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Abstract

Interval temporal logics provide a natural framework for temporal reasoning
about interval structures over linearly ordered domains, where intervals are
taken as the primitive ontological entities. Their computational behavior mainly
depends on two parameters: the set of modalities they feature and the linear
orders over which they are interpreted. In this paper, we identify all fragments of
Halpern and Shoham’s interval temporal logic HS with a decidable satisfiability
problem over the class of strongly discrete linear orders as well as over its relevant
subclasses (the class of finite linear orders, Z, N, and Z−). We classify them in
terms of both their relative expressive power and their complexity, which ranges
from NP-completeness to non-primitive recursiveness.

Keywords: Interval Temporal Logics, Discrete Linear Orders, Expressiveness,
Decidability, Complexity

1. Introduction

Most temporal logics proposed in the literature assume a point-based model
of time. They have been successfully applied in a variety of fields, ranging from
the specification and verification of communication protocols to temporal data
mining. However, a number of relevant application domains, such as, for in-
stance, those of planning and synthesis of controllers, are often characterized
by advanced features like durative actions, and their temporal relationships,
accomplishments, and temporal aggregations, which are neglected or dealt with
in an unsatisfactory way by point-based formalisms [1]. Interval temporal logics
provide a natural framework for temporal reasoning about interval structures
over linearly (or partially) ordered domains. They take time intervals as the
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primitive ontological entities and define truth of formulas relative to time in-
tervals, rather than time points. Interval logic modalities correspond to various
relations between pairs of intervals. In particular, the well-known logic HS [2]
features a set of modalities that make it possible to express all Allen’s interval re-
lations [3]. Interval-based formalisms have been extensively used in various areas
of computer science and AI, such as, for instance, specification and verification
of reactive systems, temporal databases, theories of action and change, natural
language processing, and constraint satisfaction. However, most of them make
severe syntactic and/or semantic restrictions that considerably weaken their ex-
pressive power. Interval temporal logics relax these restrictions, thus allowing
one to cope with much more complex application domains and scenarios. Unfor-
tunately, many of them, including HS and the majority of its fragments, turn out
to be undecidable. Among the few decidable cases, we mention Propositional
Neighborhood Logic (PNL) [4, 5] and the logic D of temporal sub-intervals (over
dense linear orders) [6].

The computational properties of any HS fragment mainly depend on two pa-
rameters: (i) the set of its interval modalities, and (ii) the class of linear orders
over which formulas are interpreted. While the first parameter is fairly natural,
the second is definitely less obvious. In most cases, the computational behavior
of an interval logic does not change when we move from one class of linear or-
ders to another. However, some meaningful exceptions exist. A real character
is the logic D: its satisfiability problem is PSPACE-complete over the class of
dense linear orders and undecidable over the classes of finite and (weakly) dis-
crete ones (and its status over the class of all linear orders is still unknown). In
the last years, the decidability of interval temporal logics has been extensively
studied with respect to various meaningful classes of linear, including the class
of finite linear orders, the class of strongly discrete linear orders (there is a fi-
nite number of points between any pair of points), the class of weakly discrete
linear orders (every point with a successor/predecessor has an immediate suc-
cessor/predecessor), which includes non-standard temporal structures like, for
instance, N + {ω}, the class of dense linear orders, and the class of all linear
orders, plus some temporal structures of special interest like N, Z, Q, and R.

In this paper, we focus our attention on the class of strongly discrete linear
orders and its relevant subclasses, namely, the class of finite linear orders, Z, N,
and Z− (the set of all negative integers). Strongly discrete linear orders come
into play in a variety of application domains. Consider, for instance, planning
problems. They consist of finding a finite partially-ordered sequence of actions
that leads the system from the initial to the final state (goal) within a bounded
amount of time, satisfying suitable conditions about which sequence of states
the world must go through. In this scenario, finite linear orders are usually the
most natural option for time modeling. In other fields, such as, for instance,
specification and verification of reactive systems, the system is supposed to
run forever, starting from some initial state, satisfying a number of safety and
response properties. In this case, N may be the most appropriate choice.

The aim of this paper is twofold: (i) to give a complete picture of HS frag-
ments with respect to decidability/undecidability of their satisfiability problem
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Relation Op Formal definition Example
x y

meets 〈A〉 [x, y]RA[x
′, y′] ⇔ y = x′

x′ y′

before 〈L〉 [x, y]RL[x
′, y′] ⇔ y < x′

x′ y′

started-by 〈B〉 [x, y]RB [x
′, y′] ⇔ x = x′, y′ < y

x′ y′

finished-by 〈E〉 [x, y]RE [x
′, y′] ⇔ y = y′, x < x′

x′ y′

contains 〈D〉 [x, y]RD[x
′, y′] ⇔ x < x′, y′ < y

x′ y′

overlaps 〈O〉 [x, y]RO[x
′, y′] ⇔ x < x′ < y < y′

x′ y′

Table 1: Allen’s interval relations and corresponding HS modalities.

over the considered cases, filling in the remaining gaps, and (ii) to identify the
set of all expressively-different decidable fragments and to determine their ex-
act complexity. In the subsequent sections, we first give a short account of
notation and basic notions. Then we review known results, pointing out those
HS fragments for which we have incomplete information. Next, we study the
expressive power (with respect to modal definability) of all decidable fragments
with respect to all classes of linear orders considered in the paper. Sections
5–7 are devoted to decidability/undecidability and complexity results, given in
increasing order of complexity (from NP to undecidable). Conclusions provide
an assessment of the achieved results.

2. Preliminaries

Let D = 〈D,<〉 be a linearly ordered set. An interval over D is an ordered
pair [x, y], where x, y ∈ D and x < y (strict semantics)1. Excluding equality,
there are 12 different non-trivial relative position relations between pairs of
intervals in a linear order, often called Allen’s relations [3]: the six relations
depicted in Tab. 1 and the inverse ones. In modal interval temporal logics,
interval structures are interpreted as Kripke structures and Allen’s relations as
accessibility relations, thus associating a modality with each Allen’s relation
RX . Formally, for each relation RX in Tab. 1, we introduce a modality 〈X〉
for RX and a transposed modality 〈X〉 for the inverse relation RX (that is,
RX = (RX)−1).

Halpern and Shoham’s logic HS is a multi-modal logic with formulas built on
a setAP of proposition letters, the Boolean connectives ∨ and ¬, and a modality
for each Allen’s relation. We denote by X1 . . .Xk the fragment of HS featuring

1Strict semantics excludes intervals with coincident endpoints (point intervals). A non-
strict semantics, including point intervals, can be possibly adopted. Even though most re-
sults can be easily rephrased in this alternative setting, strict semantics is definitely cleaner.
Moreover, it is coherent with recent developments in temporal logic that consider points and
intervals as different semantic entities (see, e.g., [7]).
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Ref. Finite linear orders Strongly discrete
linear orders /
Integers

Natural numbers Negative integers

[8] NP-completeness of
BB, EE

NP-completeness of
BB, EE

NP-completeness of
BB, EE

NP-completeness of
BB, EE

[9] NEXPTIME-
membership of
AA

NEXPTIME-
membership of
AA

NEXPTIME-
membership of
AA

NEXPTIME-
membership of
AA

[10] NEXPTIME-
hardness of
A,A

NEXPTIME-
hardness of
A,A

NEXPTIME-
hardness of
A,A

NEXPTIME-
hardness of
A,A

[11] EXPSPACE-
hardness of
AB,AE

EXPSPACE-
hardness of
AB

EXPSPACE-
hardness of
AE

[12] EXPSPACE-
membership of
ABBL, AEEL

EXPSPACE-
membership of
ABBL, AEEL

EXPSPACE-
membership of
ABBL, AEEL

EXPSPACE-
membership of
ABBL, AEEL

[13] Nonelementary
decidability of
AABB, AAEE

Undecidability of
AAB, AAB, AAE, AAE

Nonelementary
decidability of
AB

Nonelementary
decidability of
AE

[13] Non-primitive
recursiveness of
AAB, AAB, AAE,AAE

Undecidability of
AAB, AAB, AAE, AAE

Undecidability of
AAB, AAB

Undecidability of
AAE, AAE

Table 2: Known results with bibliographic references.

a modality for each Allen’s relation in the set {RX1 , . . . , RXk
}. Formulas of

X1 . . .Xk are defined by the grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X1〉ϕ | . . . | 〈Xk〉ϕ.

The other Boolean connectives can be viewed as abbreviations, while for each
modality 〈X〉, the dual modality [X ] is defined as usual: [X ]ϕ ≡ ¬〈X〉¬ϕ.
Given a formula ϕ, the length of ϕ, denoted by |ϕ|, is the number of its symbols.
The semantics of HS is given in terms of interval models M = 〈I(D), V 〉, where
I(D) is the set of all intervals over D and V : AP 7→ 2I(D) is a valuation function
that assigns to every p ∈ AP the set of intervals V (p) over which p holds. The
truth of a formula over a given interval [x, y] in an interval model M is defined
by structural induction on formulas: (i) a proposition letter p is true over an
interval [x, y] iff [x, y] ∈ V (p); (ii) Boolean connectives are dealt with in the
standard way; (iii) for each modality 〈X〉, M, [x, y] 
 〈X〉ψ if and only if there
exists an interval [x′, y′] such that [x, y]RX [x′, y′] and M, [x′, y′] 
 ψ. Given
an interval model M and a formula ϕ, we say that M satisfies ϕ if there is an
interval [x, y] in I(D) such that M, [x, y] 
 ϕ. We say that ϕ is satisfiable if
there exists an interval model that satisfies it, and we say that it is valid if it is
satisfied by every interval of every interval model.

Hereafter, we will denote HS fragments by the set of their modalities in
alphabetical order and omitting those which are definable in terms of the others.
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Complexity Class

1: Non-primitive recursive

2: NEXPTIME-complete

3: NP-complete

Open

AABB
1

AAB
1

AAB
1

AAEE
1

AAE
1

AAE
1

ABBL

ABL ABL

AEEL

AE AE

AEEAEL AEL

AB AB

ABB

ABBL AEEL

AB AB

ABB ABL ABL

AE AE

AEEAEL AELAA
2

A
2

A
2

AL
2

AL
2

B
3

B
3

BB
3

E
3

E
3

EE
3

BBL BBL

BBLL

BL BL BL BL

BLL BLL EEL EEL

EELL

EL ELEL EL

ELL ELL

L L

LL

Figure 1: Hasse diagram of known decidable HS fragments over finite linear orders.

3. Overview of known expressiveness and (un)decidability results

In this section, we give a detailed account of known expressiveness and
(un)decidability results for HS fragments over the considered (classes of) lin-
ear orders. We restrict our attention to modalities 〈A〉, 〈L〉, 〈B〉, and 〈E〉, and
the transposed modalities 〈A〉, 〈L〉, 〈B〉, and 〈E〉. We do not consider modalities
〈D〉 and 〈O〉, and the transposed modalities 〈D〉 and 〈O〉, as HS fragments D, O,
D, and O (and all their extensions), over the considered classes of linear orders,
are undecidable [14, 15]. We also make use of inter-definability equations that
hold among HS modalities. In [16], it has been shown that, over the class of all
linear orders (and thus also over the class of strongly discrete linear orders and
its subclasses), the following equations hold: 〈D〉p ≡ 〈B〉〈E〉p, 〈O〉p ≡ 〈B〉〈E〉p,
〈O〉p ≡ 〈E〉〈B〉p, and 〈D〉p ≡ 〈B〉〈E〉p. Undecidability of BE, BE, BE, and BE

immediately follows. Moreover, since 〈L〉 and 〈L〉 can be defined in terms of 〈A〉
and 〈A〉, respectively (it holds that 〈L〉p ≡ 〈A〉〈A〉p, and 〈L〉 ≡ 〈A〉〈A〉p [16]),
some (decidable) HS fragments turn out to be expressively equivalent to other
ones, e.g., AL is equivalent to A, and thus they can be safely omitted.

In Tab. 2, we summarize already known (un)decidability results for HS frag-
ments over the considered (classes of) linear orders, together with the appro-
priate bibliographic references. It is worth noticing that Tab. 2 has 4 columns,
instead of 5. The reason is that known results for the class of all strongly discrete
linear orders and Z coincide.

In the following, we will partition the considered classes of linear orders
in two categories: left/right symmetric structures, including the class of finite
linear orders, the class of strongly discrete linear orders, and Z, and asymmetric
structures, including N and Z−. For any HS fragment F , we define its mirror
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Figure 2: Hasse diagram of known decidable HS fragments over strongly discrete linear orders.

image (or mirror fragment) as the fragment obtained by replacing 〈A〉 by 〈A〉,
〈A〉 by 〈A〉, 〈L〉 by 〈L〉, 〈L〉 by 〈L〉, 〈B〉 by 〈E〉, and 〈B〉 by 〈E〉.

It can be easily checked that decidability and complexity results immedi-
ately transfer from a given fragment to its mirror image, when interpreted over
symmetric structures. As for asymmetric structures, the results for a given frag-
ment, interpreted over N (resp., Z−), transfer to its mirror image, interpreted
over Z− (resp., N). In the following, we will focus our attention on three (classes
of) linear orders: the class of finite linear orders (finite subclasses of it are not
considered), the class of strongly discrete linear orders (all results hold for Z as
well), and N (results transfer to mirror images over Z−).

As for expressiveness, most results are undefinability proofs, which highly
depend on the considered (class of) linear orders.

