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Abstract Interval temporal logics formalize reasoning a-
bout interval structures over linearly (or partially) ordered
domains, where time intervals are the primitive ontologi-
cal entities and truth of formulae is defined relative to time
intervals, rather than time points. In this paper, we intro-
duce and study Metric Propositional Neighborhood Logic
(MPNL) over natural numbers. MPNL features two modal-
ities referring, respectively, to an interval that is “met by”
the current one and to an interval that “meets” the current
one, plus an infinite set of length constraints, regarded as
atomic propositions, to constrain the lengths of intervals. We
argue that MPNL can be successfully used in different areas
of computer science to combine qualitative and quantitative
interval temporal reasoning, thus providing a viable alter-
native to well-established logical frameworks such as Du-
ration Calculus. We show that MPNL is decidable in dou-
ble exponential time and expressively complete with respect
to a well-defined sub-fragment of the two-variable fragment
FO2[N,=,<,s] of first-order logic for linear orders with suc-
cessor function, interpreted over natural numbers. Moreover,
we show that MPNL can be extended in a natural way to

D. Bresolin
University of Verona, Italy
E-mail: davide.bresolin@univr.it

D. Della Monica
University of Udine, Italy
E-mail: dario.dellamonica@uniud.it

A. Montanari
University of Udine, Italy
E-mail: angelo.montanari@uniud.it

V. Goranko
Technical University of Denmark, Denmark
E-mail: vfgo@imm.dtu.dk

G. Sciavicco
University of Murcia, Spain E-mail: guido@um.es

cover full FO2[N,=,<,s], but, unexpectedly, the latter (and
hence the former) turns out to be undecidable.

1 Introduction

Interval temporal logics provide a natural framework for tem-
poral reasoning about interval structures over linearly (or
partially) ordered domains. They take time intervals as the
primitive ontological entities and define truth of formulae
relative to time intervals, rather than time points. Interval
logics feature modal operators that correspond to various
relations between pairs of intervals. In particular, the well-
known logic HS, introduced by Halpern and Shoham in [23],
features a set of modal operators that makes it possible to
express all Allen’s interval relations [1].

Interval-based formalisms have been extensively used
in various areas of computer science and artificial intelli-
gence, such as, for instance, formal specification and veri-
fication of complex systems, temporal databases, planning
and plan validation, theories of action and change, natural
language processing, and constraint satisfaction problems.
However, most of them are subjected to severe syntactic
and semantic restrictions that considerably weaken their ex-
pressive power. Interval temporal logics relax these restric-
tions, thus allowing one to cope with much more complex
application domains and scenarios. Unfortunately, many of
them, including HS and the majority of its fragments, turn
out to be undecidable (a comprehensive survey can be found
in [7]). One of the few cases of decidable interval logic with
truly interval semantics, i.e., not reducible to point-based se-
mantics, is Propositional Neighborhood Logic (PNL), inter-
preted over various classes of interval structures (all, dense,
and discrete linear orders, integers, natural numbers) [20].
PNL is a fragment of HS with only two modalities, corre-
sponding to Allen’s relationsmeetsandmet by. Basic log-



2

ical properties of PNL (representation theorems, axiomatic
systems) have been investigated by Goranko et al. in [20].
The satisfiability problem for PNL has been addressed by
Bresolin et al. in [10]. NEXPTIME-completeness with re-
spect to the classes of all linearly ordered domains, well-
ordered domains, finite linearly ordered domains, and natu-
ral numbers has been proved via a reduction to the satisfi-
ability problem for the two-variable fragment of first-order
logic for binary relational structures over ordered domains
[32]. Finally, a tableau system for the right-neighborhood
fragment of PNL, interpreted over the natural numbers, has
been developed in [14]; such a system has been later ex-
tended to full PNL over the integers [12].

Various metric extensions to point-based temporal logics
have been proposed in the literature. They include Timed
Propositional Temporal Logic (TPTL), introduced by Alur
and Henzinger in [2], Montanari et al.’s two-sorted metric
temporal logics [28,29], Hirshfeld and Rabinovich’s Quanti-
tative Monadic Logic of Order [25], and Owakine and Wor-
rell’s Metric Temporal Logic [33], which refines and ex-
tends Koymans’ Metric Temporal Logic [27]. Little work
in that respect has been done in the interval logic setting.
Among the few contributions, we mention the extension of
Allen’s Interval Algebra with a notion of distance developed
by Kautz and Ladkin in [26]. The most important quantita-
tive interval temporal logic is Duration Calculus (DC) [24,
38], an interval logic for real-time systems originally devel-
oped by Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn [16],
based on Moszkowski’s ITL [31], which is quite expressive,
but generally undecidable. A number of variants and frag-
ments of DC have been proposed to model and to reason
about real-time processes and systems [5,15,17,38]. Many
of them recover decidability by imposing semantic restric-
tions, such as thelocality principle, that essentially reduce
the interval system to a point-based one.

In this paper, we present a family of non-conservative
metric extensions of PNL, which allow one to expressmet-
ric propertiesof interval structures over natural numbers.
We mainly focus our attention on the most expressive lan-
guage in this class, calledMetric PNL (MPNL, for short).
MPNL features a family of special atomic propositions rep-
resenting integer constraints (equalities and inequalities) on
the length of the intervals over which they are evaluated.
MPNL is particularly suitable for quantitative interval rea-
soning, and thus it emerges as a viable alternative to ex-
isting logical systems for quantitative temporal reasoning.
The right-neighborhood fragment of MPNL has been intro-
duced and studied in [11]; full MPNL has been considered
in [8] – the main precursor of this paper, which extends and
strengthens it substantially. The main contributions of the
paper are:

(i) the proposal of a number of extensions of PNL with met-
ric modalities and with interval length constraints, which

turn out to be very expressive and natural to reason about
interval structures over natural numbers;

(ii) expressive completeness of MPNL with respect to
FO2

r [N,=,<,s], a proper fragment of the two-variable
fragment FO2[N,=,<,s] of FO with equality, order, suc-
cessor, and any family of binary relations, interpreted on
natural numbers. We also show how to extend MPNL to
obtain an interval logic MPNL+ which is expressively
complete with respect to full FO2[N,=,<,s];

(iii) decidability and complexity of the satisfiability prob-
lem for MPNL, and undecidability of the satisfiability
problem for MPNL+, and thus for FO2[N,=,<,s];

(iv) analysis and classification of the expressive power of
all the proposed metric extensions of PNL.

The results in this paper can be compared with analogous re-
sults for PNL and FO2[=,<] (the two-variable fragment of
FO with equality on linear orders with a family of uninter-
preted binary relations), given in [9,10]. Unlike FO2[=,<],
which was already known to be decidable [32], the decid-
ability of FO2

r [N,=,<,s] is a consequence of the decidabil-
ity and expressive completeness results for MPNL. At the
best of our knowledge, this result is new and of independent
interest.

The paper is organized as follows. In Section 2, we first
recall the basic features of PNL, and then we present the
metric language MPNL. In Section 3, we illustrate various
possible applications of MPNL. Next, in Section 4, we prove
the decidability of the logic. Expressive completeness re-
sults are given in Section 5. Finally, in Section 6, we classify
various fragments of MPNL with respect to their expressive
power. In the conclusions, we provide an assessment of the
work and we mention open problems.

2 PNL and MPNL

2.1 Propositional Neighborhood Interval Logics: PNL

The language of the propositional neighborhood logics PNL
consists of a setAP of atomic propositions, the proposi-
tional connectives¬,∨, and the modal operators♦r and♦l ,
corresponding to the Allen’s relationmeetsand its inverse
met-by[1]. The other propositional connectives, as well as
the logical constants⊤ (true) and⊥ ( f alse), and the dual
modal operators�r and�l , are defined as usual. Proposi-
tional neighborhood logics have been studied both in the
so-calledstrict semantics, which excludes point-intervals,
and in thenon-strictone, which includes them. In the latter
case, it is natural to include in the language a special atomic
proposition (modal constant), usually denoted byπ , to iden-
tify point-intervals (PNLπ ). The differences in expressive
power in the various cases have been studied in [20]. In this
paper, we focus on the non-strict semantics. Theformulae,
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denoted byϕ ,ψ , . . ., are generated by the following gram-
mar:

ϕ ::= π | p | ¬ϕ | ϕ ∨ϕ | ♦r ϕ | ♦l ϕ .

Given a linearly ordered domainD = 〈D,<〉, a (non-
strict) intervaloverD is any ordered pair[i, j] such thati ≤ j.
An interval structureis a pair〈D,I(D)〉, whereI(D) is the
set of all intervals overD. The semantics of PNL is given
in terms ofmodelsof the form M = 〈D,I(D),V〉, where
〈D,I(D)〉 is an interval structure andV : AP → 2I(D) is a
valuation function assigning to every atomic proposition the
set of intervals over which it holds. We recursively define
the satisfiability relation as follows:

– (M, [i, j]  π iff i = j;)
– M, [i, j]  p iff p∈V([i, j]), for anyp∈ AP ;
– M, [i, j]  ¬ϕ iff it is not the case thatM, [i, j]  ϕ ;
– M, [i, j]  ϕ ∨ψ iff M, [i, j]  ϕ or M, [i, j]  ψ ;
– M, [i, j]  ♦r ϕ iff there existsh≥ j such thatM, [ j,h] 

ϕ ;
– M, [i, j]  ♦l ϕ iff there existsh≤ i such thatM, [h, i]  ϕ .

It is worth pointing out that the operators corresponding to
Allen’s relationsbeforeandlater can be easily expressed by
the formulae♦r(¬π ∧♦rϕ) and♦l (¬π ∧♦l ϕ), respectively.

We say that a PNL-formulaϕ is satisfiableif there exists
a modelM and an interval[b,e] such thatM, [b,e]  ϕ .

The logics PNL and PNLπ have been studied in [9,20],
where the decidability of their satisfiability problem has been
shown. A tableau-based method for deciding satisfiability in
the right-neighborhood fragment of PNL, called RPNL, has
been presented in [14], and subsequently extended to the full
PNL/PNLπ in [12]. In this paper, we focus our attention on
the class of interval structures over the ordering of the natu-
ral numbersN = (ω ,<).

