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Abstract. Propositional Neighborhood Logic (PNL) is the decid-
able interval-based temporal logic that features the modaloperators
corresponding to the Allen’s relationsmeetsandmet by. Right PNL
(RPNL) is the fragment of PNL featuring only one of the two modal-
ity allowed in PNL. In this paper, we introduce a new extension of
RPNL, whose propositional letters are generalized into first-order
formulas. In contrast with recent results on the decidability of first-
order point-based temporal logics with only one variable, we show
that the interval-based case yields undecidability. In particular, in
this paper we prove that the first order version of RPNL, allowing
first-order formulas with only one (possibly reused) variable, is un-
decidable with respect to most meaningful choices for temporal and
first-order domains.

1 Introduction

Interval temporal logics are based on temporal structures over (usu-
ally) linearly ordered domains, where time intervals, rather than time
instants, are the primitive ontological entities. The problem of rep-
resenting and reasoning about time intervals arises naturally in var-
ious fields of computer science, artificial intelligence, and tempo-
ral databases, such as theories of action and change, natural lan-
guage processing, and constraint satisfaction problems. In particular,
temporal logics with interval-based semantics have been proposed
as a useful formalism for the specification and verification of hard-
ware [19] and of real-time systems [11].

A systematic analysis of the variety of relations between two inter-
vals in a linear order was performed by Allen [1], who proposed the
use of interval reasoning in systems for time management andplan-
ning. Allen identified the thirteen different binary relations between
intervals on linear orders, hereafter referred to as Allen’s relations. In
[14], Halpern and Shoham introduced a multi-modal logic, hereafter
called HS, involving modal operators corresponding to all Allen’s
interval relations and showed that such a logic is undecidable under
very weak assumptions on the class of interval structures inwhich
it is interpreted. One of the few known cases of decidable interval
logics with truly interval semantics (not reducible to point-based se-
mantics) is thePropositional Neighborhood Interval Logic(PNL)
[5, 13]. PNL is a fragment of HS with only two modal operators,cor-
responding to the Allen’s relationsmeetsand its inversemet by. Its
satisfiability problem has been shown to be decidable (NEXPTIME-
complete) when interpreted over various classes of linearly ordered
sets and, in particular, over domains based on natural numbers [6];
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the results presented in the same paper and in [18] showed that all
possible extensions of PNL with Allen’s modal operator makethe
logic undecidable, which means that PNL is maximal in terms of de-
cidability (as a matter of fact, there are extensions of PNL that are
non-elementary decidable only if interpreted over finite prefixes ofN
and undecidable in most of the other cases), with respect to modal op-
erators corresponding to Allen’s relations. In [7, 8], authors proposed
a ‘metric’ extension of PNL, calledMetric PNL (MPNL, for short),
which involves special propositional letters expressing equality or in-
equality constraints on the length of the current interval with respect
to fixed integer constants. The satisfiability problem for MPNL inter-
preted in the interval structure over natural numbers is proved decid-
able in [8], with complexity between EXPSPACE and 2NEXPTIME
when the integer constraints in formulae are represented inbinary
(and NEXPTIME-complete when the integer constraints in formulae
are constant or represented in unary). In [17], the authors analyzed
extensions of PNL and MPNL with binders and variables that allow
one to store the length of the current interval with respect to decid-
ability and showed that even the weakest natural extensionsbecome
undecidable, which in some cases is somewhat surprising, being in
sharp contrast with the decidability of MPNL. Finally, (R)PNL and
its metric version have been generalized to the spatial case[9, 4]. It
is therefore natural to ask whether it is possible to generalize these
logics by means of classical machinery, such as first order constructs,
still keeping their good computational properties.