We conclude the section with a pictorial representation of known results for
the three classes of linear orders identified above. Fragments which are not
displayed are all undecidable. Even though the three figures look quite similar,
they present some meaningful differences. Grey nodes denote those fragments
for which only incomplete information is available. As an example, ABBL is
known to be in EXPSPACE over finite linear orders, but no hardness result
has been proved, and thus the corresponding node is grey. Notice that, while
Fig. 1 (finite linear orders) only displays decidable fragments, some undecidable
fragments are included in Fig. 2 (strongly discrete linear orders) and in Fig. 3
(the natural numbers).

In the next section, we provide a classification of decidable fragments with
respect their expressive power. Then, in the subsequent sections, building on
such a classification, we give a complete picture of decidability and tight com-
plexity results for HS fragments over the considered (classes of) linear orders.
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Complexity Class
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Figure 3: Hasse diagram of known decidable HS fragments over N.

4. Expressive Power

In this section, we study the expressive power of (decidable) HS-fragments.
Since only modalities 〈A〉, 〈A〉, 〈L〉, 〈L〉, 〈B〉, 〈B〉 (or, symmetrically, 〈A〉, 〈A〉,
〈L〉, 〈L〉, 〈E〉, 〈E〉) are considered, the only known definability results are the
definability of 〈L〉 in terms of 〈A〉 and that of 〈L〉 in terms of 〈A〉 [16]. In the
following, we show that no other inter-definability equations hold over all the
considered (classes of) linear orders, thus proving the correctness of Fig. 4.

Given a fragment F = X1X2 . . .Xk and a modality 〈X〉, we write 〈X〉 ∈ F
if X ∈ {X1, . . . , Xk}. Given two fragments F1 and F2, we write F1 ⊆ F2 if
〈X〉 ∈ F1 implies 〈X〉 ∈ F2, for every modality 〈X〉.

Definition 1. Given an HS fragment F and an HS modality 〈X〉, we say that
〈X〉 is definable in F , denoted 〈X〉✁ F , if 〈X〉p ≡ ψ(p) for some formula ψ(p)
of F , for any fixed proposition letter p ∈ AP . The equivalence 〈X〉p ≡ ψ(p) is
called an inter-definability equation for 〈X〉 in F .

In [2], Halpern and Shoham show that, according to the strict semantics, all HS
modalities are definable in the fragment featuring modalities 〈A〉, 〈B〉, and 〈E〉,
and the transposed modalities 〈A〉, 〈B〉, and 〈E〉 (in case non-strict semantics is
assumed, the four modalities 〈B〉, 〈E〉, 〈B〉, and 〈E〉 suffice, as shown in [17]).

Given two HS fragments F1 and F2, we say that F2 is at least as expressive
as F1, denoted F1 � F2, if each operator 〈X〉 ∈ F1 is definable in F2, and
that F1 is strictly less expressive than F2, denoted F1 ≺ F2, if F1 � F2, but
not F2 � F1. Moreover, we say that F1 and F2 are expressively incomparable,
denoted F1 6≡ F2, if neither F1 � F2 nor F2 � F1, and that they are expressively
equivalent (or expressively complete), denoted F1 ≡ F2, if F1 � F2 and F2 � F1.
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In order to show non-definability of a given modality in a certain fragment,
we use the standard notion of N-bisimulation, suitably adapted to our setting
(see Definition 2), and the invariance of modal formulas of modal depth at most
N with respect to N -bisimulations [18].

Definition 2. Let F be an HS-fragment. An FN -bisimulation between two
modelsM = 〈I(D), V 〉 andM ′ = 〈I(D′), V ′〉 over a set of proposition letters AP
is a sequence of N relations ZN , . . . , Z1 ⊆ I(D)× I(D′) such that

(i) for every ([x, y], [x′, y′]) ∈ Zh, with N ≥ h ≥ 1, M, [x, y] 
 p if and only if
M ′, [x′, y′] 
 p, for all p ∈ AP (local condition);

(ii) for every ([x, y], [x′, y′]) ∈ Zh, with N ≥ h > 1, if [x, y]RX [v, w] for some
[v, w] ∈ I(D) and some 〈X〉 ∈ F , then there exists ([v, w], [v′, w′]) ∈ Zh−1

such that [x′, y′]RX [v′, w′] (forward condition);

(iii) for every ([x, y], [x′, y′]) ∈ Zh, with N ≥ h > 1, if [x′, y′]RX [v′, w′] for some
[v′, w′] ∈ I(D′) and some 〈X〉 ∈ F , then there exists ([v, w], [v′, w′]) ∈ Zh−1

such that [x, y]RX [v, w] (backward condition).

Given an FN -bisimulation, the truth of F -formulas of modal depth at most h−1
is invariant for pairs of intervals belonging to Zh, with N ≥ h ≥ 1.

The standard notion of F -bisimulation can be recovered as a special case of
FN -bisimulation.

Definition 3. Let F be an HS-fragment. An F -bisimulation between two mod-
els M = 〈I(D), V 〉 and M ′ = 〈I(D′), V ′〉 over a set of proposition letters AP is
a relation Z ⊆ I(D)× I(D′) such that, for every ([x, y], [x′, y′]) ∈ Z,

(i) M, [x, y] 
 p if and only ifM ′, [x′, y′] 
 p, for all p ∈ AP (local condition);

(ii) if [x, y]RX [v, w] for some [v, w] ∈ I(D) and some 〈X〉 ∈ F , then there
exists ([v, w], [v′, w′]) ∈ Z such that [x′, y′]RX [v′, w′] (forward condition);

(iii) if [x′, y′]RX [v′, w′] for some [v′, w′] ∈ I(D′) and some 〈X〉 ∈ F , then there
exists ([v, w], [v′, w′]) ∈ Z such that [x, y]RX [v, w] (backward condition).

To prove that a modality 〈X〉 is not definable in F , it suffices to provide, for
every natural number N , a pair of models M and M ′, and an FN -bisimulation
between them for which there exists a pair ([x, y], [x′, y′]) ∈ ZN such that
M, [x, y] 
 〈X〉p andM ′, [x′, y′] 6
 〈X〉p, for some p ∈ AP . Such a result applies
to all classes of linear orders that contain (as their elements) both structures on
which M and M ′ are based. As an example, an undefinability result given for
two structures based on N applies to N as well as to the class of strongly discrete
linear orders, but not to the class of finite linear orders, Z−, and Z. As there is
no linear order contained in all the considered classes, no N-bisimulation can be
found that works for all cases. In the following, we will first prove that Fig. 4
is sound and complete with respect to Z (Lemma 1, Lemma 2, and Lemma 3),
and thus with respect to the class of strongly discrete linear orders as well; then,
we will show how to tailor the proofs to the remaining classes.

To prove soundness and completeness of Fig. 4, we show that:
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(i) all pairs of fragments which are not related to each other in Fig. 4 are
expressively incomparable;

(ii) an edge from a fragment F1 to a fragment F2 means that F2 ≺ F1;

(iii) if an HS-fragment is not displayed in Fig. 4, then it is undecidable.

Let us focus our attention on Z. As for properties (i) and (ii), it suf-
fices to show that 〈L〉p ≡ 〈A〉〈A〉p and 〈L〉p ≡ 〈A〉〈A〉p are all and only the
inter-definability equations among modalities 〈A〉, 〈A〉, 〈L〉, 〈L〉, 〈B〉, 〈B〉 over
Z (the same for modalities 〈A〉, 〈A〉, 〈L〉, 〈L〉, 〈E〉, 〈E〉). Proving that 〈L〉p ≡
〈A〉〈A〉p and 〈L〉p ≡ 〈A〉〈A〉p are valid inter-definability equations (soundness)
is straightforward. To prove that these equations are the only possible ones
(completeness), for each operator 〈X〉 ∈ {〈A〉, 〈A〉, 〈L〉, 〈L〉, 〈B〉, 〈B〉}, we show
that 〈X〉 is not definable in the maximal fragment of AABB not containing, as
definable, 〈X〉 itself. This amounts to prove that:

(1) 〈A〉 ⋪ ABBL and 〈A〉 ⋪ ABBL;

(2) 〈B〉 ⋪ AAB and 〈B〉 ⋪ AAB;

(3) 〈L〉 ⋪ ABB and 〈L〉 ⋪ ABB.

We prove the above results one by one.

Lemma 1. 〈A〉 ⋪ ABBL and 〈A〉 ⋪ ABBL over Z.

Lemma 2. 〈B〉 ⋪ AAB and 〈B〉 ⋪ AAB over Z.

Lemma 3. 〈L〉 ⋪ ABB and 〈L〉 ⋪ ABB over Z.

In both Lemma 1 and Lemma 2, we provide a suitable FN -bisimulation, for
an arbitrary natural number N , while an F -bisimulation suffices for Lemma 3.
Since the proofs are technically rather involved, we decided to move them to an
appendix.

The proofs of the above three lemmas can be adapted to N, to the class of
finite linear orders, and to Z− by suitably restricting the bisimulation relations
(details are given in the appendix). This allows us to conclude the following.

Theorem 1. 〈L〉p ≡ 〈A〉〈A〉p and 〈L〉p ≡ 〈A〉〈A〉p are the only inter-definabili-
ty equations among the set of operators {〈A〉, 〈A〉, 〈L〉, 〈L〉, 〈B〉, 〈B〉} over all the
considered classes of linear orders.

As for property (iii) (fragments which are not displayed in Fig. 4 are unde-
cidable), it directly follows from the above lemmas and known undecidability
results. By the above three lemmas, it holds that Fig. 4 contains all expressively-
different fragments of HS featuring modalities from the set {〈A〉, 〈A〉, 〈B〉, 〈B〉,
〈L〉, 〈L〉} or from the set {〈A〉, 〈A〉, 〈E〉, 〈E〉, 〈L〉, 〈L〉}. It can be easily checked
that any other fragment contains (possibly as definable) at least one modality
from the set {〈D〉, 〈D〉, 〈O〉, 〈O〉}, and thus it is undecidable (see Section 2).

9



AABB

ABBL AAB AAB

ABL ABL

AAEE

AAE AAE AEEL

AE AE

AEEAEL AEL

AB AB

ABB

ABBL AEEL

AB AB

ABB ABL ABL

AE AE

AEEAEL AELAA

A A

AL AL

B B

BB

BBL BBL

BBLL

BL BL BL BL

BLL BLL

E E

EE

EEL EEL

EELL

EL ELEL EL

ELL ELL

L L

LL

Figure 4: Hasse diagram of the considered HS fragments and their relative expressive power.

Corollary 2. The Hasse diagram in Fig. 4 correctly characterizes the relative
expressive power of the HS-fragments AABB, AAEE, and all their sub-fragments,
over any of the considered classes of linear orders.

The rest of the paper is devoted to the analysis of the computational com-
plexity of HS fragments, moving from lower- to higher-degree complexity classes,
and transversally with respect to finite linear orders, strongly discrete linear or-
ders, and N. It is worth mentioning that the class NEXPTIME is not explicitly
studied here, as HS fragments with a NEXPTIME-complete satisfiability prob-
lem have been already systematically investigated elsewhere (see Tab. 2).

5. NP-Completeness

In this section, we prove NP-completeness of BBLL and of its mirror image
EELL. Since the satisfiability problem for propositional logic is NP-complete,
BBLL and its sub-fragments are at least NP-hard. The core of this section is
thus a membership (NP-membership) proof. By a model-theoretic argument,
we will show that satisfiability of BBLL-formulas can be reduced to the search
for a periodic model, whose prefix and period lengths have a bound which is
polynomial in the length of the formula. For the sake of simplicity, we consider
the case of BBLL interpreted over N. The proof can be generalized to the class
of strongly discrete linear orders and to Z. The finite case comes for free: it is
sufficient to impose that the length of the period is zero. Finally, the case of Z−

can be sorted out by simply reversing the proof for N.
We start by observing that satisfiability of a BBLL-formula ϕ over N can be

reduced to satisfiability of the formula τ(ϕ) = 〈L〉〈L〉ϕ over the interval [0, 1],
that is, M, [x, y] 
 ϕ for some [x, y] if and only M, [0, 1] 
 τ(ϕ). Hence, we
can safely restrict our attention to the satisfiability problem for a BBLL-formula
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over [0, 1] (initial satisfiability). As a preliminary step, we introduce some useful
notation and notions, including that of periodic model.

Definition 4. An interval model M = 〈I(N), V 〉 is ultimately periodic, with
prefix Pre and period Per, if for every interval [x, y] ∈ I(N) and proposition
letter p ∈ AP : (i) if x ≥ Pre, then [x, y] ∈ V (p) iff [x+ Per, y + Per] ∈ V (p)
and (ii) if y ≥ Pre, then [x, y] ∈ V (p) iff [x, y + Per] ∈ V (p).

Let ϕ be the BBLL-formula to be checked for satisfiability. We define the closure
of ϕ, denoted Cl(ϕ), as the set of all subformulas of ϕ and of their negations.
Let M be a model such that M, [0, 1] 
 ϕ. For every point x of the model, let
RL(x) (resp., RL(x)) be the maximal subset of Cl(ϕ) consisting of all and only
those 〈L〉-formulas (resp., 〈L〉-formulas) and their negations that are satisfied
over intervals ending (resp., beginning) at x. Notice that all intervals ending
(resp., beginning) at the same point must satisfy the same 〈L〉-formulas (resp.,
〈L〉-formulas). Let R(x) = RL(x) ∪ RL(x). R(x) must be consistent, that is,
it cannot contain a formula and its negation. Let R be the subset of Cl(ϕ)
that contains all 〈L〉- and 〈L〉-formulas and all their negations. It is immediate
to see that |R| ≤ 2|ϕ|. In the following, we will also compare intervals with
respect to satisfiability of 〈B〉- and 〈B〉-formulas. Given a model M , we say
that two intervals [x, y] and [x′, y′] are B-equivalent (denoted [x, y] ≡B [x′, y′])
if for every 〈B〉ψ ∈ Cl(ϕ), M, [x, y] 
 〈B〉ψ iff M, [x′, y′] 
 〈B〉ψ and for every
〈B〉ψ ∈ Cl(ϕ), M, [x, y] 
 〈B〉ψ iff M, [x′, y′] 
 〈B〉ψ. Hereafter, we will denote
by mB the number of 〈B〉- and 〈B〉-formulas in Cl(ϕ).

