On First-Order Propositional Neighborhood Logics: a First Attempt

D. Della Monica¹, G. Sciavicco²

¹University of Udine, Italy

²Universidad de Murcia, Spain

Lisbon, 16th August - STeDY 2010

< ロ > < 同 > < 回 > < 回 > < □ > <

First-Order extension of Propositional Neighborhood Logics

< ロ > < 同 > < 回 > < 回 > < □ > <

Introduction to Interval Temporal Logics

First-Order extension of Propositional Neighborhood Logics

3 Conclusions

D. Della Monica and G. Sciavicco On First-Order PNL: a First Attempt

< ロ > < 同 > < 回 > < 回 > .

Time and logics

Studying time and its structure is of great importance in **computer science**:

• Artificial Intelligence.

Planning, Natural Language Recognition, ...

Databases.

Temporal Databases.

Formal methods.

Specification and Verification of Systems and Protocols, Model Checking, ...

< ロ > < 同 > < 回 > < 回 > .

Points vs. intervals

Usually, time is formalized as a set of **time points** without duration.

But... this concept is extremely abstract:

time is actually viewed as a set of **intervals** (periods) with a duration.

Problem

It would be nice to have expressive, yet decidable, temporal logics that take time intervals as primary objects.

< □ > < 同 > < 回 > <

Interval Temporal Logics

- The time period, instead of the time instant, is the primitive temporal entity
- Propositional letters are evaluated over pairs of points (instead of individual points)
- Relations between worlds are more complicate than the point-based case

ヘロト 人間 ト イヨト イヨト

Introduction to ITLs

First-Order extension of Propositional Neighborhood Logics Conclusions

Allen's relations

J. F. Allen

Maintaining knowledge about temporal intervals.

Communications of the ACM, 1983.

< □ > < @ >

Conclusions

Allen's relations

Allen's relations

Allen's relations

Allen's relations

J. F. Allen Maintaining knowledge about temporal intervals. *Communications of the ACM*, 1983.

Allen's relations

J. F. Allen Maintaining knowledge about temporal intervals. *Communications of the ACM*, 1983.

프 () 이 프 ()

Allen's relations

Maintaining knowledge about temporal intervals.

Communications of the ACM, 1983.

Allen's relations

Maintaining knowledge about temporal intervals.

Communications of the ACM, 1983.

∃ ► < ∃ ►</p>

Allen's relations

Maintaining knowledge about temporal intervals.

Communications of the ACM, 1983.

∃ > .

Conclusions

Allen's relations

Maintaining knowledge about temporal intervals.

Communications of the ACM, 1983.

Introduction to ITLs

First-Order extension of Propositional Neighborhood Logics Conclusions

First discouraging undecidability results

HS is undecidable

J. Halpern and Y. Shoham

A propositional modal interval logic.

Journal of the ACM, 1991.

< ロ > < 同 > < 回 > < 回 > < □ > <

Introduction to ITLs

First-Order extension of Propositional Neighborhood Logics Conclusions

First discouraging undecidability results

HS is undecidable

J. Halpern and Y. Shoham

A propositional modal interval logic.

Journal of the ACM, 1991.

Undecidability of a small fragment of HS: BE

🚺 K. Lodaya

Sharpening the Undecidability of Interval Temporal Logic.

ASIAN 2000, volume 1961 of LNCS, pages 290-298. Springer, 2000.

< ロ > < 同 > < 回 > < 回 > < □ > <

Some decidable fragments

• RPNL (A)

D. Bresolin, A. Montanari, and G. Sciavicco

An optimal decision procedure for Right Propositional Neighborhood Logic.

Journal of Automated Reasoning, 2007.

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Some decidable fragments

RPNL (A)
PNL (AA)

D. Bresolin, A. Montanari, and P. Sala

An optimal tableau-based decision algorithm for Propositional Neighborhood Logic.

STACS 2007, volume 4393 of LNCS, pages 549-560. Springer, 2007.

< ロ > < 同 > < 回 > < 回 > .

