and (.)∗ have
been replaced by (occurrences of) the operators #+ and (.)+ and the constant ε.

Proof. Let E be an ωBST -regular expression. First, we get rid of the Kleene
star, by replacing each sub-expression of the form e∗ with the expression ε +
e+. The resulting ωBST -regular expression E′′ has no occurrence of the (.)∗785

operator, and, thanks to the above remark, it holds that L(E) = L(E′′).
To remove all the occurrences of the + operator from E′′, we exploit Corol-

lary 2, which allows us to replace any sub-expression of E′′ of the form eω with
a new equivalent one with no occurrence of the shuffle operator.

Thanks to Lemma 4, w.l.o.g., we can restrict ourselves to T - and ωT -regular790

expressions that have no occurrence of the operators + and (.)∗.
We are now ready to show how to map an ωT -regular expression E into

a corresponding CCA AE in such a way that L(E) = L(AE). We proceed by
structural induction on ωT -regular expressions, i.e., when building the CCAAE′
for a sub-expression E′ of E, we assume the automata for the sub-expressions of795
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g : g1 g2 . . . gh−1 gh gh+1 . . .

f : f(1) . . . f(i1) f(i1 + 1). . . f(i2) f(i2 + 1). . . f(ih−1) f(ih−1 + 1). . . f(ih) f(ih + 1). . . f(ih+1) . . .

w : σf(1). . .σf(i1) σf(i1+1) . . .σf(i2) σf(i2+1) . . .σf(ih−1) σf(ih−1+1) . . .σf(ih) σf(ih+1) . . .σf(ih+1) . . .

split:
︸ ︷︷ ︸

w1

︸ ︷︷ ︸
w2

. . .
︸ ︷︷ ︸

wh

︸ ︷︷ ︸
wh+1

. . .

Figure 6: An infinite word w = w[1]w[2] . . . w[i] . . . = σf(1)σf(2) . . . σf(i) . . . is split using

sequence g1 < g2 < . . . < gh < . . . into infinitely many finite words w1, w2, . . . , wh, . . . .

E′ to be available. By construction, all the automata we generate during the al-
gorithm are forced to feature a distinguished final state sf . Slightly abusing the
notation, we denote an automaton with such a state as A = (S,Σ, s0, sf , N,∆),
where sf is the final state of A. W.l.o.g., we assume the sets of states of any
pair of distinct automata generated by the construction to be disjoint.800

Encoding of T -regular expressions. We first deal with T -regular expressions
(sub-grammar rooted in e at page 10). Since T -regular expressions produce
languages of word sequences, while automata accept ω-words, we must find a
way to extract sequences from ω-words. Intuitively, we do that by splitting an
infinite word into infinitely many finite sub-words, each of them corresponding805

to the sequence of symbols in between two consecutive check ’s of the 1st counter
along the corresponding accepting run.

Formally, let π = (s0,v0)(s1,v1) . . . be a run of some CCA A on some
(possibly finite) word w such that (si,vi) →σi

A (si+1,vi+1) via some tran-
sition δi, for each i ≥ 0, and let f be the trace of w in π with respect810

to A (see definitions of trace and run at page 17). Recall that f is such
that σf(i) = w[i] for all i ≥ 1 with f(i) 6= ∞ (roughly speaking, f enu-
merates symbols different from ε within sequence σ0σ1 . . .). Moreover, let
g1 < g2 < . . . < gh < . . ., with gh ∈ N for every h, be the sequence of
indexes corresponding to transitions in π where the 1st counter is checked,815

that is, for every i ∈ N, we have that δi has the form (si, σi, si+1, (1, check))
if and only if i = gh for some h. As shown in Figure 6, the sequence
〈gh〉h∈N>0

defines a unique partition of the word w = σf(1)σf(2)σf(3) . . . into
infinitely many finite sub-words (some of them are possibly empty words): w1 =
σf(1)σf(2) . . . σf(i1), w

2 = σf(i1+1)σf(i1+2) . . . σf(i2), w
3 = σf(i2+1) . . . σf(i3), . . . ,820

wh = σf(ih−1+1) . . . σf(ih), and so on, with f(ih) < gh ≤ f(ih + 1) for every h.
We define the language of word sequences accepted by A, denoted by Ls(A), as
Ls(A) = {(w1, w2, . . . , wh, . . .) | there exists a run of A on w}.

For every A = (S,Σ, s0, sf , N,∆), let Â = (S,Σ, s0, sf , N,∆ ∪ {(sf , ε,
s0, (1, check))}). For each expression e, we build a CCA Ae such that825

L(e) = Ls(Âe).
Base cases. If e = ∅, then A∅ = ({s0, sf},Σ, s0, sf , 1, ∅).
If e=ε, then Aε=({s0, sf},Σ, s0, sf , 1, {(s0, ε, sf , (1, no op)),(sf , ε, sf , (1, inc))}).
If e=a, then Aa=({s0, sf},Σ, s0, sf , 1,{(s0, a, sf , (1, no op)),(sf , ε, sf , (1, inc))}).
See Figure 7, items (a), (b), and (c), for a graphical account of the three cases.830
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Inductive step. For every CCA A = (S,Σ, s0, N,∆) and natural number N ′ ≥ 1,
let us define the N ′-shifted version of A as the automaton A′ = (S,Σ, s0, N +
N ′, {(s, σ, s, (k+N ′, op)) | (s, σ, s, (k, op)) ∈ ∆}). Four cases must be considered.

• Let e = e1 · e2, Ae1 = (S,Σ, s0, sf , N,∆), and Ae2 = (S′,Σ, s′0, s
′
f , N

′,∆′).
Moreover, let A′e1 = (S,Σ, s0, sf , N +1,∆′′) and A′e2 = (S′,Σ, s′0, s

′
f , N

′+835

N+1,∆′′′) be the 1-shifted version of Ae1 and the N+1-shifted version of
Ae2 , respectively. We define Ae = (S∪S′∪{s′′f},Σ, s0, s

′′
f , N+N ′+1,∆′′∪

∆′′′ ∪{(sf , ε, s′0, (2, check)), (s′f , ε, s
′′
f , (N + 2, check)), (s′′f , ε, s

′′
f , (1, inc))}).

See Figure 7, item (d), for a graphical account.

• Let e = e1 #+ e2, Ae1 = (S,Σ, s0, sf , N,∆), Ae2 = (S′,Σ, s′0, s
′
f , N

′,∆′),840

A′e1 = (S,Σ, s0, sf , N + 1,∆′′), and A′e2 = (S′,Σ, s′0, s
′
f , N

′ +N + 1,∆′′′).
We define Ae = (S ∪ S′ ∪ {s′′0 , s′′f},Σ, s′′0 , s′′f , N ′ + N + 1,∆′′ ∪ ∆′′′ ∪
{(s′′0 , ε, s0, (1, no op)), (s

′′
0 , ε, s

′
0, (1, no op)), (sf , ε, s

′′
f , (2, check)), (s′f , ε, s

′′
f ,

(N + 2, check)), (s′′f , ε, s
′′
f , (1, inc))}. See Figure 7, item (e), for a graphical

account.845

• Let e = e+
1 , Ae1 = (S,Σ, s0, sf , N,∆), and A′e1 = (S,Σ, s0, sf , N + 1,∆′′).

We let Ae = (S ∪ {s′′f},Σ, s0, s
′′
f , N + 1,∆′′ ∪ {(sf , ε, s0, (1, no op)),

(sf , ε, s
′′
f , (2, check)), (s′′f , ε, s

′′
f , (1, inc))}). See Figure 7, item (f), for a

graphical account.

• Let e = eT1 and Ae1 = (S,Σ, s0, sf , N,∆). Moreover, let850

A′e1 = (S,Σ, s0, sf , N + 2,∆′′) be the 2-shifted version of Ae1 .
We let Ae = (S ∪ {s′′f , s′′1}, s0, s

′′
f , N + 2,∆′′ ∪ {(sf , ε, s0, (2, inc)),

(s′′1 , ε, s
′′
f , (2, check)), (s0, ε, s

′′
1 , (3, check)), (s′′f , ε, s

′′
f , (1, inc))}). See Fig-

ure 7, item (g), for a graphical account.

It is worth pointing out the differences between the automata for (.)+ and (.)T .855

First of all, the automaton for (.)T makes use of counter 2 to check the condition
imposed by (.)T ; moreover, it has a transition labeled by (ε, (3, check)), exiting
from s0, to allow for the empty string; finally, before entering s′′f , it has to check
both counter 2 and counter 3, and since CCA can only execute one check at a
time, an intermediate state s′′1 is necessary.860

s0 sfA∅s0 sf(a)
s0 sf

ε, (1, inc)

Aεs0 sf

ε, (1, no op) ε, (1, inc)

(b)
s0 sf

ε, (1, inc)

Aas0 sf

a, (1, no op) ε, (1, inc)

(c)

s0 sf s′′fA′
e1

s′0 s′f

ε, (N + 2, check)

A′
e2

ε, (1, inc)
ε, (2, check)

(d)

e1 · e2 s′′0

s0 sf

s′′f

•1 = ε, (2, check)
•2 = ε, (N + 2, check)

ε, (1, no op) •1A′
e1

s′0 s′f
ε, (1, no op) •2

A′
e2

ε, (1, inc)

(e)

e1 #+ e2

s0 sf s′′fA′
e1

ε, (1, inc)

ε, (1, no op)

ε, (2, check)

(f)

e+
1

s0 sf s′′1 s′′fA′
e1

ε, (1, inc)ε, (2, check)

ε, (2, inc)

ε, (3, check)

(g)

eT
1

Figure 7: The automata for the translation of a T -regular expression e.
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The number of counters used in the translation of a T -regular expression
e into a CCA is equal to the length of e plus the number of T -constructors
occurring in it. We do not know if a translation exists that uses a number
of counters linear in the number of T -constructors occurring in e (if such a
translation existed, it would probably be much more technically involved).865

The next lemma states the correctness of the proposed encoding. Its proof
is straightforward and thus omitted.

Lemma 5. Let e be a T -regular expression and Ae be the corresponding au-
tomaton. It holds that L(e) = Ls(Âe).

Encoding of ωT -regular expressions. Let us now consider ωT -regular expres-870

sions (sub-grammar rooted in E at page 10). We must distinguish three cases.

• Let E = E1 + E2, AE1 = (S,Σ, s0, sf , N,∆), and AE2 = (S′,
Σ, s′0, s

′
f , N

′,∆′). Moreover, let A′E2
= (S′,Σ, s′0, s

′
f , N + N ′,∆′′) be

the N -shifted version of AE2
, and let s′′0 be a fresh state. We

define AE = (S ∪ S′ ∪ {s′′0},Σ, s′′0 , sf , N + N ′,∆ ∪ ∆′′ ∪ {(s′′0 , ε,875

s0, (1, no op)), (s
′′
0 , ε, s

′
0, (1, no op))} ∪ {(sf , ε, sf , (k, ∗)) : ∗ ∈ {inc, check},

N < k ≤ N ′ +N} ∪ {(s′f , ε, s′f , (k, ∗)) : ∗ ∈ {inc, check}, 0 < k ≤ N}).

• Let E = R · E′, AR = (SR,Σ, s
R
0 ,∆R, FR) be the NFA that recognises

the regular language L(R), and AE′ = (S,Σ, s0, sf , N,∆). We define
AE = (S ∪ SR,Σ, sR0 , sf , N,∆ ∪ {(s, σ, s′, (1, no op)) : (s, σ, s′) ∈ ∆R} ∪880

{(s, ε, s0, (1, no op)) : s ∈ FR}).

• Let E = eω. We let AE = Âe.
As in the case of T -regular expressions, it is easy to check that this is a valid

encoding, as stated by the following theorem.

Theorem 3. Let E be an ωT -regular expression and AE be the corresponding885

CCA. It holds that L(E) = L(AE). Therefore, for every ωT -regular expression
E there exists a CQA A such that L(A) = L(E).