To prove that the satisfiability problem for BBLL is in NP, we first prove that
every satisfiable formula ϕ has an ultimately periodic model; then, we show how
to contract it to obtain a model whose prefix and period are polynomial in |ϕ|.

Lemma 4. Let ϕ be a BBLL-formula and M = 〈I(N), V 〉 be a model for ϕ.
Then, there exists also an ultimately periodic model M∗ = 〈I(N), V ∗〉 for ϕ.

Proof. Let M = 〈I(N), V 〉 be such that M, [0, 1] 
 ϕ. If M is not ultimately
periodic, we turn it into an ultimately periodic model as follows.

First, we show that, by transitivity of 〈L〉 and 〈L〉, there must exist a point
x > 1 such that R(z) = R(x) for every z ≥ x. Let us consider modality 〈L〉.
By definition, if M, [x, y] |= 〈L〉ψ, then M, [x′, y′] |= 〈L〉ψ for every y′ ≤ y. It
immediately follows that RL(y) ⊆ RL(y

′), that is, either RL(y) = RL(y
′) or

RL(y) ⊂ RL(y
′). Since the set of 〈L〉-requests is finite, there exists a point

x1 > 1 such that RL(z) = RL(x1) for every z ≥ x1. A similar argument holds
for modality 〈L〉. By definition, if M, [x, y] |= 〈L〉ψ, then M, [x′, y′] |= 〈L〉ψ
for every x′ ≥ x. It immediately follows that RL(x) ⊆ RL(x

′), that is, either
RL(x) = RL(x

′) or RL(x) ⊂ RL(x
′). Since the set of 〈L〉-requests is finite,

there exists a point x2 > 1 such that RL(z) = RL(x2) for every z ≥ x2. We
take x = max({x1, x2}) as the prefix Pre.

Next, we take as the period of the model a value Per > mB that satisfies
the following conditions: (i) for every point x ≤ Pre and formula 〈L〉ψ ∈ R(x),
there exists an interval [xψ , yψ] such that M, [xψ , yψ] 
 ψ and x < xψ < yψ <
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Pre + Per; (ii) for every interval [x, y] such that x < Pre and y ≥ Pre + Per

and every formula 〈B〉ψ such that M, [x, y] 
 〈B〉ψ, there exists an interval
[x, yψ] such that [x, y] ≡B [x, yψ], M, [x, yψ] 
 ψ, and Pre ≤ yψ < Pre + Per.
The existence of such a Per can be guaranteed as follows. Since M is a model,
all requests 〈L〉ψ ∈ RL(x) are fulfilled. Let x1 be the least natural number such
that the right endpoints of the fulfilling intervals [xψ , yψ] are less than or equal to
it. As for condition (ii), by definition of modality 〈B〉, if M, [x, y] |= 〈B〉ψ, then
M, [x, y′] |= 〈B〉ψ for every y′ ≥ y. Since the set of 〈B〉-requests is finite, there
exists a point x2 > 1 such thatM, [x, z] |= 〈B〉ψ if and only ifM, [x, x2] |= 〈B〉ψ,
for all 〈B〉ψ ∈ Cl(ϕ) and every z ≥ x2 (without loss of generality, we can assume
x2 to be greater than Pre+mB). A symmetric argument can be used to prove
that there exists a point x3 > 1 such that M, [x, z] |= 〈B〉ψ if and only if
M, [x, x3] |= 〈B〉ψ, for all 〈B〉ψ ∈ Cl(ϕ) and every z ≥ x3 (again, without loss
of generality, we can assume x3 to be greater than Pre + mB). Any natural
number greater than max({x1, x2, x3})− Pre can be taken as Per.

The above two conditions are not sufficient to guarantee periodicity; we need
to add the following one: (iii) for every interval [x, y] such that Pre ≤ x < Pre+
Per and y ≥ Pre + 2Per and every formula 〈B〉ψ such that M, [x, y] 
 〈B〉ψ,
there exists an interval [x, yψ] such that [x, y] ≡B [x, yψ], M, [x, yψ] 
 ψ, and
yψ < Pre + 2Per. We show how to possibly change the valuation V of the
model M to force condition (iii) to be satisfied. Let [x, y] be an interval that
violates condition (iii). We choose a (finite) minimal set of “witness points”
WP = {y1 < . . . < yk} such that (a) for every interval [x, y′] and every formula
〈B〉ψ, if M, [x, y′] 
 〈B〉ψ, then there exists yi ∈ WP such that M, [x, yi] 
 ψ

and x < yi < y′ , and (b) for every interval [x, y′′] and every formula 〈B〉θ,
if M, [x, y′′] 
 〈B〉θ, then there exists yi ∈ WP such that M, [x, yi] 
 θ and
either yi > y′′ or [x, yi] ≡B [x, y′′]. As for condition (a), for each formula
〈B〉ψ ∈ Cl(ϕ), if there exists y′ such that M, [x, y′] 
 〈B〉ψ, we add to WP the
least point yi such that M, [x, yi] 
 ψ (notice that this implies that, for all y′′,
if M, [x, y′′] 
 〈B〉ψ, then yi < y′′). As for condition (b), we must distinguish
two cases. If there exists a finite number of y′ such that M, [x, y′] 
 θ (that is,
〈B〉θ is satisfied by a finite number of intervals), we add to WP the greatest
natural number yi such that M, [x, yi] 
 θ. Otherwise (there exists an infinite
number of y′ such thatM, [x, y′] 
 θ), we add to WP a sufficiently large natural
number yi such thatM, [x, yi] 
 θ and for all z ≥ yi, [x, yi] ≡B [x, z]. We already
showed that, for every x < Pre, there exists y′ such that for each 〈B〉ψ ∈ Cl(ϕ)
(resp., 〈B〉ψ ∈ Cl(ϕ)), M, [x, y′] 
 〈B〉ψ (resp., M, [x, y′] 
 〈B〉ψ) if and only
if M, [x, z] 
 〈B〉ψ (resp., M, [x, z] 
 〈B〉ψ), for all z ≥ y′. As a matter of fact,
the assumption about x does not play any role in the proof, and thus the claim
can be safely extended to all Pre ≤ x < Pre + Per. We take as yi a natural
number y′′, greater than or equal to y′, such that M, [x, y′′] 
 θ. As for the
cardinality of WP , it immediately follows that |WP | ≤ mB (the number of 〈B〉-
and 〈B〉-formulas in Cl(ϕ)).

We now focus our attention on those witness points {yj < . . . < yk} that
are greater than Pre + Per, and we turn V into a new valuation V ′ defined as
follows:
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• for every p ∈ AP and every j ≤ i ≤ k, we put [x, Pre+Per+(i−j+1)] ∈
V ′(p) iff [x, yi] ∈ V (p);

• for every p ∈ AP and every Pre + Per + (k − j + 1) < y′ ≤ yk, we put
[x, y′] ∈ V ′(p) iff [x, yk] ∈ V (p);

• the valuation of all other intervals remains unchanged.

Notice that the second item is used to unproblematically fill intervals [x, Pre+
Per+ (k − j + 1) + 1], . . . , [x, yk] by forcing their valuation (in M ′) to be equal
to the valuation of [x, yk] (in M)2. As for the last item, it is worth pointing
out that the valuation of intervals [x, y′], with x < y′ ≤ Pre + Per, and the
valuation of intervals [x′, y′], with Pre+ Per < x′, y′ ≤ yk, do not change.

It can be easily checked that the validity of conditions (i) and (ii) is not
affected by such a rewriting of the valuation function. Moreover, once it has
been completed, all intervals starting at x fulfill condition (iii).

We show thatM ′ = 〈I(N), V ′〉 is a model for ϕ, that is,M ′, [0, 1] 
 ϕ. As for
formulas of the form 〈L〉ψ ∈ R(x), with x ≤ Pre, by condition (i), we know that
they are fulfilled (in M) by an interval [xψ , yψ], with x < xψ < yψ < Pre+Per,
whose valuation has not been changed (inM ′). The case of formulas of the form
〈L〉ψ ∈ R(x), with x ≤ Pre, is trivial. Let us consider now points x > Pre.
By definition of Pre, all formulas 〈L〉ψ ∈ R(x), with x > Pre, are satisfied by
infinitely many intervals, and thus any change in the valuation function that
affects a finite number of intervals has not impact on their satisfiability. As
for formulas 〈L〉ψ ∈ R(x), with x > Pre, by definition of Pre, it immediately
follows that they are satisfied (in M) by intervals contained in [0, P re], whose
valuation has not been changed (in M ′).

We now prove that intervals [x, yi] inM and intervals [x, Pre+Per+(i−j+
1)] in M ′ behave the same with respect to the operators 〈B〉 and 〈B〉 as well.
For the sake of simplicity, we restrict our attention to formulas of the forms
〈B〉p and 〈B〉p, with p ∈ AP . An easy inductive argument can be exploited to
cope with the general case. Suppose now that there exist a 〈B〉p ∈ Cl(ϕ) and
yl ∈ WP such that M, [x, yl] 
 〈B〉p andM ′, [x, Pre+Per+(l− j+1)] 6
 〈B〉p.
From M, [x, yl] 
 〈B〉p, it follows that there exists y such that y < yl and
M, [x, y] 
 p. By condition (a), the witness yh of 〈B〉p in WP is less than
or equal to y, which, in its turn, is less than yl. It immediately follows that
M ′, [x, Pre+Per+(h−j+1)] 
 p and thusM ′, [x, Pre+Per+(l−j+1)] 
 〈B〉p
(contradiction). Suppose now that there exist a 〈B〉p ∈ Cl(ϕ) and yl ∈ WP such
that M, [x, yl] 
 〈B〉p and M ′, [x, Pre + Per + (l − j + 1)] 6
 〈B〉p. First of all,
we observe that the latter cannot be the case if there exists an infinite number
of intervals [x, y] such that M, [x, y] 
 p (V ′ differs from V in the valuation of
a finite number of intervals). Now, from M, [x, yl] 
 〈B〉p, it follows that there

2A contraction of the domain of M is not a viable alternative, as removing the points
belonging to the interval [Pre+ Per + (k − j + 1) + 1, yk] may invalidate (in M ′) some 〈B〉-
or 〈B〉-formulas over intervals starting at some x′ 6= x.
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exists y such that y > yl and M, [x, y] 
 p. Since there exists a finite number
of intervals [x, y] such that M, [x, y] 
 p, by the finite case of condition (b), the
witness yh of 〈B〉p in WP is greater than or equal to y, which, in its turn, is
greater than yl. It immediately follows that M ′, [x, Pre+Per+(h− j+1)] 
 p

and thus M ′, [x, Pre + Per + (l − j + 1)] 
 〈B〉p (contradiction). As for the
converse, from minimality of WP and from the fact that V ′ “preserves” the
order, that is, points xl, xh ∈ WP , with l < h, are “mapped” into points
Pre + Per + (l − j + 1) < Pre + Per + (h − j + 1), it easily follows that if
M ′, [x, Pre+Per+(h− j+1)] 
 〈B〉p (resp., M ′, [x, Pre+Per+(l− j+1)] 

〈B〉p) and M ′, [x, Pre+ Per+ (l − j + 1)] 
 p (resp., M ′, [x, Pre+ Per + (h−
j + 1)] 
 p), then M, [x, yh] 
 〈B〉p (resp., M, [x, yl] 
 〈B〉p) and M, [x, yl] 
 p

(resp., M, [x, yh] 
 p), for some j <= l < h <= k. Moreover, if M ′, [x, Pre +
Per + (l − j + 1)] 
 〈B〉p (resp., M ′, [x, Pre + Per + (l − j + 1)] 
 〈B〉p), for
some j ≤ l ≤ k, and M ′, [x, y′] 
 p, for some y′ < yj (resp., y′ > yk), then
M, [x, yl] 
 〈B〉p (resp., M, [x, yl] 
 〈B〉p) and M, [x, y′] 
 p (notice that this
is always the case with [x, Pre + Per + 1] and [x, Pre + Per + (k − j + 1)],
respectively). Again, an easy inductive argument can be exploited to cope with
the general case.

By repeating such a procedure a sufficient number of times (at most, as
many times as the points in between Pre and Pre + Per are), we obtain a
model M = 〈I(N), V 〉for ϕ that satisfies conditions (i), (ii), and (iii).

We are now ready to build the ultimately periodic model M∗ = 〈I(N), V ∗〉.
First, we define the valuation function V ∗ for some of the intervals whose left
endpoint belongs to the prefix or to the first occurrence of the period: (a) for
each p ∈ AP and each [x, y], with y < Pre + Per, [x, y] ∈ V ∗(p) if and only if
[x, y] ∈ V (p); (b) for each p ∈ AP and each [x, y], with Pre ≤ x < Pre + Per

and y ≤ x+Per, [x, y] ∈ V ∗(p) if and only if [x, y] ∈ V (p). Then, we extend V ∗

to cover the entire model: (1) for each p ∈ AP and each [x, y], with x < Pre

and y ≥ Pre + Per, [x, y] ∈ V ∗(p) if and only if [x, y − Per] ∈ V ∗(p); (2) for
each p ∈ AP and each [x, y], with Pre ≤ x < Pre + Per and y > x + Per,
[x, y] ∈ V ∗(p) if and only if [x, y − Per] ∈ V ∗(p); (3) for each p ∈ AP and each
[x, y], with x ≥ Pre+Per, [x, y] ∈ V ∗(p) if and only if [x−Per, y−Per] ∈ V ∗(p).
It is easy to check that M∗, [0, 1] 
 ϕ and thus M∗ is the ultimately periodic
model we were looking for. ✷

The next lemma shows that, by applying a point-elimination technique sim-
ilar to the one used in [19], we can reduce the length of the prefix and the period
of an ultimately periodic model to a size polynomial in |ϕ|.