Outline

Pirst-Order extension of Propositional Neighborhood Logics

3 Conclusions

D. Della Monica and G. Sciavicco On First-Order PNL: a First Attempt

< ロ > < 同 > < 回 > < 回 > < □ > <

Extending PNL

PNL

D. Della Monica and G. Sciavicco On First-Order PNL: a First Attempt

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

Extending PNL

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

Extending PNL

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

Extending PNL

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

æ

Extending PNL

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

æ

Extending PNL

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

æ

Extending PNL

Extending PNL

Extending PNL

D. Della Monica and G. Sciavicco On First-Order PNL: a First Attempt

Extending PNL

Extending PNL

D. Della Monica and G. Sciavicco On First-Order PNL: a First Attempt

Extending PNL

D. Della Monica and G. Sciavicco On First-Order PNL: a First Attempt

First-Order together with Propositional

FORPNL

First-Order Right Propositional Neighborhood Logic

- Propositional (modal) setting
- First-Order setting
 - predicates over elements
 - existential and universal quantifications
- Propositional (modal) + First-Order setting

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

First-Order together with Propositional

FORPNL

First-Order Right Propositional Neighborhood Logic

- Propositional (modal) setting
- First-Order setting
 - predicates over elements
 - existential and universal quantifications
- Propositional (modal) + First-Order setting

< ロ > < 同 > < 回 > < 回 > < □ > <

First-Order together with Propositional

FORKNL

First-Order Right Propositional Neighborhood Logic

- Propositional (modal) setting
- First-Order setting
 - predicates over elements
 - existential and universal quantifications
- Propositional (modal) + First-Order setting
First-Order together with Propositional

FORPNL

First-Order Right Propositional Neighborhood Logic

- Propositional (modal) setting
- First-Order setting
 - predicates over elements
 - existential and universal quantifications
- Propositional (modal) + First-Order setting

First-Order together with Propositional

FORPNL

First-Order Right Propositional Neighborhood Logic

Propositional (modal) setting

- First-Order setting
 - predicates over elements
 - existential and universal quantifications
- Propositional (modal) + First-Order setting

< ロ > < 同 > < 回 > < 回 > .

First-Order together with Propositional

FORPNL

First-Order Right Propositional Neighborhood Logic

- Propositional (modal) setting
- First-Order setting
 - predicates over elements
 - existential and universal quantifications
- Propositional (modal) + First-Order setting

First-Order together with Propositional

FORPNL

First-Order Right Propositional Neighborhood Logic

- Propositional (modal) setting
- First-Order setting
 - predicates over elements
 - existential and universal quantifications
- Propositional (modal) + First-Order setting

First-Order together with Propositional

FORPNL

First-Order Right Propositional Neighborhood Logic

- Propositional (modal) setting
- First-Order setting
 - predicates over elements
 - existential and universal quantifications
- Propositional (modal) + First-Order setting

First-Order together with Propositional

FORPNL

First-Order Right Propositional Neighborhood Logic

- Propositional (modal) setting
- First-Order setting
 - predicates over elements
 - existential and universal quantifications
- Propositional (modal) + First-Order setting

- Temporal domain: discrete, dense, finite, bounded, unbounded, . . .
- First-order domain: finite, infinite, expanding, ...
- First-order constructs:
 - predicates *P*(...), Q(...), ...
 - individual variables *x*, *y*,...
 - individual constants *a*, *b*, . . .
 - function *f*(...), *g*(...), ...
 - quantifiers
 - terms t_1, t_2, \ldots (variables, constants, and functions)

< 日 > < 同 > < 回 > < 回 > < □ > <

- Temporal domain: discrete, dense, finite, bounded, unbounded, ...
- First-order domain: finite, infinite, expanding, ...
- First-order constructs:
 - predicates *P*(...), Q(...), ...
 - individual variables *x*, *y*,...
 - individual constants *a*, *b*, . . .
 - function *f*(...), *g*(...), ...
 - quantifiers
 - terms t_1, t_2, \ldots (variables, constants, and functions)