In this paper, we focus on a different extension of PNL, called
FORPNL (First Order RPNL), obtained by generalizing proposi-
tional variables into first-order formulas. In the point-based case, the
most prominent work concerning first-order temporal languages is
the one by Hodkinson, Wolter and Zakharyaschev [15]. The authors
show that first-order Linear Time Temporal Logic (LTL) with Since
and Until, interpreted over discrete structures is alreadyundecidable
when only two distinct variables are allowed. The proof alsoapplies
for LTL with Next and Future only. But, unexpectedly, when one ex-
tends LTL with monadic first-order formulas (only one variable), the
logic becomes decidable with temporal domains based onN,Z,Q,
and R (in the last case the result holds only with finite first-order
domains). We show here that for interval logics the situation is way
worse. To this end, we consider the fragment of PNL, calledRight
PNL(RPNL), featuring only the modal operator corresponding to the
Allen’s relationmeets; we prove that, independently from the prop-
erties of the underlying temporal order, the first-order extension of
RPNL with only one variable over finite first-order domains isun-
decidable. This paper can be considered a first attempt of extending
an interval-based temporal logic with truly first-order features (over
thefirst-order domain), since previous work, such as ITL [19], only
deal with first-order characteristics for the temporal domain. This



also justify the choice for the name FORPNL: we want to keep the
modal characteristics of the propositional logic, which allow one to
move along the time domain only by means of the modal operators,
and generalize the assertion over interval from propositional to first
order. On the contrary, the cases of first order ITL [19] and NL[2]
are different in this sense, since those languages include quantifica-
tion over the temporal domain.

The paper is structured as follows. Section2 introduces syntax and
semantics of the logic we are interested in, namely FORPNL. Section
3 briefly reviews the state of the art on first order temporal logics.
Next, in Section4, we give the undecidability proof of FORPNL,
before concluding.

2 First Order RPNL

At the propositional level, RPNL is built from a setAP = {p, q, . . .}
of propositional letters, the classical connectives∨,¬ (the remaining
ones can be considered as abbreviations), and a modal operator 3

which allows one to capture any right neighboring interval from the
current one. Formulas are obtained from the grammar:

ϕ ::= π | p | ¬ϕ | ϕ ∨ ϕ | 3ϕ.

whereπ is a pre-interpreted propositional letter that is true overall
and only intervals of the type[i, i], called point-intervals.

Given a linearly ordered domainD = 〈D,<〉, a (non-strict) in-
terval overD is any ordered pair[i, j] such thati ≤ j. An interval
structureis a pair〈D, I(D)〉, whereI(D) is the set of all intervals over
D. An interval modelis a tupleM = 〈D, I(D), V 〉, where〈D, I(D)〉
is an interval structure andV : I(D) → 2AP is a valuation function
assigning to every interval the set of propositional letters that hold
over it. Given an interval modelM = 〈D, I(D), V 〉 and an interval
[i, j] over it, the semantics of RPNL-formulae is given by the clauses:

• M, [i, j]  π iff i = j;
• M, [i, j]  p iff p ∈ V ([i, j]), for anyp ∈ AP ;
• M, [i, j]  ¬ψ iff it is not the case thatM, [i, j]  ψ;
• M, [i, j]  ψ ∨ τ iff M, [i, j]  ψ orM, [i, j]  τ ;
• M, [i, j]  3ψ iff there existsh ≥ j such thatM, [j, h]  ψ.

A RPNL-formulaϕ is satisfiableif there exists a modelM and an in-
terval [i, j] over it such thatM, [i, j]  ϕ. The satisfiability problem
for RPNL has been shown to be NEXPTIME-complete in [10].

We introduce now a first-order version of the logic RPNL, here-
after calledFirst Order RPNL(FORPNL, for short). At the first-order
level, propositional variables are generalized intopredicate symbols
P,Q, . . ., each one of which has fixed arity. In addition, the language
features a set ofindividual variablesx, y, . . ., a set ofindividual con-
stantsa, b, . . ., and theuniversal quantifier∀x for each individual
variable. Propositional variables can be viewed as0-ary predicates.
Termsτ1, τ2, . . . are either individual variables or individual con-
stants. As standard, we have that∃xϕ ≡ ¬∀x¬ϕ. A First Order
Interval Modelis of the typeM = 〈D, I(D),D, I〉, where〈D, I(D)〉
is an interval structure as before,D is thefirst-order domainof M ,
andI is a function associating each interval ofI(D) with a first-order
structure

I([i, j]) = 〈D, P I([i,j])
, Q

I([i,j])
, . . .〉.