Lemma 5. Let ϕ be a BBLL-formula. Then, ϕ is initially satisfiable over N

if and only if it is initially satisfiable over an ultimately periodic model M =
〈I(N), V 〉, with Pre + Per ≤ (mL + 2) ·mB +mL + 3, where mL = 2|R|.

Proof. By Lemma 4, we can assume that ϕ is initially satisfied over an ultimately
periodic model M = 〈I(N), V 〉. If Pre + Per is not less than or equal to
(mL + 2) ·mB +mL + 3, we proceed as follows.
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To start with, we show that, for each 〈L〉ψ ∈ R(x), with 1 < x < Pre +
2Per, there exist 1 < x′ ≤ Pre + Per and y′ < Pre + 2Per such that the
interval [x′, y′] satisfies ψ. Let [xψ , yψ] be an interval such that M, [xψ , yψ] 
 ψ,
with x < xψ (since M is a model, there exists at least one such interval). If
xψ > Pre + Per, we take the smallest k such that xψ − (k · Per) ≤ Pre +
Per. By periodicity, V ([xψ − (k · Per), yψ − (k · Per)]) = V ([xψ , yψ]), and
thus M, [xψ − (k · Per), yψ − (k · Per)] 
 ψ as well. Consider now the right
endpoint of the resulting interval. If yψ − (k · Per) ≥ Pre + 2Per, we take
the smallest k′ such that yψ − ((k + k′) · Per) < Pre + 2Per. By periodicity,
V ([xψ− (k ·Per), yψ− ((k+k′) ·Per)]) = V ([xψ− (k ·Per), yψ− (k ·Per)]), and
thusM, [xψ− (k ·Per), yψ− ((k+k′) ·Per)] 
 ψ as well. We choose 1 < xψmax ≤
Pre+Per and yψmax < Pre+2Per such thatM, [xψmax, y

ψ
max] 
 ψ and, for each

xψmax < x ≤ Pre+Per, no interval starting at x satisfies ψ. We collect all such
points xψmax, y

ψ
max into a set (of L-blocked points) BlL ⊂ {0, . . . , P re + 2Per}.

Similarly, for each 〈L〉ψ ∈ R(x), with 1 < x < Pre+2Per, we choose an interval

[xψmin, y
ψ
min] such that M, [xψmin, y

ψ
min] 
 ψ and, for each y < y

ψ
min, no interval

ending at y satisfies ψ. We collect all points xψmin, y
ψ
min into a set (of L-blocked

points) BlL ⊂ {0, . . . , P re}.
Let Bl = BlL∪BlL∪{Pre, Pre+Per}. It trivially holds that |Bl| ≤ mL+2.

Let Bl = {x1 < x2 < . . . < xn}. For each 0 < i < n, let Bli = {x | xi < x <

xi+1}; moreover, let Bl0 = {x | 1 < x < x1} and Bln = {x | xn < x < Pre +
2Per}. We prove that if y, y′ ∈ Bli, for some i, then R(y) = R(y′). The proof
is by contradiction. Let us assume R(y) 6= R(y′). By definition of ultimately
periodic model, it follows that at least one between y and y′ must belong to the
prefix of M . Let us assume that 〈L〉ψ ∈ R(y) and 〈L〉ψ 6∈ R(y′). By definition,
[L]¬ψ ∈ R(y′). This implies that y < y′, as 〈L〉 is transitive, and hence that
y < Pre. Now, consider the interval [xψmax, y

ψ
max] defined above. Since both

y and y′ belong to the same set Bli, two cases may arise: either xψmax < y or
y′ < xψmax. In the former case, since 〈L〉ψ ∈ R(y), there must exist an interval
[x′′, y′′] satisfying ψ and such that xψmax < x′′ ≤ y′, against the definition of
xψmax. In the latter case, we immediately get a contradiction with [L]¬ψ 6∈ R(y′).
In a similar way, we can prove that it cannot be the case that 〈L〉ψ ∈ R(y) and
〈L〉ψ 6∈ R(y′). Since, by assumption, Pre + Per > (mL + 2) · mB +mL + 3,
a simple combinatorial argument can be used to prove that there exists a set
Bli, for some xi+1 ≤ Pre+ Per, such that |Bli| > mB. Let |Bl| = mL + 2 and
xn = Pre+Per (worst case). The prefix [0, P re+Per] includes Pre+Per+1
points. The mL + 4 points 0, 1, x1, . . . , xn do not belong to any set Bli. The
remaining points are more than (mL+2) ·mB+mL+3+1− (mL+4), that is,
(mL + 2) ·mB, and they are distributed over mL + 2 sets. Hence, at least one
of these sets, say, Bli, contains more than mB points.

Let x be the first point in such a Bli. We show how to build a model M ′ =
〈I(N\{x}), V ′〉, where V ′ is a suitable adaptation of V , such thatM ′, [0, 1] 
 ϕ.
Consider M ′′ = 〈I(N \ {x}), V ′′〉, where V ′′ is the projection of V over the
intervals that neither start nor end at x. By definition, the removal of x does not
affect the satisfaction of box-formulas from Cl(ϕ). The only potential problem
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is with some diamond-formulas which were satisfied in M and are not satisfied
in M ′′ anymore. Let [x, y], with y < x, be such that M, [x, y] 
 〈L〉ψ. By
definition of Bl, there exists an interval [xψmax, y

ψ
max] satisfying ψ and such that

xψmax, y
ψ
max ∈ Bl, xψmax ≤ Pre + Per, and that there exists no interval [x′, y′]

satisfying ψ, with xψmax < x′ ≤ Pre + Per. Then, either xψmax > y or there
exists an interval [x′, y′] such thatM, [x′, y′] 
 ψ and x′ > Pre+Per. Therefore,
M ′′, [x, y] 
 〈L〉ψ. A symmetric argument applies to the case of 〈L〉ψ. This
allows us to conclude that the removal of x does not cause any problem with
diamond-formulas of the forms 〈L〉ψ or 〈L〉ψ. Let us assume now that, for
some y < x < x (resp., y < x < x) and some formula 〈B〉ψ ∈ Cl(ϕ) (resp.,
〈B〉ψ ∈ Cl(ϕ)), M, [y, x] 
 〈B〉ψ (resp., M, [y, x] 
 〈B〉ψ) and M, [y, x′] 
 ¬ψ
for every x′ > x (resp., x′ < x) and x′ 6= x. Since x is the first point in
Bli, by transitivity of 〈B〉 (resp., 〈B〉), it holds that M, [y, xi] 
 〈B〉ψ (resp.,
M, [y, xi+1] 
 〈B〉ψ). Consider now the first mB successors x + 1, . . . x +mB

of x (in M). Since |Bli| > mB, all these points belong to Bli. It is possible to
prove that there exists at least one point x+ k, with 1 ≤ k ≤ mB, that satisfies
the following properties: (i) for every 〈B〉ξ ∈ Cl(ϕ), if M, [y, x+ k+1] 
 〈B〉ξ,
then M, [y, x + k] 
 〈B〉ξ, and (ii) for every 〈B〉ζ ∈ Cl(ϕ), if M, [y, x + k −
1] 
 〈B〉ζ, then M, [y, x + k] 
 〈B〉ζ. (Notice that properties (i) and (ii) are
trivially satisfied by the formula that causes the defect we want to remove.) By
transitivity of 〈B〉, if M, [y, x + k + 1] 
 〈B〉ξ, then M, [y, x′] 
 〈B〉ξ for every
x′ ≥ x + k + 1. Hence, if x + k does not satisfy property (i) for 〈B〉ξ, all its
successors are forced to respect it for 〈B〉ξ. Symmetrically, by transitivity of
〈B〉, if M, [y, x+ k − 1] 
 〈B〉ζ but M, [y, x+ k] 6
 〈B〉ζ, then M, [y, x′] 6
 〈B〉ζ
for every x′ ≥ x + k. Hence, all successors of x + k trivially satisfy property
(ii) for 〈B〉ζ. Since the number of 〈B〉- and 〈B〉-formulas is bounded by mB,
a point that satisfies properties (i) and (ii) can always be found. We fix the
defect by defining the labeling V ′ as follows: for each p ∈ AP and 1 ≤ t ≤ k,
[y, x + t] ∈ V ′(p) if and only if [y, x + t − 1] ∈ V (p); the labeling of the other
intervals remains unchanged. It can be easily checked that this change in the
labeling does not introduce new defects of any kind.

By iterating the above procedure, we obtain a model M = 〈I(N), V 〉, with
Pre+Per ≤ (mL+2) ·mB+mL+3. To complete the proof, we must propagate
the changes we made to the finite model prefix of length Pre+ 2Per to the re-
maining infinite suffix. To build an ultimately periodic model M∗ = 〈I(N), V ∗〉,
we proceed as in the proof of Lemma 4: (i) for each p ∈ AP and every [x, y],
with y ≤ Pre + Per, [x, y] ∈ V ∗(p) iff [x, y] ∈ V (p); (ii) for each p ∈ AP
and every [x, y], with Pre < x ≤ Pre + Per and y ≤ x + Per, [x, y] ∈ V ∗(p)
iff [x, y] ∈ V (p); (iii) for each p ∈ AP and every [x, y], with x ≤ Pre and
y > Pre + Per, [x, y] ∈ V ∗(p) iff [x, y − Per] ∈ V ∗(p); (iv) for each p ∈ AP
and every [x, y], with Pre < x ≤ Pre+ Per and y > x+ Per, [x, y] ∈ V ∗(p) iff
[x, y−Per] ∈ V ∗(p); (v) for each p ∈ AP and every [x, y], with x ≥ Pre+Per,
[x, y] ∈ V ∗(p) iff [x− Per, y − Per] ∈ V ∗(p). ✷

NP-membership of BBLL is a consequence of the above lemmas and the fact
that mL and mB are both polynomial in |ϕ|.
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Theorem 3. The satisfiability problem for BBLL, its mirror image, and all its
sub-fragments, over all the considered classes of linear orders, is NP-complete.

6. EXPSPACE-Completeness

In this section, we study the computational complexity of the fragment
ABBL, of its sub-fragments, except for those included in BBLL, and of their
mirror images. We know from [12] that ABBL and its mirror image AEEL are
in EXPSPACE for all the considered classes of linear orders. In the following,
we sharpen EXPSPACE-hardness results given in [11] by showing that all frag-
ments of ABBL (resp., AEEL), which are not included in BBLL (resp., EELL),
are EXPSPACE-hard for all these classes.

To prove EXPSPACE-hardness, we provide a reduction from the 2n-corridor
tiling problem (also known as exponential-corridor tiling problem), which is
known to be EXPSPACE-complete [20, Section 5.5]. Formally, an instance of the
exponential-corridor tiling problem is a tuple T = (T, t0, t1, TL, TR, CH , CV , n)
consisting of a finite set T of tiles, two tiles t0, t1 ∈ T , a set of left tiles TL ⊆ T ,
a set of right tiles TR ⊆ T , two binary relations CH and CV over T , that specify
a set of horizontal and vertical constraints, and a positive natural number n.
The problem amounts to deciding whether there exist a positive natural number
l and a tiling f : {0, . . . , 2n − 1} × {0, . . . , l − 1} → T of the corridor of width
2n and height l, that associates the tile t0 with (0, 0), the tile t1 with (0, l− 1),
and a tile in TL (resp., TR) with the first (resp., last) position of every row of
the corridor (apart from (0, 0) and (0, l − 1)), and that satisfies the following
horizontal and vertical constraints CH and CV :

(i) for each x < 2n − 1 and each y < l, f(x, y) CH f(x+ 1, y);

(ii) for each x < 2n and each y < l − 1, f(x, y) CV f(x, y + 1).

In [11], a reduction for AB over N (and, thus, for AE over Z−) is given. In the
following, we define a variant of such a reduction where we use 〈B〉 instead of
〈B〉 and finite, instead of infinite, structures. The proof will make an extensive
use of a derived “always in the future” modality [G], defined as follows:

[G]ϕ ≡ ϕ ∧ [A]ϕ ∧ [A][A]ϕ

When evaluated over an interval [x, y], [G]ϕ, forces ϕ to be true on [x, y] and
on every interval [z, t], with z ≥ y.

Lemma 6. There exists a polynomial-time reduction from the 2n-corridor tiling
problem to the satisfiability problem for AB over all the considered classes of
linear orders.

Proof. Let T = (T, t0, t1, TL, TR, CH , CV , n) be an instance of the 2n-corridor
tiling problem, where T = {t0, t1, . . . , tk}. We provide an AB-formula, whose
size is polynomial in |T |, which is satisfiable if and only if there exist a natural
number l and a correct tiling f : {0, . . . , 2n − 1} × {0, . . . , l − 1} → T . We use
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k+1 proposition letters t0, t1, . . . , tk to represent the tiles from T , n proposition
letters b0, . . . , bn−1 to represent the binary expansion of the x-coordinate of a
point in the corridor, and one proposition letter c to identify those intervals that
correspond to points (x, y) of the corridor. Such a correspondence is obtained by
ensuring that we interpret these proposition letters only over intervals of length
1. The valuation function V of the model of the formula is then related to the
tiling function f as follows: for each point (x, y) ∈ {0, . . . , 2n−1}×{0, . . . , l−1}
and each tile ti ∈ T , if f(x, y) = ti, then [x+ 2ny, x+ 2ny+1] ∈ V (c) ∩ V (ti)∩
⋂

b∈{bj1 ,...,bjh} V (b), where {j1, . . . , jh} ⊆ {0, . . . , n−1} and x =
∑

j∈{j1,...,jh}
2j .