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

- Temporal domain: discrete, dense, finite, bounded, unbounded, ...
- First-order domain: finite, infinite, expanding, ...
- First-order constructs:
 - predicates *P*(...), *Q*(...), ...
 - individual variables *x*, *y*,...
 - individual constants a, b, ...
 - function f(...), g(...), ...
 - quantifiers
 - terms t_1, t_2, \ldots (variables, constants, and functions)

< 日 > < 同 > < 回 > < 回 > < □ > <

- Temporal domain: discrete, dense, finite, bounded, unbounded, ...
- First-order domain: finite, infinite, expanding, ...
- First-order constructs:
 - predicates *P*(...), *Q*(...), ...
 - individual variables *x*, *y*,...
 - individual constants a, b, ...
 - function f(...), g(...), ...
 - quantifiers
 - terms t_1, t_2, \ldots (variables, constants, and functions)

< 日 > < 同 > < 回 > < 回 > < □ > <

- Temporal domain: discrete, dense, finite, bounded, unbounded, ...
- First-order domain: finite, infinite, expanding, ...
- First-order constructs:
 - predicates *P*(...), *Q*(...), ...
 - individual variables *x*, *y*,...
 - individual constants a, b, ...
 - function f(...), g(...), ...
 - quantifiers
 - terms t_1, t_2, \ldots (variables, constants, and functions)

< 日 > < 同 > < 回 > < 回 > < □ > <

- Temporal domain: discrete, dense, finite, bounded, unbounded, ...
- First-order domain: finite, infinite, expanding, ...
- First-order constructs:
 - predicates *P*(...), *Q*(...), ...
 - individual variables *x*, *y*,...
 - individual constants a, b, ...
 - function f(...), g(...), ...
 - quantifiers
 - terms t₁, t₂,... (variables, constants, and functions) terms = variables

< 日 > < 同 > < 回 > < 回 > < □ > <

- Temporal domain: discrete, dense, finite, bounded, unbounded, ...
- First-order domain: finite, infinite, expanding, ...
- First-order constructs:
 - predicates *P*(...), *Q*(...), ...
 - individual variables *x*, *y*,...
 - individual constants *a*, *b*, ...
 - function *f*(...), *g*(...), ...
 - quantifiers
 - terms t₁, t₂,... (variables, constants, and functions) terms = variables

for tight undecidability only 1 variable (no free variables)

RPNL and FORPNL: syntax and semantics

Syntax

• **RPNL**: $\varphi ::= \pi | \boldsymbol{p} | \neg \varphi | \varphi \lor \varphi | \langle \mathsf{A} \rangle \varphi$

D. Della Monica and G. Sciavicco On First-Order PNL: a First Attempt

RPNL and FORPNL: syntax and semantics

RPNL and FORPNL: syntax and semantics

RPNL and FORPNL: syntax and semantics

Syntax

- **RPNL**: $\varphi ::= \pi | p | \neg \varphi | \varphi \lor \varphi | \langle A \rangle \varphi$
- FORPNL: $| P(x) | \forall x \varphi(x)$

Semantics

Operators meets ((A)) :

$$\langle \mathsf{A} \rangle \varphi \qquad \varphi$$

D. Della Monica and G. Sciavicco On First-Order PNL: a First Attempt

Undecidability of FORPNL

Reduction from the Finite Tiling Problem

This is the problem of establishing whether, for a given finite set of tile types $\mathcal{T} = \{t_1, \ldots, t_k\}$, there exists a finite rectangle \mathcal{R} having the border colored with a fixed color such that \mathcal{T} can tile \mathcal{R} respecting the color constraints.

Undecidability of FORPNL

Reduction from the Finite Tiling Problem

This is the problem of establishing whether, for a given finite set of tile types $\mathcal{T} = \{t_1, \ldots, t_k\}$, there exists a finite rectangle \mathcal{R} having the border colored with a fixed color such that \mathcal{T} can tile \mathcal{R} respecting the color constraints.