At each interval[i, j], a predicateP I([i,j]) is a relation onD of the
same arity asP (for propositional variable, it is simply true or false).
Finally,λ is anassignmentfunction mapping terms into elements in
D. Notice that we are assuming that constants arerigid, that is, a

constanta refers to the same element of the first-order domainD re-
gardless of which is the current interval. The semantics of FORPNL
is the following:

• M, [i, j], λ  π iff i = j;
• M, [i, j], λ  P (τ1, . . . , τn) iff P I([i,j])(λ(τ1), . . . , λ(τn));
• M, [i, j], λ  ¬ψ iff it is not the case thatM, [i, j], λ  ψ;
• M, [i, j], λ  ψ ∨ φ iff M, [i, j], λ  ψ orM, [i, j], λ  φ;
• M, [i, j], λ  ∀xψ iff M, [i, j], λ′

 ψ for any assignmentλ′ that
differs fromλ at most for the value ofx;

• M, [i, j], λ  3ψ iff there existsh ≥ j such thatM, [j, h], λ 

ψ.

Therefore, FORPNL is apartial first order generalization of the
propositional logic RPNL: one is allowed to move along the time do-
main by using only the modal operator, and to assert over a specific
interval by using first-order construct. Moreover, it can beconsid-
ered as theproductof First-Order Logic and RPNL [12], since the
first-order part and the modal part may interact freely.

3 Is FORPNL Without Hopes?

In this section, we recall some well-known results in the literature,
that makes the result presented in this paper somehow surprising.
First of all, we know that among the maximal first order logic frag-
ments that have been shown to be decidable we can find:

• two-variable first order logic [3];
• two-variable first order logic over ordered domains (specifically,

the class of all linear orders, and all linear orders overN) [20].

In the framework of temporal logics, as already mentioned above, it
has been shown in [15] that extending LTL (with Since and Until,
but the result also applies to the fragment with Future and Next only)
with a first-order machinery with two distinct variables yields unde-
cidability. To retrieve decidability one must restrict thelanguage by
allowing only one variable.

We want to prove here that in the interval-based case, the situation
is way worse. RPNL represents one of the first, and most studied,
case of decidable interval logics. It has been shown to be decidable
[6]:

• in the class of all linearly ordered sets;
• in the class of all discrete linearly ordered sets;
• in the class of all dense linearly ordered sets;
• in the class of all finite linearly ordered sets;
• in the class of all linearly ordered sets based onN, Z, andQ.

In despite of the generally good behaviour of RPNL (w.r.t. the prob-
lem of satisfiability) and of the possibility of extending the temporal
(point-based) logic LTL with first-order constructs, as we will prove
below, the combination of almost any first-order ingredientand of
the interval-based frame results in undecidability.

4 Undecidability

As it becomes clear from the above, there are a number of possible
parameters here. Beside the usual possible choices for the temporal
domain, that is, discrete, dense, finite, bounded, unbounded, and so
on, we can vary on the first order component by assuming that the
first-order domain is finite, infinite, constant, variable, expanding,
or assuming other specific properties for it (linearity, discreteness,
denseness, and so on), and also by limiting the number of distinct



variables in formulas. Since we are interested in tight undecidability
results, in contrast with decidability results for first order point-based
temporal logic, we focus our attention on very restrictive assump-
tions. In particular, assuming the temporal domain to be finite, the
decidability result becomes really simple (although the complexity
is the same as in the other cases, NEXPTIME, the constants hidden
in the complexity function are low, and the idea under the model the-
oretic argument is easy to understand [10]). For these reasons, from
now on, we assume that bothD andD are finite, and that our lan-
guage has only one variable. Nevertheless, the results presented in
this paper hold even over the class of all (resp., all dense, all dis-
crete) linearly ordered sets, independently from the assumption on
the first-order domain (infinite, expanding, dense, discrete, and so
on). Moreover, in our construction there are neither free variables
nor constants, so we omit the variable assignmentλ.