5. From ωT -regular languages to S1S+U

In this section, we provide an encoding of ωT -regular expressions into
S1S+U [7], which extends S1S with the unbounding quantifier U.890

5.1. The logic S1S+U

The logic S1S is the monadic second-order logic of one successor (MSO) in-
terpreted over ω-words. Its formulas are built over a finite, non-empty alphabet
Σ and sets V1 and V2 of first- and second-order variables, respectively:

ϕ ::= τ ∈ Pσ | τ ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃xϕ | ∃Xϕ
τ ::= x | s(τ)

895

where σ ∈ Σ, x ∈ V1, X ∈ V2, and s(.) is the successor function. Strings
generated by the sub-grammar rooted in τ are called terms. We denote by VΣ
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the set {Pσ | σ ∈ Σ} (we will write P (τ) for τ ∈ P , with P ∈ V2 ∪ VΣ). The
elements of VΣ are second-order variables (i.e., they range over sets of positive
natural numbers), but with the following intended semantics: they partition900

N>0 and an interpretation for them I : VΣ → 2N>0 identifies an ω-word wI

over Σ as follows: wI [i] = σ if and only if i ∈ I(Pσ), for all i ∈ N>0 and
σ ∈ Σ. Notice also that variables in VΣ always occur free (i.e., not bound by
any quantifier). We say that a formula is closed if the only free variables are the
ones in VΣ; otherwise, it is open. The semantics of a closed formula ϕ, denoted905

by JϕK, is the set of all ω-words that satisfy it, i.e, JϕK = {wI | I |= ϕ}. Notice
that the constant 1 (the initial position) as well as atomic formulas t1 = t2 and
t1 < t2, where t1 and t2 are terms, are all definable in S1S.

The unbounding quantifier U is defined as follows [7]:
UXϕ(X) :=

∧
n∈N ∃finX(ϕ(X) ∧ |X| ≥ n).910

where ∃fin allows for existential quantification over finite sets, i.e., ∃finXϕ ≡
∃X(ϕ∧∃yX ⊆ {1, . . . , y}) for every second-order variable X and S1S+U-formula
ϕ. The universal quantifier ∀fin is the dual of ∃fin. Intuitively, U makes it possible
to state that a formula ϕ(X) (containing at least one second-order free variable
X) is satisfied by infinitely many finite sets and there is no bound on their915

sizes. The bounding quantifier B is defined as the negation of U: BXϕ(X) :=
¬UXϕ(X) ≡ ∨n∈N ∀finX(ϕ(X)→ |X| < n). Its intended meaning is that there
is a bound on the sizes of finite sets that satisfy ϕ(X).

It is worth observing that other extensions of S1S can be found in the liter-
ature (e.g., S1S with the recurrence quantifier [10]), aiming at capturing prefix-920

independent extensions of ω-regular languages.

5.2. Encoding

Let E be an ωT -regular expression. We show how to build a formula ΦE
such that L(E) = JΦEK.

Using the closure of ωT -regular languages under projection, we can assume925

all the letters that occur in E are different, thus all sub-expressions occurring
in E are distinct. Hereafter, we will always make such an assumption.

The intuitive idea behind the encoding is that a word belongs to the language
defined by a certain expression if there is a parsing of the word, compatible
with the expression, that witnesses that the word is indeed in the language. For930

instance, let us consider the concatenation e1e2. Every word in L(e1e2) can be
decomposed in two parts, with the first one belonging to L(e1) and the second
one to L(e2). In the following, for any ωT -regular expression E, we will provide
a formula ΦE such that an ω-word w satisfies ΦE if and only if there exists a
parsing of w that matches E.935

For every sub-expression e of E, we introduce three second-order variables
Xe, Ye, and Ze. Intuitively, every element of Xe represents the beginning of a
sub-string that is matched to e, the elements of Ye represent the successors of
the ending points of the non-empty sub-strings begun by elements of Xe, and Ze
is a subset of Xe, whose elements identify the occurrences of empty sub-strings.940

Formally, every triple Xe, Ye, and Ze satisfy the following properties:
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• if x ∈ Xe, then (i) there exists y ∈ Ye such that x < y or (ii) x ∈ Ze
(possibly both);

• if y ∈ Ye, then there exists x ∈ Xe such that x < y;

• if x, x′ ∈ Xe and x < x′, then (i) there exists y ∈ Ye such that x < y ≤ x′945

or (ii) x ∈ Ze;

• if y, y′ ∈ Ye and y < y′, then there exists x ∈ Xe such that y ≤ x < y′;

• Ze ⊆ Xe.

Note that all these conditions are first-order definable. For every sub-expression
e, let Ψe be the formula with free variables Xe, Ye, and Ze that expresses the950

conjunction of these properties.
For the sake of notation, Let cons(x,X, y, Y ) be a formula stating that x ∈

X, y ∈ Y , x < y, and between x and y there are no other positions in X or Y .
Let us define now the formulas capturing the possible parsings of sub-

expressions. Since the focal point is the translation of the T operator, we955

restrict our attention to expressions of the form E = eω. For each T -regular
sub-expression e, let ϕe be defined as follows.

• If e = a ∈ Σ, then ϕe states that Ze is empty and that x ∈ Xe if and only
if x+ 1 ∈ Ye if and only if x ∈ Pa.

• If e = e1e2, then ϕe states that Xe1 = Xe, Ye2 ∪ Ze2 = Ye, and for every960

x ∈ Xe we have:

– if x ∈ Ze (both sub-strings are empty), then x ∈ Ze1 ∩ Ze2 ;

– if y is the (unique) position for which cons(x,Xe, y, Ye) holds, then
one of the following holds as well:

∗ x ∈ Ze1 , x ∈ Xe2 , and y ∈ Ye2 (only the first sub-string is965

empty);

∗ y ∈ Ze2 and y ∈ Ye1 (only the second sub-string is empty);

∗ there is z such that x < z < y, z ∈ Ye1 , z ∈ Xe2 , and y ∈ Ye2
(both sub-strings are non-empty).

• If e = e1 + e2, then ϕe states that Xe1 and Xe2 partition Xe, Ye1970

and Ye2 partition Ye, Ze1 and Ze2 partition Ze. Moreover, whenever
cons(x,Xe, y, Ye), we have that x ∈ Xe1 if and only if y ∈ Ye1 .

• If e = e∗1, then ϕe states that Xe is a subset of Xe1 ∪ Ze, Ye is a subset
of Ye1 , and if cons(x ,Xe , y ,Ye), then x ∈ Xe1 and, for all z ∈ Xe1 such
that x < z ≤ y, it holds z ∈ Ye1 , that is, we can decompose the sub-word975

matched to e in a bunch of sub-words, each one matched to e1.

• Let now e be eT1 . Note that locally this is equivalent to the case above, so
all the properties specified by ϕe∗1 should be specified by ϕeT1 .
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Moreover we need to state that the T property holds. To this end, we use
the notion of e-block. Let e = eT1 . An e-block is a maximal (finite) set of980

positions, all of them belonging to the same ω-iteration and starting sub-
strings parsed as e1; roughly speaking, an e-block represents an iteration
of e. The size of an e-block X is its cardinality; an e-block is extendable
if X ∩ Ze1 6= ∅ and the potential sizes of an extendable e-block are all
the natural numbers greater than or equal to its size (a non-extendable985

e-block has a unique potential size that coincides with its size). An e-
block set is the union of infinitely many e-blocks of bounded size. It
is important to observe that an e-block set contains infinitely many e-
blocks of the same size. Formula ψe(X) below states that X is an e-block
set; as a matter of fact, for purely technical reasons, ψe(X) also forces990

the additional constraint infinite(Ze1 \ X), that is, if e1 is instantiated
infinitely many times with the empty string, then infinitely many of them
(and the e-blocks containing them) must be left out of X.

We formally define ψe(X) as the formula

X ⊆ Xe1 ∧ infinite(X) ∧ (infinite(Ze1)→ infinite(Ze1 \X)) ∧
∀z ∈ X∃x∃y

(
cons(x,Xe, y, Ye) ∧ x ≤ z l y ∧
∀t ∈ Xe1(x ≤ tl y → t ∈ X)

)
∧

BY ⊆ X∃x∃y
(
cons(x,Xe, y, Ye) ∧ x ≤ Y l y

)
,

995

where infinite(X) is a shorthand for ∀x ∈ X∃y ∈ X(y > x), x ≤ zl y is a
shorthand for x ≤ zl y ∨ (z = y ∧ z ∈ Ze1), and x ≤ Y l y is a shorthand
for ∀z ∈ Y (x ≤ z l y).

Now, the T property can be expressed by saying that every e-block set can
be extended into another one that contains infinitely many new e-blocks,
captured by the following formula ϕe:

ϕe∗1 ∧ (infinite(Xe)→ ∃Xψe(X)) ∧
∀X(ψe(X) → ∃Y (ψe(Y ) ∧ infinite(Y \X))).

For an intuitive account of the correctness proof for the encoding of ex-
pressions eT1 (a formal proof is given in Lemma 6), consider the e-block1000

set containing all e-blocks of size at most k. It necessarily contains in-
finitely many e-blocks of size k1 ≤ k. By the above property, it can be
extended into another that contains infinitely many new e-blocks whose
size is greater than k, yet bounded. Thus, such an extended e-block sets
contains infinitely many e-blocks of size k2 > k and infinitely many e-1005

blocks of size k1 ≤ k. By iterating such an argument, it is possible to
convince oneself that the T -property is fulfilled.

Let E = eω. The last thing we need is a formula ϕE defining a parsing for
the ω operator. We can simply define ϕE just saying that Xe is infinite, and
except for the first one, all positions in Xe are also in Ye (that is, we force each1010

e-word to be followed by another e-word).
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The formula ΦE is now defined as the existential closure of the conjunction
of the formulas ϕe′ ∧ Ψe′ for every e′ that is a sub-expression of e, and the
formula ϕE .

As said above, we only focused on expressions of the form eω. However this1015

encoding can be easily extended to all ωT -regular expressions just by defining
a parsing for the two remaining constructors. Thus, we can conclude the main
result of this section.

Lemma 6. Let E be an ωT -regular expression containing the sub-expression
e = eT1 and let w ∈ E′ = E[eT1 7→ e∗1] (i.e., w satisfies ΦE′ , where E′ is obtained1020

from E by replacing eT1 with e∗1). Then, w satisfies ΦE iff either there are in w
only finitely many occurrences of sub-strings parsed as e, that is, Xe is finite,
or there are infinitely many natural numbers k such that w features infinitely
many e-blocks with potential size k.

Proof. Assume w to satisfy ΦE and assume, towards a contradiction, that (i) Xe1025

is infinite and (ii) there are only finitely many natural numbers k such that
infinitely many e-blocks with potential size k occur in w. Let K be the finite
set containing such natural numbers. Moreover, notice that if w satisfies ΦE ,
then w satisfies ϕe as well.

By (i) and the conjunct (infinite(Xe)→ ∃Xψe(X)) of ϕe, we are guaranteed1030

of the existence of an e-block set and, since an e-block set contains infinitely
many e-blocks of the same size, we know that K is not empty.

Let kmax be the largest element of K and X̄ be an e-block set containing
all non-extendable e-blocks of size not larger than kmax (X̄ may or may not
contain extendable e-block with size not larger than kmax). Clearly, w satisfies1035

ψe[X 7→ X̄] and thus, by ϕe, there exists an e-block set Ȳ that contains infinitely
many e-blocks (of bounded size) that do not belong to X̄. By the definition of
X̄, such e-blocks are extendable or of size larger than kmax (or both). In either
case, it follows that there exists a number k′ > kmax such that infinitely many
e-blocks of potential size k′ occur in w. This is in contradiction with our initial1040

hypothesis that kmax is the largest number such that infinitely many e-blocks
of potential size kmax occur in w, hence the thesis follows.

In order to prove the converse direction, we observe that, since we assume
that w satisfies ΦE′ , showing that w satisfies ΦE amounts to showing that w
satisfies ϕe. More precisely, since w satisfies ΦE′ , we have that w satisfies ϕe∗11045

as well. Consequently, to show that w satisfies ΦE it is enough to prove that w
satisfies the second and the third conjunct of ϕe only.

