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Abstract.
able interval-based temporal logic that features the mopatators
corresponding to the Allen’s relatiomseetsandmet by Right PNL
(RPNL) is the fragment of PNL featuring only one of the two rabd
ity allowed in PNL. In this paper, we introduce a new extensid
RPNL, whose propositional letters are generalized intd-Grder
formulas. In contrast with recent results on the decidgbdf first-
order point-based temporal logics with only one variable,skiow
that the interval-based case yields undecidability. Irtipalar, in
this paper we prove that the first order version of RPNL, alhgw
first-order formulas with only one (possibly reused) vaeals un-
decidable with respect to most meaningful choices for tealpnd
first-order domains.

1 Introduction

Interval temporal logics are based on temporal structuves @su-
ally) linearly ordered domains, where time intervals, eatinan time
instants, are the primitive ontological entities. The pea of rep-
resenting and reasoning about time intervals arises nigtimavar-
ious fields of computer science, artificial intelligenced aampo-
ral databases, such as theories of action and change, Iniatwa
guage processing, and constraint satisfaction problengarticular,
temporal logics with interval-based semantics have beepgsed
as a useful formalism for the specification and verificatibhard-
ware [19] and of real-time systems [11].

A systematic analysis of the variety of relations betweemitvter-
vals in a linear order was performed by Allen [1], who prombtiee
use of interval reasoning in systems for time managemenpkamd
ning. Allen identified the thirteen different binary retats between
intervals on linear orders, hereafter referred to as Adleelations. In
[14], Halpern and Shoham introduced a multi-modal logicehéer
called HS, involving modal operators corresponding to dle®s
interval relations and showed that such a logic is undetédahder
very weak assumptions on the class of interval structureghich
it is interpreted. One of the few known cases of decidableruat
logics with truly interval semantics (not reducible to pelrased se-
mantics) is thePropositional Neighborhood Interval Logi@®NL)
[5, 13]. PNL is a fragment of HS with only two modal operatas-
responding to the Allen’s relatiomeeetsand its inversamet by Its
satisfiability problem has been shown to be decidable (NBXHEF
complete) when interpreted over various classes of ligeadered
sets and, in particular, over domains based on natural nsnjég
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Propositional Neighborhood Logic (PNL) is the decid- the results presented in the same paper and in [18] showedltha

possible extensions of PNL with Allen’s modal operator mé#ke
logic undecidable, which means that PNL is maximal in terfries
cidability (as a matter of fact, there are extensions of Phit are
non-elementary decidable only if interpreted over finitefixes ofN
and undecidable in most of the other cases), with respeabtiahop-
erators corresponding to Allen’s relations. In [7, 8], awthproposed
a ‘metric’ extension of PNL, calleMetric PNL (MPNL, for short),
which involves special propositional letters expressiqaggdity or in-
equality constraints on the length of the current intervidhwespect
to fixed integer constants. The satisfiability problem forMLRnter-
preted in the interval structure over natural numbers isguia@ecid-
able in [8], with complexity between EXPSPACE and 2NEXPTIME
when the integer constraints in formulae are representdginery
(and NEXPTIME-complete when the integer constraints imfoliae
are constant or represented in unary). In [17], the authoasyaed
extensions of PNL and MPNL with binders and variables thaial
one to store the length of the current interval with respededcid-
ability and showed that even the weakest natural extensiecame
undecidable, which in some cases is somewhat surprisimgg e
sharp contrast with the decidability of MPNL. Finally, (RYP and
its metric version have been generalized to the spatial [€a<8. It
is therefore natural to ask whether it is possible to geimerahese
logics by means of classical machinery, such as first ordestoacts,
still keeping their good computational properties.