The core of the proof

It is possible to *simulate* HS operators [B] [E] [D]

Put a label over the first-order domain for each point of the temporal domain

< ロ > < 同 > < 回 > < 回 > < □ > <

э

The core of the proof

It is possible to *simulate* HS operators [B] [E] [D]

Put a label over the first-order domain for each point of the temporal domain

The core of the proof

It is possible to *simulate* HS operators [B] [E] [D]

Put a label over the first-order domain for each point of the temporal domain

$\Box\Box(\exists x \Diamond P(x) \land \forall x (\Diamond P(x) \to \Box(\neg \pi \to \Box \neg P(x))))$

ヘロト ヘ戸ト ヘヨト ヘヨト

э

The core of the proof

It is possible to *simulate* HS operators [B] [E] [D]

Put a label over the first-order domain for each point of the temporal domain

$\Box\Box(\exists x \Diamond P(x) \land \forall x (\Diamond P(x) \to \Box(\neg \pi \to \Box \neg P(x))))$

< 日 > < 同 > < 回 > < 回 > < □ > <

The core of the proof

It is possible to *simulate* HS operators [B] [E] [D]

Put a label over the first-order domain for each point of the temporal domain

 $\Box\Box(\exists x \Diamond P(x) \land \forall x (\Diamond P(x) \to \Box(\neg \pi \to \Box \neg P(x))))$

< 日 > < 同 > < 回 > < 回 > < □ > <

The core of the proof

It is possible to *simulate* HS operators [B] [E] [D]

Put a label over the first-order domain for each point of the temporal domain

 $\Box\Box(\exists x \Diamond P(x) \land \forall x (\Diamond P(x) \to \Box(\neg \pi \to \Box \neg P(x))))$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

The core of the proof

It is possible to *simulate* HS operators [B] [E] [D]

Put a label over the first-order domain for each point of the temporal domain

 $\Box \Box (\exists x \Diamond P(x) \land \forall x (\Diamond P(x) \to \Box (\neg \pi \to \Box \neg P(x))))$

< 日 > < 同 > < 回 > < 回 > < □ > <

The core of the proof

It is possible to *simulate* HS operators [B] [E] [D]

Put a label over the first-order domain for each point of the temporal domain

 $\Box\Box(\exists x \Diamond P(x) \land \forall x (\Diamond P(x) \to \Box(\neg \pi \to \Box \neg P(x))))$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

The core of the proof

It is possible to *simulate* HS operators [B] [E] [D]

Put a label over the first-order domain for each point of the temporal domain

 $\Box\Box(\exists x \Diamond P(x) \land \forall x(\Diamond P(x) \to \Box(\neg \pi \to \Box \neg P(x))))$

< 日 > < 同 > < 回 > < 回 > < □ > <

The core of the proof

It is possible to *simulate* HS operators [B] [E] [D]

Put a label over the first-order domain for each point of the temporal domain

 $\Box\Box(\exists x \Diamond P(x) \land \forall x(\Diamond P(x) \to \Box(\neg \pi \to \Box \neg P(x))))$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

The core of the proof

It is possible to *simulate* HS operators [B] [E] [D]

Put a label over the first-order domain for each point of the temporal domain

 $\Box\Box(\exists x \Diamond P(x) \land \forall x (\Diamond P(x) \to \Box(\neg \pi \to \Box \neg P(x))))$

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

э

The core of the proof

It is possible to *simulate* HS operators [B] [E] [D]

Put a label over the first-order domain for each point of the temporal domain

 $\Box\Box(\exists x \Diamond P(x) \land \forall x(\Diamond P(x) \to \Box(\neg \pi \to \Box \neg P(x))))$

The core of the proof

It is possible to *simulate* HS operators [B] [E] [D]

Put a label over the first-order domain for each point of the temporal domain

 $\Box\Box(\exists x \Diamond P(x) \land \forall x (\Diamond P(x) \to \Box(\neg \pi \to \Box \neg P(x))))$

The core of the proof

It is possible to *simulate* HS operators [B] [E] [D]

- Put a label over the first-order domain for each point of the temporal domain
- Say "for every interval, if φ holds then every starting interval satisfies ψ" (i.e., □□(φ → [B]ψ))

< ロ > < 同 > < 回 > < 回 > .