First, we force the existence of a finite chain of intervals of length 1 where
c is true, we guarantee that this c-chain is unique, and we associate a unique
proposition letter ti with each c-labeled interval:

ϕ0



















ϕc = c ∧ [G]((c ∧ 〈A〉⊤) → 〈A〉(c ∨ cstop)) ∧ [G]¬〈B〉c,

ϕs = [G]¬〈B〉cstop ∧ 〈A〉〈A〉cstop ∧ [G](cstop → ([G]¬c ∧ [A][G]¬cstop)),

ϕf = [G]
(

c↔
∨

0≤i≤k ti

)

∧[G]
(

∧

0≤i<j≤k ¬(ti ∧ tj)
)

.

Then, we guarantee that, for every point (x, y) in the corridor, truth values of
proposition letters b0, . . . , bn−1 over intervals [x + 2ny, x + 2ny +m], for every
m ≥ 1, represent the binary expansion of x. Such a constraint can be enforced
by the conjunction ϕx of the following formulas:

ϕx



















ϕ1
x =

∧

0≤i<n ¬bi ∧ 〈A〉〈A〉(c ∧ 〈A〉cstop ∧
∧

0≤i<n bi),

ϕ2
x = [G]

(

c→ ϕ0
inc

)

,

ϕ3
x = [G]

∧

0≤i<n

(

(

bi → [B]bi
)

∧
(

¬bi → [B]¬bi
)

)

,

where ϕiinc is defined as follows:

ϕiinc =







⊤ if i = n;
(

bi ∧ [A](c → ¬bi) ∧ ϕ
i+1
inc

)

∨
(

¬bi ∧ [A](c → bi) ∧ ϕi+1
eq

)

otherwise,

and ϕieq is defined as follows:

ϕieq =







⊤ if i = n;
(

(

bi ∧ [A](c → bi)
)

∨
(

¬bi ∧ [A](c → ¬bi)
)

)

∧ϕi+1
eq otherwise.

Finally, we establish a correspondence between intervals that represent vertically
adjacent tiles by setting a fresh proposition letter co:

ϕco = [G](co→ ϕ0
eq) ∧ [G]((c ∧ 〈B〉ϕ0

eq) → 〈B〉co) ∧ [G]¬(ϕ0
eq ∧ 〈B〉co).

To conclude the proof, we must enforce the horizontal and vertical constraints
CH and CV and the constraints on the border of the corridor. This can be
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done by means of the following formulas (remember that, by definition of tiling,
t0, t1 ∈ T and TL, TR ⊆ T ):

ϕcon















































ϕ01 = t0 ∧ 〈A〉〈A〉
(

c ∧
∧

0≤i<n ¬bi ∧ t1 ∧ ¬〈B〉co
)

ϕL = [G]
(

c ∧
∧

0≤i<n ¬bi →
∨

tL∈TL
tL

)

,

ϕR = [G]
(

c ∧
∧

0≤i<n bi →
∨

tR∈TR
tR

)

,

ϕH = [G]
∧

0≤i≤k

(

ti → [A]
(

c→
∨

(ti,tj)∈CH
tj
)

)

,

ϕV = [G]
∧

0≤i≤k

(

ti → [B](co→
∨

(ti,tj)∈CV
〈A〉tj)

)

.

The formula ϕT = ϕ0 ∧ ϕx ∧ ϕco ∧ ϕcon is of polynomial size with respect to
|T |, and it is satisfiable if and only if T can tile the 2n-corridor. ✷

Theorem 4. The satisfiability problem for ABBL, ABB, AB, AB, ABL, and
ABL, as well as for their mirror images, is EXPSPACE-complete for all the
considered classes of linear orders.

7. Non-Primitive Recursiveness and Undecidability

In this section, we study the complexity of the fragments of AABB and AAEE

which have not been taken into consideration in the previous sections, namely,
all fragments which are not sub-fragments of ABBL, AEEL, or AA. We give
both hardness and undecidability proofs. In all cases, we proceed by reducing
an appropriate problem for faulty counter machines to the satisfiability problem
for the considered fragment.

7.1. Faulty Counter Machines

Faulty counter machines [21] are a variant of Minsky counter automata where
transitions may non-deterministically increase (incrementing faulty machines)
or decrease (decrementing faulty machines) the values of counters. A compre-
hensive survey on faulty machines and on the relevant complexity, decidability,
and undecidability results can be found in [22]. Formally, a counter automaton
is a tuple A = (Σ, Q, q0, C,∆, F ), where Σ is a finite alphabet, Q is a finite
set of control states, q0 ∈ Q is the initial state, C = {c1, . . . , ck} is the set of
counters, whose values range over N, ∆ is a transition relation, and F ⊆ Q is
the set of final states. Let us denote by ǫ the empty word (we assume ǫ 6∈ Σ).
The relation ∆ is a subset of Q× (Σ∪ {ǫ})×L×Q, where L is the instruction
set L = {inc, dec, ifz}× {1, . . . , k}. A configuration of A is a pair (q, v), where
q ∈ Q and v is the vector of counter values. A run of a Minsky (i.e., with
no error) counter automaton is a finite or infinite sequence of configurations
such that, for every pair of consecutive configurations (q, v), (q′, v′), a transition

(q, v)
l,a
−−→ (q′, v′) has been taken (for some (q, a, l, q′) ∈ ∆). The value of v′

is obtained from the value of v by performing instruction l, where l = (dec, i)
requires vi > 0 and l = (ifz, i) requires vi = 0. When the machine is (faulty)
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incrementing, counters may be erroneously incremented at any time: we use in

this case (q, v)
l,a
−−→† (q′, v′) to indicate that there exist v†, v

′
† such that v ≤ v†,

(q, v†)
l,a
−−→ (q′, v′†), and v′† ≤ v′. The ordering ≤ is defined component-wise

in the obvious way. In incrementing machines, once a faulty transition has
been taken, counter values may have been increased nondeterministically before
or after the execution of the exact transition by an arbitrary natural number.
Symmetrically, when the machine is (faulty) decrementing, counters may be

nondeterministically decreased, and we use the same notation (q, v)
l,a
−−→† (q

′, v′)

to denote that there exist v†, v
′
† such that v ≥ v†, (q, v†)

l,a
−−→ (q′, v′†), and

v′† ≥ v′.
We say that a finite run of A over a word w ∈ Σ∗ is accepting if and only

if it ends with a finale state in F . In the case of an ω-word w ∈ Σω, we say
that an infinite run of A over w is accepting if and only if it traverses a state
in F infinitely often. We are interested here in the non-emptiness problem for
faulty machines, defined as the problem of deciding whether there exists at
least one (ω-)word accepted by a faulty counter machines. For finite words, it
is non-primitive recursive, while for infinite words it is undecidable [21].

7.2. Symmetric Structures

To start with, let us consider the results given in [13] (reported in Tab. 2)
for the fragments AAB and AAB, and their mirrors images, over symmetric
structures. When interpreted over finite linear structures, these fragments turn
out to be decidable (it is an immediate consequence of the decidability result
for AABB and its mirror image), but not primitive recursive. When interpreted
over Dedekind-complete infinite structures, they become undecidable.

In [13], a reduction from the (undecidable) reachability problem for lossy
counter machines to the satisfiability problem for AAB and AAB (that works
for their mirror images as well) is given. In the following, we provide a reduc-
tion from a slightly different (undecidable) problem, namely, the non-emptiness
problem for incrementing counter automata over ω-words, to the satisfiability
problem for AE over the class of strongly discrete linear orders. By symmetry,
such a result immediately transfers to AB. Moreover, the proposed encoding
can be easily adapted to the cases of AE and AE.

Lemma 7. There exists a reduction from the non-emptiness problem for incre-
menting counter automata over ω-words to the satisfiability problem for AE over
the class of strongly discrete linear orders.

Proof. Let A = (Σ, Q, q0, C,∆, F ) be an incrementing counter automaton. We
write an AE-formula ϕA which is satisfiable over the class of strongly discrete
linear orders if and only if there is at least one ω-word over Σ accepted by A.
The formula will make use of the universal operator [G] defined in Section 6.

Let us assume that |Q| = µ+1, |Σ| = ν, |F | = η, and |C| = k, and there are
(i) µ+ 1 proposition letters q0, q1, . . . , qµ, one for each state in Q (q0 being the
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$q $a c1 c1 c1 ck ck ck $b

conf q

conf a
conf c1

conf ck

Figure 5: Encoding of a configuration of an incrementing counter automaton in AE.

initial state); (ii) ν + 1 proposition letters a0, a1, . . . , aν , one for each symbol
in Σ ∪ {ǫ} (a1, . . . , aν encode symbols in Σ, while a0 encodes ǫ); and (iii) k
proposition letters c1, . . . , ck, one for each counter in C. Moreover, to simplify
the formula, we introduce a proposition letter $q (resp., $a, $c) which holds at
some interval if and only if at least one qi (resp., ai, ci) holds at that interval.
Finally, a proposition letter conf is used to denote a configuration. Additional
auxiliary proposition letters will be introduced later on.

To encode the components of a configuration, we use intervals of the form
[x, x + 1] (unit intervals), which are univocally identified by the AE-formula
[E]⊥. A configuration is modeled by a (non-unit) interval [x, x + s], labeled
with conf , consisting of a sequence of unit intervals labeled as follows: [x, x+1]
is labeled with (a proposition letter for) a state in Q, [x+1, x+2] by a letter in
Σ, and all the remaining unit intervals, but the last one (for technical reasons,
[x+ s− 1, x+ s] is labeled with a special proposition letter $b), are labeled with
counters in C. Figure 5 depicts (part of) the encoding of a configuration. We
constrain any configuration interval [x, x+s] to contain one unit interval labeled
with a state, one labeled with an alphabet letter, and, for 1 ≤ i ≤ k, as many
unit intervals labeled with ci as the value of counter ci is in that configuration.
Without loss of generality, we assume all counter values to be initialized to
0 (v = 0), and thus the initial configuration contains no counter proposition
letters. We first constrain proposition letters that denote states (in Q), input
symbols (in Σ∪{ǫ}), and counter values to be correctly placed, by means of the
following formulas:

ϕp















ϕp1 = [G]($q ↔
∨µ
i=0 qi ∧ $a↔

∨ν
i=0 ai ∧ $c↔

∨k
i=1 ci)

ϕp2 = [G]([E]⊥ ↔ $q ∨ $a ∨ $c ∨ $b)
ϕp3 = [G]

∧

p∈{q,a,c,b}($p→ ¬
∨

p′∈{q,a,c,b},p′ 6=p $p
′)

ϕp4 = [G](
∧

i6=j(qi → ¬qj) ∧
∧

i6=j(ai → ¬aj) ∧
∧

i6=j(ci → ¬cj)),

which make sure that placeholders are correctly set (ϕp1), that they are all
unit intervals (ϕp2) and no more than one placeholder labels a unit interval
(ϕp3), and that counters, states, and alphabet letters are unique (ϕp4). Next,
we encode the sequence of configurations as a (unique) infinite chain that starts
at the ending point of the interval where ϕA is evaluated, and we constrain the
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counter values of the initial configuration to be equal to 0. To force such a chain
to be unique and to prevent configurations from containing or overlapping other
configurations, we introduce an additional proposition letter conf ′, which holds
over all and only those intervals which are suffixes of a conf -interval:

ϕi















ϕi1 = 〈A〉(conf ∧ 〈E〉〈E〉⊤ ∧ [E][E][E]⊥)
ϕi2 = [G](conf → 〈A〉conf ∧ 〈E〉〈E〉⊤)
ϕi3 = [G]((conf → [E]conf ′) ∧ (conf ′ → ¬conf ))
ϕi4 = [G]

(

(〈A〉conf ′ → ¬conf ) ∧ (conf ′ → 〈A〉conf ∧ ¬〈E〉conf )
)

,

where we force the initial configuration to have two internal points (ϕi1) only,
the existence of a chain of configurations, each one of which has room for a
state and a letter (ϕi2), that conf s are ended by conf ′s (ϕi3), that conf s neither
overlap nor contain other conf s, and that conf ′s meet conf s and are not ended
by conf s (ϕi4). Next, we force configurations to be properly structured: they
must start with a unit interval labeled with a state (the initial configuration with
q0), followed by a unit interval labeled with an input letter, possibly followed by
a number of unit intervals labeled with counters, followed by a last unit interval
labeled with $b. As modalities 〈A〉 and 〈E〉 do not allow one, in general, to
refer to the subintervals of a given interval, a little technical detour is necessary.
We introduce the auxiliary proposition letters conf q, conf a, and conf ci (one
for each type of counter), and we label the suffix of a configuration interval
met by a unit interval labeled with $q (resp., $a, ci) with conf q (resp., conf a,
conf ci). In such a way, modality 〈E〉 can be exploited to get an indirect access
to the components of a configuration. As an example, we use it to force every
configuration to include at most one state and one input letter. Notice that
proposition letter $b plays an essential role here: it allows us to associate the
last ci of each configuration with the corresponding conf ci :

