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Abstract. Interval temporal logics are quite expressive temporal log-
ics, which turn out to be difficult to deal with in many respects. Even
finite satisfiability of simple interval temporal logics presents non-trivial
technical issues when it comes to the implementation of efficient tableau-
based decision procedures. We focus our attention on the logic of Allen’s
relation meets, a.k.a. Right Propositional Neighborhood Logic (RPNL),
interpreted over finite linear orders. Starting from a high-level descrip-
tion of a tableau system, we developed a first working implementation
of a decision procedure for RPNL, and we made it accessible from the
web. We report and analyze the outcomes of some initial tests.

1 Introduction

Propositional interval temporal logics play a significant role in computer science,
as they provide a natural framework for representing and reasoning about tempo-
ral properties in a number of application domains [10]. Interval logic modalities
correspond to relations between (pairs of) intervals. In particular, Halpern and
Shoham’s modal logic of time intervals HS [11] features a set of modalities that
make it possible to express all Allen’s interval relations [1]. HS turns out to be
undecidable over all meaningful classes of linear orders, including the class of fi-
nite linear orders we are interested in. Temporal reasoning on finite linear orders
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comes into play in a variety of areas. This is the case, for instance, with planning
problems, which consist of finding a finite sequence of actions that, applied to an
initial state of the world, leads to a goal state within a bounded amount of time,
satisfying suitable conditions about which sequence of states the world must
go through. In the last years, a lot of work has been done on (un)decidability
and complexity of HS fragments. The complete picture about finite linear orders
is given in [6]: there exist 62 non-equivalent decidable fragments of HS, parti-
tioned into four complexities classes, ranging from NP-complete to non-primitive
recursive. For each decidable fragment, an optimal decision procedure has been
devised. Nevertheless, none of them is available as a working system (they are
declarative procedures, which turn out to be unfeasible in practice), with the
only exception of the logic of subintervals D over dense linear orders [3]. D has
been implemented in LoTrec [8], a generic theorem prover that allows one to
specify the rules for his/her own modal/temporal logic. Unfortunately, in gen-
eral LoTrec is not suitable for interval logics (D over dense linear orders is a
very special case), because: (i) it does not support the management of world la-
bels explicitly, and (ii) it does not allow closing conditions based on the number
of worlds generated in the construction of a tentative model, but only closing
conditions based on patterns and repetitions.

In this paper, we focus our attention on one of the simplest decidable frag-
ment of HS, namely, Right Propositional Neighborhood Logic (RPNL) [4,9],
interpreted on finite linear orders, whose satisfiability problem has been proved
to be NEXPTIME-complete. RPNL features a single modality corresponding to
Allen’s relation meets. We devised and implemented a working tableau-based
decision procedure for RPNL, based on the original (non-terminating) tableau
system given in [9], which exploits the small model theorem proved in [7] to
guarantee termination.

2 Syntax and semantics of RPNL

Let D = 〈D,<〉 be a finite linear order. An interval over D is an ordered pair
[x, y], with x, y ∈ D and x < y (strict semantics). Formulas of RPNL are ob-
tained from a countable set AP of proposition letters using the standard boolean
connectives ∨, ∧ and ¬, and the temporal modalities 〈A〉 and [A] (defined as a
shorthand for ¬〈A〉¬). Formulas are interpreted on models M = 〈D, V 〉, where
V : I(D) → 2AP is a valuation function that associates every interval of D with
the set of proposition letters that hold true on it. The satisfiability relation  is
defined by the semantic clauses for propositional logic plus the modal clause

M, [x, y]  〈A〉 iff there exists z > y such that M, [y, z]  ϕ.

As shown in [7], satisfiability of RPNL-formulas can be reduced to initial satisfi-
ability, that is, satisfiability on the interval [0, 1]. Hence, it holds that an RPNL-
formula ϕ is satisfiable if and only if there is a model M such that M, [0, 1]  ϕ.

The decidability proof given in [7] shows that any RPNL-formula ϕ is sat-
isfiable over finite linear orders if and only if it is satisfiable over a finite linear
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order whose domain has cardinality strictly less than 2m · m + 1, where m is
the number of diamonds and boxes in ϕ. This provides a termination condition
that can be used to implement a fair procedure that exhaustively searches for
a model of size smaller than or equal to the bound. In this paper, we develop
and implement a tableau-based decision procedure for RPNL by tailoring the
general algorithm described in [9] to it and making use of the bound on the size
of the model to guarantee completeness.