2.2 Metric PNL: MPNL

In this section, we introduce metric extensions of proposi-
tional neighborhood logics interpreted overN. Depending
on the choice of the metric operators, a hierarchy of lan-
guages can be built. In Section 6, we will study the relative
expressive power of these languages.

From now on, we denote byδ the distancefunction
on N: δ : N×N → N, defined asδ (i, j) = |i − j|. The re-
sults presented here may be suitably rephrased for any func-
tion δ satisfying the standard properties of distance over
a linear ordering. The most expressive metric extension of
PNL is based onatomic propositions for length constraints.
These are pre-interpreted propositional letters referring to
the length of the current interval. Such propositions can be
seen as the metric generalizations of the modal constantπ .

For each∼∈ {<, ≤, =, ≥, >}, we introduce the length
constraintlen∼k, with the following semantics:

M, [i, j]  len∼k iff δ (i, j) ∼ k.

Note that equality and inequality constraints are mutu-
ally definable:

M, [i, j]  len=k ⇔ M, [i, j]  ¬len>k for k = 0

M, [i, j]  len=k ⇔ M, [i, j]  len>k−1 ∧¬len>k for k > 0

M, [i, j]  len<k ⇔ M, [i, j]  len=0 ∨ . . .∨ len=k−1

M, [i, j]  len≤k ⇔ M, [i, j]  len=0 ∨ . . .∨ len=k

M, [i, j]  len>k ⇔ M, [i, j]  ¬len≤k

M, [i, j]  len≥k ⇔ M, [i, j]  ¬len<k

In Section 4, we will limit ourselves to constraints of
typelen=k, without taking into account the increase in length
of formulae due to the above translation.

3 MPNL at Work

Finding an optimal balance between expressive power and
computational complexity is a challenge for every knowl-
edge representation and reasoning formalism. Interval tem-
poral logics are not an exception in this respect. We believe
that MPNL offers a good compromise between these two
requirements. In the following, we show that MPNL makes
it possible to encode (metric versionsof) basic operators of
point-based linear temporal logic (LTL) as well as interval
modalities corresponding to Allen’s relations; in addition,
we show that it allows one to express limited forms of fuzzi-
ness.

First, MPNL is expressive enough to encode the strict
sometimes in the future(resp.,sometimes in the past) opera-
tor of LTL:

♦r(len>0 ∧♦r(len=0∧ p)).

Moreover, length constraints allow one to define a met-
ric version of theuntil (resp.,since) operator. For instance,
the condition: ‘p is true at a point in the future at distance
k from the current interval and, until that point, q is true
(pointwise)’ can be expressed as follows:

♦r(len=k ∧♦r(len=0 ∧ p))∧�r(len<k → ♦r(len=0 ∧q)).

MPNL can also be used to constrain interval length and
to express metric versions of basic interval relations. First,
we can constrain the length of the intervals over which a
given property holds to be at least (resp., at most, exactly)k.
As an example, the following formula constrainsp to hold
only over intervals of lengthl , with k≤ l ≤ k′:

[G](p→ len≥k ∧ len≤k′), (bl)
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where theuniversal modality[G] (for all intervals) is defined
as in [20]. By exploiting such a capability, a metric version
of all, but one (the ‘during’ relation), Allen’s relations can
be expressed. As an example, we can state that: ‘p holds only
over intervals of length l, with k≤ l ≤ k′, and any p-interval
begins a q-interval’ as follows:

(bl)∧ [G]
k′∧

i=k

(p∧ len=i → ♦l ♦r(len>i ∧q)).

As another example, a metric version of Allen’s relation
contains(the inverse of the ‘during’ relation) can be ex-
pressed by pairing (bl) with:

[G]
k′∧

i=k

(p∧ len=i →
∨

j 6=0, j+ j ′<i

(♦l ♦r(len=j ∧♦r(len=j′ ∧q)))).

The relationships between the satisfiability problem for
PNL and the consistency problem for Allen’s Interval Net-
works have been investigated in some detail in [34] (in [13],
Bresolin et al. consider the spatial generalization of sucha
problem to Weak Spatial PNL and Rectangle Algebra). In
general, the satisfiability problem for an expressing enough
interval temporal logic is much harder than the problem of
checking the consistency of a constraint network. The higher
complexity of the former is balanced by the expressiveness
of the interval logic that allows one to deal with, for instance,
negative and disjunctive constraints. In [34], the author ex-
ploits the universal modality to simulatenominals, which
can then be used to force two specific intervals to satisfy a
given Allen’s relation. Notice that there is no contradiction
between the limits to PNL expressive power and its ability
to encode (the consistency problem for) constraint networks:
PNL allows one to capture Allen’s relations among afinite
number of intervals only (you need a nominal for each inter-
val). The addition of a metric dimension makes it possible
to avoid the use of nominals, but it forces one to assign a
finite set of possible values for the length of involved inter-
vals (possibly infinitely many). Whenever there exist some
natural bounds for the given finite set of intervals, constraint
networks involving all but one Allen’s relations can be eas-
ily encoded in MPNL (the resulting encoding turns out to be
much more natural than the one using nominals).

Finally, MPNL allows one to express some form of ‘fuzzi-
ness’. As an example, the condition: ‘p is true over the cur-
rent interval and q is true over some interval close to it’,
where by ‘close’ we mean that the right endpoint of thep-
interval is at distance at mostk from the left endpoint of the
q-interval, can be expressed as follows:

p∧ (♦r♦l (len<k ∧♦l ♦rq)∨♦r(len<k ∧♦rq)).

MPNL capabilities suffice to cope with various applica-
tion domains. As a source of illustration, we show how to

express some basic safety requirements of the classicalgas-
burner example(a formalization of such an example in DC
can be found in [38]). Let the propositional letterGas(resp.,
Flame, Leak) be used to state that gas is flowing (resp., burn-
ing, leaking), e.g.,M, [i, j]  Gasmeans that gas is flowing
over the interval[i, j]. The formula

[G](Leak↔ Gas∧¬Flame)

states thatLeakholds over an interval if and only if gas is
flowing and not burning over that interval. The condition: ‘it
never happens that gas is leaking for more than k time units’
can be expressed as:

[G](¬(len>k∧Leak)).

Similarly, the condition: ‘the gas burner will not leak un-
interruptedly for k time units after the last leakage’ can be
formalized as:

[G](Leak→¬♦l (len<k ∧♦l Leak)).

We conclude the section by mentioning two application
domains where MPNL features are well-suited, namely, med-
ical guidelines and ambient intelligence. In the former area
(see [35]), events with duration, e.g., ‘running a fever’, pos-
sibly paired with metric constraints, e.g., ‘if a patient is run-
ning a fever for more than k time units, then administrate
him/her drug D’, are quite common. In general, many rel-
evant phenomena are inherently interval-based as there are
no general rules to deduce their occurrence from point-based
data. The use of temporal logic in ambient intelligence, spe-
cifically in the area of Smart Homes [3,19], has been advo-
cated by Combi et al. in [18]. MPNL can be successfully
used to express safety requirements referring to situations
that can be properly modeled only in terms of time intervals,
e.g., ‘being in the kitchen’.

4 Decidability of MPNL

In this section, we use a model-theoretic argument to show
that the satisfiability problem for MPNL has a bounded-
model property with respect to finitely presentable ultimately
periodic models, and it is therefore decidable. From now on,
let ϕ be any MPNL-formula and letAP be the set of propo-
sition letters of the language.

Definition 1 The closureof ϕ is the setCL(ϕ) of all sub-
formulae of♦r ϕ and their negations (we identify¬¬ψ with
ψ). Let

⊙
∈ {♦r ,♦l ,�r ,�l}. The set oftemporal requests

fromCL(ϕ) is the setTF(ϕ) = {
⊙

ψ |
⊙

ψ ∈CL(ϕ)}.

Definition 2 A ϕ-atomis a setA⊆CL(ϕ) such that for ev-
ery ψ ∈CL(ϕ), ψ ∈ A iff ¬ψ 6∈ A and for everyψ1∨ψ2 ∈

CL(ϕ), ψ1∨ψ2 ∈ A iff ψ1 ∈ A or ψ2 ∈ A.
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We denote the set of allϕ-atoms byAϕ . One can eas-
ily prove that |CL(ϕ)| ≤ 2(|ϕ |+ 1), |TF(ϕ)| ≤ 2|ϕ |, and
|Aϕ | ≤ 2|ϕ|+1. We now introduce a suitable labeling of inter-
val structures based onϕ-atoms.

Definition 3 A (ϕ-)labeled interval structure(LIS for short)
is a structureL = 〈D,I(D),L〉, where〈D,I(D)〉 is the inter-
val structure over natural numbers (or over a finite subset
of it) and L : I(D) → Aϕ is a labeling functionsuch that
for every pair of neighboring intervals[i, j], [ j,h] ∈ I(D), if
�rψ ∈ L([i, j]), thenψ ∈ L([ j,h]), and if �lψ ∈ L([ j,h]),
thenψ ∈ L([i, j]).

Notice that every interval modelM induces a LIS, whose
labeling function is the valuation function:

ψ ∈ L([i, j]) iff M, [i, j]  ψ .

Thus, LIS can be thought of asquasi-modelsfor ϕ , in
which the truth of formulae containing neither♦r , ♦l nor
length constraints is determined by the labeling (due to the
definitions ofϕ-atom and LIS). To obtain a model, we must
also guarantee that the truth of the other formulae is in ac-
cordance with the labeling. To this end, we introduce the
notion of fulfilling LIS.

Definition 4 A LIS L = 〈D,I(D),L〉 is fulfilling iff:
– for every length constraintlen=k ∈ CL(ϕ) and interval

[i, j] ∈ I(D), len=k ∈ L([i, j]) iff δ (i, j) = k;
– for every temporal formula♦r ψ (resp.,♦l ψ) in TF(ϕ)

and interval[i, j] ∈ I(D), if ♦r ψ (resp.,♦l ψ) in L([i, j]),
then there existsh≥ j (resp.,h≤ i) such thatψ ∈ L([ j,
h]) (resp.,L([h, i])).