Let us first assume that Xe is finite. Then, the second conjunct of ϕe is
vacuously satisfied. Moreover, Xe being finite implies that ψ(X) does not hold
for any X, and thus the third conjunct of ϕe is vacuously satisfied as well.1050

Now, let us assume that Xe is infinite. If there are infinitely many natural
numbers k such that infinitely many e-blocks with potential size k occur in w,
then we are guaranteed that an e-block set exists. Thus, the second conjunct
of ϕe is satisfied. Let X̄ be an e-block set (i.e., w satisfies ψe[X 7→ X̄]). By
the definition of ψe(X) (specifically, the last conjunct), there is a bound on1055
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the size of all e-blocks in X̄. Let kmax be such a bound. By our assumption,
there is a number k′ > kmax such that infinitely many e-blocks with potential
size k′ occur in w. Let Y ′ be the set containing all e-blocks in X̄ and, in
addition, all non-extendable e-blocks of size k′ occurring in w. If Y ′ contains
infinitely many e-blocks of (actual, not potential) size k′, then we let Ȳ = Y ′.1060

Otherwise, there must be infinitely many extendable e-blocks with potential
size k′ not belonging to X̄ (due to the third conjunct of ψe(X)). Let Y ′′ be
an infinite collection of such extendable e-blocks such that infinitely many of
them do not belong to Y ′′ and let Ȳ = Y ′ ∪ Y ′′. Clearly, Ȳ is an e-block-
set that features infinitely many elements not belonging to X̄ (i.e., w satisfies1065

the formula (ψe(X) ∧ infinite(Y \ X))[X 7→ X̄, Y 7→ Ȳ ]), and thus w satisfies
ΦE .

Theorem 4. For every ωT -regular expression E, we have that JΦEK = L(E).

As a conclusive remark, notice that existentially quantified second-order vari-
ables Xe, Ye, and Ze range over infinite sets, suggesting that ϕt does not belong1070

to the language of WS1S+U, where second-order variables are only allowed to
range over finite sets.

6. ωTs-regular languages and counter-queue automata

In this section, we focus on ωTs-regular languages. We introduce the class
of counter-queue automata (CQA), we prove that their emptiness problem is1075

decidable, and, finally, we show that every ωTs-regular expression may be turned
into a CQA that recognizes exactly the same language.

6.1. Counter-queue automata (CQA)

Let us now introduce counter-queue automata. In the next section, we will
show that their emptiness problem is decidable.1080

To start with, we introduce the notion of queue (of natural numbers) devoid
of repetitions. A queue q is a finite word over N such that all of its elements
are different. We denote the empty queue by ∅. Moreover, we denote the set
of the elements in q by Set(q), the maximum among them by max(q), and
the i-th element in q by q[i]. Formally, Set(q) = {n ∈ N : ∃i.q[i] = n} and1085

max(q) = max(Set(q)) if Set(q) 6= ∅, max(q) = −1 otherwise. The first and
the last element of q can be selected by means of the usual front and back
operations: front(q) = q[1] and back(q) = q[|q|] if Set(q) 6= ∅, front(q) =
back(q) = −1 otherwise. The enqueue operation has to satisfy the uniqueness
constraint on the elements of q: for every n ∈ N, enqueue(q, n) = q · n if1090

n /∈ Set(q), enqueue(q, n) = q otherwise. The dequeue operation is defined as
usual: dequeue(q) = q[2] . . . q[|q|]. We denote by Q the set of all queues.

Counter-queue automata (CQA) are defined exactly as CCA (see Defini-
tion 3): a CQA is a quintuple A = (S,Σ, s0, N,∆), where S is a finite set of
states, Σ is a finite alphabet, s0 ∈ S is the initial state, N ∈ N>0 is the number1095

of counters, and ∆ ⊆ S × (Σ ∪ {ε}) × S × ({1, . . . , N} × {no op, inc, check})
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Figure 8: A prefix of a computation of the CQA in Figure 2 (the automaton can be viewed both
as a CCA and a CQA). A configuration is characterised by a circle (state) and the rounded-
corner rectangles above it (counter-queue configuration). For each i, with 1 ≤ i ≤ N = 2, ci
(resp., qi) is one of its counter (resp., queue) components.

is a transition relation that satisfies the constraint: if (s, σ, s′, (k, op)) ∈ ∆ and
op = no op, then k = 1. Unlike CCA, however, CQA are equipped with queues,
which take action in the definitions of configuration and acceptance conditions.

Let A = (S,Σ, s0, N,∆) be a CQA. A configuration of A is a pair c = (s, C),1100

where s ∈ S and C ∈ (N × Q)N is a counter-queue configuration. For i ∈
{1, . . . , N}, we denote by C[i] = (ni, qi) the i-th component of C, where ni and
qi are its counter and queue components, respectively. Hereafter, we will often
refer to ni as counter(C[i]) and to qi as queue(C[i]).

Let A = (S,Σ, s0, N,∆). We define a ternary relation →A over pairs of1105

configurations and symbols in Σ ∪ {ε} such that for all configuration pairs
(s, C), (s′, C ′) and σ ∈ Σ ∪ {ε}, (s, C) →σ

A (s′, C ′) if, and only if, there ex-
ists δ = (s, σ, s′, (k, op)) ∈ ∆ such that C[k′] = C ′[k′] for all k′ 6= k, and

• if op = no op, then C[k] = C ′[k];

• if op = inc, then counter(C ′[k]) = counter(C[k]) + 1 and queue(C ′[k]) =1110

queue(C[k]);

• if op = check, then counter(C ′[k]) = 0; moreover,

– if counter(C[k]) = front(queue(C[k])),
then queue(C ′[k]) = enqueue(dequeue(queue(C[k])), counter(C[k]));

– if counter(C[k]) 6= front(queue(C[k])),1115

then queue(C ′[k]) = enqueue(queue(C[k]), counter(C[k])).

In such a case, we say that (s, C) →σ
A (s′, C ′) via δ. Let →∗A be the reflexive

and transitive closure of →σ
A (where we abstract away symbols in Σ ∪ {ε}).

The intuition behind the last case of the previous itemization (case op =
check) is as follows. The automaton has to check infinitely many times all1120

values in the queue (i.e., all values checked at least once). Thus, the head of the
queue can be seen as the current goal (i.e., the next value to be checked). When
a checked value fulfills the current goal (it is equal to the head of the queue),
then said goal goes to the back of the line; instead, if the checked value fulfills
a non-current goal (it is equal to some element of the queue different from the1125

head), nothing is changed; finally, if it is a new goal (it is a new value), then it
is appended to the queue.

The initial configuration of A is the pair (s0, C0), where for each k ∈
{1, . . . , N} we have C0[k] = (0, ∅). A computation of A is an infinite sequence
of configurations C = (s0, C0)(s1, C1) . . ., where, for all i ∈ N, (si, Ci) →σi

A1130
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(si+1, Ci+1) for some σi ∈ Σ∪ {ε} (see Figure 8). A good computation of A is a
computation C of A such that:
(ac1) for all k ∈ {1, . . . , N}, limi→+∞ |queue(Ci[k])| = +∞;
(ac2) for all k ∈ {1, . . . , N}, i ∈ N, and n ∈ Set(queue(Ci[k])), it holds that

|{i′ ∈ N | back(queue(Ci′ [k])) = n}| = +∞.1135

Condition (ac1) forces the insertion of infinitely many (distinct) numbers in
each queue and condition (ac2), together with condition (ac1), guarantees that
each of them occurs, that is, is removed and added back, infinitely often.

Given two configurations (si, Ci) and (sj , Cj) in C, with i ≤ j, we say
that (sj , Cj) is ε-reachable from (si, Ci), written (si, Ci) →∗εA (sj , Cj), if1140

(sj′−1, Cj′−1) →ε
A (sj′ , Cj′) for all j′ ∈ {i + 1, . . . , j}, and, as we did for CCA,

we write (si, Ci)→∗εA (s∞, C∞) for (si, Ci)→∗εA (sj , Cj) for all j ≥ i.
The notions of run and accepting run of a CQA A on a word w, as well

as the one of trace of w in a run π with respect to A, are defined analogously
to the corresponding ones for CCA. We denote by L(A) the set of all ω-words1145

w ∈ Σω for which an accepting run of A on w exists, and we say that A accepts
the language L(A).

6.2. Decidability of the emptiness problem for CQA

We now prove that the emptiness problem for CQA is decidable in 2ETIME.
The proof is similar to the one for the decidability of emptiness for CCA (see1150

Section 4.2). It consists of 3 steps: (i) we replace general CQA by simple ones;
(ii) we prove that their emptiness can be decided by checking the existence of
finite witnesses of accepting runs; (iii) we show that the latter can be verified
by checking for emptiness a suitable multi-pushdown automaton (MPDA).

Notice that the procedure given here is also a decision procedure for CCA,1155

which translate into CQA. However, the ad hoc decision procedure for CCA
given in Section 4.2 allows us to establish a better upper bound for the com-
plexity of the emptiness problem for CCA.

The first step is exactly the same as in the proof for CCA; the notion witness
of accepting runs for CQA is slightly more complex than then one for CCA;1160

finally, a different class of automata (multi-pushdown rather than NFA) is used
to search for witnesses.

Simple CQA. We recall that a CQA is simple if, and only if, for each s ∈ S either
|{(s, σ, s′, (k, op)) | (s, σ, s′, (k, op)) ∈ ∆ for some σ, s′, k, op}| = 1 or op = no op,
k = 1, and σ = ε for all (s, σ, s′, (k, op)) ∈ ∆.1165

As in the case of CCA, it can be easily shown that every CQA A may be
turned into a simple one A′ such that L(A) = L(A′). From now on, we focus
on the latter. Moreover, for all pairs of configurations (s, C), (s′, C ′) such that
(s, C)→σ

A (s′, C ′), the transition δ ∈ ∆ that has been fired in (s, C) is uniquely
determined by s and s′. The set of states of a simple CQA can be partitioned1170

in four subsets: checkk states, inck states, sym states, and choice states.
The notion of prefix computation of a CQA is analogous to the one for CCA

and, with an abuse of notation, we denote by PrefixesA the sets of all prefix com-
putations of a CQA A. For every prefix computation P = (s0, C0) . . . (sn, Cn) ∈
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s0 ... sbegin ... sb1 ... se1 ... sbN ... seN ... sj1 ... sjN ... slimit

...

sb1...se1...sb|J|...se|J|...send

a
∈ Σ

τ
∈ Σ

∪ {
ε}

τ
∈ Σ

∪ {
ε}

c1 cN

=

=

NO check1

=

NO checkN

Figure 9: An accepting witness for a CQA.

PrefixesA, it holds that if (sn, Cn) →σ
A (s, C), for some s ∈ S, some counter-1175

queue configuration C, and some σ ∈ Σ ∪ {ε}, then C is uniquely determined
by sn and Cn, that is, there is no C ′ 6= C such that (sn, Cn) →σ′

A (s, C ′), for
any s and σ′.

Finite witnesses of accepting runs. We show now how to decide CQA emptiness
by making use of the notion of accepting witness for a CQA.1180

Definition 6 (Accepting witness for CQA). Let A = (S,Σ, s0, N,∆) be a CQA.
A prefix computation P = (s0, C0) . . . (sn, Cn) ∈ PrefixesA is an accepting wit-
ness (for A) iff there are 2N + 3 indexes begin < b1 < e1 < . . . < bN < eN <
limit < end such that 0 ≤ begin, end ≤ n, and the following conditions hold:

1. sbegin is a state from which a non-ε-transition can be fired;1185

2. sbegin = send and, for each k ∈ {1, . . . , N}, sbk is an inck state, sbk = sek ,
and sj is not a checkk state for any j with bk ≤ j ≤ ek;

3. for each k ∈ {1, . . . , N}, there is jk, with eN < jk < limit, such that sjk
is a checkk state;

4. let J = {j | 0 ≤ j ≤ limit and sj is a checkk state for some k}; there1190

exists a set of indexes J = {bj , ej | j ∈ J} such that for all j ∈ J , with
sj a checkk state, (i) limit < bj < ej < end, (ii) for all j′ 6= j, either
ej < bj′ or ej′ < bj, (iii) sbj and sej are checkk states and there are no

other checkk states between them, and (iv) there are exactly counter(Cj [k])
many inck states between sbj and sej .1195

As for the case of CCA, an accepting witness for a CQA A can be seen as a finite
representation of an accepting run of some ω-word on A (see Figure 9). Thus,
deciding whether a CQA A accepts the empty language amounts to searching
PrefixesA for accepting witnesses (the proof easily follows from results in [16]).