We make use of the undecidability of theFinite Tiling Problem
[16]. It is the problem of establishing whether, for a given set of tile
typesT = {t1, . . . , tk}, there exists a finite rectangleR = [1, X]×
[1, Y ] = {(i, j) : i, j ∈ N, 1 ≤ i ≤ X, and1 ≤ j ≤ Y } for some
X,Y ∈ N, such thatT can correctly tileR with the entire border
colored by the same designated color$, also calledside color. To
be more precise, for every tile typeti ∈ T , let right(ti), left(ti),
up(ti), anddown(ti) be the colors of the corresponding sides ofti.
To solve the Finite Tiling Problem forT one must find two natural
numbersX andY , and a mappingf : R → T such that:

right(f(i, j)) = left(f(i+ 1, j)), 0 ≤ i < X, 0 ≤ j ≤ Y,

up(f(i, j)) = down(f(i, j + 1)), 0 ≤ i ≤ X, 0 ≤ j < Y,

and that satisfies, in addition, the following constraints:

left(f(0, j)) = $ and right(f(X, j)) = $, 0 ≤ j ≤ Y ,

down(f(i, 0)) = $ and up(f(i, Y )) = $, 0 ≤ i ≤ X.

where$ is the side color ofR.
In order to perform the reduction from the Finite Tiling Problem

for the set of tilesT = {t1, . . . , tk} to the satisfiability problem for
FORPNL, we will make use of some special 0-ary predicate symbols,
namelyu, Id, up rel, final, t1, t2, . . . , tk. The reduction consists of
three main steps:

1. the encoding of the rectangle by means of a suitable finite chain
of so-called ‘unit’ intervals (u-intervals, for short);

2. the encoding of the ‘above-neighbor’ relation by means ofa suit-
able family of so-calledup rel-intervals; and

3. the encoding of the ‘right-neighbor’ relation.

Here is a sketch of the encoding. First, we set our framework by
forcing the existence of a unique finite chain ofu-intervals on the
linear ordering (u-chain, for short). Theu-intervals are used as cells
to arrange the tiling. In other words, they represent the parts of the
plane that must be covered by tiles. Next, we define a chain ofId-
intervals (Id-chain, for short), each of them representing a row of
the rectangle. AnyId-interval consists of a sequence ofu-intervals;
eachId will contain exactly the same number ofu-intervals. Then,
we useup rel to encode the relation that connects each tile with its
above neighbor inR. Finally, we introduce a set of0-ary predicate
symbolsT = {t1, t2, . . . , tk} corresponding to the set of tile types
T = {t1, t2, . . . , tk} and define a formulaΦT which is satisfiable if
and only if there exists a finite rectangleR for someX,Y ∈ N and a
proper tiling ofR byT , i.e., a tiling that satisfies the color constraints
on the border tiles and between vertically- and horizontally-adjacent
tiles.

The proof exploits the fact that introducing first order constructs
makes it possible to express properties of the type: “if an interval
satisfyesϕ, then all its beginning intervals (resp., ending intervals,
strict sub-intervals) do not stisfyψ”, where the strict sub-intervals of
an interval[a, b] are all intervals[c, d] such thata < c < d < b. In
order to express such properties, we firstly define some kind of ‘nom-
inals’ for each point of the temporal domain. Intuitively, we univo-
cally identify each pointi of the temporal domain with a non-empty
set of constants that make a special predicate true in intervals start-
ing from i. More formally, we force a predicate of the typeP (x) in
such a way that ifP (x) is true, for somex, over an interval[i, j],
then it can be possibly true (for the samex) only over interval start-
ing from i and it must be false over all intervals starting from some
different pointh 6= i. For example, given an interval[i, j] that sat-
isfiesP I([i,j])(a), for some constanta, we force¬P I([h,k])(a) to
hold over each interval[h, k], with h 6= i. To this end, we exploit the
following formula:

22(∃x3P (x) ∧ ∀x(3P (x) → 2(¬π → 2¬P (x)))) (1)

It is easy to verify the following lemma:

Lemma 1 LetM be a FORPNL model and[i, j] an interval over it.
If M, [i, j]  (1), then for eachh ∈ D:

1. there exists a pointk > h such thatP I([h,k])(a) holds for some
a,

2. for eacha such thatP I([h,k])(a) holds, then¬P I([l,m])(a) holds,
for eachl 6= h.