Clearly, every interval model is a fulfilling LIS. Conversely,
every fulfilling LISL = 〈D,I(D),L〉 can be transformed into
a modelM(L) by defining the valuation in accordance with
the labeling. Then, one can prove that for everyψ ∈CL(ϕ)
and interval[i, j] ∈ I(D),

ψ ∈ L([i, j]) iff M(L), [i, j] |= ψ

by a routine induction onψ .

Definition 5 Given a LISL = 〈D,I(D),L〉 and a pointi ∈
D, the set ofleft (resp.,right) temporal requestsat i, denoted
by REQL(i) (resp.,REQR(i)), is the set of temporal formu-
lae of the forms♦l ϕ , �l ϕ (resp.,♦r ϕ , �rϕ) in TF(ϕ) be-
longing to the labeling of any interval beginning ini (resp.,
ending ini). For any j ∈ D, we writeREQ( j) for REQL( j)
∪ REQR( j)-

We denote byREQ(ϕ) the set of all possible sets of

temporal requests overCL(ϕ). Let m be |TF(ϕ)|
2 and k be

the maximum among the natural numbers occurring in the
length constraints inϕ . For example, ifϕ = ♦r(len>3∧ p→

♦l (len>5 ∧ q)), then m = 2 andk = 5. It is easy to show

that |REQ(ϕ)| = 2m. Moreover, given any set of temporal
requestsREQR( j) (resp.,REQL(i)), it can be easily proved
that all of them can be satisfied using at mostm different
points greater thanj (resp., less thani).

Now, consider any MPNL-formulaϕ such thatϕ is satis-
fiable on a finite model. We have to show that we can restrict
our attention to models with a bounded size.

Definition 6 Given any LISL = 〈D,I(D),L〉, we say that
a k-sequence inL is a sequence ofk consecutive points
in D. Given ak-sequenceσ in L , its sequence of requests
REQ(σ) is defined as thek-sequence of temporal requests
at the points inσ . We say thati ∈ L starts a k-sequenceσ if
the temporal requests ati, . . . , i +k−1 form an occurrence
of REQ(σ). Moreover, the sequence of requestsREQ(σ)

is said to beabundantin L iff it has at least 2· (m2 + m) ·
|REQ(ϕ)|+1 disjoint occurrences inD.

Lemma 1 LetL = 〈D,I(D),L〉 be any LIS such that the se-
quence REQ(σ) is abundant in it. Then, there exists an index
q such that for each elementR∈ {REQ(d) | iq < d < iq+1},
where iq and iq+1 begin the q-th and the q+1-th occurrence
of σ , respectively,R occurs at least m2 +m times before iq

and at least m2 +m times after iq+1 +k−1.

Proof To prove this property, we proceed by contradiction.
Suppose thatREQ(σ) is abundant, that is, it occursn > 2 ·
(m2+m) · |REQ(ϕ)| times inD and, for eachq with 1≤ q≤
n, there exists a pointd(q) with iq < d(q) < iq+1, such that
REQ(d(q)) occurs less than(m2+m) times beforeiq or less
than(m2 + m) times afterjq+1 + k−1. Let ∆ = {d(q)|1≤

q≤ n} the set of all such points. By hypothesis, there cannot
be anyR∈ REQ(ϕ) such thatR occurs more than 2· (m2+

m) times in∆ . Then|∆ | ≤ 2· (m2+m) · |REQ(ϕ)|, which is
a contradiction. ⊓⊔

Lemma 2 Let L = 〈D,I(D),L〉 be a fulfilling LIS that sat-
isfiesϕ . Suppose that there exists an abundant k-sequence
of requests REQ(σ) and let q be the index whose existence
is guaranteed by Lemma 1. Then, there exists a fulfilling LIS
L = 〈D,I(D),L〉 that satisfiesϕ such thatD = D \ {iq, . . . ,
iq+1−1}.

Proof Let us fix a fulfilling LIS L = 〈D,I(D),L〉 satisfy-
ing ϕ at some[i, j], an abundantk-sequenceREQ(σ) in
L , and the indexq identified by Lemma 1. Now, letD− =

{iq, . . . , iq+1−1} andD′ = D\D− and, consequently, the set
of all intervalsI(D′). For sake of readability, the points inD′

will be denoted by the same numbers as inD. Now, we have
the problem of suitably re-defining the evaluation of all in-
tervals onD′ in a way preserving the temporal requests at all
points inD′ and still satisfyingϕ .

First, we consider all pointsd < iq and for each of them,
for all p such that 0≤ p≤ k−1, we putL′([d, iq+1 + p]) =
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L([d, iq + p]). In such a way, we guarantee that the intervals
whose length has been shortened as an effect of the elimina-
tion of the points inD− have a correct labeling in terms of
all length constraints of the formslen=k′ and¬len=k′ . More-
over, since the requests (in both directions) inL at iq+1 + p
are equal to the requests atiq + p, this operation is safe
with respect to universal and existential requirements. Fi-
nally, since the lengths of intervals beginning beforeiq and
ending afteriq+1 +k−1 are greater thank both inL and in
L ′, there is no need to change their labeling. (Notice that, in
D′, iq+1 turns out to be the immediate successor ofiq−1.)

The structureL ′ = 〈D′,I(D′),L′〉 defined so far is obvi-
ously a LIS, but it is not necessarily a fulfilling one. The re-
moval of the points in the setD− and the relabelling needed
to guarantee correctness w.r.t. length constraints may gen-
eratedefects, that is, situations in which there exist a point
d < iq (resp.,d ≥ iq+1 + k) and a formula of the type♦r ψ
(resp.,♦l ψ) belonging toREQ(d), such thatψ was satis-
fied in L by some interval[d,d′] (resp.,[d′,d]), and it is not
satisfied inL ′, either becaused′ ∈ D−, or because the la-
belling of [d,d′] (resp.,[d′,d]) has changed due to the above
relabeling. We have to show how to repair such defects.
Suppose that there existsd < iq (the case whend ≥ iq+1

is similar) and some formula♦r ψ ∈ REQ(d) that it is not
satisfied anymore inL ′. SinceL is a fulfilling LIS, then
there exists an interval[d,d′] such thatψ ∈ L([d,d′]) and
eitherd′ ∈ D− or ψ 6∈ L′([d,d′]). Notice that, for this to be
the case,δ (d′,d) > k in L . By Lemma 1, there are at least
n = m2 + m points{d̄1, d̄2, . . . , d̄n} after hq+1 + k− 1 such
that REQ(d̄i) = REQ(d′) for i = 1, . . . ,n. We will chose a
point of the typed̄i to satisfy the request. To prevent such a
change making one or more requests inREQL(d̄i) no longer
satisfied, we have to preliminarily redefine the labelingL′.
First, we take a minimal set of pointsPd ⊂ D′ such that,
for each♦l τ ∈ REQL(d), there exists a pointe∈ Pd such
that τ ∈ L([e,d]). Now, for each pointe∈ Pd, let Pd

e be a
minimal set of points such that, for every♦r ξ ∈ REQR(e),
there exists a pointf ∈Pd

e such thatξ ∈L([e, f ]). Finally, let
Q=

⋃

e∈Pd Pd
e : by the minimality requirements, we have that

|Q| ≤ m2, since each set of requests can be satisfied using at
mostmpoints. Similarly, requests inREQR(d) need at most
mpoints to be satisfied. Consider the setH = {d̄1, d̄2, . . . , d̄n}\

Q: since, by construction,|H| ≥m, there must be some point
d̄h ∈ H such that inL the interval[d, d̄h] satisfies only those
♦r -formulae ofREQ(d), if any, that are satisfied at other in-
tervals starting atd. Thus we can putL ′([d, d̄h]) = L([d,d′]),
and correct this defect without creating a new one. Since
δ (d̄h,d) > k in L ′, this operation does not introduce incon-
sistencies with the length constraints in the labeling, either.

Now, if we repeat the above procedure sufficiently many
times, we obtain a finite sequence of LISs, the last one of
which is the requiredL . To conclude the proof, we have to
show thatL is still a LIS for ϕ . Let [d,d′] be the interval

of L satisfying the formulaϕ . Since♦r ϕ ∈CL(ϕ), we have
that ♦r ϕ ∈ REQ(d). If d is still present inL , then, since
the final LIS is fulfilling, we have that there must exists an
interval[d,d′′] labelled withϕ . If d is not a point ofL , then
Lemma 1 guarantees that there exists another pointd′′ in L
such thatREQ(d′′) = REQ(d). Again, sinceL is fulfilling,
we have that there must exists an interval[d′′,d′′′] labelled
with ϕ . ⊓⊔

The lemma above guarantees that we can eliminate sequences
of requests that occur ‘sufficiently many’ times in a LIS,
without ‘spoiling’ the LIS. This eventually allows us to prove
the following small-model theorem for finite satisfiabilityof
MPNL.

Theorem 1 (Small-Model Theorem) If ϕ is any finitely
satisfiable formula of MPNL, then there exists a fulfilling,
finite LISL = 〈D,I(D),L〉 that satisfiesϕ such that|D| ≤

|REQ(ϕ)|k · (2 · (m2+m) · |REQ(ϕ)|+1) ·k+k−1.

Proof Let L = 〈D,I(D),L〉 be any finite fulfilling LIS that
satisfiesϕ . If |D| ≤ |REQ(ϕ)|k(2(m2+m)|REQ(ϕ)|+1)k+
k−1, then we are done. Otherwise, by an application of the
pigeonhole principle, for at least one sequenceREQ(σ) of
lengthk, we have thatREQ(σ) is abundant. In this case, we
apply Lemma 2 sufficiently many times to get the requested
maximum length. ⊓⊔

To deal with formulae that are satisfiable only over infi-
nite models, we need to provide these models with a finite
(periodic) representation, and to bound the lengths of their
prefix and period.

Definition 7 A LIS L = 〈D,I(D),L〉 is ultimately periodic,
with prefix L, period P, andthreshold kif, for every interval
[i, j],

– if i ≥ L, thenL([i, j]) = L([i +P, j +P]);
– if j ≥ L andδ ( j, i) > k, thenL([i, j]) = L([i, j +P]).