In this paper, we focus on a different extension of PNL, chlle
FORPNL (First Order RPNL), obtained by generalizing proposi-
tional variables into first-order formulas. In the pointsbd case, the
most prominent work concerning first-order temporal lamgasais
the one by Hodkinson, Wolter and Zakharyaschev [15]. Thbaat
show that first-order Linear Time Temporal Logic (LTL) witinSe
and Until, interpreted over discrete structures is alraattjecidable
when only two distinct variables are allowed. The proof @pplies
for LTL with Next and Future only. But, unexpectedly, whereax-
tends LTL with monadic first-order formulas (only one vatgbthe
logic becomes decidable with temporal domains baselii,éh Q,
andR (in the last case the result holds only with finite first-order
domains). We show here that for interval logics the situaisoway
worse. To this end, we consider the fragment of PNL, caRéght
PNL (RPNL), featuring only the modal operator corresponding to the
Allen’s relationmeetswe prove that, independently from the prop-
erties of the underlying temporal order, the first-ordeeagton of
RPNL with only one variable over finite first-order domainuis
decidable. This paper can be considered a first attempt ehdixtg
an interval-based temporal logic with truly first-ordertigas (over
thefirst-order domaip, since previous work, such as ITL [19], only
deal with first-order characteristics for the temporal doma&his



also justify the choice for the name FORPNL: we want to keep th constant refers to the same element of the first-order dontire-

modal characteristics of the propositional logic, whiclowalone to

gardless of which is the current interval. The semantics@RPNL

move along the time domain only by means of the modal opesator is the following:

and generalize the assertion over interval from propastito first
order. On the contrary, the cases of first order ITL [19] and[R]L
are different in this sense, since those languages includstifica-
tion over the temporal domain.

The paper is structured as follows. Sectantroduces syntax and
semantics of the logic we are interested in, namely FORPMLtiGn
3 briefly reviews the state of the art on first order temporaldsg
Next, in Sectiond, we give the undecidability proof of FORPNL,
before concluding.

2 First Order RPNL

At the propositional level, RPNL is built from a sétP = {p, q, ...}
of propositional letters, the classical connectives- (the remaining
ones can be considered as abbreviations), and a modal apérat
which allows one to capture any right neighboring intervahi the
current one. Formulas are obtained from the grammar:

pu=m|p|lopleVelp.

wherer is a pre-interpreted propositional letter that is true aadéer
and only intervals of the typg, 4], called point-intervals.
Given a linearly ordered domail = (D, <), a (hon-stric) in-
terval overD is any ordered paifi, j] such that < j. An interval
structureis a pair(D, I(D)), wherel (D) is the set of all intervals over
D. An interval modeis a tupleM = (D, (D), V'), where(D, (D))
is an interval structure and : T(D) — 247 is a valuation function
assigning to every interval the set of propositional Isttirat hold
over it. Given an interval model/ = (D,I(ID), V) and an interval
[i, 7] over it, the semantics of RPNL-formulae is given by the otsus

o M, [i,j] Ik mwiff ¢ = j;

o M, [i,j] Ik piff p e V([i,]), foranyp € AP;

e M, [4,j] IF = iff itis not the case thabd/, [i, j] IF +;

o M, [i,j] Ik v Tiff M,[i,j] I+ orM,l[i,j] kT,

e M, [i,j] IF O iff there existsh > j such thatM, [4, h] IF 4.

A RPNL-formulay is satisfiabldf there exists a model/ and an in-
terval(z, j] over it such thaiM/, [i, j] IF . The satisfiability problem
for RPNL has been shown to be NEXPTIME-complete in [10].

We introduce now a first-order version of the logic RPNL, khere
after calledrirst Order RPNL(FORPNL, for short). At the first-order
level, propositional variables are generalized iptedicate symbols
PQ,...,
features a set dfdividual variablese, y, . . ., a set ofindividual con-
stantsa, b, . . ., and theuniversal quantifietvz for each individual
variable. Propositional variables can be viewed)asy predicates.
TermsTi, 72, ... are either individual variables or individual con-
stants. As standard, we have thaty = —Vax—g. A First Order
Interval Modelis of the typeM = (D, (D), ©,Z), where(D, I(D))
is an interval structure as befor®, is thefirst-order domainof M,
andZ is a function associating each intervall¢D) with a first-order
structure

Z([i, j]) = (@, PFED, QT ).