ϕf























ϕf1 = 〈A〉q0 ∧ [G](〈A〉conf ↔ 〈A〉$q)
ϕf2 = [G](($q → 〈A〉$a) ∧ ($a ∨ $c→ 〈A〉($c ∨ $b)) ∧ ($b → 〈A〉$q))
ϕf3 = [G](¬(conf q ∧ 〈E〉conf q) ∧ ¬(conf a ∧ 〈E〉conf a))
ϕf4 = [G](($q → [A](conf ′ → conf q)) ∧ ($a→ [A](conf ′ → conf a)))

ϕf5 = [G](
∧k
i=1(ci → [A](conf ′ → conf ci))),

by means of which we ensure that every conf starts with a state and, in par-
ticular, the initial conf starts with q0 (ϕf1), that conf s are properly structured
(ϕf2), that conf s contain at most one state and one letter (ϕf3), that $q meets
conf q and $a meets conf a (ϕf4), and, finally that the cis meet their respective
conf ci (ϕf5). Now, to model decrements and increments, auxiliary proposition
letters cdec, cnew, conf dec, and conf new are introduced. The letter cdec, which
labels at most one unit interval ci of a given configuration, constrains the value
of the i-th counter to be decremented by 1 by the next transition, provided that
∆ contains such a transition. Similarly, we constrain cnew to label a (unique)
unit interval ci added by the last transition to represent an increment by 1 of
the value of the i-th counter, provided that ∆ contains such a transition. Such
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conditions are imposed by the following formulas:

ϕnd







ϕnd1 = [G]
(
∧

l∈{new,dec}(cl → ($c ∧ [A](conf ′ → conf l)))
)

ϕnd2 = [G]
(
∧

l∈{new,dec}(([E]⊥ ∧ 〈A〉conf l) → cl)
)

ϕnd3 = [G](¬(conf dec ∧ 〈E〉conf dec) ∧ ¬(conf new ∧ 〈E〉conf new)),

that is, cl (l ∈ new, dec) in a configuration implies that the following configu-
ration is precisely a conf l (ϕnd1), that a configuration is conf l only if it follows
a configuration that features precisely cl (ϕnd2), and that a given conf l labels
exactly one configuration. To constrain the values that counters may assume
in consecutive configurations, we introduce three auxiliary proposition letters
corr, corr′, and corrconf . To model the faulty behavior of A, that can incre-
ment, but not decrement, the values of counters non-deterministically, we allow
two corr-intervals to start, but not to end, at the same point, as follows:

ϕc































































ϕc1 = [A](〈A〉cnew → ¬〈E〉corr)
ϕc2 = [G](($q ∨ $a ∨ cdec) → [A]¬corr)
ϕc3 = [G](($c ∧ ¬cdec) → 〈A〉corr)
ϕc4 = [G](([E]⊥ ∧ 〈A〉corr) → $c)
ϕc5 = [G]((corr → ([E]corr′ ∧ 〈A〉$c))∧

(〈A〉conf → [A](corr′ → corrconf )))
ϕc6 = [G](¬(corrconf ∧ 〈E〉corrconf ) ∧ (corr → 〈E〉corrconf ))
ϕc7 = [G](〈A〉corrconf → 〈A〉conf )

ϕc8 = [G](
∧k
i=1(ci → [A](corr → 〈A〉ci)))

ϕc9 = [G]¬(corr ∧ 〈E〉corr),

that is, new counters have not a counterpart in previous conf s (ϕc1), qs, as, and
dec counters have not a counterpart in the following conf s (ϕc2), counters that
are not dec do have a counterpart in next conf s (ϕc3), corrs are always met by
a counter (ϕc4), corrs, corr

′s and corrconf s are properly related to each other
(ϕc5, ϕc7, and ϕc9), corrs connect counters of consecutive conf s (ϕc6), and each
corr does correspond to some counter (ϕc8). Finally, we constrain consecutive
configurations to be related by some transition (q, a, l, q′) in ∆ by means of the
following formulas:

ϕinc =
∨

(q,a,(inc,i),q′)∈∆

(

〈A〉(q ∧ 〈A〉a) ∧ 〈A〉(conf ∧ ¬〈E〉conf dec ∧ 〈A〉q′∧

〈A〉(conf ∧ 〈E〉(conf ci ∧ conf new)))
)

ϕdec =
∨

(q,a,(dec,i),q′)∈∆

(

〈A〉(q ∧ 〈A〉a) ∧ 〈A〉(conf ∧ 〈A〉q′∧

〈E〉(conf ci ∧ conf dec))
)

ϕifz =
∨

(q,a,(ifz,i),q′)∈∆

(

〈A〉(q ∧ 〈A〉a) ∧ 〈A〉(conf ∧ ¬〈E〉conf dec ∧ 〈A〉q′∧

[E]¬conf ci)
)

ϕd = [G]
(

〈A〉conf → ϕinc ∨ ϕdec ∨ ϕifz
)

.

The first three formulas encode increment (ϕinc), decrement (ϕdec), and con-
ditional instructions (ϕifz), respectively; the fourth one specifies the behavior
of a generic instruction (ϕd). It is straightforward to prove that the formula
ϕA = ϕp ∧ ϕi ∧ ϕf ∧ ϕnd ∧ ϕc ∧ ϕd ∧ [A]〈A〉〈A〉

∨

qf∈F
qf ∧ [A]〈A〉〈A〉

∨ν
i=1 ai
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is satisfiable if and only if A accepts at least one ω-word. Notice that the last
conjunct forces the word to be infinite by imposing that a letter ai, with i 6= 0
(recall that a0 encodes the symbol ǫ), occurs infinitely often. ✷

Non-primitive recursiveness of AE, AB, AE, and AE over finite linear orders
can be proved by a reduction from the (non-primitive recursive) non-emptiness
problem for incrementing counter automata over finite words to the satisfiability
problem for these logics. The encoding is quite similar to the one for ω-words
(and thus the proof is omitted): it suffices to remove the constraint that forces
the computation to be infinite and to revise the acceptance condition as reach-
ability of a final state.

Theorem 5. The satisfiability problem for AABB and each fragment of it con-
taining, at least, 〈A〉 and one among 〈B〉 and 〈B〉 (and for all their mirror
images), is decidable, but non-primitive recursive, over finite linear orders, and
undecidable over strongly discrete linear orders and Z.

7.3. Asymmetric Structures

The asymmetric nature of N and Z− is reflected by the computational be-
havior of (some of) the fragments of AABB and of their mirror images. In the
following, we focus our attention on N. Every result for a fragment F over N

can be easily transferred to its mirror image F ′ over Z− We prove that, when
interpreted over N, (i) ABB, but not AEE, becomes decidable, but non-primitive
recursive (hardness already holds for AB and AB), and (ii) ABL and ABL remain
undecidable. While decidability of AB is a direct consequence of [13], extending
it to include 〈B〉 requires a suitable adaptation of results in [13].

Lemma 8. ABB is decidable over N.

Proof. Let ϕ be a satisfiable ABB-formula and M = 〈I(N), V 〉 be a model such
that M, [xϕ, yϕ] 
 ϕ for some interval [xϕ, yϕ]. It can be easily checked that,
starting from [xϕ, yϕ], modalities 〈A〉, 〈B〉, and 〈B〉 do not allow one to access
any interval [x, y], with x > xϕ and thus valuation over such intervals can be
safely ignored. By exploiting this limitation, one can restrict the search for
a model of ϕ to a set of ultimately periodic models only, as it can be shown
that, for every satisfiable ABB-formula, there are an ultimately periodic model
M∗ = 〈I(N), V ∗〉 and an interval [xϕ, yϕ] such that M, [xϕ, yϕ] 
 ϕ, yϕ < Pre,
and Per ≤ mB, where mB is the number of 〈B〉- and 〈B〉-formulas in Cl(ϕ).
To guess the non-periodic part of the model, the algorithm for satisfiability
checking of AABB-formulas over finite linear orders can be used [13]. Then,
the algorithm for satisfiability checking of ABB-formulas over N [11] can be
applied to check whether the guessed prefix can be extended to a complete
model over I(N) by guessing the valuation of intervals [x, y] with x < Pre and
Pre ≤ y ≤ Pre + Per. To prove termination, it suffices to observe that if
the guessed prefix is not minimal (in the sense of [13]), it can be shrunk into a
smaller one that satisfies the minimality condition (see Proposition 2 and Figure
3 in [13]). Since the number of minimal prefix models is bounded, and so is the
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length of the period, decidability of the satisfiability problem for ABB over N

immediately follows. ✷

We now show that both AB and AB over N are already non-primitive recur-
sive, and that adding 〈L〉 to either of them makes them undecidable.

Non-primitive recursiveness of AB (resp., AB) over N can be proved by a
reduction from the non-emptiness problem for decrementing counter automata
over finite words to the satisfiability problem for AB (resp., AB). Undecidability
of ABL (resp., ABL) over N can be proved by substituting ω-words for finite
words. Since the encoding of the latter problem is quite similar to the one of
the former (modality 〈L〉 can be exploited to force computations to be infinite
and to encode infinitary accepting conditions), we omit its description.

Lemma 9. There exists a reduction from the non-emptiness problem for decre-
menting counter automata over finite words to the satisfiability problem for AB

over N.

Proof. Let A = (Σ, Q, q0, C,∆, F ) be a decrementing counter automaton. We
write an AB-formula ϕA which is satisfiable over N if and only if there is at
least one finite word over Σ accepted by A. We use a construction similar to
the one given in the previous section, where the time order is reversed, and we
modify the formulas accordingly. In this case, we will make use of a ‘transposed’
universal modality (“always in the past” modality) [G], defined as follows:

[G]ϕ ≡ ϕ ∧ [A]ϕ ∧ [A][A]ϕ

Such a universal modality, when evaluated over the interval [x, y], forces a for-
mula to be true on [x, y] and on every interval [z, t], with t ≤ x.

ϕp















ϕp1 = [G]($q ↔
∨µ
i=0 qi ∧ $a↔

∨ν
i=1 ai ∧ $c↔

∨k
i=1 ci)

ϕp2 = [G]([B]⊥ ↔ $q ∨ $a ∨ $c)

ϕp3 = [G]
∧

p∈{q,a,c}($p→ ¬
∨

p′∈{q,a,c},p′ 6=p $p
′)

ϕp4 = [G](
∧

i6=j(qi → ¬qj) ∧
∧

i6=j(ai → ¬aj) ∧
∧

i6=j(ci → ¬cj))

ϕf



























ϕf1 = [A]⊥ ∧ conf ∧ [B][B]⊥ ∧ 〈B〉⊤ ∧ 〈B〉q0
ϕf2 = [G](

∧

s∈Q∪Σ∪C(s→ [A]conf s ∧
∧

s′∈Q∪Σ∪C,s′ 6=s

[A]¬conf s′))

ϕf3 = [G](conf → 〈B〉$q ∧
∨

q∈Q conf q ∧ [B]
∧

q∈Q ¬conf q)

ϕf4 = [G](conf → 〈B〉(
∨

a∈Σ conf a)∧
[B](

∨

a∈Σ conf a → [B]
∧

a∈Σ ¬conf a))
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ϕc























































ϕc1 = [G](cnew ∨ cdec → $c)
ϕc2 = [G]((cnew → [A]conf new) ∧ (¬cnew → [A]¬conf new))
ϕc3 = [G]((cdec → [A]conf dec) ∧ (¬cdec → [A]¬conf dec))
ϕc4 = [G](conf → [B](conf new → [B]¬conf new))
ϕc5 = [G]($c→ (¬cnew ↔ 〈A〉corr))
ϕc6 = [G](corr → (〈B〉

∨

q∈Q conf q∧
[B](

∨

q∈Q conf q → [B]
∧

q∈Q ¬conf q) ∧ [B]¬corr))

ϕc7 = [G](corr → [B]¬cdec ∧ 〈B〉$c ∧
∧

c∈C

(〈B〉c → conf c))

ϕinc =
∨

(q,a,(inc,i),q′)∈∆〈A〉(conf ∧ conf q′ ∧ 〈B〉q ∧ 〈B〉conf a)

ϕdec =
∨

(q,a,(dec,i),q′)∈∆ ([B]¬conf new∧

〈A〉(conf ∧ conf q′ ∧ 〈B〉q ∧ 〈B〉conf a ∧ 〈B〉(conf ci ∧ conf dec)
)

ϕifz =
∨

(q,a,(ifz,i),q′)∈∆ ([B]¬conf new∧

〈A〉(conf ∧ conf q′ ∧ 〈B〉q ∧ 〈B〉conf a ∧ [B]¬conf ci
)

ϕd = [G]((conf ∧ 〈A〉⊤) → (ϕinc ∨ ϕdec ∨ ϕifz)).

It is worth pointing out that, due to the possibility of faulty decrements, the
effects of an increment operation can be nullified, and thus ϕinc does not force
the presence of a unit interval labeled with cnew in the target configuration.

It holds that ϕA = ϕp ∧ ϕf ∧ ϕc ∧ ϕd ∧ 〈A〉〈A〉(
∨

q∈Qf

q) is satisfiable if and

only if A accepts at least one finite word. ✷

An easy adaptation of the above construction leads to the following theorem.

Theorem 6. AB (resp., AB) is non-primitive recursive over N. The addition
of 〈B〉 (resp., 〈B〉) preserves decidability, while the addition of 〈L〉 to either of
them makes them undecidable.

8. Conclusions

In this paper, we drew the definitive line between decidable and undecidable
HS fragments over the class of strongly discrete linear orders and over its relevant
subclasses (the class of finite linear orders, Z, N, and Z−). Moreover, we gave
a complete picture of expressiveness and complexity of decidable fragments. A
graphical account of the status of the various fragments and of their relationships
over finite linear orders (resp., strongly discrete linear orders, N) is given in
Fig. 6 (resp., Fig. 7, Fig. 8), where already known results, reported in Tab. 2,
are paired with the results given in the present paper.