It is worth noticing that, in every ultimately periodic LIS,
REQ(i) = REQ(i +P), for i ≥ L, and that every ultimately
periodic LIS is finitely presentable: it suffices to define its
labeling only on the intervals[i, j] such that j ≤ L + P+

max(k,P); thereafter, it can be uniquely extended by peri-
odicity. Furthermore, we can identify a finite LIS with an
ultimately periodic one with a periodP = 0.

Lemma 3 Let L = 〈N,I(N),L〉 be an infinite fulfilling LIS
overN that satisfies a formulaϕ . Then, there exists an infi-
nite ultimately periodic fulfilling LISL = 〈N,I(N),L〉 over
N that satisfiesϕ .

Proof First of all, let[b,e] be the interval satisfyingϕ in L .
We define the setREQin f (ϕ) as the subset ofREQ(ϕ) con-
taining all and only the sets of requests that occurs infinitely
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often in L . Let L ∈ N be the first point inL such that the
following conditions are met:

i) L ≥ e;
ii) for each pointr ≥ L, REQ(r) ∈ REQin f (ϕ);
iii) each set of requestsR ∈ REQin f (ϕ), occurs at least

m2 +m times beforeL, and at leastm2 +m times betweenL
andM;

iv) for each pointi < L, and any formula♦rτ ∈ REQ(i),
τ is satisfied on some interval[i, j] where j < M; and,

v) thek-sequences of requests starting atL and atM are
the same.

We putP = M −L. We will build an infinite ultimately
periodic structureL over the domainN with prefixL, period
P and thresholdk. To this end, first, for all pointsd < M we
put REQ(d) = REQ(d). Then, for all pointsM + n, where
0 ≤ n < P, we putREQ(M + n) = REQ(L + n) (by con-
dition (v), this is already the case with 0≤ n < k). Now,
we will define the labeling. For all intervals[i, j] such that
j < M we putL([i, j]) = L([i, j]). As for any interval[i, j],
with M ≤ j < M +P, (a) if i ≥ M, we putL([i, j]) = L([i −
P, j −P]), (b) if i < M, we must distinguish three cases: (b1)
if δ (i, j) ≤ k , then we putL([i, j]) = L([i, j]) (asREQ(i)
has not been modified andREQ( j) = REQ( j) by condition
(v)); (b2) if k < δ (i, j) ≤ k+ P, we putL([i, j]) = L([i,h])

for someh such thatREQ( j) = REQ(h) and δ (i,h) > k,
where the existence of such anh is guaranteed by condition
(ii) (in fact, if M ≤ j < M + K, we can takeh = j); (b3)
if δ (i, j) > k+P, we putL([i, j]) = L([i, j −P]). This con-
struction labels all subintervals of[0,M + P] in a way that
is consistent with the definition of LIS, but that is not nec-
essarily fulfilling. It could be the case that for some point
L ≤ i ≤ M and some formula♦r ψ ∈ REQ(i) there are no in-
tervals satisfyingψ , because the only interval(s) satisfying
it in L are of the type[i,d] whered > M +P andδ (d, i) > k.
We fix suchdefectsas follows. SinceREQ(i) = REQ(i),
there exists a pointj > i such thatψ ∈ L([i, j]) in the orig-
inal model. By condition iii), there exists at leastm2 + m
points betweenM andM + P with the same set of requests
of j, and at leastm2 + m points betweenL andM with the
same set of requests ofj. We proceed exactly as in the proof
of Lemma 2, and we fix the defect choosing a pointd′ be-
tweenM andM +P, puttingL([i,d′]) =L([i,d]). By repeat-
ing such a procedure sufficiently many times going from left
to right, we build a LIS where every request of every point
i ≤ M is fulfilled beforeM + P. To conclude the construc-
tion we extend the so definedL overI(N) in the unique way
satisfying the conditions in Definition 7 for an ultimate peri-
odic LIS with prefixL, periodP, and thresholdk, that is: for
everyi > M +P we putREQ(i) = REQ(i −n ·P) wheren is
the least non-negative integer such thati − n ·P ≤ M + P;
and, for every interval[i, j] such that j > M + P, we put
L([i, j]) = L([i−n·P, j −q·P]), wheren andq are the least
non-negative integers such thati − nP≤ M and j − qP≤

M + P. It is straightforward to check that the labelingL
so defined respects all length constraintslen=k′ and their
negations for all intervals, and that the resulting structure
L = 〈N,I(N),L〉 is an ultimately periodic fulfilling LIS sat-
isfying ϕ on [b,e]. ⊓⊔

Theorem 2 (Small Periodic Model Theorem) If ϕ is any
satisfiable formula of MPNL, then there exists a fulfilling,
ultimately periodic LIS satisfyingϕ such that both the length
L of the prefix and the length P of the period are less or equal
to |REQ(ϕ)|k · (2 · (m2+m) · |REQ(ϕ)|+1) ·k+k−1.

Proof Existence of an ultimately periodic fulfilling LIS is
guaranteed by Lemma 3. The bound on the prefix and of the
period can be proved by exploiting Lemma 2. ⊓⊔

Corollary 1 The satisfiability problem for MPNL, interpreted
overN, is decidable.

The results of this section immediately give a double
exponential time nondeterministic procedure for checking
the satisfiability of any MPNL-formulaϕ . Such a proce-
dure nondeterministically checks models whose size is in
generalO(2|ϕ|k), where|ϕ | is the length of the formula to
be checked for satisfiability. It has been shown in [11] that,
in the case in whichk is represented in binary, the right-
neighborhood fragment of MPNL is complete for the class
EXPSPACE. This means that, in the general case, the com-
plexity for MPNL is located somewhere in between EX-
PSPACE and 2NEXPTIME (the exact complexity is still
an open problem). It is worth noticing that, wheneverk is
a constant, it does not influence the complexity class and
thus, since we have a NTIME(2|ϕ|) procedure for satisfiabil-
ity and a NEXPTIME-hardness result [14], we can conclude
that MPNL is NEXPTIME-complete. Similarly, whenk is
expressed in unary, the value ofk increases linearly with the
length of the formula and thus NTIME(2k|ϕ|)=NTIME(2|ϕ|2);
therefore, as in the previous case, MPNL is NEXPTIME-
complete.

5 MPNL and Two-Variable Fragments of First Order
Logic for (N,<,s)

5.1 PNL and Two-Variable Fragments of First Order Logic

Here we will recall some results from [10] which will then
be extended to MPNL. Let us denote by FO2[=] the frag-
ment of first-order logic with equality whose language con-
tains only two distinct variables. We denote its formulae by
α,β , . . .. For example, the formula∀x(P(x) →∀y∃xQ(x,y))
belongs to FO2, and the formula∀x(P(x) → ∀y∃z(Q(z,y)∧
Q(z,x))) does not. We first focus our attention on the exten-
sion FO2[=,<] of FO2[=] over a purely relational vocabu-
lary {=,<,P,Q, . . .} including equality and a distinguished
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binary relation< interpreted as a linear ordering. Since atoms
in the two-variable fragment can involve at most two distinct
variables, we may further assume without loss of generality
that the arity of every relation in the considered vocabulary
is exactly 2. Letx andy be the two variables of the language.
The formulae of FO2[=,<] can be defined recursively as fol-
lows:

α ::= A0 | A1 | ¬α | α ∨β | ∃xα | ∃yα
A0 ::= x = x | x = y | y = x | y = y | x < y | y < x

A1 ::= P(x,x) | P(x,y) | P(y,x) | P(y,y),

whereA1 deals with (uninterpreted) binary predicates. For
technical convenience, we assume that both variablesx and
y occur as (possibly vacuous) free variables in every formula
α ∈ FO2[<], that is,α = α(x,y). Formulas of FO2[=,<] are
interpreted overrelational modelsof the formM = 〈D,V〉,
whereD = 〈D,<〉 is a linearly ordered set, andV is avalua-
tion functionthat assigns to every binary relationP a subset
of D×D. When we evaluate a formulaα(x,y) on a pair of
elementsa,b, we writeα(a,b) for α[x := a,y := b].

The satisfiability problem for FO2 without equality was
proved decidable by Scott [36] by a satisfiability preserv-
ing reduction of any FO2-formula to a formula of the form

∀x∀yψ0 ∧
m∧

i=1
∀x∃yψi , which belongs to the Gödel’s prefix-

defined decidable class of first-order formulae, shown by
Gödel to have decidable satisfiability problem [6]. Later on,
Mortimer extended this result by including equality in the
language [30]. More recently, Grädel, Kolaitis, and Vardi
improved Mortimer’s result by lowering the complexity [22].
Finally, by building on techniques from [22] and taking ad-
vantage of an in-depth analysis of the basic 1-types and 2-
types in FO2[=,<]-models, Otto proved the decidability of
FO2[=,<] over various classes of orderings, and in partic-
ular over the natural numbers. It has been shown in [9] that
FO2[=,<] is expressively complete with respect to PNLπ .
For the comparison of these logics suitable truth-preserving
model transformations between interval models and rela-
tional models have been defined. We will sketch this trans-
formations here, since they will be used to extend the result
to expressive completeness of MPNL with respect to a suit-
able extension of FO2[=,<].

In order to define the mapping from interval models to
relational models, we associate a binary relationP with ev-
ery propositional variablep∈AP of the considered interval
logic [37].

Definition 8 ([9]) Given an interval modelM = 〈I(D),VM〉,
the corresponding relational modelη(M) is a pair of the
type〈D,Vη(M)〉, where for allp∈ AP , Vη(M)(P) = {(i, j) ∈
D×D : [i, j] ∈VM(p)}.

To define the mapping from relational models to inter-
val ones, we have to solve a technical problem: the truth

of formulae in interval models is evaluated only on ordered
pairs[i, j], with i ≤ j, while in relational models there is no
such constraint. To deal with this problem, we associate two
propositional lettersp≤ and p≥ of the interval logic with
every binary relationP.

Definition 9 ([9]) Given a relational modelM = 〈D,VM 〉,
the corresponding interval modelζ (M) is a pair 〈I(D),

Vζ (M)〉 such that for any binary relationP and any interval
[i, j],we have that[i, j]∈Vζ (M (p≤) iff (i, j)∈VM(P) and that
[i, j] ∈Vζ (M)(p≥) iff ( j, i) ∈VM (P).