3 The tableau system for RPNL

The abstract structure of a tableau for RPNL is a rooted tree where each node
is labeled with an annotated formula of the form ψ : [x, y], which states that ψ
holds over the interval [x, y] on D. Every branch B of the tableau is associated
with a finite domain DB = {x0, x1, . . . , xN} and it represents a partial model
for the input formula. At each step of tableau construction, a branch and a
node on it are selected and one of the expansion rules is applied to expand the
branch. Expansion rules follow the semantics of RPNL. They include classical
propositional rules plus two additional rules for modalities [A] and 〈A〉:

(box)
[A]ψ : [xi, xj ]

ψ : [xj , xj+1], . . . , ψ : [xj , xN ]
,

(dia)
〈A〉ψ : [xi, xj ]

ψ : [xj , xj+1] | . . . | ψ : [xj , xN ] | ψ : [xj , x′j ] | . . . | ψ : [xj , x′N ]
,

where, for each j ≤ h ≤ N , xh is a point in DB and x′h is a new point added
to DB and placed immediately after xh and immediately before xh+1 (when
h < N). The (dia) rule explores all possible ways of satisfying the formula ψ:
either it satisfies ψ on an existing interval (nodes labelled with ψ : [xj , xh]) or it
adds a new point x′h to the domain and it satisfies ψ on the new interval [xj , x

′
h].

Similarly, the (box) rule asserts that ψ must be true on every existing interval
starting at xj . Thus, the point xi never appears in the consequent of the rules. A
branch in the tableau is declared closed if either p : [xi, xj ] and ¬p : [xi, xj ] occur
on the branch, for some p ∈ AP and interval [xi, xj ] (contradictory branch); or
the cardinality of the domain DB is greater than the upper bound on the size of
models (too long branch). Otherwise, it is considered open. Expansion rules are
applied only to open branches (closed branches are discarded).

Given a branch B, an annotated formula ψ : [xi, xj ] is said to be inactive
on B if and only if ψ is a literal or the rule for ψ has been already applied to
it on B, it is active on B otherwise. The branch-expansion strategy applied by
the system is the simplest possible one: the first (top-down) active formula of
the current branch is selected, expanded, and deactivated. Whenever an open
branch with no active formulas is found, the procedure terminates with success
(the formula is satisfiable). If all branches are closed, the procedure terminates
with failure (the formula is unsatisfiable).
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4 Implementation of the tableau system for RPNL

In this section, we illustrate the difficulties we encountered and the implemen-
tation choices we made to turn the tableau system described in Section 3 into
a computer program. The code of our implementation is written in C++ and
it makes no use of external libraries, except for the C++ Standard Library. We
exploited suitable data structures to represent formulas, nodes, and branches of
the tableau, and we developed a search procedure that keeps track of currently-
open branches and expands them by applying expansion rules according to the
expansion strategy.

Representation of formulas, nodes, and branches. Since in most applica-
tions the input formula ϕ encodes a set of requirements to be jointly satisfied,
e.g., those of a plan, we assume ϕ to be a logical conjunction, whose conjuncts
are entered as distinct lines of a text file. ϕ is first transformed into an equivalent
formula in negated normal form nnf(ϕ). Since such a transformation does not
change the number of diamonds and boxes, it does not affect the bound on the
maximum cardinality of the domain. Then, ϕ is stored as a syntactic tree, whose
leaves are labeled with proposition letters and whose internal nodes are labeled
with Boolean connectives and modalities. In such a way, each subformula of ϕ
corresponds to a subtree of the syntactic tree. Nodes of the tableau are repre-
sented by a structure with four components: a pointer to the subtree representing
the formula labeling the node, two integer variables x and y, that identify the
interval annotating the formula, and a Boolean flag, which specifies whether the
node is active or not. A branch B is implemented as a list of nodes, enriched
with two integer variables N and A representing respectively the cardinality of
the domain DB and the number of active nodes.

The search procedure. The search procedure stores the open branches to be
expanded into a priority queue. At the beginning, the queue contains only the
single node initial branch {ϕ : [0, 1]}. Then, the procedure operates as follows:
1. it extracts the branch B with the highest priority from the queue; 2. it checks
whether B meets the closure conditions; if so, it deletes the branch and it restarts
from 1; 3. it finds the closest-to-the-root active node ν in B; if there are no
active nodes in B, it terminates with success and it returns B as a model for ϕ;
4. it applies the appropriate expansion rule to ν, it deactivates ν, it inserts the
branches created by the rule into the queue, and it restarts from 1. The expansion
loop is repeated until either a model for ϕ is found or the queue becomes empty.
In the latter case, no model for ϕ can be found, and the formula is declared
unsatisfiable.