Lemma 7. Let A be a CQA. Then, L(A) 6= ∅ iff PrefixesA contains an accept-1200

ing witness for A.
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From CQA to MPDA. By Lemma 7, deciding the emptiness problem for a
CQA A amounts to searching PrefixesA for an accepting witness. Since we
restricted ourselves to simple CQA, we can safely identify elements of PrefixesA
with their sequence of states and thus, by slightly abusing the notation, we1205

write, e.g., s0s1 . . . sn ∈ PrefixesA for (s0, C0) . . . (sn, Cn) ∈ PrefixesA. Given a
CQA A, Lw(A) is defined, as for CCA, as the language of finite words over the
alphabet S (the set of states of A) that are accepting witnesses for A. It is easy
to see that L(A) 6= ∅ if and only if Lw(A) 6= ∅. In what follows, for a CQA A
we build a multi-pushdown automaton whose language is exactly Lw(A). Since1210

the emptiness problem for multi-pushdown automata is decidable, so is the one
for CQA.

Similarly to what we have done for CCA and without loss of generality, in
what follows we restrict our attention to accepting witnesses for which the sets
of indexes required by items 3 and 4 of Definition 6 are ordered. More precisely1215

(we borrow the notation from Definition 6), we assume that

1. there are N indexes c1 < . . . < cN , with eN < c1 and cN < limit , such that
sck is a checkk state, for each k ∈ {1, . . . , N} (this requirement strengthens
the one imposed by item 3 of Definition 6), and

2. for all j′, j′′ ∈ J , with j′ < j′′, such that sbj′ and sbj′′ are, respectively,1220

checkk′ and checkk′′ states, it holds that bj′ < bj′′ if and only if k′ < k′′

(this requirement strengthens the one imposed by item 4 of Definition 6).

Notice that if k′ = k′′, then bj′′ < bj′ . It is easy to check that, given a CQA
A, PrefixesA contains an accepting witness, as specified by Definition 6, if and
only if it contains one satisfying the additional ordering properties above. Thus,1225

Lemma 7 holds with the new definition of accepting witness as well.
Multi-pushdown automata generalize pushdown ones by featuring more than

one stack [17]. At each transition, the automaton can write on any stack,
possibly more than one, but it reads only from the first non-empty one.

Definition 7 (multi-pushdown automata). A multi-pushdown automaton1230

( MPDA for short) is a tuple M = 〈n,Q,Σ,Γ, δ, q0, F, Z0〉, where n ≥ 1
is the number of stacks, Q is a finite set of states, Σ and Γ are finite al-
phabets, referred to as the input and the stack alphabet, respectively, δ ⊆
Q × (Σ ∪ {ε}) × Γ × Q × (Γ∗)n is the transition relation, q0 ∈ Q is the ini-
tial state, F ⊆ Q is the set of final states, and Z0 ∈ Γ is the initial stack1235

symbol.

Let M = 〈n,Q,Σ,Γ, δ, q0, F, Z0〉 be an MPDA. A configuration of M is
a (n + 2)-tuple 〈q, w, γ1, . . . , γn〉, where q ∈ Q, w ∈ Σ∗, and γi ∈ Γ∗, for
i ∈ {1, . . . , n}. We define a binary relation `M over pairs of configurations
as follows: 〈q, aw, ε, . . . , ε, Aγi, . . . , γn〉 `M 〈q′, w, α1, . . . , αi−1, αiγi, . . . , αnγn〉1240

if and only if (q, a,A, q′, (α1, . . . , αn)) ∈ δ. Intuitively, the automaton pops the
first symbol from the first non-empty stack, reads the first letter of the (current)
input word, moves from state q to state q′, and pushes strings α1, . . . , αn in the
stacks. We denote by `∗M the reflexive and transitive closure of `M.
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A word w ∈ Σ∗ is accepted by M if, and only if, 〈q0, w, ε, . . . , ε, Z0〉 `∗M1245

〈q, ε, γ1, . . . , γn〉 for some q ∈ F . The language of M, denoted by L(M), is the
set of words accepted by M.

From now on, we denote by σ the symbol (in Σ) read from the input word w
and by γ the symbol (in Γ) read from the stack. Moreover, unless we explicitly
say the opposite, we assume that the symbol popped from the stack is immedi-1250

ately pushed back in. In particular, by saying “do nothing” we mean “push γ
back in the same stack you read it from and do nothing else” (notice that this
is possible because we will make use of an MPDA whose stacks store, to a large
extent, disjoint subsets of symbols in Γ).

Theorem 5 ([18, 17]). The emptiness problem for MPDA is 2ETIME-complete.1255

Lemma 8 ([17]). Let L = L(M) for some MPDA M and L′ be a regular
language. Then, there exists an MPDA M′ such that L(M′) = L ∩ L′.

Given a CQA A, we build an MPDAM such that L(M) = Lw(A) as follows.
We first build an MPDA M̂, whose input alphabet is the set of states of A,
which accepts accepting witnesses. Unfortunately, such an automaton might1260

also accept accepting witnesses not belonging to PrefixesA. However, since
PrefixesA is a regular language, thanks to Lemma 8, there exists an MPDAM
such that L(M) = L(M̂) ∩ PrefixesA = Lw(A).

Let A = (S,Σ, s0, N,∆) be a CQA. M̂ = 〈n,Q,ΣM̂,Γ, δ, q0, F, Z0〉 is defined
as follows. We set n = N + 2, ΣM̂ = S, and Γ = S ∪ {Ik, Ck}Nk=1 ∪ {Z0}. The1265

remaining components of M̂ are described in Figures 10 and 11. In particular,
the transition relation δ forces the automaton to behave as described in the
following 5 steps:

1. it nondeterministically guesses begin and it stores sbegin in the last stack
in order to check, at a later stage, that sbegin = send ;1270

2. for each k ∈ {1, . . . , N}, it nondeterministically guesses bk and ek and it
stores sbk in the first stack in order to check that sbk = sek ;

3. it checks for the existence, after eN , of checkk states, for k = 1, . . . , N , in
the desired order;

q0

I1

..
IN C1

..
CN J1

..
JN

qend qF

δ0

δbegin

δ1

δend

δ0
σ is an inck state ⇒ push Ik in stack k + 1
σ is a checkk state ⇒ push Ck in stack k + 1

else ⇒ do nothing

δ1 do nothing

δbegin σ = s’ has a non-ε-transition ⇒ push s’ in stack N + 2 δend σ = s’ and γ = s’ ⇒ pop s’

Figure 10: A graphical account of M̂ (part 1).
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qIk0 qIk1

δ0

δbinck

δ0 \ δcheckk

δeinck

An Ik-block.

qCk

δ0 \ δcheckk

δcheckk

A Ck-block.

qJk0 qJk1

qJk2

δεdeinck
δ1

δdeinck

δεdecheckk

δdecheckkδ′decheckk

δ1

A Jk-block.

δbinck
σ = s’’ is an
inck state

⇒ push s’’ in stack 1,
push Ik in stack k + 1

δeinck
σ = s’’

and γ = s’’
⇒ pop s’’,

push Ik in stack k + 1

δ0 \ δcheckk σ is an inck state ⇒ push Ik in stack k + 1
σ is neither an inck nor a checkk state ⇒ do nothing

δcheckk σ is a checkk state ⇒ push Ck in stack k + 1

δεdeinck σ = ε and γ = Ik ⇒ pop Ik

δεdecheckk σ = ε and γ = Ck ⇒ do nothing

δdecheckk σ is a checkk state and γ = Ck ⇒ pop Ck

δ′decheckk
σ is a checkk state

and γ 6= Ik
⇒ do nothing

δdeinck
σ is an inck state and γ = Ik ⇒ pop Ik

σ is neither an inck nor a checkk state ⇒ do nothing

Figure 11: A graphical account of M̂ (part 2): Ik-, Ck-, and Jk-blocks, for k ∈ {1, . . . , N}.

4. until limit is reached, whenever it reads an inck (resp., checkk) state for1275

some k ∈ {1, . . . , N}, it pushes Ik (resp., Ck) in the (k + 1)-th stack;

5. once limit is reached, it checks whether the stacks can be emptied, by
popping Ik, when an inck state is read, and Ck, when a checkk state is
read.

Figure 10 gives a high-level pictorial account of the behavior of the MPDA.1280

Steps 1 and 4 above are easy to implement; steps 2, 3, and 5 are dealt with
by separate modules, namely, I-, C-, and J -blocks, respectively (Figure 11).
Transitions of M̂ are depicted by labeled edges, whose labels have the form δx,
which denote sets of transitions. An explicit account of their intended meaning
is given in the pictures.1285

Transitions labeled with δbegin and δend (see Figure 10) force the automaton
to behave exactly as described in step 1 above, while δ0 in both Figure 10
and Figure 11 captures the behavior described in step 4. Let us consider, for
instance, the loop edge labeled with δ0 in Figure 10. It denotes the following
transitions:1290

• for each inck state σ of A, (q0, σ, λi, q0, (ε, . . . , ε, λi, ε, . . . , ε, Ik, ε, . . . , ε)) ∈
δ, for i ∈ {1, . . . , N} and λi ∈ {Ii, Ci} (we are assuming that i < k; similar
transitions exist for i > k and i = k);

• for each checkk state σ of A, (q0, σ, λi, q0, (ε, . . . , ε, Ckλi, ε, . . . , ε)) ∈ δ, for
i ∈ {1, . . . , N} and λi ∈ {Ii, Ci} (for the sake of completeness, we are1295

assuming here, unlike the previous item, that i = k; similar transitions
exist for i < k and i > k);
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• for each state σ ofA that is neither an inck nor a checkk state, (q0, σ, λi, q0,
(ε, . . . , ε, λi, ε, . . . , ε)) ∈ δ, for i ∈ {1, . . . , N} and λi ∈ {Ii, Ci}.

The internal structure of I-, C-, and J -blocks is depicted in Figure 11. An1300

Ik-block, with k ∈ {1, . . . , N}, is used to check whether there is a cycle that
starts and ends at an inck state, and visits no checkk states. A Ck-block, with
k ∈ {1, . . . , N}, is used to verify whether there is a checkk state before limit .
Finally, a Jk-block, with k ∈ {1, . . . , N}, is used to check item 4 of Definition 6:
first, it pops the increments that were not checked yet from stack k + 1, and1305

then it nondeterministically checks whether the condition can be satisfied by
trying to empty stack k + 1.

Theorem 6. The emptiness problem for CQA is decidable in 2ETIME.

6.3. A translation of ωTs-regular expressions into CQA

In this section, we show how to map an ωTs-regular expression E into a cor-1310

responding CQA A such that L(A) = L(E) (the semantics of the constructor
(.)Ts is given in Section 3.3). A is built in a compositional way: for each sub-
expression E′ of E, starting from the atomic ones, we introduce a set SE′ of
CQA; then, we show how to produce the set of automata for complex sub-
expressions by suitably combining automata in the sets associated with their1315

sub-expressions. A is obtained from a suitable merge of the automata in the set
of automata for E.

W.l.o.g., we assume the sets of states of all automata generated during the
construction to be pairwise disjoint, i.e., if A′ ∈ SE′ and A′′ ∈ SE′′ are distinct
automata, where E′ and E′′ are two (not necessarily distinct) sub-expressions1320

of E, then the sets of states of A′ and A′′ are disjoint.
We proceed by structural induction on ωTs-regular expressions, by assuming,

when building the set SE′ of CQA for a sub-expression E′ of E, the sets of CQA
for the sub-expressions of E′ to be available. In addition, by the construction,
we force all the generated CQA A = (S,Σ, s0, N,∆) to feature a distinguished1325

final state sf . As we have done for CCA, slightly abusing the notation, we
denote an automaton with such a state as A = (S,Σ, s0, sf , N,∆).

Encoding of Ts-regular expressions. We first deal with Ts-regular expressions
(see Section 3.3 for their formal definition). As in the case of T -regular ex-
pressions, we must convert ω-words (accepted by CQA) into word sequences1330

(captured by Ts-regular expressions). To this purpose, we define the language
of word sequences accepted by a CQA A, denoted by Ls(A), exactly as we have
done for CCA. Intuitively, Ls(A) is the language of word sequences obtained by
splitting the ω-words accepted by A at the positions where the first counter of
A is checked (see paragraph “Encoding of T -regular expressions” on page 24).1335

Furthermore, as in the case of T -regular expressions, we replace the Kleene star
(.)∗ (0 or more iterations of the argument expression) by the combination of
the operator for the empty string and the usual constructor (.)+ (1 or more
iterations).
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Despite the fact that the construction of an automaton for a Ts-regular1340

expressions does not introduce particular new insights with respect to the one
proposed for T -regular expressions, we have to deal with some technical issues
that make the construction more complex. The main one is a direct consequence
of the fact that, unlike T -regular expressions, Ts-regular ones are not prefix
independent. Such a drawback leads to severe consequences in the complexity1345

of the construction in order to deal correctly with the shuffle operator. One
of the consequences of the inter-play of the variability of the shuffle operator
(see below) and the lack of prefix-independence is the production of a set of
automata (rather than a single one) for each sub-expression E′ of E. For better
explaining how such an issue is addressed in the construction, we pair the formal1350

definition of the construction with the illustration of a simple running example
based on the ωTs-regular expression E = ((aTs + bTs)c)ω.