Definition 10 Given an interval logic LI and a first-order
logic LFO, we say that LFO is at least as expressive asLI ,
denoted by LI � LFO, if there exists an effective transla-
tion τ from LI to LFO such that for any interval modelM,
any interval[a,b], and any formulaϕ of LI , M, [a,b]  ϕ iff
η(M) |= τ(ϕ)(a,b). Conversely, we say that LI is at least
as expressive asLFO, denote by LFO � LI , if there exists
an effective translationτ ′ from LFO to LI such that for any
relational modelM, any pair(i, j) of elements, and any for-
mulaϕ of LFO, M |= ϕ(i, j) iff ζ (M), [i, j]  τ ′(ϕ) if i ≤ j or
ζ (M), [ j, i]  τ ′(ϕ) otherwise. We say that LI is as expres-
sive asLFO, denoted by LI ≡ LFO, if L I � LFO and LFO �
LI . Then, LI ≺ LFO and LFO ≺ LI are defined as expected.

Theorem 3 ([9])PNLπ ≡ FO2[=,<], when interpreted over
any class of linearly ordered sets.

5.2 The Logic FO2[N,=,<,s]

Here we consider the extension of FO2[=,<] interpreted
overN with the successor functions, denoted by FO2[N,=

,<,s]. The terms of the language FO2[N,=,<,s] are of the
type sk(z), wherez∈ {x,y} andsk(z) denotesz whenk =
0 ands(s(. . .s

︸ ︷︷ ︸

k

(z) . . .)) when k > 0. Then, the formulae of

FO2[N,=,<,s] can be defined as in the case of the logic
FO2[=,<], mutatis mutandis. Using 2-pebble games and a
standard model-theoretic argument, it is possible to prove
that FO2[N,=,<,s] is strictly more expressive than FO2[=
,<]. That result, however, is also a direct consequence of the
expressive completeness results established in [9] and in this
paper.

Theorem 4 The satisfiability problem forFO2[N,=,<,s],
interpreted over any class of linearly ordered sets with at
least one infinite ascending or descending sequence, is un-
decidable.

Proof For the sake of simplicity, we assume that FO2[N,=
,<,s] is interpreted overN; nevertheless, the proof can be
adapted to any class of linearly ordered sets with at least one
infinite ascending or descending sequence. LetO = {(i, j) :
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i, j ∈N∧0≤ i ≤ j} be the second octant of the integer plane
Z×Z. Thetiling problem forO is the problem of establish-
ing whether a given finite set of tile typesT = {t1, . . . ,tk}
can tileO. For every tile typeti ∈ T , let right(ti), le f t(ti),
up(ti), anddown(ti) be the colors of the corresponding sides
of ti . To solve the problem, one must find a functionf :O→

T such that

right( f (n,m)) = le f t( f (n+1,m)), with n < m, and
up( f (n,m)) = down( f (n,m+1)).

Using König’s lemma one can prove that a tiling system tiles
O if and only if it tiles arbitrarily large squares if and only
if it tiles N×N if and only if it tilesZ×Z. The undecidabil-
ity of the first of these tiling problems immediately follows
from that of the last one [6]. The reduction from the tiling
problem forO to the satisfiability problem for FO2[N,=

,<,s] takes advantage of some special relational symbols,
namely those in the setLet= {∗,Tile, Id, Ide, Idb, Idd,Corr,
T1,T2, . . . ,Tk}. The reduction consists of three main steps:
(i) the encoding of an infinite chain that will be used to rep-
resent the tiles, (ii) the encoding of the above-neighbor rela-
tion by means of the relationCorr, and (iii) the encoding of
the right-neighbor relation, which will make use of the suc-
cessor function. Pairs of successive points are used as cells
to arrange the tiling. Next, we use the relationId to repre-
sent a row of the octant. AnyId consists of a sequence of
intervals, each one of which is used either to represent a part
of the plane or to separate twoIds. In the former case, it
is labeled with the relationTile, while, in the latter case, it
is labeled with the relation∗. Consider now the following
formulae:

∀x,y
∧

P∈Let

(P(x,y) ↔ x < y) (1)

∀x,y(y = s(x) ↔∗(x,y)∨Tile(x,y)) (2)

∀x,y(∗(x,y) →¬Tile(x,y)) (3)

y = s(x)∧∗(x,y)∧∀x∃y(y = s(x)) (4)

∃x(x = s(y)∧Tile(y,x)∧∗(s(y),s(x))) (5)

The conjunctionα1 of the above formulae, guarantees that
there exists an infinite sequencex0,x1, . . . , xω of points. More-
over,α1 guarantees that each pairxi ,xi+1 is labelled either
by ∗ or byTile, but not both. Finally, we have that∗(x0,x1),

Tile(x1,x2), and∗(x2,x3). Now, consider the conjunctionα2

of α1 and the following formulae:

∃y(y = s2(x)∧ Id(x,y)) (6)

∀x,y(Id(x,y) →∗(y,s(y))) (7)

∀x,y(Id(x,y) →∗(x,s(x))) (8)

∀x,y(∗(x,y) →∃y(s(x) < y∧ Id(x,y))) (9)

∀x,y(Id(x,y) → Ide(s(x),y)) (10)

∀x,y(Ide(x,y)∧s(x) < y→ Ide(s(x),y)) (11)

∀x,y(Id(x,s(y)) → Idb(x,y)) (12)

∀x,y(Idb(x,s(y))∧x < y→ Idb(x,y)) (13)

∀x,y((Ide(x,s(y))∨ Idd(x,s(y)))∧x < y→ Idd(x,y)) (14)

∀x,y((Idb(x,y)∨ Ide(x,y)∨ Idd(x,y)) →¬Id(x,y)) (15)

∀x,y
∧

ν,µ∈{b,d,e},ν 6=µ
(Idν(x,y) →¬Idµ(x,y)). (16)

The formulaα2 builds a chain ofId, in such a way that it
holdsId(x0,x3), eachId is followed by anotherId, for each
pair x < y such thatId(x,y) then∗(x,x+ 1), and if Id(x,y)
then¬Id(z,t), for all x≤ z≤ t ≤ y ((x,y) 6= (z,t)). The rela-
tions of the typeIdν are used to ensure the last condition. For
example, ifId(x,y), then, for allx < z< y we putIdb(x,z),
and similarly forIde andIdd; then, we impose that no pair
of points is labeled byIdν and Idµ at the same time, thus
preventing twoId to be one inside, overlapping, starting, or
ending the other. As a third step, letα3 be the conjunction
of α2 with the following formulae:

∀x,y(Id(x,y) →Corr(s(x),s(y))) (17)

∀x,y(Corr(x,y) → Tile(x,s(x))∧Tile(y,s(y))) (18)

∀x,y(Corr(x,y)∧∗(s(x),s2(x)) →

Tile(y,s(y))∧Tile(s(y),s2(y))∧∗(s2(x),s3(x))) (19)

∀x,y(Corr(x,y)∧¬∗ (s(x),s2(x)) →Corr(s(x),s(y))) (20)

∀x,y(Id(x,y) →¬Corr(x,y)). (21)

If Tile(x,y) andTile(z,t), we say that the two tiles areabove
connectedif and only if Corr(x,z). If α3 holds, then, as a
first consequence, we have that the first tile of eachId is
above connected with the first tile of the successiveId. Then,
by taking advantage of the successor function, from this ini-
tial connection we make sure that eachi-th Tile of any Id
is above connected with thei-th Tile of the successiveId,
and, finally, the second formula of the above set enures that
eachId has exactly one tile less than the successive one.
This means that, ifα3 holds, thej-th Id codifies exactly the
j-th layer of the octant. Finally, letαT be the conjunction of
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α3 and the following formulae:

∀x,y(Tile(x,y) →
∨

T∈T

T(x,y)∧
∧

T,T ′∈T ,T 6=T ′

¬(T(x,y)∧T ′(x,y)) (22)

∀x,y(T(x,y)∧Tile(s(x),s(y)) → (23)
∨

T ′∈T ,right(T)=le f t(T ′)

T ′(s(x),s(y)))

∀x,y(Corr(x,y)∧T(x,s(x))) →
∨

T ′∈T ,up(T)=down(T′)

T ′(y,s(y))). (24)

Given any set of tilesT the formulaαT is satisfiable if and
only if T can tileO, as claimed. Thus, the satisfiability prob-
lem of FO2[N,=,<,s] is undecidable. ⊓⊔

5.3 Expressive completeness of MPNL for a fragment of
FO2[N,=,<,s]

Let FO2
r [N,=,<,s] be the fragment of FO2[N,=,<,s] with

the following restriction: if both variablesx andy occur in
the scope of an occurrence of a binary relation, other than
= and<, then the successor functions cannot occur in the
scope of that occurrence. As an example, each of the formu-
lae sk(x) = sm(y),sk(x) < sm(y),P(sk(x),sm(x)),P(x,y) be-
longs to FO2

r [N,=,<,s], but none ofP(x,s(y)) andP(s(x),y)
does. By using 2-pebble games and a standard model-theo-
retic argument, one can show that:

FO2[=,<] ≺ FO2
r [N,=,<,s] ≺ FO2[N,=,<,s].

First, we define the standard translationSTx,y of MPNLl -
formulae into FO2

r [N,=,<,s], as follows:

STx,y(ϕ) = x≤ y∧ST′x,y(ϕ),

wherex,yare the two first-order variables in FO2
r [N,=,<,s],

and

ST′x,y(p) = P(x,y)
ST′x,y(len=k) = sk(x) = y
ST′x,y(ϕ ∨ψ) = ST′x,y(ϕ)∨ST′x,y(ψ)

ST′x,y(¬ϕ) = ¬ST′x,y(ϕ)

ST′x,y(♦l ϕ) = ∃y(y≤ x∧ST′y,x(ϕ))

ST′x,y(♦r ϕ) = ∃x(y≤ x∧ST′y,x(ϕ)).

Lemma 4 For any MPNLl -formula ϕ , any interval model
M = 〈N,I(N),V〉, and any interval[a,b] in M:

M, [a,b]  ϕ iff η(M) |= STx,y(ϕ)[x := a,y := b].