At each intervali, j], a predicateP” (7)) is a relation on® of the
same arity ag (for propositional variable, it is simply true or false).
Finally, A is anassignmenfunction mapping terms into elements in
®. Notice that we are assuming that constantsrayid, that is, a

° g, A E wiff i@ = g;

o M,[i,j],\IF P(r1,...,7) iff PZEID(N(7), ..., A (m));
e M, [z,_y] A IF = iff itis not the case thab/, [i, y] /\Il—w
o M, [i,j, MF oV ¢ iff M, [i, ], Al or M, [i, 5], A ¢
o M, i, j],

differs from\ at most for the value af;
e M, [i,j], A I O iff there existsh > j such that)M, [4, k], A I+
.

Therefore, FORPNL is gartial first order generalization of the
propositional logic RPNL: one is allowed to move along timedido-
main by using only the modal operator, and to assert over @fgpe
interval by using first-order construct. Moreover, it candomsid-
ered as theroductof First-Order Logic and RPNL [12], since the
first-order part and the modal part may interact freely.

3 IsFORPNL Without Hopes?

In this section, we recall some well-known results in theréture,
that makes the result presented in this paper somehow sitigori
First of all, we know that among the maximal first order logiag-
ments that have been shown to be decidable we can find:

e two-variable first order logic [3];
e two-variable first order logic over ordered domains (speaily,
the class of all linear orders, and all linear orders @Vgf20].

In the framework of temporal logics, as already mentionealahit
has been shown in [15] that extending LTL (with Since and IJnti
but the result also applies to the fragment with Future and biely)
with a first-order machinery with two distinct variables Igie unde-
cidability. To retrieve decidability one must restrict Hamguage by
allowing only one variable.

We want to prove here that in the interval-based case, that&n
is way worse. RPNL represents one of the first, and most studie
case of decidable interval logics. It has been shown to bieldele

[6]:

e in the class of all linearly ordered sets;

e inthe class of all discrete linearly ordered sets;

e inthe class of all dense linearly ordered sets;

e in the class of all finite linearly ordered sets;

e inthe class of all linearly ordered sets based\WiZ, andQ.

each one of which has fixed arity. In addition, the language

In despite of the generally good behaviour of RPNL (w.r.&. pinob-
lem of satisfiability) and of the possibility of extendingettemporal
(point-based) logic LTL with first-order constructs, as widl prove
below, the combination of almost any first-order ingrediant of
the interval-based frame results in undecidability.

4 Undecidability

As it becomes clear from the above, there are a number offgessi
parameters here. Beside the usual possible choices foetigotal
domain, that is, discrete, dense, finite, bounded, unbalrate so
on, we can vary on the first order component by assuming tleat th
first-order domain is finite, infinite, constant, variablepanding,

or assuming other specific properties for it (linearity,cdideness,
denseness, and so on), and also by limiting the number ahdist



variables in formulas. Since we are interested in tight aittility
results, in contrast with decidability results for first ergboint-based
temporal logic, we focus our attention on very restrictigswamp-
tions. In particular, assuming the temporal domain to beefjrihe
decidability result becomes really simple (although theptexity
is the same as in the other cases, NEXPTIME, the constardgerid
in the complexity function are low, and the idea under the ehtite-
oretic argument is easy to understand [10]). For these nsagmm
now on, we assume that bofh and® are finite, and that our lan-
guage has only one variable. Nevertheless, the resultergessin
this paper hold even over the class of all (resp., all derlselisa
crete) linearly ordered sets, independently from the aptiomon
the first-order domain (infinite, expanding, dense, disgrahd so
on). Moreover, in our construction there are neither fregaées
nor constants, so we omit the variable assignment