At this step, we can express properties about beginning intervals,
ending intervals, or strict sub-intervals of a given interval, by exploit-
ing such a notion of nominals, formalized in the above lemma.For
example, it is easy to see that the following formula correctly defines
the operator[Bϕψ ] (resp.,[Eϕψ ], [Dϕ

ψ]), expressing the property: “if an
interval satisfies the propertyϕ, then each beginning interval (resp.,
ending interval, strict sub-interval) satisfies the property ψ”, thus
‘simulating’ the modal operator[B] (resp.,[E], [D]) of the logic HS,
corresponding to the Allen’s relationbegins(resp.,ends, during):

[Bϕψ ] ≡ 22∀x(3(ϕ ∧ 3P (x)) → 2(3(¬π ∧ 3P (x)) → ψ))

[Eϕψ ] ≡ 22∀x(3(ϕ ∧ 3P (x)) → 2(¬π → 2(3P (x) → ψ)))

[Dϕ
ψ ] ≡



22∀x(3(ϕ ∧ 3P (x)) →
2(¬π → 2(3(¬π ∧ 3P (x)) → ψ)))

Notice that we are not able to properly define the HS operators[B],
[E], and[D], since we cannot capture beginning, ending, and during
intervals of the current one.

To define theu-chain we use the following formulae:

3(¬π ∧ u) (2)

22(u → (¬π ∧ (3u ∨ 2π))) (3)

[Bu
¬u] ∧ [Bu

¬π→¬3u] (4)

(1) ∧ (2) ∧ (3) ∧ (4) (5)

Lemma 2 LetM = 〈D, I(D),D, I〉 be a FORPNL model based on
a finite linearly ordered temporal domain and with a finite first-order
domain, such that

M, [i0, j0]  (5).

Then, there exists a finite sequence of pointsj0 < j1 < . . . < jn,
withn > 0, such that:



1. M, [jl, jl+1]  u for each0 ≤ l ≤ n− 1;
2. M, [j′, j′′]  u holds for no other interval[i′, j′].

Proof. If M, [i0, j0]  (5), then, by (2), for somej1 > j0 the
interval [j0, j1] is a u-interval. By (3),j1 starts a finite chain ofu-
intervals[jl, jl+1], with l ≥ 0. The satisfiability of (3) over finite
temporal domains follows from the fact that the last point ofthe tem-
poral domain satisfies2π. Now suppose, by contradiction, that for
some interval[j′, j′′], it is the case that[j′, j′′] is a u-interval but
[j′, j′′] 6= [jl, jl+1] for all l > 0. Then eitherj′ = jl for somel,
contradicting the first conjunct of (4), orjl < j′ < jl+1, contradict-
ing the second conjunct of (4).

We now define theId-chain with the following formulae:

3Id ∧ 22((3Id → 3u) ∧ (Id → ¬π ∧ ¬u ∧ (3Id ∨ 2π))) (6)

[BId
¬Id] ∧ [BId

¬π→¬3Id] (7)

(6) ∧ (7) (8)

Lemma 3 LetM = 〈D, I(D),D,I〉 be a FORPNL model based on
a finite linearly ordered temporal domain and with a finite first-order
domain, such that

M, [i0, j0]  (5) ∧ (8).

Then, there exist a positive integerv and a finite sequence of posi-
tive integersm1,m2, . . . ,mv and a finite sequence of pointsj10 <

j11 < . . . < j1m1
= j20 < . . . < j2m2

= . . . = jv−1
0 < . . . <

jv−1
mv−1

= jv0 < . . . < jvmv
such that, for each1 ≤ s ≤ v, we have

M, [js0 , j
s
ms

]  Id, and no other interval satisfiesId.

Proof. First of all, by Lemma 2, there is a finite sequence of points
j0 < j1 < . . . < jn, with n > 0, defining a finite chain ofu-
intervals. By (6),j0 starts aId-interval, which must end at somejl >
j1. By (6), eachId-interval is followed by anotherId-interval, and
eachId-interval must end at somejl. Thus, everyId-interval spans
severalu-intervals, and there are finitely manyId-intervals. Let their
number bev. Hence, the sequencej0 < j1 < . . . < jn can be
written asj10 < j11 < . . . < j1m1

= j20 < . . . < j2m2
= . . . =

jv−1
0 < . . . < jv−1

mv−1
= jv0 < . . . < jvmv

, as required. We want
to show that there are no otherId-interval beside those of the type
[js0 , j

s
ms

]. This can be shown exactly as in Lemma 2, by using (7),
joined with (1).