Let e be the Ts-regular expression (aTs + bTs)c and let ~v = (σn1
1 c, σn2

2 c, . . .),
with σi ∈ {a, b} for all i ∈ N>0, be a word of L(e). We must distinguish three
possible cases.1355

(1) The shuffle operator behaves fairly. For every i ∈ N, there is i′ > i such
that σi′ = a and there is i′′ > i such that σi′′ = b. In this case, ~v must
satisfy the two following conditions: (i) for all σi = a, |{i′ | σi′ = a, ni′ =
ni}| = +∞ and (ii) for all σi = b, |{i′ | σi′ = b, ni′ = ni}| = +∞.

(2) The shuffle operator privileges the left operand. There exists j ∈ N>0 such1360

that σi = a for every i ≥ j. In this case, ~v must satisfy the condition: for
all σi = a, |{i′ | σi′ = a, ni′ = ni}| = +∞.

(3) The shuffle operator privileges the right operand. There exists j ∈ N>0

such that σi = b for every i ≥ j. In this case, ~v must satisfy the condition:
for all σi = b, |{i′ | σi′ = b, ni′ = ni}| = +∞.1365

s0 sf
a

ε, (1, inc)

Sa

s0 sf
b

ε, (1, inc)

Sb

s0 sf
c

ε, (1, inc)

Sc

Figure 12: The sets of automata Sa,Sb and
Sc.

Generally speaking, a CQA that
recognizes L(e) reads a finite pre-
fix, and then it non-deterministically
moves into a region where (1) it
recognizes infinitely many blocks of1370

(consecutive) a’s and of (consecutive)
b’s, (2) it recognizes infinitely many
blocks of a’s only, or (3) it recognizes
infinitely many blocks of b’s only. Due
to the universal nature of the Ts oper-1375

ator, the automaton must keep track
of the sizes of the blocks of a’s and b’s
that occur in the finite prefix; how-
ever, in case (2) (resp., (3)), the sizes
of the blocks of b’s (resp., a’s) are later1380

discarded. This is the major differ-
ence between the T - and the Ts- con-
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structor: when dealing with the T -
constructor, the automaton can ignore any finite number of exponents, and
thus it can safely ignore the whole finite prefix.1385

Let A be the CQA (S,Σ, s0, N,∆). We define the set of effective counters
of A as the set Neff = {1 ≤ i ≤ N | ∃(s, σ, s′, (i, op)) ∈ ∆ for some op ∈
{check, inc}} ⊆ {1, . . . , N}. Neff ⊆ {1 ≤ i ≤ N} thus identifies the subset of
counters on which A actually operates.

Moreover, as in the case of CCA, for any CQA A = (S,Σ, s0, N,∆) and1390

natural number N ′ ≥ 1, we define the N ′-shifted version of A as the automaton
A′ = (S,Σ, s0, N +N ′, {(s, σ, s, (k +N ′, op)) | (s, σ, s, (k, op)) ∈ ∆}).

Automata for Ts-regular expressions are built recursively as follows.
1395

Base cases.

• If e = ∅, then Se = {({s0, sf},Σ, s0, sf , 1, ∅)};

• if e = a, then Se = {({s0, sf},Σ, s0, sf , 1, {(s0, a, sf , (1, no op)), (sf , ε, sf ,
(1, inc))})};

• if e = ε then Se = {({s0, sf},Σ, s0, sf , 1, {(s0, ε, sf , (1, no op)), (sf , ε, sf ,1400

(1, inc))})}.

The sets of automata Sa,Sb, and Sc for the Ts-expression e of the running
example are depicted in Figure 12

1405

Inductive step.

• Let e = e1 · e2, Se1 = {A1, . . . ,An}, with Ai = (Si,Σ, s
i
0, s

i
f , Ni,∆i), and

Se2 = {A′1, . . . ,A′m}, with A′j = (S′j ,Σ, s
′
0
j
, s′f

j
, N ′j ,∆

′
j).

The set of automata for e consists of the concatenation of each automaton
in Se1 with each automaton in Se2 . Since automata are merged in the last1410

step of the construction, we keep all the counters of the automata in Se
distinct. To this end, we introduce a shifting function ct1,t2 : {1, . . . , n} ×
{1, . . . ,m} → N>0, which is recursively defined as follows. For all 1 ≤ i ≤
n and 1 ≤ j ≤ m,

– ce1,e2(1, 1) = 1;1415

– ce1,e2(i, j) = ce1,e2(i, j − 1) +Ni +N ′j−1 (for j > 1);

– ce1,e2(i, 1) = ce1,e2(i− 1,m) +Ni−1 +N ′m.

Let Â(i,j) = (Si,Σ, s
i
0, s

i
f , N̂(i,j), ∆̂(i,j)) be the ce1,e2(i, j)-shifted version

of Ai and Â′(i,j) = (S′j ,Σ, s
′
0
j
, s′f

j
, N̂ ′(i,j), ∆̂

′
(i,j)) be the (ce1,e2(i, j) + Ni)-

shifted version of A′j . We define A(i,j) as follows:1420

40



s0 s30 s20 s10 s1f s2f s3f

ε, (3, inc)
ε, (3, check) ε, (2, inc)

ε, (2, check)ε, (4, inc)

aε ε εε

ε, (4, check)

ε, (5, inc)
ε, (5, check)

s4fs40
sf

ε, (1, inc)

ε, (6, inc)
ε, (6, check)

c ε

ε

s0 s30 s20 s10 s1f s2f s3f

ε, (11, inc)
ε, (11, check) ε, (7, inc)

ε, (7, check)ε, (12, inc)

aε ε εε

ε, (12, check)

ε, (13, inc)
ε, (13, check) s4fs40

sf

ε, (1, inc)

ε, (14, inc)
ε, (14, check)

c ε

ε

s0 s50
ε

s20 s10 s1f s2f

s5f

ε, (22, inc)
ε, (22, check)

ε, (15, inc)
ε, (15, check)

ε, (23, inc)

a

ε ε

ε

ε, (23, check)

ε, (24, inc)
ε, (24, check)

s40 s30 s3f s4f
ε, (25, inc)
ε, (25, check)

ε, (26, inc)

b

ε
ε

ε

ε, (26, check)

ε, (27, inc)
ε, (27, check)

s60 s6f sf

ε, (1, inc)

c ε

ε, (28, inc)
ε, (28, check)

ε

S(aT+bT )c

Figure 13: The concatenation operator applied to the sets SaTs+bTs and Sc.
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A(i,j) =



{s0, sf} ∪ Si ∪ S′j ,Σ, s0, sf ,

N̂ ′(i,j), ∆̂(i,j) ∪ ∆̂′(i,j)∪

(s0, ε, s
i
0, (1, no op)),

(sif , ε, s
i
f , (ce1,e2(i, j) + 1, check)),

(sif , ε, s
′
0
j
, (1, no op)),

(s′f
j
, ε, s′f

j
, (ce1,e2(i, j) +Ni + 1, check)),

(s′f
j
, ε, sf , (1, no op)),

(sf , ε, sf , (1, inc))




.

The resulting set of automata is Se1·e2 = {A(i,j) | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.
The result of the application of such a construction to the concatenation
of SaTs+bTs and Sc is shown in Figure 13.

• Let e = e1+e2, and let Se1 and Se2 be defined as for concatenation. In such
a case, the shifting function se1,e2 : {1, . . . , n} × {1, . . . ,m} × {1, 2, 3} →1425

N>0 is recursively defined as follows. For all i, j ∈ N, with 1 ≤ i ≤ n and
1 ≤ j ≤ m,

– se1,e2(1, 1, 1) = 1;

– se1,e2(i, j, 2) = se1,e2(i, j, 1) +Ni;

– se1,e2(i, j, 3) = se1,e2(i, j, 2) +N ′j ;1430

– se1,e2(i, j, 1) = se1,e2(i, j − 1, 3) +Ni +N ′j−1 (for j > 1);

– se1,e2(i, 1, 1) = se1,e2(i− 1,m, 3) +Ni−1 +N ′m.

For all i, j ∈ N, with 1 ≤ i ≤ n and 1 ≤ j ≤ m, and each p ∈ {1, 2, 3}, we
define A(i,j,p) as follows.

– Let p = 1 and Â(i,j,p) = (Si,Σ, s
i
0, s

i
f , N̂(i,j,p), ∆̂(i,j,p)) be the1435

se1,e2(i, j, p)-shifted version of Ai. Then,

A(i,j,p) =


{s0, sf} ∪ Si,Σ, s0, sf , N̂(i,j,p), ∆̂(i,j,p)∪

(s0, ε, s
i
0, (1, no op)),

(sif , ε, s
i
f , (se1,e2(i, j, p) + 1, check)),

(sif , ε, sf , (1, no op)),

(sf , ε, sf , (1, inc))



 .

– Let p = 2 and Â(i,j,p) = (S′j ,Σ, s
′
0
j
, s′f

j
, N̂ ′(i,j,p), ∆̂

′
(i,j,p)) be the

se1,e2(i, j, p)-shifted version of A′j . Then,

A(i,j,p) =


{s0, sf} ∪ S′j ,Σ, s0, sf , N̂

′
(i,j,p), ∆̂

′
(i,j,p)∪

(s0, ε, s
′
0
j
, (1, no op)),

(s′f
j
, ε, s′f

j
, (se1,e2(i, j, p) + 1, check)),

(s′f
j
, ε, sf , (1, no op)),

(sf , ε, sf , (1, inc))



 .
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s0 s2
0 s1

0 s1
f s2

f
sf

ε, (2, inc)
ε, (2, check)

ε, (1, inc)

ε, (3, inc)

aε εε

ε, (3, check)

ε, (4, inc)
ε, (4, check)

s0 s2
0 s1

0 s1
f s2

f
sf

ε, (5, inc)
ε, (5, check)

ε, (1, inc)

ε, (6, inc)

bε
ε

ε

ε, (6, check)

ε, (7, inc)
ε, (7, check)

s0

s2
0 s1

0 s1
f s2

f

sf

ε, (8, inc)
ε, (8, check)

ε, (1, inc)

ε, (9, inc)

a

ε ε

ε

ε, (9, check)

ε, (10, inc)
ε, (10, check)

s4
0 s3

0 s3
f s4

f
ε, (11, inc)
ε, (11, check)

ε, (12, inc)

b

ε

ε
ε

ε, (12, check)

ε, (13, inc)
ε, (13, check)

SaTs+bTs

Figure 14: The shuffle operator applied to the sets SaT and SbT .
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– Let p = 3, Â(i,j,p) = (Si,Σ, s
i
0, s

i
f , N̂(i,j,p), ∆̂(i,j,p)) be

the se1,e2(i, j, p)-shifted version of Ai, and Â′(i,j,p) =1440

(S′j ,Σ, s
′
0
j
, s′f

j
, N̂ ′(i,j,p), ∆̂

′
(i,j,p)) be the (se1,e2(i, j, p) + Ni)-shifted

version of A′j . Then,

A(i,j,p) =



{s0, sf} ∪ Si ∪ S′J ,Σ, s0, sf ,

N̂ ′(i,j,p), ∆̂(i,j,p) ∪ ∆̂′(i,j,p)∪

(s0, ε, s
i
0, (1, no op)),

(s0, ε, s
′
0
j
, (1, no op)),

(sif , ε, s
i
f , (se1,e2(i, j, p) + 1, check)),

(s′f
j
, ε, s′f

j
, (se1,e2(i, j, p) +Ni + 1, check)),

(sif , ε, sf , (1, no op)),

(s′f
j
, ε, sf , (1, no op)),

(sf , ε, sf , (1, inc))




.