We make use of the undecidability of tinite Tiling Problem
[16]. It is the problem of establishing whether, for a given of tile
types7 = {ti1,...,tr}, there exists a finite rectanglé = [1, X] x
[1,Y] = {(4,4) : 4, € N,1 < i < X,andl < j <Y} for some
X,Y € N, such that7 can correctly tileR with the entire border
colored by the same designated cofpralso calledside color To
be more precise, for every tile type € 7, let right(t;), left(t:),
up(t;), anddown(t;) be the colors of the corresponding sides;of
To solve the Finite Tiling Problem faf one must find two natural
numbersX andY’, and a mapping : R — 7 such that:

right(f(i, 7)) = left(f(i + 1, 7)),
up(f(i,4)) = down(f(i,j + 1)),

and that satisfies, in addition, the following constraints:

left(f(0,7)) =% and right(f(X,j)) =S8,
down(f(i,0)) =% and up(f(;,Y)) =S8,

0<i<X,0<5 <Y,
0<i<X,0<j<Y,

0<j<Y,
0<i<X.

where$ is the side color ofR.

In order to perform the reduction from the Finite Tiling Plein
for the set of tilesT = {¢1, ..., tx} to the satisfiability problem for
FORPNL, we will make use of some special 0-ary predicate s¥snb
namelyu, Id, up_rel, final, t1, to, ..., tx. The reduction consists of
three main steps:

1. the encoding of the rectangle by means of a suitable fihiénc
of so-called ‘unit’ intervals {-intervals for short);

the encoding of the ‘above-neighbor’ relation by meana siit-
able family of so-calledip_rel-intervals and

the encoding of the ‘right-neighbor’ relation.

2.

3.

The proof exploits the fact that introducing first order donsts
makes it possible to express properties of the tyjfeari interval
satisfyesp, then all its beginning intervals (resp., ending intervals
strict sub-intervals) do not stisfy”, where the strict sub-intervals of
an intervalla, b] are all intervalgc, d] such thata < ¢ < d < b. In
order to express such properties, we firstly define some Kitmbm-
inals’ for each point of the temporal domain. Intuitivelygwnivo-
cally identify each point of the temporal domain with a non-empty
set of constants that make a special predicate true in aitestart-
ing from 4. More formally, we force a predicate of the typ&z) in
such a way that ifP(x) is true, for somer, over an intervals, j],
then it can be possibly true (for the sameonly over interval start-
ing from 4 and it must be false over all intervals starting from some
different pointh # 4. For example, given an intervél, j] that sat-
isfies PZ(1"7D (q), for some constant, we force—P*("¥)(q) to
hold over each intervadh, k], with h # i. To this end, we exploit the
following formula:

00(3zOP(z) AVz(OP(z) — O(-r — 0-P(2)))) (1)

It is easy to verify the following lemma:

Lemmal LetM be a FORPNL model anfd, j] an interval over it.
If M, [i, 5] IF (1), then for eacth € D:

1. there exists a point > h such thatPZ(I":*D(4) holds for some
a,
2. for eachu such thatPZ("**D (4) holds, then-PZ(:™) (4) holds,

for eachl # h.

At this step, we can express properties about beginningvelte
ending intervals, or strict sub-intervals of a given intérby exploit-
ing such a notion of nominals, formalized in the above lemiAaa.
example, it is easy to see that the following formula colyet¢fines
the operatofB7] (resp.,[E7], [D;]), expressing the propertyif‘an
interval satisfies the property, then each beginning interval (resp.,
ending interval, strict sub-interval) satisfies the prayer”, thus
‘simulating’ the modal operatdiB] (resp.,[E], [D]) of the logic HS,
corresponding to the Allen’s relatidregins(resp.,ends during):

[BZ;] = 00Vz(C(p AOP(x)) — O(C(—r AOP(x)) — 1))
[Ei] = 0Vz(O(p A OP(x)) — O(=r — O(OP(z) — 1))
D7) = { 0OvVz(O(p AOP(x)) —

O(-m — B(O (-7 A OP(x)) — 1))
Notice that we are not able to properly define the HS operéaffs