Our original contributions can be summarized as follows. We provided a
complete classification of the expressive power of HS fragments over the three
categories of linear orders taken into consideration. From a technical point of
view, showing that 〈L〉p ≡ 〈A〉〈A〉p and 〈L〉p ≡ 〈A〉〈A〉p are the only valid
inter-definability equations turned out to be quite involved (no results came for
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Complexity Class

1: Non-primitive recursive

2: EXPSPACE-complete

3: NEXPTIME-complete
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Figure 6: Hasse diagram of all decidable HS fragments of over finite linear orders.

Complexity Class

1: Undecidable

2: EXPSPACE-complete

3: NEXPTIME-complete

4: NP-complete
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Figure 7: Hasse diagram of all fragments of AABB and AAEE over strongly discrete linear
orders.
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Complexity Class

1: Undecidable

2: Non-primitive recursive

3: EXPSPACE-complete

4: NEXPTIME-complete

5: NP-complete
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Figure 8: Hasse diagram of all fragments of AABB and AAEE over N.

free from [16]). As for (un)decidability and complexity, we first proved that
NP-membership of BB (resp., EE) [8] can be extended to BBLL (resp., EELL)
in all the considered linear orders. Then, we showed EXPSPACE-hardness of
AB, AE, AB, and AE over the class of finite linear orders by suitably revising
the proof given in [11] for AB (resp., AE) over strongly discrete linear orders
and N (resp., strongly discrete linear orders and Z−). EXPSPACE-hardness of
all fragments over all infinite structures easily follows. Next, we proved that a
non-trivial adaptation of the results given in [13] allows us to show that AB,
AB, AE, and AE are non elementarily decidable (non-primitive recursive) over
finite linear orders and undecidable over strongly discrete ones. Finally, we
studied the effects of switching from symmetric to asymmetric structures on
decidability, undecidability, and non-primitive recursiveness results.
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Appendix

Lemma 1. 〈A〉 ⋪ ABBL and 〈A〉 ⋪ ABBL over Z.

Proof. We only prove that 〈A〉 ⋪ ABBL (the other one can be proved similarly).
Let N ∈ N andM =M ′ = 〈I(Z), V 〉, where V (p) = {[x, x+1] | x = a(k+1), a ∈
N}, k = N2 + 3, and p is the only proposition letter in AP . We show now how
to define a ABBLN -bisimulation between M and M ′. To this end, we define the
relation Zh for 1 ≤ h ≤ N . As a preliminary step, we introduce the function:

χ(h) = (N2 + 1)(k + 1) + 1 + (k + 1)

N+3
∑

4+h

i+ (h+ 2)(k + 1),

which will be useful to establish suitable limits on the mutual position of the
endpoints of intervals involved in Zh. A crucial property of χ is that χ(h− 1)−
χ(h) = (h+ 2)(k + 1) > 0.
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Relation Condition
[x, y]Z1

h[x, y] None
[x, y]Z2

h[x+ k+1, y+ k+1] x > h2(k + 1)∧
y < χ(h)

[x, y]Z3
h[x, y + k + 1] y − x > (2h− 1)(k + 1)∧

y > h2(k + 1)∧
y < χ(h)

[x, y]Z4
h[x+ 1, y + 1] x > h2 +N2(k + 1) + 1∧

x < (N2 + 1)(k + 1)− 1∧
y < (N2 + 1)(k + 1) + (N − h)(k + 1)

[x, y]Z5
h[x, y + 1] y − x > 2h− 1∧

y > h2 +N2(k + 1) + 1∧
y < (N2 + 1)(k + 1) + (N − h)(k + 1)

[x, y]Z6
h[x+ k + 1, y] y − x > (h+ 2)(k + 1)∧

x > h2(k + 1)
x < χ(h)

[x, y]Z7
h[x+ 1, y] y − x > h∧

x > h2 +N2(k + 1) + 1∧
x < (N2 + 1)(k + 1)− 1

Table 3: Case-by-case definition of Zh (Lemma 1). Zh =
⋃

7

1
Zi
h
. For each i ∈ {1, . . . , 7}, Zi

h

is defined as [x, y]Zi
h
[w, z] iff the corresponding condition in the right column holds.

We define Zh as
⋃7
i=1 Z

i
h, where relations Zih are given in Tab. 3. It is not

difficult to check that Zh meets the local condition: Z1
h is the identity relation

and, since M =M ′, it trivially satisfies the local condition; Z2
h satisfies it as V

is, in a way, (k + 1)-periodic, and thus Z2
h-related intervals agree on the truth

value of p; Z3
h, Z

5
h, and Z

6
h only relate intervals longer than 1, all satisfying ¬p;

Z4
h- and Z

7
h-related intervals are such that their left endpoint is not a multiple

of k + 1, and thus they all satisfy ¬p as well.
Let us consider now the forward condition (the backward one can be dealt

with in a similar way). We prove that, given three intervals [x, y], [v, w], and
[x′, y′] such that ([x, y], [x′, y′]) ∈ Zh and [x, y]RX [v, w], for some 〈X〉 ∈ ABBL,
there exists [v′, w′] such that [x′, y′]RX [v′, w′] and ([v, w], [v′, w′]) ∈ Zh−1. To
improve readability, we give a graphical account of proof steps in Fig. 9, Fig. 10,
and Fig. 11. Each figure consists of a graph showing how bisimilarity is preserved
by (some of the) modalities of ABBL. More precisely, Fig. 9 deals with modality
〈A〉, Fig. 10 with 〈B〉 and 〈B〉, and Fig. 11 with 〈L〉. The graphs should be
read as follows. Given Zi, Zj , an edge from Zi to Zj is labelled by 〈X〉, a set of
conditions Co(v, w) on the endpoints of [v, w], and an assignment As(v′, w′),
meaning that if ([x, y], [x′, y′]) ∈ Zih and we choose [v, w] under conditions

Co(v, w), then the assignment As(v′, w′) guarantees that ([v, w], [v′, w′]) ∈ Z
j
h−1

and [x′, y′]RX [v′, w′]. For each graph, we now prove that: (i) for each Zi, the
logical disjunction of Co(v, w), taken from outgoing edges, is a tautology; (ii) for
each edge from Zi to Zj , the conjunction of conditions for Zih with Co(v, w)
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Z4

Z5

Z7

Z2

Z3

Z6

Z1 〈A〉

v′ = v, w′ = x′〈A〉, v > (h − 1)2(k + 1)

v′ = v + k + 1, w′ = x′

〈A
〉, v

≤
(h

−
1)
2 (k

+ 1)

v
′ =

v,
w
′ =

x
′

〈
A

〉

v
′
=

v
,
w

′
=

x
′

〈A〉, v > (h − 1)2 + N2(k + 1) + 1

v′ = v + 1, w′ = x′

〈A
〉, v

≤
(h

−
1)
2 + N

2 (k
+ 1)

+ 1

v
′ =

v,
w
′ =

x
′

〈
A

〉

v
′

=
v
,
w
′

=
x
′

〈A〉, v > (h − 1)2(k + 1)

v′ = v + k + 1, w′ = x′

〈A〉, v ≤
(h −

1)2(k + 1)

v ′
=

v, w ′
=

x ′

〈A〉, x −
v >

2h −
1

v ′
=

v, w ′
=

x ′

〈A〉, x − v ≤ 2h − 1

v′ = v + 1, w′ = x′

Figure 9: Subgraph of Zh for 〈A〉-moves (Lemma 1).

and As(v′, w′) implies the conditions for Zjh−1, as specified in Tab. 3. While the
former is straightforward, the latter requires some work to be checked.

Let us start with Fig. 9 for 〈X〉 = 〈A〉. According to As(v′, w′), it always
holds w′ = x′. As for v′, we must distinguish different cases. Those edges
that end up in Z1 can be easily checked. If ([x, y], [x′, y′]) ∈ Z2

h, then two
cases may arise. If v > (h − 1)2(k + 1), then v′ = v + k + 1 < w′ and thus
conditions Z2

h−1 are met. Otherwise (v ≤ (h− 1)2(k+1)), we take v′ = v < w′.
From w = x > h2(k + 1) and v ≤ (h − 1)2(k + 1), it follows that w − v >

(2h−1)(k+1) > (2(h−1)−1)(k+1). Since w = x > h2(k+1) > (h−1)2(k+1)
and w = x < y < χ(h) < χ(h − 1), we conclude that ([v, w], [v′, w′]) ∈ Z3

h−1.
Let ([x, y], [x′, y′]) ∈ Z4

h. If v > (h− 1)2 +N2(k + 1) + 1, then v′ = v + 1 < w′

guarantees that ([v, w], [v′, w′]) ∈ Z4
h−1. Otherwise (v ≤ (h−1)2+N2(k+1)+1),

it holds that x − v > h2 − (h − 1)2 = 2h − 1 > 2(h − 1) − 1, and thus letting
v′ = v guarantees that ([v, w], [v′, w′]) ∈ Z5

h−1. Let ([x, y], [x′, y′]) ∈ Z6
h. If

v > (h− 1)2(k + 1), then v′ = v + k + 1 < w′ guarantees that ([v, w], [v′, w′]) ∈
Z2
h−1. Otherwise (v ≤ (h− 1)2(k + 1)), from w = x > h2(k + 1), it follows that

w−v > h2(k+1)− (h−1)2(k+1) = (2h−1)(k+1) > (2(h−1)−1)(k+1), and,
therefore, letting v′ = v < w′, it holds that ([v, w], [v′, w′]) ∈ Z3

h−1. Finally,
let ([x, y], [x′, y′]) ∈ Z7

h. If x − v > 2h − 1, then v′ = v < w′ guarantees
that ([v, w], [v′, w′]) ∈ Z5

h−1. Otherwise (x − v ≤ 2h − 1), it holds that v ≥
x− (2h− 1) > h2 +N2(k+1)+ 1− 2h+1 = (h− 1)2 +N2(k+1)+1, and thus
letting v′ = v + 1 < w′ guarantees that ([v, w], [v′, w′]) ∈ Z4

h−1.

Let us turn our attention to Fig. 10 for modalities 〈B〉 and 〈B〉. In this
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Figure 10: Subgraph of Zh for 〈B〉/〈B〉-moves (Lemma 1).

case, the verification of graph properties must be done via the projection on the
specific modality (either 〈B〉 or 〈B〉). As it happened with the previous graph,
edges that end up in Z1 are easy to check. By the semantics of 〈B〉 and 〈B〉,
it always holds that v′ = x′. Let ([x, y], [x′, y′]) ∈ Z2

h. If 〈X〉 = 〈B〉, it suffices
to choose w′ = w + k + 1 < y′ to guarantee that ([v, w], [v′, w′]) ∈ Z2

h−1. If

〈X〉 = 〈B〉, two cases are possible. If w < χ(h − 1), then w′ = w + k + 1 > y′

guarantees that ([v, w], [v′, w′]) ∈ Z2
h−1. Otherwise (w ≥ χ(h − 1)), we choose

w′ = w > y′ to get ([v, w], [v′, w′]) ∈ Z6
h−1, as v = x < y < χ(h) < χ(h − 1),

w − v > χ(h − 1) − χ(h) = (h + 2)(k + 1) > ((h − 1) + 2)(k + 1), and v =
x > h2(k + 1) > (h − 1)2(k + 1). When ([x, y], [x′, y′]) ∈ Z3

h, 〈X〉 = 〈B〉, and
w ≤ y′, then we take w′ = w + k + 1 > y′, so that ([v, w], [v′, w′]) ∈ Z3

h−1, as
w ≤ y′ = y+k+1 < χ(h)+ (k+1) < χ(h− 1) implies w < χ(h− 1). We do not
need to consider the other outgoing edges as they end up in Z1, and we already
dealt with such a case. Let ([x, y], [x′, y′]) ∈ Z4

h. We distinguish two cases. If
〈X〉 = 〈B〉, then w′ = w+1 < y′, and thus ([v, w], [v′, w′]) ∈ Z4

h−1. If 〈X〉 = 〈B〉
and w < (N2 +1)(k+1)+ (N − (h− 1))(k+1), then w′ = w+1 > y′ and thus
([v, w], [v′, w′]) ∈ Z4

h−1; otherwise (w ≥ (N2 +1)(k+1)+ (N − (h− 1))(k+1)),
it holds that w−x > w−y > (N2+1)(k+1)+(N−h+1)(k+1)− (N2+1)(k+
1)− (N − h)(k + 1) = k + 1 > h− 1, and letting w′ = w > y′ guarantees that
([v, w], [v′, w′]) ∈ Z7

h−1. When ([x, y], [x′, y′]) ∈ Z5
h, 〈X〉 = 〈B〉, and w ≤ y′, then

we put w′ = w+1 > y′ to get ([v, w], [v′, w′]) ∈ Z5
h−1. Let ([x, y], [x

′, y′]) ∈ Z6
h. If

〈X〉 = 〈B〉 and w−x > (h+1)(k+1) = (h−1+2)(k+1), then letting w′ = w < y′
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Figure 11: Subgraph of Zh for 〈L〉-moves (Lemma 1).

implies ([v, w], [v′, w′]) ∈ Z6
h−1; otherwise (w − x ≤ (h + 1)(k + 1) = (h − 1 +

2)(k+1)), from x < χ(h), it follows that w < χ(h)+(h−1+2)(k+1) < χ(h−1),
and thus by letting w′ = w+k+1 < y′, we have that ([v, w], [v′, w′]) ∈ Z2

h−1. If

〈X〉 = 〈B〉, then, by letting w′ = w > y′, it holds that ([v, w], [v′, w′]) ∈ Z6
h−1.