The resulting set of automata is Se1+e2 = {A(i,j,p) | 1 ≤ i ≤ n, 1 ≤ j ≤
m, 1 ≤ p ≤ 3}. The result of the application of such a construction to
SaTs and SbTs is shown in Figure 14.1445

• Let e = e+
1 , S = {A1, . . . ,An}, with Ai = (Si,Σ, s

i
0, s

i
f , Ni,∆i), and

Âi = (Si,Σ, s
i
0, s

i
f , N̂i, ∆̂i) be the 1-shifted version of Ai. We define A+

i

as the automaton:

A+
i =

{s0, sf} ∪ Si,Σ, s0, sf , N̂i, ∆̂i ∪


(s0, ε, s

i
0, (1, no op)),

(sif , ε, s
i
0, (1, no op)),

(sif , ε, s
i
f , (2, check)),

(sif , ε, sf , (1, no op)),

(sf , ε, sf , (1, inc))



 .

The resulting set of automata is Se+1 = {A+
i : 1 ≤ i ≤ n}.

• Let e = eTs1 , S = {A1, . . . ,An}, with Ai = (Si,Σ, s
i
0, s

i
f , Ni,∆i), and

Âi = (Si,Σ, s
i
0, s

i
f , N̂i, ∆̂i) be the 2-shifted version of Ai. We define ATsi

as the automaton:

ATsi =

{s0, sf} ∪ Si,Σ, s0, sf , N̂i, ∆̂i ∪


(s0, ε, s

i
0, (1, no op)),

(si0, ε, sf , (2, check)),
(sif , ε, s

i
0, (2, inc)),

(sif , ε, s
i
f , (3, check)),

(sf , ε, sf , (1, inc))



 .

The resulting set of automata is SeTs1 = {ATs1 , . . . ,ATsn }. The result of1450

the application of such a construction to the (singleton) sets Sa and Sb is
depicted in Figure 15.
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s0 s10 s1f sf ε, (1, inc)

ε, (2, inc)

aε

ε, (2, check)

ε, (3, inc)
ε, (3, check)

SaT

s0 s10 s1f sf ε, (1, inc)

ε, (2, inc)

bε

ε, (2, check)

ε, (3, inc)
ε, (3, check)

SbT

Figure 15: The automata set resulting from the application of (.)Ts to set Sa (resp., Sb).

Let Se = {A1, . . . ,An}, for a T -regular expression e, with Ai =
(Si,Σ, s

i
0, s

i
f , Ni,∆i). It is worth noticing that, by the construction, we have

Neff (Ai)∩Neff (Aj) = {1} for all 1 ≤ i < j ≤ n, that is, distinct automata work1455

on different counters, apart from the special counter 1.
We have already mentioned that the variability of the shuffle operator (to-

gether with the lack of prefix-independence) results in having a set of automata
(rather than a single one) associated with each sub-expression of an ωTs-regular
one: each automaton of the set captures one of the possible behavior induces1460

by the shuffle operator. An accepting run of a CQA simulating an ωTs-regular
expression must be allowed to switch arbitrarily among the different behaviors
(different automata in the set) for a finite prefix of computation, before even-
tually committing to one of them. Thus, we introduce a set Se of copies of the
automata in Se: the computation can switch arbitrarily among automata in Se1465

before committing to one of the automata in Se.
Formally, let Se = {A1, . . . ,An}, with Ai = (Si,Σ, s

i
0, s

i
f , Ni,∆i), be the

set of copies of the automata in Se where each state s ∈ Si is renamed s in Si.
Let s0 be a fresh state and Nmax = max1≤i≤nNi. We define the closure of Se,
written closure(Se), as:1470

closure(Se) =


{s0} ∪

⋃n
i=1(Si ∪ Si),Σ, s0, Nmax,

⋃n
i=1(∆i ∪∆i)∪⋃n

i=1

{
(s0, ε, s

i
0, (1, no op)), (s

i
f , ε, s0, (1, no op)),

(s0, ε, s
i
0, (1, no op)), (s

i
f , ε, s

i
0, (1, check))

}
∪⋃n

i=1

{
(sif , ε, s

i
f , (k, inc)), (s

i
f , ε, s

i
f , (k, check)) |

k ∈ {2, . . . , Nmax} \Neff (Ai)

}
 .
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s0

s50 s30 s20 s10 s1f s2f s3f s40 s4f s5f
ε ε ε

ε, (4, check)

ε, (3, inc)
ε, (3, check)

ε, (5, inc)
ε, (5, check)

ε, (2, inc)
ε, (2, check)

ε, (4, inc)

a

ε ε c ε

ε, (6, inc)
ε, (6, check)

ε, (1, inc)

s100 s80 s70 s60 s6f s7f s8f s90 s9f s10f
ε ε ε

ε, (12, check)

ε, (11, inc)
ε, (11, check)

ε, (7, inc)
ε, (7, check)

ε, (12, inc)

b

ε ε c ε

ε, (13, inc)
ε, (13, check) ε, (14, inc)

ε, (14, check)

ε, (1, inc)

s170 s150
ε

s120 s110 s11f s12f

s15f

ε, (22, inc)
ε, (22, check)

ε, (15, inc)
ε, (15, check)

ε, (23, inc)

aε

ε

ε

ε, (23, check)

ε, (24, inc)
ε, (24, check)

s140 s130 s13f s14f
ε, (25, inc)
ε, (25, check)

ε, (26, inc)

b

ε ε

ε

ε, (26, check)

ε, (27, inc)
ε, (27, check)

s160 s16f s17f

ε, (1, inc)

c ε

ε, (28, inc)
ε, (28, check)

ε

ε

s50 s30 s20 s10 s1f s2f s3f s40 s4f s5f
ε ε ε

ε, (4, check)

ε, (3, inc)
ε, (3, check)

ε, (2, inc)
ε, (2, check)

ε, (4, inc)

a

ε ε c ε

ε, (5, inc)
ε, (5, check) ε, (6, inc)

ε, (6, check)

ε, (1, inc)
ε, (1, check)

∆1

s100 s80 s70 s60 s6f s7f s8f s90 s9f s10f
ε ε ε

ε, (12, check)

ε, (11, inc)
ε, (11, check)

ε, (7, inc)
ε, (7, check)

ε, (12, inc)

b

ε ε c ε

ε, (14, inc)
ε, (14, check)ε, (13, inc)

ε, (13, check)

ε, (1, inc)
ε, (1, check)

∆2

s170 s150
ε

s120 s110 s11f s12f

s15f

ε, (22, inc)
ε, (22, check)

ε, (15, inc)
ε, (15, check)

ε, (23, inc)

aε

ε

ε

ε, (23, check)

ε, (24, inc)
ε, (24, check)

s140 s130 s13f s14f
ε, (25, inc)
ε, (25, check)

ε, (26, inc)

b

ε ε

ε

ε, (26, check)

ε, (27, inc)
ε, (27, check)

s160 s16f s17f

ε, (1, inc)

c ε

ε, (28, inc)
ε, (28, check)

ε

ε, (1, check)

∆3

∆1 = {(i, inc), (i, check) : 7 ≤ i ≤ 28} ∆2 =
{(i, inc), (i, check) : 2 ≤ i ≤ 6}∪
{(i, inc), (i, check) : 8 ≤ i ≤ 10}∪
{(i, inc), (i, check) : 15 ≤ i ≤ 28}

∆3 =
{(i, inc), (i, check) : 2 ≤ i ≤ 14}∪
{(i, inc), (i, check) : 16 ≤ i ≤ 21}

Figure 16: The automata representing the closure of S(aTs+bTs )c.

46



The closure of S(aTs+bTs )c is shown in Figure 16.
Let E = r · (e1 + . . .+ en)ω be an ωTs-regular expression. For all 1 ≤ i ≤ n,

let Ai = (Si,Σ, s
i
0, Ni,∆i) be the closure of Sei and Ar = (Sr,Σ, s

r
0, 1,∆r) be

an ε-NFA that recognizes L(r) with a distinguished final state srf (for the sake
of consistency, we assume all the transitions of the ε-NFA to be of the form
(s, σ, s′, (1, no op))). It is easy to prove that the CQA

AE = (Sr ∪
n⋃
i=1

Si,Σ, s
r
0, Nmax,∆r ∪

n⋃
i=1

∆i ∪ {(srf , ε, si0, (1, no op)) | 1 ≤ i ≤ n})

is such that L(AE) = L(E).

Theorem 7. Let E be an ωTs-regular expression. Then, there exists a CQA A
such that L(A) = L(E).

7. An expressiveness comparison1475

In Section 4, we proved that CCA are at least as expressive as ωT -regular
expressions; then, in Section 6 we showed that CQA are at least as expressive as
ωTs-regular expressions. In this section, we demonstrate that CQA are strictly
more expressive than CCA. We first prove that CQA are at least as expressive as
CCA (Theorem 8), and then we show that there exists an ωTs-regular language1480

which is not captured by any CCA (Theorem 9).

Theorem 8. Let A = (S,Σ, s0, N,∆) be a CCA. Then, there exists a CQA
A′ = (S′,Σ, s′0, N,∆

′) such that L(A′) = L(A).

Proof. (sketch) Given a CCA A, we build a CQA A′ that accepts the same
language. The termination condition of CQA A′ forces a value that is checked1485

once for a counter to be checked infinitely many times (for that counter). On
the other hand, A is allowed to check a value for a counter only finitely many
times. Thus, in order for A′ to accept exactly when A does, A′ must avoid
checking values that are checked by A only finitely many times.

To implement such a policy, we build A′ in a way that it behaves as A only on1490

a subset of counters (the set of tracked counters), while ignoring the others. The
set of tracked counters is not fixed: it evolves along the computation; intuitively,
a counter is tracked if its next checked value (in A) is checked infinitely often
(in A). At the beginning of the computation, A′ guesses which counters are
initially tracked (i.e., counters whose first checked value is checked infinitely1495

often); then, every time a counter is checked (and thus reset), A′ guesses if it is
to be tracked until it is checked next (i.e., whether or not its next checked value
is checked infinitely often).

Technically, this is done as follows.

• States of A′ are pairs (s,N ), where s is a state of A and N is the set of1500

counters that are being tracked currently.
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• Transitions from (s0, ∅) to (s0,N ) are added to A′, for every subset N of
counters.

• For each inck transition in A from s to s′ and each state (s,N ) in A′, an
inck transition from (s,N ) to (s′,N ) is added to A′ if k is being tracked1505

(k ∈ N ); otherwise, a transition from (s,N ) to (s′,N ) that does not act
on the counter is added to A′.

• Similarly, for a checkk transition in A there must be a checkk transition in
A′ if and only if k is being tracked; in addition, when a checkk transition
is executed in A, A′ must guess whether or not counter k is to be tracked1510

until its next check; thus, for each inck transition inA from s to s′ and each
state (s,N ) in A′, two inck transitions, one from (s,N ) to (s′,N ∪ {k})
and another from (s,N ) to (s′,N \ {k}), are added to A′ if k is being
tracked (k ∈ N ); otherwise, transitions from (s,N ) to (s′,N ∪ {k}) and
from (s,N ) to (s′,N \{k}) not acting on the counter are added to A′.1515

Proof. W.l.o.g., let us assume that A is simple, that is, if an inck/checkk/sym
transition, for some k ∈ {1, . . . , N}, may be fired at a state s ∈ S, then such
a transition is the only outgoing transition for s. As already pointed out in
Section 4, this allows us to distinguish among inck, checkk, and sym states.
The only remaining states s are those with one or more outgoing transitions1520

of the form (s, ε, s′, (1, no op)) for some s′ ∈ S. Let us define A′ as follows.
S′ = (S× 2{1,...,N})∪{s′0} (i.e., a state is either a fresh new initial state s′0 or a
pair consisting of an original state of the automaton and a subset of counters).
For every (s,N ), (s′,N ′) ∈ (S × 2{1,...,N}), σ ∈ Σ ∪ {ε}, k ∈ {1, . . . , N}, and
op ∈ {no op, inc, check}, we have ((s,N ), σ, (s′,N ′), (k, op)) ∈ ∆′ if and only if1525

one of the following conditions holds:

• (s, σ, s′, (k, op)) ∈ ∆, N = N ′, and op = no op;

• (s, σ, s′, (k, op)) ∈ ∆, k ∈ N , N = N ′, and op = inc;

• (s, σ, s′, (k, op′)) ∈ ∆, k /∈ N , N = N ′, op = no op and op′ = inc;

• (s, σ, s′, (k, op)) ∈ ∆, k ∈ N , N = N ′, and op = check;1530

• (s, σ, s′, (k, op)) ∈ ∆, k ∈ N , N ′ = N \ {k}, and op = check;

• (s, σ, s′, (k, op′)) ∈ ∆, k /∈ N , N = N ′, and op = no op and op′ = check;

• (s, σ, s′, (k, op′)) ∈ ∆, k /∈ N , N ′ = N ∪ {k}, op = no op and op′ = check.