Priority policies. The priority policy of the queue determines the next branch
to expand. We implemented five different policies: i) the standard FIFO (First
In, First Out) policy; ii) expand the branches with the smallest domain first
(SDF); iii) expand the branches with the largest domain first (LDF); iv) expand
the branches with the smallest number of active nodes first (SAN); v) expand
the branches with the greatest number of active nodes first (GAN). All the poli-
cies are complete: they will eventually check every possible model for the input
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formula with cardinality less than or equal to the selected bound. By default,
the queue follows the FIFO policy, but the user can easily opt for a different one
for a particular problem.

Branch expansion. If the current branch B (extracted from the queue) is
declared open at step 2 of the search procedure, nodes in B are scanned to
determine the closest-to-the-root active node ν. The expansion of B depends on
the shape of the formula labeling ν. Three cases are possible.

Boolean formula. Since formulas are assumed to be in negated normal form,
the only possible rules are the ∨-rule and the ∧-rule. Let ν be labeled with
ψ ∨ τ : [xi, xj ] (the case ψ ∧ τ : [xi, xj ] is similar and thus omitted). We must
distinguish four scenarios: (i) both ψ : [xi, xj ] and τ : [xi, xj ] are already on B,
(ii) ψ : [xi, xj ] is on B, while τ : [xi, xj ] is not, (iii) τ : [xi, xj ] is on B, while
ψ : [xi, xj ] is not, and (iv) neither of the two is on B. In case (i), there is no
need to apply the rule: ψ ∨ τ : [xi, xj ] is deactivated and B is put back in the
queue. In case (ii), a copy of the branch is generated and the annotated formula
τ : [xi, xj ] is added to it; then, ψ ∨ τ : [xi, xj ] is deactivared and both B and its
copy are added to the queue. Case (iii) is completely symmetric. In case (iv), two
copies of the branch are generated: one is expanded with the annotated formula
ψ : [xi, xj ], the other one with τ : [xi, xj ]. Then, ψ ∨ τ : [xi, xj ] is deactivated,
both copies of B are added to the queue, and the original B is discarded.

Box formula [A]ψ : [xi, xj ]. The box rule is applied. First, we deactivate the
formula [A]ψ : [xi, xj ]; then, for each xj < xh ≤ xN , if ψ : [xj , xh] does not
belong to B, we add it; finally, the expansion of B is inserted into the queue.

Diamond formula 〈A〉ψ : [xi, xj ]. The diamond rule is applied. First, we check
whether for some xh > xj the annotated formula ψ : [xj , xh] is on B. If this is the
case, we deactivate 〈A〉ψ : [xi, xj ] and we put B back in the queue. Otherwise,
we create a distinct copy of B for every possible way of satisfying ψ: N − j

copies Bj+1, . . . , BN , with domain cardinality N , that will be expanded with
the annotated formulas ψ : [xj , xj+1], . . . , ψ : [xj , xN ], respectively; N − j + 1
copies B′

j , . . . , B
′
N , with domain cardinality N + 1, that will be expanded with

the annotated formulas ψ : [xj , x
′
j ], . . . , ψ : [xj , x

′
N ], respectively. For each copy

B′
h, the expansion of the domain is obtained as follows: (i) every annotated

formula τ : [xk, xl] such that xk > xh is replaced by the annotated formula
τ : [xk + 1, xl + 1]. If xk ≤ xh < xl, the annotated formula is replaced by
τ : [xk, xl + 1], while if xl ≤ xh, the annotated formula remains unchanged;
(ii) we add a new node labeled with the annotated formula ψ : [xj , xh+1]; (iii) we
reactivate all annotated formulas [A]τ : [xk, xl] with xl ≤ xh. To conclude the
expansion, we deactivate 〈A〉ψ : [xi, xj ], we put all 2 · (N − j) + 1 copies of B in
the queue, and we discard B.

5 Experiments

We have tested our implementation against a benchmark of different problems,
divided into two classes. First, we tested the scalability of the program with
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COMBINATORICS

Policy (sec) Outcome

n FIFO SDF LDF SAN GAN (size)

1 0.004 0.004 0.004 0.004 0.004 4

2 0.004 0.008 0.004 0.004 0.008 5

3 0.008 0.15 0.03 0.008 0.03 6

4 0.01 – 30.07 0.01 30.29 7

5 0.012 – – 0.012 – 8

6 0.02 – – 0.03 – 9

7 0.07 – – 0.07 – 10

8 0.15 – – 0.16 – 11

9 0.3 – – 0.32 – 12

10 0.56 – – 0.59 – 13

11 0.99 – – 1.06 – 14

Policy (sec) Outcome

n FIFO SDF LDF SAN GAN (size)