The above lemma guarantees the existence of anId-chain. Now,
we want to force the propositional letterup rel to correctly encode
the relation that connects pairs of tiles of the rectangleR that are
vertically adjacent. Formally, we define twou-intervals[jl, jl+1] and
[jl′ , jl′+1] to beabove-connectedif and only if [jl+1, jl′ ] is aup rel-
interval. At the same time, we want to make sure that eachId-interval
spans the same number oftile-intervals. Intuitively, these two proper-
ties can be guaranteed by assuring that eachu-interval of aId-interval
is connected with exactly oneu-interval of the nextId-interval and
with exactly oneId-interval of the previous level. To this end, firstly
we suitably labelu-intervals belonging to the lastId-interval with
the propositional letterfinal. Then, we constraint eachu-interval not
belonging to the lastId-interval to be connected to at least oneu-
interval in the future (formula (10)) and at least one interval in the
past (formula (16)) by means of aup rel-interval. In order to guar-
antee the correct correspondence betweenu-intervals of consecutive
Id-intervals and to guarantee that eachu-interval is connected with
at most oneu-interval in the future and at most oneu-interval in

the past, we force the condition that noup rel-interval is a bigin-
ning interval (resp., ending interval, strict sub-interval) of any other
up rel-interval. Finally, to guarantee thatup rel-intervals connectu-
intervals belonging to consecutiveId-intervals, we have to make sure
that noId-interval is a biginning interval (resp., ending interval,strict
sub-interval, strict super-interval) of aup rel-interval.

22(u ∧ 22¬Id ↔ final) (9)

22(u → (¬final ↔ 3up rel) (10)

22(up rel → ¬Id ∧ ¬π ∧ ¬u ∧ 3u)) (11)

¬3up rel ∧ 22(3up rel → 3u) (12)

[Bup rel

¬up rel] ∧ [Eup rel

¬up rel] ∧ [Dup rel

¬up rel] (13)

[Bup rel

¬Id ] ∧ [Eup rel

¬Id ] ∧ [Dup rel

¬Id ] (14)

[DId
¬up rel] (15)

∀x(3(Id ∧ 3(3u ∧ 3P (x))) → 33(up rel ∧ 3P (x))) (16)

(9) ∧ (10) ∧ (11) ∧ (12) ∧ (13) ∧ (14) ∧ (15) ∧ (16) (17)

Lemma 4 LetM = 〈D, I(D),D, I〉 be a FORPNL model based on
a finite linearly ordered temporal domain and with a finite first-order
domain, such that

M, [i0, j0]  (5) ∧ (8) ∧ (17).

Then, we have that, for each0 < s < v and each0 ≤ l < ms,
M, [jsl+1, j

s+1
l ]  up rel, and no other interval satisfiesup rel.

Moreover, we have that for each1 ≤ s, s′ ≤ v,ms = ms′ .

Proof. Consider anyu-interval[jsl , j
s
l+1] not belonging to the lastId-

interval. Formula (10) makes sure thatjsl+1 starts aup rel-interval,
which cannot be point-interval and must end at some point of the
typejs

′

l′ > jsl+2. First of all, observe thatjs
′

l′ ≥ js+1
0 , otherwise we

would have a contradiction with (15). Similarly, we have that js
′

l′ <

js+1
ms+1

, in order to avoid a contradiction with (14). Now, suppose by
contradiction that[js0 , j

s
1 ] is above-connected with[js+1

l , js+1
l+1 ], with

l > 0, for somes. By (16), there must be anup rel-interval ending in
js+1
0 and starting from a pointjsl′ , with l′ > 0. It must also bel′ > 1,

otherwise there would be two differentup rel-intervals starting at
the same pointjs1 , contradicting the first conjunct of (13). So, it is
the case that theup rel-interval [jsl′ , j

s+1
0 ] is a strict sub-interval of

theup rel-interval [js1 , j
s+1
l ], contradicting the third conjunt of (13).

By applying a similar argument, and assuming that up to a given l,
[jsl , j

s
l+1] is above-connected to[js+1

l , js+1
l+1 ], it is easy to show also

that [jsl+1, j
s
l+2] (if any) is above-connected to[js+1

l+1 , j
s+2
l+2 ]. From

(13) it follows that eachu-interval can be connected with at most
oneu-interval in the future and at most one in the past, so we can
conclude that for each0 ≤ s, s′ ≤ v,ms = ms′ .