Moreover, we have (s′0, ε, (s0,N ), (1, no op)) ∈ ∆′ for every N ⊆ {1, . . . , N}.
Now we prove that for every word w ∈ Σω we have w ∈ L(A) if and only if1535

w ∈ L(A′).
Left-to-right direction. Let w ∈ L(A). Let π = (s0,v0)(s1,v1) . . . be an

accepting run of A on w, where (si,vi) →σi
A (si+1,vi+1) via δi (recall that

σi ∈ Σ ∪ {ε}) for all i. For every i ∈ N and k ∈ {1, . . . , N}, let us define
value(i, k) as the value of the counter k at the first checkk transition fired at a1540
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position j ≥ i. Formally, the function value : N×{1, . . . , N} → N is recursively
defined as follows: value(i, k) = vi[k] if δi is a checkk transition, value(i, k) =
value(i + 1, k) otherwise. Since π is accepting, for every k ∈ {1, . . . , N} there
are infinitely many checkk transitions and thus the function value is total. For
every k ∈ {1, . . . , N}, let ∞k = {n ∈ N | |{i ∈ N | value(i, k) = n}| =∞}. The1545

run π′ = (s′0, C0)(s′1, C1) . . . of A′, where (s′i, Ci)→
σ′i
A′ (s′i+1, Ci+1) via δ′i for all

i, is iteratively defined in such a way that δ′0 = (s′0, ε, (s0,N ), (1, no op)), where
N = {k ∈ {1, . . . , N} | value(0, k) ∈ ∞k}, (s′0, C0) is the initial configuration of
A′, that is, we have C0[k] = (0, ∅) for each k ∈ {1, . . . , N}, and that for every
i ∈ N>0 it holds:1550

• σ′i = σi−1;

• s′i = (si−1,Ni−1), where Ni−1 = {k ∈ {1, . . . , N} | value(i− 1, k) ∈ ∞k};

• vi[k] =

{
vi−1[k] if value(i− 1, k) ∈ ∞k,

0 otherwise.

Since A is simple, Ci is univocally determined for all i > 0. More precisely,
we have the following correspondence between π and π′. For i > 0:1555

• if δi−1 = (s, σ, s′, (k, no op)), then δ′i = ((s,Ni), σ, (s′,Ni), (k, no op));

• if δi−1 = (s, σ, s′, (k, inc)) and k ∈ Ni, then δ′i = ((s,Ni), σ, (s′,Ni),
(k, inc));

• if δi−1 = (s, σ, s′, (k, inc)) and k /∈ Ni, then δ′i = ((s,Ni), σ, (s′,Ni),
(k, no op));1560

• if δi−1 = (s, σ, s′, (k, check)), k ∈ Ni and value(i, k) ∈ ∞k, then δ′i =
((s,Ni), σ, (s′,Ni), (k, check));

• if δi−1 = (s, σ, s′, (k, check)), k ∈ Ni and value(i, k) /∈ ∞k, then δ′i =
((s,Ni), σ, (s′,Ni \ {k}), (k, check));

• if δi−1 = (s, σ, s′, (k, check)), k /∈ Ni and value(i, k) /∈ ∞k, then δ′i =1565

((s,Ni), σ, (s′,Ni), (k, no op));

• if δi−1 = (s, σ, s′, (k, check)), k /∈ Ni and value(i, k) ∈ ∞k, then δ′i =
((s,Ni), σ, (s′,Ni ∪ {k}), (k, no op)).

It is easy to check that the above construction guarantees that if f is the trace
of w in π with respect to A, then f ′, where f ′(n) = f(n) + 1 for every n ∈ N,1570

is the trace of w in π′ with respect to A′. Moreover, a number n is inserted in
the queue of a counter k (k ∈ {1, . . . , N}) if and only if n ∈ ∞k. Since π is
accepting, it holds that |∞k| = ∞ for each k, and thus π′ is an accepting run
of A′ on w. Hence, w ∈ L(A′).

Right-to-left direction. Let w ∈ Σω be a word accepted by A′ and let1575

π′ = (s′0, C0)((s1,N1), C1)((s2,N2), C2) . . . be an accepting run of A′ on w,
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where ((si,Ni), Ci) →σ′i
A′ ((si+1,Ni+1), Ci+1) via δ′i for all i > 0. Let value :

{1, . . . , N} × N → N be the function such that value(k, i) = |{j ∈ N | 0 < j <
i, sj is an inck state, and for every j′ ∈ {j, . . . , i−1} the state sj′ is not a checkk
state }|.1580

It suffices to prove that π = (s1,v1)(s2,v2) . . ., where for every i ≥ 1 we
have vi[k] = value(k, i), is an accepting run of A on w. First, by the definition
of A′, (s1,v1) is an initial configuration of A. Next, we show that (si,vi) →σi

A
(si+1,vi+1) for every i > 0. Let δ′i = ((si,Ni), σi, (si+1,Ni+1), (k, op)) ∈ ∆′

be the transition executed at position i of run π′. By the definition of ∆′ and1585

by the fact that A is simple, we have that there exists a unique transition
δi = (si, σi, si+1, (k, op

′)) ∈ ∆ for some op′ ∈ {inc, check, no op}. In order to
verify that (si,vi)→σi

A (si+1,vi+1) via δi, for every k′ ∈ {1, . . . , N} we need to
consider the following cases.

• If k′ 6= k or op = no op, then δi does not modify counter k′. On the1590

other hand, si is neither an inck′ nor a checkk′ state, and thus we have
vi[k

′] = value(k′, i) = value(k′, i + 1) = vi+1[k′], which is coherent with
the semantics of δi.

• If k′ = k and op = inc, then si is an inck′ state, and thus we have
vi[k

′] = value(k′, i) = value(k′, i + 1) − 1 = vi+1[k′] − 1, which amounts1595

to vi+1[k′] = vi[k
′] + 1, coherently with the semantics of δi.

• If k′ = k and op = check then si is a checkk′ state, and thus we have
vi+1[k′] = 0, which is, once again, coherent with the semantics of δi.

This shows that π is a computation of A. In order to conclude that it
is an accepting run of A on w, we notice that if f ′ is the trace of w in π′1600

with respect to A′, then f , where f(n) = f(n) − 1 for every n ∈ N, is the
trace of w in π with respect to A. Moreover, it is immediate to see that if
a counter is incremented (resp., checked) in π′, then it is incremented (resp.,
checked) in π as well. Since π′ is accepting, for every k ∈ {1, . . . , N} it holds
that |{i ∈ N | value(k, j) = i and sj is a checkk′ state}| = ∞ (i.e., infinitely1605

many values are checked for each counters) and if there is a position j such that
value(k, j) = i and sj is a checkk′ state, then there are infinitely many such
positions (i.e., if a value is checked for a counter, then it is checked infinitely
many times for that counter). Hence, for every counter there are infinitely many
values that are checked infinitely many times, meaning that π is an accepting1610

run of A on w, and thus w ∈ L(A).

Theorem 9. The ωTs-regular language L = (aTsb)ω is not recognized by any
CCA, that is, L(A) 6= L for every CCA A.

Proof. The idea of the proof is to show that, whenever a CCA accepts a partic-
ular word w ∈ L, it necessarily accepts a word w, obtained by w by pumping1615

some large block of consecutive a’s, that does not belong to L. Intuitively, in
order to accept large blocks of consecutive a’s, a run must go through a loop;
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an accepting run of a CCA is allowed to pump this loop an arbitrary number
of times, thus producing some counter values that are checked only once, and,
consequently, accepting a word not belonging to L.1620

Towards a more formal proof, let us suppose by contradiction that there
exists a CCA A = (S,Σ, s0, N,∆) that recognizes L. In particular, A recognizes
the word w = Πω

i=0wi where w0 = b, wi+1 = wi · ai+1b, and Π represents the
repeated concatenation operator. Given two i, i′ ∈ N, with i ≤ i′, we denote by
wi,i′ the sub-word of w defined as:1625

wi,i′ =

{
aib if i = i′

aib · wi+1,i′ otherwise.

Let π = (s0,v0)(s1,v1) . . . be an accepting run of A on w, where (si,vi)→σi
A

(si+1,vi+1) via δi for all i. We define the function map : N→ N such that, for
every i, σmap(i) . . . σmap(i+1)−1 = wi, with σmap(i) 6= ε. Intuitively, map(i)
allows one to access (the beginning of) the portion of the run that processes1630

the word wi in w. Moreover, in order to have a finer access to sub-words of w,
we define the function block , which allows one to access the beginning of the
portion of the run that processes the i-th block of consecutive a’s of word wi′

in w. Formally, for every i, i′ ∈ N>0, with i ≤ i′, block : {(i, i′) | i ≤ i′} → N
satisfies the following conditions:1635

1. map(i′) ≤ block(i, i′) < map(i′ + 1);

2. σ0 . . . σblock(i,i′)−1 ∈ Σ∗ · b ∪ {ε};
3. there exists j > block(i, i′) such that σblock(i,i′) . . . σj = aib.

Let us now show that from an accepting run of A on w we can obtain an
accepting run of A on an ω-word w /∈ L. Let i = |S|+1. We define two auxiliary1640

functions begin : N>0 → N and end : N>0 → N, such that, for every i ∈ N>0,

1. block(i, i+ i) ≤ begin(i) < end(i) < block(i+ 1, i+ i);

2. σbegin(i) = σend(i) = a;

3. sbegin(i) = send(i).

The word w is equal to Πω
i=0wi, where the word wi is defined as follows:

wi =

{
wi if i ≤ i,
wi−1 · ai+|{j∈N|begin(i)≤j<end(i),σj=a}|b · wi+1,i otherwise.

Notice that, by the definition of begin and end, |{j ∈ N | begin(i) ≤ j <1645

end(i), σj = a}| ≥ 1. Clearly, w does not belong to (aTsb)ω since it features only

one occurrence of aib, precisely that in wi (by construction, in every word wi+i,

with i > 0, the i-th block of consecutive a’s contains at least i+ 1 occurrences
of a).

To complete the proof, it suffices to prove that w is accepted by A. Let π1650

be the accepting run of A on w. To this end, we introduce a set Ω ⊆ {Ωn,z |
1 ≤ n ≤ N, z ∈ N} that satisfies the following conditions:
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(a) Ωn,z ⊆ {(x, y) ∈ N2 | x ≤ y}, for all Ωn,z ∈ Ω;

(b) for each n ∈ {1, . . . , N}, there are infinitely many z ∈ N such that Ωn,z ∈
Ω;1655

(c) |Ωn,z| = +∞, for all Ωn,z ∈ Ω;

(d) for all Ωn,z,Ωn′,z′ ∈ Ω, with (n, z) 6= (n′, z′), Ωn,z ∩Ωn′,z′ = ∅, and for all
(x, y), (x′, y′) ∈ ⋃

Ωn,z∈Ω

Ωn,z, with (x, y) 6= (x′, y′), either y′ < x or y < x′;

(e) for every Ωn,z ∈ Ω and (x, y) ∈ Ωn,z, vy[n] = z, δx and δy are checkn
transitions, and for all x′ ∈ N, with x < x′ < y, δx′ is not a checkn1660

transition.

It is not difficult to see that for every computation π = (s0,v0)(s1,v1) . . . of A
such that (si,vi)→σi

A (si+1,vi+1) for all i and σ0σ1σ2 . . . is an ω-word, π is an
accepting run of A on σ0σ1σ2 . . . if and only if there exists a set Ω that satisfies,
with respect to π, conditions (a)-(e) above.1665

Let us now show how to turn π into an accepting run π = (s0, v̄0)(s1, v̄1) . . .
of A on w. Let us recursively define an auxiliary function f : N→ N as follows:
f(0) = 0, and

f(i+1) =

f(i)− (end(j)− begin(j)) + 1
if f(i) + 1 = end(j) for some j and for

every i′ < i we have f(i′) + 1 6= end(j);

f(i) + 1 otherwise.