12 1.67 – – 1.79 – 15

13 2.73 – – 2.94 – 16

14 4.25 – – 4.55 – 17

15 6.56 – – 7.08 – 18

16 9.77 – – 10.82 – 19

17 14.42 – – 15.40 – 20

18 20.79 – – 22.20 – 21

19 29.28 – – 32.11 – 22

20 40.91 – – 44.09 – 23

21 – – – – – –

22 – – – – – –

RANDOMIZED

Policy (sec) Outcome

n FIFO SDF LDF SAN GAN (size)

1 0.004 0.004 0.004 0.004 0.004 4

2 0.004 0.004 0.004 0.004 0.004 4

3 0.004 0.004 0.004 0.004 0.004 4

4 0.004 0.004 0.004 0.004 0.004 4

5 0.004 0.004 0.004 0.004 0.004 4

6 0.004 0.004 0.004 0.004 0.004 4

7 0.07 0.23 0.004 0.18 0.004 3 / 4

8 0.004 0.004 0.004 0.004 0.004 4

9 0.004 0.004 0.004 0.004 0.004 4

10 0.004 0.004 0.004 0.004 0.004 4

11 0.004 0.004 0.004 0.004 0.004 4

12 0.004 0.004 0.004 0.004 0.004 4

13 0.01 0.04 0.004 0.02 0.004 4

14 0.004 0.004 0.004 0.004 0.004 4

15 0.004 0.004 0.004 0.004 0.004 4

16 0.004 1.37 0.004 0.01 0.004 4

17 0.004 0.004 0.004 0.004 0.004 4

18 0.004 0.004 0.004 0.004 0.004 3

Policy (sec) Outcome

n FIFO SDF LDF SAN GAN (size)

19 1.66 45.43 0.68 1.91 0.02 3 / 4

20 0.02 0.004 0.03 0.03 0.004 2 / 4

21 0.004 0.004 0.004 0.004 0.004 4

22 0.74 14.08 0.004 1.04 0.004 4

23 0.004 0.004 0.004 0.004 0.004 4

24 0.004 0.004 0.004 0.004 0.004 4

25 – – – – – –

26 0.004 0.004 0.004 0.004 0.004 4

27 0.004 – 0.004 0.01 – 3 / 4

28 0.004 0.004 0.004 0.004 0.004 4

29 0.004 – 0.004 0.004 0.004 4

30 0.14 0.08 0.04 0.19 0.01 2 / 4

31 0.004 0.004 0.004 0.004 0.004 unsat

32 0.25 – 0.02 0.31 0.004 2 / 4

33 0.004 0.004 0.004 0.004 0.004 4

34 – – 0.02 0.004 0.02 2 / 4

35 0.004 – 0.004 – 0.004 2 / 4

36 – – – – 1.2 3

Table 1: Experimental results

respect to a set of combinatorial problems of increasing complexity (COMBI-
NATORICS), where the n-th combinatorial problem is defined as the problem
of finding a model for the formula that contains n conjuncts, each one of the

type 〈A〉pi (0 ≤ i ≤ n), plus n(n+1)
2 formulas of the type [A]¬(pi ∧ pj) (i 6= j).

Then, we considered the set of 36 “easy” purely randomized formulas used in [5]
to evaluate an Evolutionary Computation algorithm for RPNL finite satisfia-
bility (RANDOMIZED). Table 1 summarizes the outcome of our experiments.
For each class of problems, the corresponding table shows, for each instance
n, the time necessary to solve the problem for each policy (FIFO, SDF, LDF,
SAN, GAN) and the size of the obtained model (or “unsat” if the instance was
proved to be unsatisfiable). A time-out of 1 minute was used to stop instances
running for too long. All the experiments were executed on a notebook with
an Intel Pentium Dual-Core Mobile 1.6 Ghz CPU and 2 Gb of RAM, under
Ubuntu Linux 11.04. Despite being a prototypical implementation, our system
runs reasonably well on the COMBINATORICS benchmark, being able to pro-
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duce a result in a short time for formulas up to 20 conjuncts (and up to a
model size of 23 points). The results of the RANDOMIZED benchmark allows
for a first comparison with the Evolutionary algorithm in [5], and shows that
the two algorithms have similar performances on the considered formulas. The
tableau system was able to prove that problem 31 is unsatisfiable, while the
evolutionary algorithm (being incomplete) can only provide positive answers. It
is important to stress that there is no available benchmark neither for RPNL,
nor for any other interval temporal logic. To overcome this limitation, we are
currently working to adapt some benchmarks for the modal logic K [2] and
for the temporal logic LTL [12] to the interval semantics. On the web-page
http://www.di.unisa.it/dottorandi/dario.dellamonica/tableaux/ it is possible to
find the system available for testing.
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