Here is a sketch of the encoding. First, we set our framewgrk b [E], and[D], since we cannot capture beginning, ending, and during

forcing the existence of a unique finite chainwintervals on the
linear ordering ¢-chain, for short). Theu-intervals are used as cells
to arrange the tiling. In other words, they represent théspafrthe
plane that must be covered by tiles. Next, we define a chald-of
intervals (d-chain for short), each of them representing a row of
the rectangle. Anyd-interval consists of a sequence wfntervals;
eachld will contain exactly the same number ofintervals. Then,

we useup-rel to encode the relation that connects each tile with its

above neighbor irR. Finally, we introduce a set df-ary predicate
symbolsT = {t1, t2, ..., tx} corresponding to the set of tile types
T = {t1,t2,...,tx} and define a formul@+ which is satisfiable if
and only if there exists a finite rectangiefor someX,Y € Nand a
proper tiling ofR by 7', i.e., atiling that satisfies the color constraints
on the border tiles and between vertically- and horizoptatljacent
tiles.

intervals of the current one.
To define theu-chain we use the following formulae:

<>(ﬂﬂ' N u) 2)
O00(u — (=7 A (Cu Vv Om))) 3)
[BL] A [Bhr—mou] 4
(HAR)AB)A4) ®)

Lemma2 LetM = (D,I(D),®,Z) be a FORPNL model based on
a finite linearly ordered temporal domain and with a finitetfiesder
domain, such that

M, [io, jo] IF (5).

Then, there exists a finite sequence of pojpt ji1 < ... < Jn,
with n. > 0, such that:



1. M, [ji,ji+1] IFu foreachO0 <1 <n —1;
2. M,[j',j"] IF u holds for no other interva}i’, 5'].

Proof. If M, [io,jo] IF (5), then, by (2), for somg; > jo the
interval [jo, j1] is au-interval. By (3),;: starts a finite chain ofi-
intervals[j;, 7i+1], with I > 0. The satisfiability of (3) over finite
temporal domains follows from the fact that the last poirtheftem-
poral domain satisfieSlw. Now suppose, by contradiction, that for
some intervalj’, j”], it is the case thalj’, ;"] is a u-interval but
[7,7"1 # i, Ji+:1] for all I > 0. Then either;’ = j; for somel,
contradicting the first conjunct of (4), gr < 5’ < ji+1, contradict-
ing the second conjunct of (4). |

We now define théd-chain with the following formulae:

Old A OO((Old — Ou) A (Id — =7 A —u A (Old Vv Or))) (6)
[Bljld] A [BEﬂ—rﬁ<>|d] (7)
(6) A (7) (8)

Lemma3 LetM = (D,1(D),D,7) be a FORPNL model based on
a finite linearly ordered temporal domain and with a finitetfiosder
domain, such that

M, [io,jo] I (5) A (8)

Then, there exist a positive integerand a finite sequence of posi-
tive integersmi, mo, . .., m, and a finite sequence of poinf$ <
<. <h =< <= =0T < <
Jert =45 < ... < jb, suchthat, for each < s < v, we have

M, (45, 3m.]) IF Id, and no other interval satisfidd.

Proof. First of all, by Lemma 2, there is a finite sequence of points

jo < J1 < ... < jn, With n > 0, defining a finite chain ofi-
intervals. By (6) o starts dd-interval, which must end at some >
j1. By (6), eachld-interval is followed by anotheld-interval, and
eachld-interval must end at somg. Thus, evenyjd-interval spans
severalu-intervals, and there are finitely maidrintervals. Let their

number bev. Hence, the sequengg < j1 < ... < j, can be
written asjy < ji < ... < jhy = G0 < oor < Joy = oo =
JoTt << gat =48 < ... < ju,, as required. We want

to show that there are no othkt-interval beside those of the type
(75, Fm.]- This can be shown exactly as in Lemma 2, by using (7),
joined with (1). |