The run π is inductively defined as follows. The initial configuration is the
same as π (i.e., (s0, v̄0) = (s0,v0)). For every i ≥ 0, configuration (si+1, vi+1)
is obtained by applying transition δf(i) to configuration (si, vi) (and thus we
have σi = σf(i)). By the definition of f we have that si = sf(i) for every i ∈ N.
Moreover, it is easy to prove that σ0σ1 . . . = w. Thus, in order to prove that π1670

is an accepting run of A on w, it remains to show the existence of a set Ω that
satisfies, with respect to π, conditions (a)-(e) above. For each n ∈ {1, . . . , N},
let Ωn,0,Ωn,1, . . . be the sets defined by the following iterative procedure starting
at z = 0 (let processedn be set initially to the empty set):

1. if z ∈ processedn (i.e., Ωn,z has been already defined in some previous1675

iteration—this can happen in step 4 below), then do nothing and restart
from step 1 with z updated to z + 1;

2. if Ωn,z /∈ Ω, then we jump to step 1 with z updated to z + 1;

3. if there exists an infinite sequence of pairs (x1, y1), (x2, y2) . . . in Ωn,z for
which it holds, for every j ∈ N>0:1680

• yj < xj+1 and

• let ibj = maxi∈N>0,begin(i)≤xj i and iej = mini∈N>0,end(i)>yj i; we have

that for every ibj < i < iej all the transitions δbegin(i) . . . δend(i)−1 are
not incn transitions,
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then let ∇ be one of them. We put Ωn,z = {(xj , yj) | (xj , yj) ∈ ∇, xj =1685

maxf(i)=xj f(i), yj = minf(i)=yj f(i)}, we set processedn = processedn ∪
{z}, and we jump to step 1 with z updated to z + 1;

4. if none of the above conditions applies, then there exists an infinite se-
quence of pairs (x1, y1), (x2, y2) . . . in Ωn,z for which it holds, for every
j ∈ N>0:1690

(i) yj < xj+1 and

(ii) let ibj = maxi∈N>0,begin(i)≤xj i and iej = mini∈N>0,end(i)>yj i; we have

that there exists ibj < i < iej and an index k such that begin(i) ≤
k < end(i) and the transition δk is an incn transition (notice that
xj < begin(i) < end(i) ≤ yj holds).1695

Since for every j ∈ N>0 we have exactly z incn transitions between xj
and yj we may find a sequence ∇ = (x1, y1), (x2, y2) . . . in Ωn,z that also
satisfies the following condition (besides conditions (i)-(ii) above):

(iii) there exist z′ many values k1, . . . , kz′ , with 1 ≤ z′ ≤ z, such that

– kj′ > 0 for every j′,1700

–
∑

1≤j′≤z′ kj′ ≤ z,
– for every j ∈ N>0 there exist exactly z′ many indexes i1, . . . , iz′ ,

for which, for every j′ ∈ {1, . . . , z′}, (a) ibj < ij′ < iej , (b) there is
an index h ∈ {begin(ij′), . . . , end(ij′) − 1} for which the transi-
tion δh is an incn transition, and (c) |{h ∈ N | begin(ij′) ≤ h <1705

end(ij′), δh is an incn transition}| = kj′ .

Now, it is important to observe that in the portions of π delimited by
the pairs (xj , yj) ∈ ∇, the value z = z +

∑
1≤j′≤z′ kj′ is checked for

counter n (and thus the “new” value z for counter n is still checked
infinitely many times). Then, we put Ωn,z = {(xj , yj) | (xj , yj) ∈1710

∇, xj = maxf(i)=xj f(i), yj = minf(i)=yj f(i)}, we set processedn =
processedn∪{z} (notice that, in this case, we are processing z while inside
iteration z < z), and we jump to step 1 with z updated to z + 1.

We can now collect these sets into Ω, which is defined as:

Ω = {Ωn,z | 1 ≤ n ≤ N, z ∈ N, z ∈ processedn}.1715

Since Ω satisfies, with respect to π, conditions (a)-(e) above, π is an accepting
run of A on w, which implies w ∈ L(A), thus yielding a contradiction.

Corollary 3. The ωTs-regular language L = (aTsb)ω is not recognized by any
ωT -regular language.

Proof. The claim immediately follows from Theorems 3 and 9.1720

Corollary 4. CQA are strictly more expressive than CCA.

Proof. The claim immediately follows from Theorems 7, 8, and 9.
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Legend:

A B denotes “B is at least as expressive as B” (A � B)

A B denotes “it is not the case that A � B” (A 6� B)

A B denotes “B is strictly more expressive than A”,
i.e., A � B and B 6� A (A ≺ B)

Expressiveness results: ωT -r.e. � CCA (Th. 3)

ωTs-r.e. � CQA (Th. 7)

CCA � CQA (Th. 8)

ωTs-r.e. 6� CCA (Th. 9)

ωTs-r.e. 6� ωT -r.e. (Cor. 3)

CCA ≺ CQA (Cor. 4)

Figure 17: Summary of expressiveness results.

A summary of known expressiveness results is given in Figure 17. It remains
open the question whether ωT -regular languages (resp., CCA) can be encoded
by ωTs-regular languages.1725

8. Conclusions

In this paper, we introduced a new class of extended ω-regular languages
(ωT -regular languages), that captures meaningful languages not belonging to
the class of ωBS-regular ones. We first gave a characterization of them in terms
of ωT -regular expressions. Then, we defined a new class of automata, called1730

counter-check automata (CCA), whose emptiness problem can be decided in
PTIME, and we proved that CCA are expressive enough to capture ωT -regular
languages (whether or not ωT -regular languages are expressively complete with
respect to CCA is still an open problem). Finally, we provided an embedding
of ωT -regular languages in S1S+U.1735

In the exploration of the space of possible extensions of ω-regular languages,
we studied also a stronger variant of (.)T , denoted by (.)Ts , that forces ω-words
to feature infinitely many exponents, all of them occurring infinitely often. To
a large extent, the results obtained for (.)T can be replicated for (.)Ts . In
particular, it is possible to introduce a new class of automata, called counter-1740

queue automata (CQA), that generalize CCA, whose emptiness problem can be
proved to be decidable in 2ETIME and which are expressive enough to capture
ω-regular languages extended with (.)Ts . As in the case of ωT -regular languages,
the problem of establishing whether or not the new languages are expressively
complete with respect to CQA is open. There are, however, at least two sig-1745

nificant differences between(.)T and (.)Ts . First, (.)T satisfies the property of
prefix independence (both (.)B and (.)S satisfy it), while this is not the case
with (.)Ts . The second difference is that there seems to be no way to generalize
the embedding of ωT -regular languages into S1S+U to ωTs-regular ones.

As for future work, we would like to investigate different combinations of1750

(.)B and (.)S with (.)T (resp., (.)Ts). A first and natural issue is the one about
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closure of ωBST -regular languages under complementation. To give a negative
answer to this question (in analogy to the case of ωBS-regular languages), it
suffices to show that the ωBST -regular languages live at the first level of the
projective hierarchy (analytic sets). Indeed, if they were closed under comple-1755

mentation, they would be expressively complete for S1S+U (in fact, this last
statement already holds for ωBS-regular languages as a consequence of [9, Def-
inition 4.1, Fact 4.2]), and it is known from [19] that S1S+U makes it possible
to define languages that are complete for arbitrary levels of the projective hier-
archy. Another particularly interesting issue is the one about the intersections1760

of ωB-, ωS-, and ωT - (resp. ωTs-) regular languages. In [20], it has been shown
that a language which is both ωB- and ωS-regular is also ω-regular. We aim at
providing a characterization of languages which are both ωB- (resp., ωS-) and
ωT -/ωTs-regular. Finally, we are interested in (modal) temporal logic counter-
parts of extended ω-regular languages. To the best of our knowledge, none was1765

provided in the literature. We started to fill such a gap in [21, 22].
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[15] M. Bojańczyk, P. Parys, S. Toruńczyk, The MSO+U theory of (N, <)1815

is undecidable, in: STACS, Vol. 47 of LIPIcs, 2016, pp. 21:1–21:8. doi:

10.4230/LIPIcs.STACS.2016.21.

[16] D. Della Monica, A. Montanari, P. Sala, Beyond ωBS-regular languages:
The class of ωT -regular languages, research Report 2017/01, Dept. of
Mathematics, Computer Science, and Physics, University of Udine, Italy1820

(2017).
URL https://users.dimi.uniud.it/~angelo.montanari/res_

rep2017_1.pdf

[17] L. Breveglieri, A. Cherubini, C. Citrini, S. Crespi-Reghizzi, Multi-push-
down Languages and Grammars, Int. J. of Foundations of Computer Sci-1825

ence 7 (03) (1996) 253–291.

[18] M. F. Atig, B. Bollig, P. Habermehl, Emptiness of multi-pushdown au-
tomata is 2ETIME-complete, in: Developments in Language Theory,
Springer, 2008, pp. 121–133.

56

http://dx.doi.org/10.1007/s00224-010-9279-2
http://dx.doi.org/10.1109/LICS.2006.17
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2009.2308
http://dx.doi.org/10.1145/295656.295659
http://dx.doi.org/10.1007/s10703-009-0067-z
http://dx.doi.org/10.1007/s10703-009-0067-z
http://dx.doi.org/10.1007/s10703-009-0067-z
http://dx.doi.org/10.1007/978-3-319-48758-8_14
http://dx.doi.org/10.1007/978-3-540-30124-0_7
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.21
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.21
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.21
https://users.dimi.uniud.it/~angelo.montanari/res_rep2017_1.pdf
https://users.dimi.uniud.it/~angelo.montanari/res_rep2017_1.pdf
https://users.dimi.uniud.it/~angelo.montanari/res_rep2017_1.pdf
https://users.dimi.uniud.it/~angelo.montanari/res_rep2017_1.pdf
https://users.dimi.uniud.it/~angelo.montanari/res_rep2017_1.pdf
https://users.dimi.uniud.it/~angelo.montanari/res_rep2017_1.pdf


[19] S. Hummel, M. Skrzypczak, The topological complexity of MSO+U and1830

related automata models, Fundam. Inform. 119 (1) (2012) 87–111. doi:

10.3233/FI-2012-728.

[20] M. Skrzypczak, Separation property for ωB- and ωS-regular languages,
Logical Methods in Computer Science 10 (1). doi:10.2168/LMCS-10(1:

8)2014.1835

[21] A. Montanari, P. Sala, Adding an equivalence relation to the interval logic
ABB: complexity and expressiveness, in: LICS, IEEE Computer Society,
2013, pp. 193–202. doi:10.1109/LICS.2013.25.

[22] A. Montanari, P. Sala, Interval logics and ωB-regular languages, in: LATA,
Vol. 7810 of LNCS, Springer, 2013, pp. 431–443.1840

57

http://dx.doi.org/10.3233/FI-2012-728
http://dx.doi.org/10.3233/FI-2012-728
http://dx.doi.org/10.3233/FI-2012-728
http://dx.doi.org/10.2168/LMCS-10(1:8)2014
http://dx.doi.org/10.2168/LMCS-10(1:8)2014
http://dx.doi.org/10.2168/LMCS-10(1:8)2014
http://dx.doi.org/10.1109/LICS.2013.25

	Introduction
	Beyond omega-regularity: omega B-, omega S-, and omega BS-regular languages
	omega BS-regular expressions
	The shuffle operator +
	omega BS-regular languages and closure under complementation

	The constructor (.)T and the class of omega T-regular languages
	omega T-regular expressions
	The constructors B, S, and T and their relationships
	A stronger variant of the T-constructor

	omega T-regular languages and counter-check automata (CCA)
	Counter-check automata (CCA)
	Decidability of the emptiness problem for CCA
	A translation of omega T-regular expressions into CCA

	From omega T-regular languages to S1S+U
	The logic S1S+U
	Encoding

	omega T_s-regular languages and counter-queue automata
	Counter-queue automata (CQA)
	Decidability of the emptiness problem for CQA
	A translation of omega T_s-regular expressions into CQA 

	An expressiveness comparison
	Conclusions