Proof Routine structural induction onϕ .

Now, the inverse translationτ from FO2[N,=,<,s] to
MPNLl is given in Table 1, and we have the following lemma.

Lemma 5 For everyFO2
r [N,=,<,s]-formulaα(x,y), every

FO2[N,=,<,s]-modelM = 〈N, VM〉 and every pair i, j ∈ N,
with i ≤ j:

(i) M |= α(i, j) if and only if ζ (M), [i, j]  τ[x,y](α),
and

(ii) M |= α( j, i) if and only ifζ (M), [i, j]  τ[y,x](α).

Proof The proof is by structural induction on the complex-
ity of α (for the sake of simplicity, we only prove claim (i);
the other one can be proved similarly):

– α = (sk(x) = sm(x)). If k = m, then bothα and its trans-
lationτ[x,y](α) = ⊤ are true, while ifk 6= m, thenα and
τ[x,y](α) =⊥ are both false; the same applies whenx is
used instead ofy;

– α = (sk(x) < sm(x)). If k = m, then bothα and its trans-
lation τ[x,y](α) = ⊥ are false, while ifk 6= m, thenα
andτ[x,y](α) = ⊤ are both true; the same applies when
x is used instead ofy;

– α = (sk(x) = sm(y)). Assumingi < j, if k < m then
sk(i) < sm( j), and, sinceM |= α(i, j) iff sk(i) < sm( j),
we have thatM 6|= α(i, j); on the other handτ[x,y](α) =
⊥. If m≤ k, sk(i) = sm( j) iff j − i = k−m, that isM |=

α(i, j) iff ζ (M), [i, j] |= len=k−m. Likewise for the cases
α = (sm(y) = sk(x)), α = (sk(x) = sm(y)), α = (sm(y) <

sk(x));
– α = (P(sk(x),sm(x))). Assumingi < j, if k < m then

we have thatsm(x)−sk(x) = m−k, and thatsk(x)−x =

k. Thus,M |= α(i, j) iff P is true over the pair(sk(i),
sm−k(sk(i))), that is,M |= α(i, j) iff ζ (M), [i, j]  ♦l ♦r

(len=k∧♦r (len=m−k ∧ p≤)). A similar reasoning can be
followed for the case ofm < k. If k = m, thensk(x) =

sm(x), so P must be true over a point-interval, specifi-
cally, identified by the pair(sk(i),sk(i)). Thus, we have
thatM |= α(i, j) iff ζ (M), [i, j]  ♦l ♦r(len=k∧♦r(len=0

∧p≤∧ p≥)). Likewise, wheny substitutesx;
– α = P(x,y) or α = P(y,x). The claim follows from the

valuation ofp≤ andp≥;
– The Boolean cases are straightforward;
– α = ∃xβ . Suppose thatM |= α(i, j). Then, there isl ∈M

such thatM |= β (l , j). There are two (non-exclusive)
cases:j ≤ l and l ≤ j. If b ≤ c, by the inductive hy-
pothesis, we have thatζ (M), [ j, l ]  τ[y,x](β ) and thus
ζ (M), [i, j]  ♦r(τ[y,x](β )). Likewise, if l ≤ j, by the in-
ductive hypothesis, we have thatζ (M), [l , j]  τ[x,y](β )

and thus for everyr such thatj ≤ r, ζ (M), [ j, r]  ♦l (τ[x,
y](β )), that is, ζ (M), [a,b]  �r♦l (τ[x,y](β )). Hence
ζ (M), [i, j]  ♦r(τ[y,x](β )) ∨�r♦l (τ[x,y](β )), that is,
ζ (M), [i, j]  τ[x,y](α). For the converse direction, it
suffices to note that the interval[i, j] has at least one right
neighbor, viz.[ j, j], and thus the above argument can be
reversed;

– α = ∃yβ . Analogous to the previous case.
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τ [x,y](sk(z) = sm(z)) = ⊤ (z∈ {x,y}), if k = m
= ⊥ (z∈ {x,y}), if k 6= m

τ [x,y](sk(z) < sm(z)) = ⊥ (z∈ {x,y}), if k≥ m
= ⊤ (z∈ {x,y}), if k < m

τ [x,y](sk(x) = sm(y))= ⊥, if k < m
= len=k−m, if k≥ m

τ [x,y](sk(x) < sm(y))= ⊤, if k < m
= len>k−m, if k≥ m

τ [x,y](sm(y) < sk(x))= ⊥, if k < m
= len<k−m, if k≥ m

τ [x,y](¬α) = ¬τ [x,y](α)

τ [x,y](α ∨β ) = τ [x,y](α)∨ τ [x,y](β )
τ [x,y](∃xβ ) = ♦r (τ [y,x](β ))∨�r♦l (τ [x,y](β ))
τ [x,y](∃yβ ) = ♦l (τ [y,x](β ))∨�l♦r (τ [x,y](β ))
τ [x,y](P(sk(x),sm(x))) = ♦l♦r (len=k ∧♦r (len=m−k ∧ p≤)), if k < m

= ♦l♦r (len=k ∧♦r (len=0 ∧ p≤ ∧ p≥)), if k = m
= ♦l♦r (len=m ∧♦r (len=k−m ∧ p≥)), if k > m

τ [x,y](P(sk(y),sm(y))) = ♦r(len=k ∧♦r(len=m−k∧ p≤)), if k < m
= ♦r(len=k ∧♦r(len=0 ∧ p≤ ∧ p≥)), if k = m
= ♦r(len=m ∧♦r (len=k−m ∧ p≥)), if k > m

τ [x,y](P(x,y)) = p≤

τ [x,y](P(y,x)) = p≥

Table 1 Translation clauses from FO2r [N,=,<,s] to MPNL.

♦+k
be ♦

+(m−k)
e p≤, if k < m

(len>0 ∧♦+k
be p≤)∨ (len=0 ∧♦+k

be (p≤ ∧ p≥), if k = m

(len>k−m∧♦+m
be ♦

+(k−m)
b p≤)∨

(len=k−m∧♦+m
be ♦

+(k−m)
b (p≤ ∧ p≥)∨

(len<k−m∧♦+k
be ♦

+(k−m)
b p≥, if k > m

Table 2 Extending the translation from FO2[N,=,<,s] to MPNL: the
clause forτ [x,y](P(sk(x),sm(y)))

Corollary 2 For everyFO2
r [N,=,<,s]-formulaα(x,y) and

everyFO2[N,=,<,s]-model M= 〈N,VM〉, M |= ∀x∀yα(x,y)
if and only ifζ (M)  τ[x,y](α)∧ τ[y,x](α).

Theorem 5 FO2
r [N,=,<,s] ≡ MPNL.

5.4 Extension of MPNL expressively complete for
FO2[N,=,<,s]

A natural way to extend MPNL to cover the entire FO2[N,=
,<,s] would be to add diamond modalities that shift respec-
tively the beginning, the end, or both endpoints of the cur-
rent interval to the right by a prescribed distance, viz:

– M, [i, j]  ♦+k
e ψ iff M, [i, j +k]  ψ

– M, [i, j]  ♦+k
b ψ iff ( i + k ≤ j andM, [i + k, j]  ψ) or

(i +k > j andM, [ j, i +k]  ψ).
– M, [i, j]  ♦+k

be ψ iff M, [i +k, j +k]  ψ

We denote the resulting language as MPNL+. The stan-
dard translationST′x,y of MPNL-formulae into FO2[N,=,<
,s] extends to MPNL+ as follows, whereα[t/z] is the result
of simultaneous substitution of the termt for all free occur-
rences ofz in α.

ST′x,y(♦
+k
e ψ) = ST′x,y(ψ)[sk(y)/y].

ST′x,y(♦
+k
b ψ) = ST′x,y(ψ)[sk(x)/x].

ST′x,y(♦
+k
be ψ) = ST′x,y(ψ)[sk(x)/x,sk(y)/y].

Note that ifST′x,y(ψ)∈FO2[N,=,<,s] thenST′x,y(ψ)[sk(x)/x,
sm(y)/y] ∈ FO2[N,=,<,s] for anyk,m∈ N, so the transla-
tion of all formulae of MPNL+ will remain within FO2[N,=

CDT FO3
2[=,<]

≡
@@ @@≺ ≺

MPNL + FO2[N,=,<,s]

MPNL FO2
r [N,=,<,s]

@@ @@

≡

≡

≺ ≺

PNL+ FO2[N,=,<]

@@ @@
≡

≺ ≺

Fig. 1 Expressive completeness results for interval logics.

,<,s]. Conversely, we can now extend the translationτ of
FO2

r [N,=,<,s] into MPNL to a translation of FO2[N,=,<

,s] into MPNL+ by adding the clauses for the atomic formu-
lae in Table 2. The extensions of the expressive complete-
ness results are routine.

To conclude this subsection, we recall that Venema [37]
has shown in a similar way that the interval temporal logic
CDT, involving binary modalities based on the ternary in-
terval relation ’chop’ and its residuals (denoted respectively
C, D and T) is expressively complete for the fragment of
first-order logic with equality with three variables of which
at most two are free, denoted by FO3

2[=,<]. Note that, when
interpreted inN the successor function is definable in this
fragment, which therefore strictly extends FO2[N,=,<,s].
Thus, a hierarchy of expressive completeness results arises,
depicted in Fig. 1. Note also that the proposed translations
from the first order languages towards the interval ones are
exponential in the size of the input formula in all three cases,
due to the clauses for the existential quantifier1.