Finally, let ([x, y], [x′, y′]) ∈ Z7
h. If 〈X〉 = 〈B〉 and w − x > h− 1, then we put

w′ = w < y′ so that ([v, w], [v′, w′]) ∈ Z7
h−1; otherwise (w − x ≤ h− 1), it holds

that w ≤ x+h < (N2+1)(k+1)−1+h < (N2+1)(k+1)+(N−h)(k+1)+h <
(N2+1)(k+1)+(N−h)(k+1)+k+1 = (N2+1)(k+1)+(N− (h−1))(k+1),
which, together with w′ = w + 1 < y′, implies ([v, w], [v′, w′]) ∈ Z4

h−1. If

〈X〉 = 〈B〉, then w′ = w > y′ implies that ([v, w], [v′, w′]) ∈ Z7
h−1.

Finally, let us consider Fig. 11 for modality 〈L〉 (by the semantics of 〈L〉, it
holds that v > y). Once more, the edges that end up in Z1 are easy to check. Let
([x, y], [x′, y′]) ∈ Z2

h. If v ≤ y′ and w < χ(h−1), then we put v′ = v+k+1 > y′

and w′ = w + k + 1 > v′ so that ([v, w], [v′, w′]) ∈ Z2
h−1. Otherwise, if v ≤ y′

and w ≥ χ(h − 1), then w − y > χ(h − 1) − χ(h) = (2 + h)(k + 1) and, thus,
w−v ≥ w−y′ = w−y−k−1 > (2+h)(k+1)−(k+1) = (2+h−1)(k+1). Hence, by
taking v′ = v+k+1 > y′ and w′ = w > v′, it holds that ([v, w], [v′, w′]) ∈ Z6

h−1,
as v ≤ y′ = y + k + 1 < χ(h) + k + 1 < χ(h − 1) implies v < χ(h − 1).
Let ([x, y], [x′, y′]) ∈ Z3

h. If v ≤ y′ and w < χ(h − 1), then we just set v′ =
v + k + 1 > y′ and w′ = w + k + 1 > v′ to obtain ([v, w], [v′, w′]) ∈ Z2

h−1;.
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Relation Condition
[x, y]Z1

h[x, y] None
[k, y]Z2

h[k, y + 1] k + h < y < k +N + 2
[x, y]Z3

h[x+ 1, y + 1] x > ξ(h) ∧ y < κ(h)
[x, y]Z4

h[x, y + 1] y > ξ(h) ∧ y − x > N + 2h+ 1 ∧ y < κ(h)
[x, y]Z5

h[x+ 1, y] y − x > N + 2h+ 1 ∧ ξ(h) < x < κ(h)

Table 4: Case-by-case definition of Zh (Lemma 2). Zh =
⋃

5

1
Zi
h
. For each i ∈ {1, . . . , 5}, Zi

h

is defined as [x, y]Zi
h
[w, z] iff the corresponding condition in the right column holds.

Otherwise, if v ≤ y′ and w ≥ χ(h− 1), then w − y > (2 + h)(k + 1) and, thus,
w−v ≥ w−y′ = w−y−k−1 > (2+h)(k+1)−(k+1) = (2+h−1)(k+1). Hence, by
taking v′ = v+k+1 > y′ and w′ = w > v′, we have that ([v, w], [v′, w′]) ∈ Z6

h−1,
since v > y > h2(k+1) > (h−1)2(k+1) implies v > (h−1)2(k+1) and v ≤ y′ =
y+k+1 < χ(h)+k+1 < χ(h−1) implies v < χ(h−1). Let ([x, y], [x′, y′]) ∈ Z4

h.
If v ≤ y+1, then v = y+1 and, from y < (N2+1)(k+1)+(N−h)(k+1), it follows
that v < χ(h− 1)− (h− 1+2)(k+1) < χ(h− 1). Now, if w < χ(h− 1), then we
take v′ = v+ k+1 > y′ and w′ = w+ k+1 > v′ so that ([v, w], [v′, w′]) ∈ Z2

h−1.
Otherwise, if w ≥ χ(h− 1), then w− v > (h− 1+2)(k+1), and thus, by taking
v′ = v+k+1 > y′ and w′ = w > v′, it holds that ([v, w], [v′, w′]) ∈ Z6

h−1. Finally,
let ([x, y], [x′, y′]) ∈ Z5

h and v ≤ y + 1. First all, we observe that it necessarily
holds v = y + 1. From y < (N2 + 1)(k + 1) + (N − h)(k + 1), it follows that
v < χ(h− 1)− (h− 1+2)(k+1) < χ(h− 1). Now, if w < χ(h− 1), then we take
v′ = v + k + 1 > y′ and w′ = w + k + 1 > v′, and thus ([v, w], [v′, w′]) ∈ Z2

h−1.
Otherwise, if w ≥ χ(h − 1), then w − v > (h − 1 + 2)(k + 1), and choosing
v′ = v + k + 1 > y′ and w′ = w > v′ guarantees that ([v, w], [v′, w′]) ∈ Z6

h−1.
To conclude the proof, it suffices to observe thatM, [(N2+1)(k+1)−2, (N2+

1)(k + 1) − 1] 
 ¬〈A〉p and M ′, [(N2 + 1)(k + 1) − 1, (N2 + 1)(k + 1)] 
 〈A〉p.
It can be easily checked that these intervals are related by Z4

N , and thus no
formula of modal depth at most N can define 〈A〉 in the language ABBL. As
the entire construction is parametric in N , we can conclude that 〈A〉 is not
definable by any finite formula, which amounts to say that it is not definable.
One can adapt the whole argument to prove that 〈A〉 ⋪ ABBL. ✷

Lemma 2. 〈B〉 ⋪ AAB and 〈B〉 ⋪ AAB over Z.

Proof. We prove that 〈B〉 ⋪ AAB. The structure of the proof is similar to
the one of the previous lemma. Let N ∈ N and M = M ′ = 〈I(Z), V 〉, where
V (p) = {[x, y] | y − x ≤ N + 2} and p is the only proposition letter. We show

how to define an AABN -bisimulation between M and M ′. Let Zh =
⋃5
i=1 Z

i
h,,

where relations Zih are given in Tab. 4, with ξ(h) = N + Σhi=1(2i + 1) + Nh,
k = ξ(N)+ 1, and κ(h) = k+N +2+(N −h)(2N +2+h). It is worth noticing
that, for each h, ξ(h), κ(h) > 0 and ξ(h)−ξ(h−1) = κ(h−1)−κ(h) = N+2h+1.

As for the local condition, it suffices to observe that Z1
h trivially satisfies

it (identity relation); Z2
h only relates p-intervals; Z3

h relates intervals of the
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same length, that thus agree on the truth value of p; Z4
h and Z5

h only relate
¬p-intervals.

Let us consider now the forward condition (the backward one can be dealt
with in a similar way), with the help of Fig. 12 (the picture should be read
as those in the previous lemma, but, unlike what happened there, it jointly
deals with all modalities). The edges that end up in Z1 are easy to check. Let
([x, y], [x′, y′]) ∈ Z2

h and 〈X〉 = 〈A〉. If w < κ(h − 1), then v = y > k + h >

ξ(h− 1) and, by letting v′ = y′ and w′ = w + 1, we get ([v, w], [v′, w′]) ∈ Z3
h−1.

Otherwise, if w ≥ κ(h − 1), then w − v = w − y > κ(h − 1) − (k + N + 2) >
κ(h−1)−κ(h) = N+2h+1 > N+2(h−1)+1, so that v′ = y′ and w′ = w imply
([v, w], [v′, w′]) ∈ Z5

h−1. Let ([x, y], [x
′, y′]) ∈ Z3

h. If 〈X〉 = 〈A〉 and w < κ(h−1),
then we put v′ = y′ and w′ = w+1 to obtain ([v, w], [v′, w′]) ∈ Z3

h−1; otherwise, if
w ≥ κ(h−1), then w−v = w−y > κ(h−1)−κ(h) = N+2h+1 > N+2(h−1)+1,
and thus, by taking v′ = y′ and w′ = w, it holds that ([v, w], [v′, w′]) ∈ Z5

h−1.

If 〈X〉 = 〈A〉 and v > ξ(h − 1), then it is easy to check that v′ = v + 1
and w′ = x′ imply ([v, w], [v′, w′]) ∈ Z3

h−1; otherwise, if v ≤ ξ(h − 1), then
w − v = x − v > ξ(h) − ξ(h − 1) = N + 2h + 1 > N + 2(h − 1) + 1, and thus
v′ = v and w′ = x′ guarantee that ([v, w], [v′, w′]) ∈ Z4

h−1. If 〈X〉 = 〈B〉, then
we simply put v′ = x′ and w′ = w + 1 to get ([v, w], [v′, w′]) ∈ Z3

h−1. The
outgoing edges from Z4

h labelled with 〈A〉 are dealt with in the same way as the
ones from Z2

h. Finally, let ([x, y], [x′, y′]) ∈ Z5
h. If 〈X〉 = 〈A〉 and v > ξ(h− 1),

then we set v′ = v + 1 and w′ = x′ to guarantee that ([v, w], [v′, w′]) ∈ Z3
h−1;

otherwise, if v ≤ ξ(h− 1), then w− v = x− v > ξ(h)− ξ(h− 1) = N +2h+1 >
N + 2(h − 1) + 1, and thus v′ = v and w′ = x′ imply ([v, w], [v′, w′]) ∈ Z4

h−1.
If 〈X〉 = 〈B〉 and w − x > N + 2(h − 1) + 1, then we put v′ = x′ and w′ = w

to get ([v, w], [v′, w′]) ∈ Z5
h−1; otherwise, if w − x ≤ N + 2(h − 1) + 1, then

w ≤ N + 2(h− 1) + 1+ x < N +2h+ 1+ κ(h) = κ(h− 1), and thus, by letting
v′ = x′ and w′ = w + 1, we have that ([v, w], [v′, w′]) ∈ Z3

h−1.

To conclude the proof, it suffices to observe that M, [k, k +N + 1] 
 〈B〉p,
M ′, [k, k + N + 2] 
 ¬〈B〉p, and [k, k + N + 1]Z2

N [k, k + N + 2]. Thus, no
formula of modal depth at most N can define 〈B〉 in the language AAB. As it
happened with the previous lemma, the entire construction is parametric in N ,
so we can conclude that 〈B〉 is not definable by any finite formula, which is to
say that it is not definable. One can easily adapt the whole argument to prove
that 〈B〉 ⋪ AAB. ✷

Lemma 3. 〈L〉 ⋪ ABB and 〈L〉 ⋪ ABB over Z.

Proof. The proof of this lemma makes use of an ABB-bisimulation, and it turns
out to be much easier than those of the previous two. Let M = 〈I(Z), V 〉
and M ′ = 〈I(Z), V ′〉, with V (p) = {[0, 1]} and V ′(p) = ∅. We show that
Z = {([x, y], [x, y]) | x ≥ 2} is an ABB-bisimulation between the two models. To
check that all conditions are satisfied, it suffices to observe that, starting from
any pair of Z-related intervals, the application of modalities ABB does not allow
one to reach (in any of the two structures) any interval [x, y], with x < 2. Since
[2, 3]Z[2, 3],M, [2, 3] 
 〈L〉p, and M ′, [2, 3] 
 ¬〈L〉p, it immediately follows that
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Figure 12: Graph of Zh for all modalities (Lemma 2).

no ABB-formula can define 〈L〉, that is, 〈L〉 ⋪ ABB. A similar argument works
for 〈L〉 ⋪ ABB. ✷

Theorem 1. 〈L〉p ≡ 〈A〉〈A〉p and 〈L〉p ≡ 〈A〉〈A〉p are the only inter-definabili-
ty equations among the set of operators {〈A〉, 〈A〉, 〈L〉, 〈L〉, 〈B〉, 〈B〉} over all the
considered classes of linear orders.

Proof. By Lemma 1, Lemma 2, and Lemma 3, the statement holds for Z. Its
truth for the class of strongly discrete linear orders immediately follows. As
for N (resp., the class of finite linear orders, Z−), it suffices to observe that, in
the proof of each of above lemmas, we can suitably restrict the portion of Z
that plays an essential role in the relations Zh. More precisely, it is possible
to define a lower bound l and an upper bound u, with l < u, such that the
replacement of Z by Z>l = {x ∈ Z | x > l} (resp., Z<u>l = {x ∈ Z | l < x < u},
Z<u = {x ∈ Z | x < u}) does not affect the proof in any significant way.
Bounds l and u indeed enjoy the following property: for every pair of intervals
[x, y], [x′, y′], with ([x, y], [x′, y′]) ∈ Zh for some h, if x ≤ l or x′ ≤ l (resp.,
y ≥ u or y′ ≥ u), then x = x′ (resp., y = y′). In particular, lower and upper
bounds for the N -bisimulation used in the proof of Lemma 1 are, respectively,
k + 1 and χ(1) + k + 1, where k is the constant defined at the beginning of
the proof, those for the N -bisimulation in Lemma 2 are, respectively, ξ(1) and
κ(1) + 1, and those for the bisimulation in Lemma 3 are 0 and 3, respectively.
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For instance, to adapt the proof of Lemma 1 to the case of N, it suffices to
replace Z by Z>k+1 (which is isomorphic to N). Similarly, to deal with the class

of finite linear orders (resp., Z−) it suffices to replace Z by Z
<χ(1)+k+1
>k+1 (resp.,

Z<χ(1)+k+1). Analogously for the other two lemmas. ✷
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