The core of the proof

It is possible to simulate HS operators [B] [E] [D]

- Put a label over the first-order domain for each point of the temporal domain
- Say "for every interval, if φ holds then every starting interval satisfies ψ" (i.e., □□(φ → [B]ψ))

 $\Box \Box \forall \mathbf{x} (\Diamond (\varphi \land \Diamond \mathbf{P}(\mathbf{x})) \to \Box (\Diamond (\neg \pi \land \Diamond \mathbf{P}(\mathbf{x})) \to \psi))$

ヘロト ヘ戸ト ヘヨト ヘヨト

The core of the proof

It is possible to simulate HS operators [B] [E] [D]

- Put a label over the first-order domain for each point of the temporal domain
- Say "for every interval, if φ holds then every starting interval satisfies ψ" (i.e., □□(φ → [B]ψ))

 $\Box \Box \forall \boldsymbol{x} (\Diamond (\varphi \land \Diamond \boldsymbol{P}(\boldsymbol{x})) \rightarrow \Box (\Diamond (\neg \pi \land \Diamond \boldsymbol{P}(\boldsymbol{x})) \rightarrow \psi))$

 φ

・ 戸 ト ・ ヨ ト ・ ヨ ト

The core of the proof

It is possible to *simulate* HS operators [B] [E] [D]

- Put a label over the first-order domain for each point of the temporal domain
- Say "for every interval, if φ holds then every starting interval satisfies ψ" (i.e., □□(φ → [B]ψ))

 $\Box \Box \forall \mathbf{x} (\Diamond (\varphi \land \Diamond \mathbf{P}(\mathbf{x})) \to \Box (\Diamond (\neg \pi \land \Diamond \mathbf{P}(\mathbf{x})) \to \psi))$

 $P(d_1)$

< 日 > < 同 > < 回 > < 回 > < □ > <
The core of the proof

It is possible to simulate HS operators [B] [E] [D]

- Put a label over the first-order domain for each point of the temporal domain
- Say "for every interval, if φ holds then every starting interval satisfies ψ" (i.e., □□(φ → [B]ψ))

 $\Box \Box \forall \mathbf{x} (\Diamond (\varphi \land \Diamond \mathbf{P}(\mathbf{x})) \to \Box (\Diamond (\neg \pi \land \Diamond \mathbf{P}(\mathbf{x})) \to \psi))$

H

< 日 > < 同 > < 回 > < 回 > < □ > <

э.

 $P(d_1)$

The core of the proof

It is possible to simulate HS operators [B] [E] [D]

- Put a label over the first-order domain for each point of the temporal domain
- Say "for every interval, if φ holds then every starting interval satisfies ψ" (i.e., □□(φ → [B]ψ))

 $\Box \Box \forall \mathbf{x} (\underbrace{\Diamond (\varphi \land \Diamond \mathbf{P}(\mathbf{x}))}_{\varphi} \to \Box (\Diamond (\neg \pi \land \Diamond \mathbf{P}(\mathbf{x})) \to \psi))$

・ 戸 ト ・ ヨ ト ・ ヨ ト

The core of the proof

It is possible to simulate HS operators [B] [E] [D]

- Put a label over the first-order domain for each point of the temporal domain
- Say "for every interval, if φ holds then every starting interval satisfies ψ" (i.e., □□(φ → [B]ψ))

 $\Box \Box \forall x (\Diamond (\varphi \land \Diamond P(x)) \rightarrow \Box (\Diamond (\neg \pi \land \Diamond P(x)) \rightarrow \psi))$

・ 同 ト ・ ヨ ト ・ ヨ ト

The core of the proof

It is possible to *simulate* HS operators [B] [E] [D]

- Put a label over the first-order domain for each point of the temporal domain
- Say "for every interval, if φ holds then every starting interval satisfies ψ" (i.e., □□(φ → [B]ψ))

 $\Box \Box \forall \boldsymbol{x} (\Diamond (\varphi \land \Diamond \boldsymbol{P}(\boldsymbol{x})) \to \Box (\Diamond (\neg \pi \land \Diamond \boldsymbol{P}(\boldsymbol{x})) \to \psi))$

The core of the proof

It is possible to *simulate* HS operators [B] [E] [D]