6 Classifying the Expressive Power of Metric
Propositional Neighborhood Interval Logics

In the previous sections, we discussed the expressive power
and the computational properties of MPNL. A natural ques-
tion is whether there exist other interesting variants of PNL

1 At present we do not know whether a polynomial translation for
any of these cases exists.
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♦<k
o ψ ⇔ ⊥ (k = 0) ♦oψ ⇔ ♦≥0

o ψ
♦≤k−1

o ψ (k > 0) ♦
[0,∞]
o ψ

♦
[k,k′]
o ψ ⇔ ♦

[k,k′)
o ψ (k′ = ∞) ♦<k

o ψ ⇔ ♦=0
o ψ ∨ . . . ∨

♦=k−1
o ψ

♦
[k,k′+1)
o ψ (k′ 6= ∞) ♦=k

o ψ ⇔ ♦
[k,k]
o ψ

♦
[k,k′)
o ψ ⇔ ⊥ (k′ = 0) ♦>k

o ψ ⇔ ♦≥k+1
o ψ

♦
[k,k′−1]
o (k′ > 0) ♦

(k,∞)
o ψ

♦
[k,k′]
o ψ (k′ = ∞) ♦≥k

o ψ ⇔ ♦
[k,∞]
o ψ

♦
(k,k′]
o ψ ⇔ ♦

(k,k′+1)
o ψ (k′ 6= ∞) ♦

(k,k′)
o ψ ⇔ ⊥ (k′ = 0)

♦
(k,k′)
o ψ (k′ = ∞) ♦

[k+1,k′−1]
o ψ (k′ > 0)

♦
(k,k′)
o ψ ⇔ ⊥ (k′ = 0) ♦

[k+1,k′]
o ψ (k′ = ∞)

♦
(k,k′−1]
o ( k′ > 0)

♦
(k,k′]
o ψ (k′ = ∞)

Table 3 Equivalences between metric operators,o∈ {r, l}.

that can be further analyzed. In this section we define a fam-
ily of metric languages, and we compare their expressive
power. As it will be proved in the following, MPNL is able
to encode all the languages in the family, thus being the most
expressive metric extension of PNL.

Let ∼∈ {<,≤,=,≥,>}, k ∈ N, andk′ ∈ N∪ {∞}. We

consider a set ofmetric modalitiesof the type♦∼k
r , ♦

[k,k′ ]
r ,

♦
(k,k′)
r , ♦

[k,k′)
r , ♦

(k,k′ ]
r , as well as their inverses♦∼k

l , ♦
[k,k′ ]
l ,

♦
(k,k′)
l , ♦

[k,k′)
l , ♦

(k,k′ ]
l , with the following semantics:

– M, [i, j]  ♦∼k
r ψ iff there existsm≥ j such thatδ ( j,m)∼

k andM, [ j,m]  ψ ;

– M, [i, j]  ♦
[k,k′ ]
r ψ iff there existsm≥ j such thatk ≤

δ ( j,m) ≤ k′ andM, [ j,m]  ψ ;

– M, [i, j]  ♦
(k,k′)
r ψ iff there existsm≥ j such thatk <

δ ( j,m) < k′ andM, [ j,m]  ψ ;

The truth clauses for♦[k,k′)
r and♦

[k,k′)
r , as well as those for

the inverse modalities, are defined likewise. It is easy to
show that all metric modalities are definable by exploiting
the length constraints, e.g.:

♦∼k
r ψ := ♦r(ψ ∧ len∼k),

and thus that all languages of the family are fragments of
MPNL. Letκ ∈ {< k,≤ k,= k,≥ k,> k, [k,k′],(k,k′), [k,k′),
(k,k′]}, and let♦κ

o be any of the two operators♦κ
l or♦κ

r . The
dual operators are defined as usual, that is,�κ

oψ =¬♦κ
o¬ψ .

Let ε be a special symbol such that♦εk
r = ♦r and♦εk

l = ♦l

for anyk and letS⊆ {ε,<,≤,=,≥,>, [],(), [),(]}. We will
denote by MPNLS the language that features:

(i) the modal operators♦∼k
l and♦∼k

r for eachk ∈ N and
∼∈ S∩{ε,<,≤,=,≥,>};

(ii) the modal operators♦[k,k′ ]
l and♦

[k,k′ ]
r (resp.,♦(k,k′)

l and

♦
(k,k′)
r , ♦

[k,k′)
l and ♦

[k,k′)
r , ♦

(k,k′]
l and ♦

(k,k′ ]
r ), for each

k ∈ N, k′ ∈ N∪ {∞}, if [] ∈ S (resp.,() ∈ S, [) ∈ S,
(] ∈ S).

We will denote by MPNLSl the extension of MPNLS with
the length constraints (this means that MPNL/0

l is exactly the
language MPNL of the previous sections). For the sake of
simplicity, we will omit the curly brackets in the superscript;
for example, ifS= {<,>}, we will write simply MPNL<,>

instead of MPNL{<,>}. Thus, we have that MPNLε≡PNL
and MPNLε

l ≡MPNLl . Moreover, by the following lemma,
we can reduce the number of interesting fragments:

Lemma 6 If o ∈ {r, l}, whenever♦<k
o (resp.,♦[k,k′ ]

o ,♦
(k,k′ ]
o )

is included in the language, then♦≤k
o (resp.,♦[k,k′)

o ,♦(k,k′)
o )

can be defined, and the other way around.

Proof See Table 3, left column. ⊓⊔

Thus, without loss of generality, from now on we can fo-
cus our attention on languages characterized by subsets of
{ε,<,=,>,≥, [],()}. As we will see, some languages will
be expressive enough to embed non-metric PNL, and some
others will not. We will use the termWeak Metric Proposi-
tional Neighborhood Logics(wMPNL) to denote the latter.

Definition 11 Let L and L’ be two languages for interval
logic. We say that L’ isat least as expressive asL denoted
by L � L’, if there exists an effective translationτ from L to
L’ (usually, defined inductively on the structure of formulae)
such that for every formulaϕ of L, M, [i, j]  ϕ if and only
if M, [i, j]  τ(ϕ), and we say that L isas expressive asL’,
denoted by L≡ L’, if both L � L’ and L’ � L, while we say
that L’ is strictly more expressive thanL, denoted by L≺ L’,
if L � L’ and L’ 6� L.

In order to compare the expressive power of interval
languages, we use bisimulation games [21] and bisimula-
tion [4]; since the former can be considered a generalization
of the latter, we give here a quick remind of bisimulation
games (defined here for interval logics).

We define the notion of aN-moves bisimulation game
(for the interval logic L) to be played by two players, Player
I and Player II, on a pair of L-modelsM, M′, with M =

〈D,I(D),V〉 andM′ = 〈D′,I(D′),V ′〉. The game starts from
a giveninitial configuration, where aconfigurationis a pair
of intervals([a,b], [a′,b′]), with [a,b] ∈ I(D) and [a′,b′] ∈
I(D′). A configuration([a,b], [a′,b′]) ismatchingif [a,b] and
[a′,b′] satisfy the same atomic propositions in their respec-
tive models. Themovesof the game depend on the modal
operators of L: for each♦ in the language of L, whereR♦

is the (interval) relation on which♦ is based, Player I can
play the corresponding move: chooseM (resp.,M′), and an
interval [c,d] (resp.,[c′,d′]) such that[a,b] R♦ [c,d] (resp.,
[a′,b′] R♦ [c′,d′]). Player II must reply by choosing an inter-
val [c′,d′] (resp.,[c,d]) in M′ (resp.,M), which leads to the
new configuration([c,d], [c′,d′]). If after any given round
the current configuration is not matching, Player I wins the
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game; otherwise, afterN rounds, Player II wins the game.
Intuitively, Player II has awinning strategyin theN-moves
bisimulation game on the modelsM and M′ with a given
initial configuration if she can win regardless of the moves
played by Player I; otherwise, Player I has a winning strat-
egy. A formal definition of winning strategy can be found
in [21]. The following key property of theN-move games
can be proved routinely, in analogy with similar results about
bisimulation games in modal logic [21]2.

Proposition 1 Let L be a finite interval language. For all
N ≥ 0, Player II has a winning strategy in the N-move L-
bisimulation game on M and M′ with initial configuration
([a,b], [a′,b′]) iff [a,b] and[a′,b′] satisfy the same N-formulas
over L with modal depth at most N.

6.1 The class of Weak Metric Propositional Neighborhood
Logics

Here we analyze the set of languages in wMPNL. Formally,
wMPNL is the subset of MPNL defined as follows:

wMPNL = {L | L ∈ MPNL and PNL6� L}.

The following lemma states some basic results which we
will use to classify languages in wMPNL.

Lemma 7 If o ∈ {r, l}, whenever any of the modalities in

{♦≥k
o ,♦

[k,k′ ]
o } (resp.,{♦=k

o ,♦
[k,k′ ]
o }, {♦≥k

o ,♦
(k,k′)
o ,♦

[k,k′ ]
o }), are

included in the language, then♦o (resp.,♦<k
o , ♦>k

o ) can be

defined. Similarly, whenever♦[k,k′]
o is included, then♦=k

o ,

♦≥k
o , and♦

(k,k′)
o can be defined.

Proof See Table 3, right column. ⊓⊔

Theorem 6 LetSw = {{<},{>},{=},{()}}. We have that
wMPNL = {MPNLS,MPNLS

l | S∈ Sw}.

Proof First, we show that MPNLS and MPNLS
l belong to

wMPNL for eachS∈ Sw. We have to show that PNL6�
MPNLS

l for eachS∈ Sw. As a consequence, we also have
that PNL 6� MPNLS for eachS∈ Sw. By Lemma 7, we have

that MPNL<
l � MPNL=

l and MPNL>l � MPNL()
l . Thus, it

suffices to show that PNL6� MPNL=
l and PNL6� MPNL()

l ,
as follows.

PNL 6�MPNL =
l . It is easy to show that classical, non-metric

modal operators of PNL can be expressed using formulae of

2 We refer to the notion of modal depth of a L-formulaϕ , which
is defined in the usual way. Let us denote bymdepth(ϕ) the modal
depth of ϕ . It can be inductively defined as follows: (i) mdepth(p)
= 0, for eachp ∈ AP; (ii) mdepth(¬ϕ) = mdepth(ϕ),mdepth(ϕ ∨
ψ) = max{mdepth(ϕ),mdepth(ψ)},mdepth(♦ϕ) = mdepth(ϕ)+ 1,
for each♦ of the language

MPNL<

MPNL=

MPNL=
l ≡ MPNL<

l

MPNL>

MPNL()

MPNL()
l ≡ MPNL>

l

Fig. 2 Relative expressive power of the metric languages belonging to
wMPNL. An arrow going from L to L′ denotes that L′ is strictly more
expressive than L. Languages that are no connected through any path
are incomparable.