The above lemma guarantees the existence délamain. Now,
we want to force the propositional lettep_rel to correctly encode
the relation that connects pairs of tiles of the rectari@l¢hat are
vertically adjacent. Formally, we define tweintervals[j;, j;+1] and
[71, jir+1] to beabove-connecteifland only if [ji11, j;/] is aup_rel-
interval. At the same time, we want to make sure that éd&éhterval
spans the same numbertdé-intervals. Intuitively, these two proper-
ties can be guaranteed by assuring that eaictterval of ald-interval
is connected with exactly onginterval of the nextid-interval and
with exactly ondld-interval of the previous level. To this end, firstly
we suitably labelu-intervals belonging to the ladd-interval with
the propositional lettefinal. Then, we constraint eachinterval not
belonging to the laskd-interval to be connected to at least ame
interval in the future (formula (10)) and at least one inéiin the
past (formula (16)) by means ofwu_rel-interval. In order to guar-
antee the correct correspondence betweariervals of consecutive
Id-intervals and to guarantee that eacimterval is connected with
at most oneu-interval in the future and at most oneinterval in

the past, we force the condition that ng_rel-interval is a bigin-
ning interval (resp., ending interval, strict sub-intéy\af any other
up-rel-interval. Finally, to guarantee thap_rel-intervals connecti-
intervals belonging to consecutilg-intervals, we have to make sure
that nold-interval is a biginning interval (resp., ending intentict
sub-interval, strict super-interval) ofua_rel-interval.

O00(u A OO=Id « final) 9)
O00(u — (—final < Sup_rel) (10)
O0(up_rel — =ld A = A =u A Ou)) (11)
—Oup_rel A OO(Oup_rel — <u) (12)
(B el AN Bl A (D205 (13)
(B8 A (52557 A (D) (1)
(D 4prel] (15)
Va(O(Id A O(Qu A OP(z))) — OO (uprel A OP(z)))  (16)
(9) A (10) A (11) A (12) A (13) A (14) A (15) A (16) 7)

Lemma4 LetM = (D,1(D),D,7) be a FORPNL model based on
a finite linearly ordered temporal domain and with a finitetficsder
domain, such that

M, [io, jo] IF (5) A (8) A (17).

Then, we have that, for each< s < v and each0 < I < ms,
M, [jf+1,jf+1] Ik up_rel, and no other interval satisfiesp_rel.
Moreover, we have that for eadh< s, s’ < v, ms = my.

Proof. Consider any-interval[j;, ji', ;] not belonging to the lasd-
interval. Formula (10) makes sure thit ; starts aup_rel-interval,
which cannot be point-interval and must end at some poinhef t
typejf,' > ji.o. First of all, observe tha;tf,' > jott, otherwise we
would have a contradiction with (15). Similarly, we havettb’]ﬁi <
jfntil, in order to avoid a contradiction with (14). Now, suppose by
contradiction that;, j;] is above-connected withi? ™", 5], with

[ > 0, for somes. By (16), there must be arp_rel-interval ending in
jot and starting from a poing;, with I’ > 0. It must also bé’ > 1,
otherwise there would be two differenp_rel-intervals starting at
the same poingy, contradicting the first conjunct of (13). So, it is
the case that thep_rel-interval [j;;, joT'] is a strict sub-interval of
theup_rel-interval [j5, j; '], contradicting the third conjunt of (13).
By applying a similar argument, and assuming that up to angive
i, ji't1] is above-connected {g; ™!, j'], it is easy to show also
that [ji,, ji\ o] (if any) is above-connected tg; ", j;]. From
(13) it follows that eachu-interval can be connected with at most
oneu-interval in the future and at most one in the past, so we can
conclude that for each < s,s" < v, ms = my. [ ]

Finally, we can force all tile-matching conditions to bepested,
by using the following formulae, wherg. (resp.,T1, T, Tq) is the
subset off containing all tiles having the right (resp., left, up, dgwn
side colored witl8.