- Put a label over the first-order domain for each point of the temporal domain
- Say "for every interval, if φ holds then every starting interval satisfies ψ" (i.e., □□(φ → [B]ψ))
- Say "for every interval, if φ holds then every ending interval satisfies ψ" (i.e., □□(φ → [E]ψ))
- Say "for every interval, if φ holds then every sub-interval satisfies ψ" (i.e., □□(φ → [D]ψ))

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The core of the proof

It is possible to *simulate* HS operators [B] [E] [D]

- Put a label over the first-order domain for each point of the temporal domain
- Say "for every interval, if φ holds then every starting interval satisfies ψ" (i.e., □□(φ → [B]ψ))
- Say "for every interval, if φ holds then every ending interval satisfies ψ" (i.e., □□(φ → [E]ψ))
- Say "for every interval, if φ holds then every sub-interval satisfies ψ" (i.e., □□(φ → [D]ψ))

ヘロト 人間 ト イヨト イヨト

The core of the proof

It is possible to *simulate* HS operators [B] [E] [D]

- Put a label over the first-order domain for each point of the temporal domain
- Say "for every interval, if φ holds then every starting interval satisfies ψ" (i.e., □□(φ → [B]ψ))
- Say "for every interval, if φ holds then every ending interval satisfies ψ" (i.e., □□(φ → [E]ψ))
- Say "for every interval, if φ holds then every sub-interval satisfies ψ" (i.e., □□(φ → [D]ψ))

 $[B^{\varphi}_{\psi}] \equiv \Box \Box (\varphi \rightarrow [\mathsf{B}]\psi)$ $[E_{\psi}^{\varphi}] \equiv \Box \Box (\varphi \rightarrow [\mathsf{E}]\psi)$ $[D^{\varphi}_{\psi}] \equiv \Box \Box (\varphi \rightarrow [\mathsf{D}]\psi)$

Proof overview

Encoding the rectangle

Encoding the neighbourhood relations

u	u	u	u
u	u	u	u
u	u	u	u
u	u	u	u
u	u	u	u

∃ ► < ∃ ►</p>

< 一 →

Proof overview

Encoding the rectangle

Encoding the neighbourhood relations

u	u	u	u
u	u	u	u
u	u	u	u
u	u	u	u
u	u	u	u

国际 化国际

< 一 →

3

Proof overview

Encoding the rectangle

Encoding the neighbourhood relations

・ 戸 ト ・ ヨ ト ・ ヨ ト

∃ \0<</p> \0

Proof overview

Encoding the rectangle

Encoding the neighbourhood relations

$$\begin{array}{c} \diamondsuit u \\ \Box \Box (u \rightarrow \neg \pi) \\ \Box \Box (u \rightarrow (\diamondsuit u \lor \Box \pi)) \\ [B^{u}_{\neg u}] \land [B^{u}_{\neg \pi \rightarrow \neg \diamondsuit u}] \end{array}$$

Image: Image:

Proof overview

- Encoding the rectangle
- Encoding the neighbourhood relations

Proof overview

- Encoding the rectangle
- Encoding the neighbourhood relations

3 k 3

Proof overview

- Encoding the rectangle
- Encoding the neighbourhood relations

Proof overview

- Encoding the rectangle
- Encoding the neighbourhood relations

Proof overview

- Encoding the rectangle
- Encoding the neighbourhood relations

Proof overview

- Encoding the rectangle
- Encoding the neighbourhood relations

Proof overview

- Encoding the rectangle
- Encoding the neighbourhood relations

Proof overview

- Encoding the rectangle
- Encoding the neighbourhood relations

Proof overview

Encoding the rectangle

Encoding the neighbourhood relations

Proof overview

Encoding the rectangle

Encoding the neighbourhood relations

Proof overview

Encoding the rectangle

Encoding the neighbourhood relations

Outline

Pirst-Order extension of Propositional Neighborhood Logics

D. Della Monica and G. Sciavicco On First-Order PNL: a First Attempt

< □ > < 同 > < 回 > < 回 > < 回 >

Conclusions and Final remarks

Future work

Future work

Future work