Finally, we can force all tile-matching conditions to be respected,
by using the following formulae, whereTr (resp.,Tl, Tu, Td) is the
subset ofT containing all tiles having the right (resp., left, up, down)
side colored with$.
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tq∈Tr

tq

1

A

1

A (22)

∃x

0

@3(Id ∧ 3P (x)) → 22

0

@u ∧ 33P (x) →
_

tq∈Td

tq

1

A

1

A (23)

22

0

@u ∧ final →
_

tq∈Tu

tq

1

A (24)

(18) ∧ (19) ∧ (20) ∧ (21) ∧ (22) ∧ (23) ∧ (24) (25)

Theorem 5 Given any finite set of tilesT and a side color$, the
formula

ΦT := (5) ∧ (8) ∧ (17) ∧ (25)

is satisfiable in a finite linearly ordered temporal domain and finite
first-order domain if and only ifT can tile a finite rectangleR, for
someX,Y ∈ N, with side color$.

Proof. (Only if:): Suppose thatM, [i0, j0]  ΦT . Then, by
Lemma 3, there is a sequence of pointsj0 = j10 < j11 < . . . <

j1m1
= j20 < . . . < j2m2

= . . . = jv−1
0 < . . . < jv−1

mv−1
=

jv0 < . . . < jvmv
= jn, and by Lemma 4, for each1 ≤ s, s′ ≤ v,

ms = ms′ . We putX = ms and Y = v. For all l, s, where
0 ≤ l ≤ X − 1, 1 ≤ s ≤ Y , definef(l, s) = tq if and only if
M, [jsl , j

s
l+1]  tq. From Lemma 2, 3, and 4 it follows that the func-

tion f : R → T defines a correct tiling ofR, whereX andY are
defined as above.

(If:) Let f : R 7→ T be a correct tiling function of the rectangle
R = [1,X]× [1, Y ] for someX, Y , and a given border color$. For
convenience, we will identify the tile-variablest1, t2, . . . ∈ T with
their corresponding tilest1, t2, . . . ∈ T . We will show that there
exist a modelM and an interval[i0, j0] such thatM, [i0, j0]  ΦT .
LetD = D = N |X·Y+1, and letM the FORPNL model built over
these two domains. We want to build an interpretationI in such a
way thatM, [0, 1]  ΦT . Then, we put

uI([i,i+1]) ∀i.0 < i < X · Y,

to guarantee that (5) is satisfied. Now, in order to satisfy the remain-
ing part ofΦT on [0, 1], it suffices to define the valuation for the
remaining propositional letters and the predicate symbolP :

P I([i,j])(i) ∀i, j > 0

IdI([i·X+1,(i+1)·X+1]) ∀i.0 ≤ i ≤ Y − 1

up relI([i,i+X−1]) ∀i.2 ≤ i ≤ X · (Y − 1) + 1

finalI([i,i+1]) ∀i.X · (Y − 1) + 1 ≤ i ≤ X · Y

Finally, we evaluate the tile-variables as follows. For each t ∈ T:

tq
I([i,i+1]) ⇔ f(l, s) = tq ∀i = X · (s− 1) + l.

5 Conclusions

Temporal logic has found numerous applications in computersci-
ence, ranging from the traditional and well-developed fields of pro-
gram specification and verification, temporal databases, and dis-
tributed multi-agent systems, to more recent uses in knowledge rep-
resentation and reasoning. This is true both at the propositional and
first-order level. In the interval-based temporal logic world, unde-
cidability is the rule and decidability the exception. Propositional
Neighborhood Logic is one of the first examples of properly interval-
based temporal logics shown to be decidable. Recently, it has also
been extended with a sort of metric features that allow one tocon-
strain the length of an interval (over natural numbers), without los-
ing decidability. On the line of [17], here we have shown thatyet
another classical extension for temporal logics, obtainedby gener-
alizing propositional letters into first-order formulas, oversteps the
barrier of decidability, even in a very restrictive case such as that of
monadic first order formulas with finite domains. At a first glance
this result may appear discouraging, concerning our aim of finding
decidable first-order interval temporal logics. Nevertheless, it should
be pointed out that the modal constantπ plays an important role in
the reduction. Thus, it could be worth considering the satisfiability
problem for the language devoid of such an operator, as well as the
satisfiability problem for FORPNL restricted with some natural syn-
tactic rule that constrain the relationship between the modal and the
first-order components.
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