00 fu— \/tarn N\ —(tqAty) (18)
tq€T tq;ét
oo\ te—u (19)
tq€T
oo\ ta— [ ~(0ldvor) — \/ ot (20)
tq€T m’ght(tq):left(tq,)
m]m] \/ tq — | CQup-rel — \/ <>(up_rel/\<>t:1) (21)
tq€T up(tq):down(tq/)
oofold— o\ tg|Afu—\ t (22)
tq€T1L tq€Tr
O(ld AOP(z)) — 00 | uAOOP(z) — \/ tq (23)
tq€Ta
00 [uAfinal = \/ tq (24)
tq€Ty
(18) A (19) A (20) A (21) A (22) A (23) A (24) (25)

Theorem 5 Given any finite set of tileg and a side color$, the
formula

O == (5) A (8) A (17) A (25)

is satisfiable in a finite linearly ordered temporal domairnddmite
first-order domain if and only i7" can tile a finite rectanglér, for
someX,Y € N, with side color$.

Proof. (Only if:): Suppose thatM, [io,jo] I+ ®7. Then, by

Lemma 3, there is a sequence of poififs= ji < ji < ... <
J6 < ... < jm, = jn, and by Lemma 4, for each < s,s" < v,
ms = mgy. We putX = ms andY = v. For all [, s, where

0<I<X-1,1<s <Y,definef(l,s) = tq if and only if
M, 37, 7iy1] IF tq. From Lemma 2, 3, and 4 it follows that the func-
tion f : R — 7 defines a correct tiling oR, whereX andY are
defined as above.

(If:) Let f : R — T be a correct tiling function of the rectangle
R =[1,X] x [1,Y] for someX, Y, and a given border cold. For
convenience, we will identify the tile-variables, t», ... € T with
their corresponding tiles:,¢2,... € 7. We will show that there
exist a modelM/ and an intervalio, jo] such that\M, [io, jo] IF ®7.
LetD = = N |x.y+1, and letM the FORPNL model built over
these two domains. We want to build an interpretatioim such a
way that)M, [0, 1] IF ®7. Then, we put

WD 0 << XY,
to guarantee that (5) is satisfied. Now, in order to satiséyrdmain-
ing part of @7 on [0, 1], it suffices to define the valuation for the
remaining propositional letters and the predicate synthol

PEEID(G) Vi 5 >0
|7 (EXFLOEED-XHD v 0 < <Y — 1
uprelZHHX=1D g0 < < X (Y —1) +1
finalZ (1) v X (VY — 1) +1<i< XY

Finally, we evaluate the tile-variables as follows. Forteae T:

th([i,z’+1]) < fls) =ty Vi=X-(s—1)+1.

5 Conclusions

Temporal logic has found numerous applications in compseéer
ence, ranging from the traditional and well-developed §eitipro-
gram specification and verification, temporal databased, dis-
tributed multi-agent systems, to more recent uses in kraydeep-
resentation and reasoning. This is true both at the propoaltand
first-order level. In the interval-based temporal logic Mprunde-
cidability is the rule and decidability the exception. Rosjpional
Neighborhood Logic is one of the first examples of propertgiival-
based temporal logics shown to be decidable. Recentlysitalen
been extended with a sort of metric features that allow oneote
strain the length of an interval (over natural numbers)haiit los-
ing decidability. On the line of [17], here we have shown theat
another classical extension for temporal logics, obtaimgdener-
alizing propositional letters into first-order formulaseosteps the
barrier of decidability, even in a very restrictive casetsas that of
monadic first order formulas with finite domains. At a firstrgie
this result may appear discouraging, concerning our aimnalirfg
decidable first-order interval temporal logics. Neveriss| it should
be pointed out that the modal constanplays an important role in
the reduction. Thus, it could be worth considering the fabgity
problem for the language devoid of such an operator, as weha
satisfiability problem for FORPNL restricted with some matisyn-
tactic rule that constrain the relationship between theahadd the
first-order components.
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