MPNL=
l of infinite length. For example, it is possible to ex-

press the formula♦r p of PNL by means the infinite formu-
lae♦=0

r p∨♦=1
r p∨ . . .♦=i

r p∨ . . .. Nevertheless, suppose, by
contradiction, that there exists a finite formulaϕ ∈ MPNL=

l
such thatϕ ≡ ♦r p. This means thatϕ contains a finite num-
ber of modal operators. Lett ∈ N be the largest number
such that♦=t

r or ♦=t
l occurs inϕ , and, for anyt ∈ N, define

tMPNL =
l as the restriction of MPNL=l to the set of modali-

ties{♦=k
r , ♦=k

l | 0≤ k≤ t}. Now, letM = 〈D = N,I(D),V〉
andM′ = 〈D′ = N,I(D′),V ′〉, AP = {p}, V(p) = {[1,t+
2]}, V ′(p) = /0, andZ ⊂ I(D)× I(D′) defined asZ = {([i, j],
[i′, j ′]) | δ (i, j) ≤ t}. It is possible to show thatZ is a bisimu-
lation fortMPNL =

l . SinceM, [1,1]  ♦r p, M′, [1′,1′] 6 ♦r p,
and[1,1] is Z-related with[1′,1′], we have a contradiction.

PNL 6� MPNL ()
l . Again, suppose that for someϕ ∈ MPNL()

l
it is the case thatϕ ≡ ♦r p. ConsiderM = 〈D = N,I(D),V〉,
M′ = 〈D′ = N,I(D′),V ′〉, AP = {p}, V(p) = {[1,1]}, and
V ′(p) = /0, whileZ ⊂ I(D)× I(D′) is defined asZ = {([i, j],

[i′, j ′]) | i 6= j}. As before,Z is a bisimulation for MPNL()l .
SinceM, [0,1]  ♦r p, M′, [0′,1′] 6 ♦r p, and[0,1] isZ-related
with [0′,1′], we have a contradiction.

Now,we show that no other language belongs to wMPNL,
that is, neither MPNLS nor MPNLS

l belongs to wMPNL for
anyS 6∈ Sw. Let S⊆ {ε,<,=,>,≥, [],()} such thatS 6∈ Sw.
We must show that PNL� MPNLS and PNL� MPNLS

l .
Since MPNLS � MPNLS

l , it suffices to show that PNL�
MPNLS. If ε ∈ S, then clearly PNL� MPNLS, since PNL
≡ MPNLε . If ≥∈ S or [] ∈ S, then the result immediately
follows from Lemma 7. If{<,>} ⊆ S, then the thesis im-
mediately follows by the fact that♦oψ is defined by♦<1

o ψ∨
♦>0

o ψ for eacho ∈ {r, l}. The rest of the cases are conse-
quences of the others and of previous lemmas. ⊓⊔

We now establish how the various languages of wMPNL
relate to each other in terms of expressive power.

Theorem 7 The relative expressive power of the languages
of the class wMPNL is as depicted in Fig. 2, where each
arrow means that the language at the top is strictly more
expressive than the one at the bottom.
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Proof By Lemma 7, we already know that MPNL< �

MPNL=, MPNL<
l � MPNL=

l , MPNL> � MPNL(), and that

MPNL>
l � MPNL()

l . To complete the proof, it remains to
show that MPNL= 6� MPNL<, MPNL=

l � MPNL<
l ,

MPNL() 6� MPNL>, and MPNL()l � MPNL>
l .

MPNL = 6� MPNL <. It suffices to show that♦=k
r cannot be

defined in MPNL<. Suppose the contrary, and letM = 〈D =

N,I(D),V〉, M′ = 〈D′ = {0′}, I(D′),V ′〉,AP = {p},V(p)=
I(D), V ′(p) = I(D′) = {[0′,0′]}, andZ = I(D)× I(D′). It is
possible to show thatZ is a bisimulation for MPNL<. Since
it holds thatM, [0,0]  ♦=1

r p, M′, [0′,0′] 6 ♦=1
r p, and[0,0]

is Z-related to[0′,0′], we have a contradiction.

MPNL () 6� MPNL >. Consider, for anyt ∈ N, the language
tMPNL>, that is, as before, the restriction of MPNL> to
the set of modalities{♦>k

r ,♦>k
l | 0≤ k≤ t}. Let M = 〈D =

N,I(D),V〉, M′ = 〈D′ = N, I(D′),V ′〉, AP = {p}, V(p) =

{[i, j] | δ (i, j) is odd andδ (i, j) ≤ t + N + 1}, V ′(p) = {[i′,
j ′] | δ (i, j) is odd,δ (i, j) ≤ t +N+1, and[i, j] 6= [a−1,a]},
wherea= N(t +N+1), and consider the relationZ = {([i, j],
[k′, l ′]) | δ (i, j) = δ (k, l) ≤ t +N+1 and[k, l ] 6= [a−1,a]}∪

{([i, j], [i′,k′]) | δ (i, j) > t +N+1 andδ (i,k) > t +N+1}∪
{([a− 1,a], [(a− 3)′,a′]),([a− 1,a], [(a− 1)′,(a+ 2)′])} ∪

{([i, j], [(a− 1)′,a′]) | δ (i, j) = 2}. It is possible to show
thatZ represents a winning strategy for Player II at the ini-
tial configurarion([a,b], [a′,b′]) (for anyb) in theN-moves

bisimulation game fortMPNL>. But M, [a,b]  ♦
(0,2)
l p and

M′, [a′,b′] 6 ♦
(0,2)
l p, which means that the formula♦(0,2)

l p
cannot be expressed intMPNL> for anyt,N ∈ N. Thus, we
have the result.

MPNL =
l � MPNL <

l , MPNL ()
l � MPNL >

l . This is imme-
diate by observing that, for eacho ∈ {r, l}, ♦=k

o ψ is de-

fined by♦<k+1
o (len=k ∧ψ), and that♦(k,k′)

o ψ is defined by
♦>k

o (len<k′ ∧ψ) (if k′ 6= ∞) or by♦>k
o ψ (if k′ = ∞).

We have MPNL< ≺ MPNL=, MPNL<
l ≡ MPNL=

l , MPNL>

≺ MPNL(), and MPNL>l ≡ MPNL()
l as a consequence of

the above results. Now, we want to show that each language
in the set{MPNL<, MPNL=, MPNL=

l } is incomparable
with any of the languages of the set{MPNL>, MPNL(),

MPNL()
l }. To this end it suffices to show that MPNL< 6�

MPNL()
l and MPNL> 6� MPNL=

l , which can be done as in
Theorem 6. Finally, we must show that MPNL= ≺ MPNL=

l

and MPNL() ≺ MPNL()
l . It is easy to see that MPNL= �

MPNL=
l and MPNL() � MPNL()

l . To show that MPNL=l 6�
MPNL=, consider, for anyt ∈ N, the languagetMPNL=,
defined as usual. LetM = 〈D = N,I(D),V〉, M′ = 〈D′ = N,

I(D′),V ′〉, AP = /0,V(p) = V ′(p) = /0, and consider the re-
lation Z = {([i, j], [i′, j ′]) | i, j ∈ N} ∪ {([a,a+ 1], [a′,(a+
2)′])}∪{([i, j], [(i +1)′,( j +1)′]) | i, j ∈ N}, wherea = Nt.
It is possible to show thatZ represents a winning strategy
for Player II at the initial configurarion([a,a+ 1], [a′,(a+

2)′]) in the N-moves bisimulation game fortMPNL=. But
M, [a,a + 1]  len=1 and M′, [a′,(a + 2)′] 6 len=1, which
means that the formulalen=1 cannot be expressed in the lan-
guagetMPNL= for any t,N ∈ N. Thus, we have the result.
By exploiting a very similar argument, it is possible to show

that MPNL()
l 6� MPNL(). ⊓⊔

6.2 Expressive Power of Languages of the Class MPNL

In this section we deal with the problem of classifying all the
fragments of the class MPNL with respect to their relative
expressive power. Fig. 3 shows how the various languages
are related to each other.

Lemma 8 The following equivalences hold:

1. MPNL<,> ≡ MPNL<,≥;
2. MPNL<,() ≡ MPNL=,() ≡ MPNL=,> ≡ MPNL=,≥ ≡

MPNL[];
3. MPNL>,ε ≡ MPNL≥;
4. MPNL≥,() ≡ MPNL(),ε .

Proof It suffices to use Lemma 7 and the equivalences in
Table 4 (left column). ⊓⊔

Corollary 3 If S= {ε,<,=,>,≥,(), []}, then we have that

MPNLS≡ MPNL[] and MPNLSl ≡ MPNL[]
l .

Theorem 8 The relative expressive power of the languages
of the class MPNL is as depicted in Fig. 3, where each arrow
means that the language at the top is strictly more expressive
than the one at the bottom.

Proof To prove this result, one can use very similar argu-
ments based on bisimulations (and bisimulation games) as
in the previous theorems, plus the equivalences in Table 4,
right column, and all the above results. As an example, we
present here only the proof of one case, namely MPNL< 6�

MPNL(),ε . To this end, consider, for anyt ∈ N, the language
tMPNL(),ε , defined as usual. LetM = 〈D = N,I(D),V〉, M′ =
〈D′ = N, I(D′),V ′〉, AP = p, V(p) = {[i, i], [i, i + 1] | i ∈
N},V′(p) = {[i′, i′], [i′,(i + 1)′] | i ∈ N} \ {[a′,a′]}, where
a= N(t +2N), and consider the relationZ = {([i, j], [k′, l ′]) |
δ (i, j) = δ (k, l) and[k, l ] 6= [a,a]} ∪ {([a,a], [a′,(a + 1)′]),

([a,a], [(a−1)′,a′])}∪ {([i, i +2], [a′,a′]) | i ∈ N}. It is pos-
sible to show thatZ represents a winning strategy for Player
II at the initial configuration([a,b], [a′,b′]) (for anyb) in the
N-moves bisimulation game fortMPNL(),ε . But M, [a,b] 

♦<1
o p andM′, [a′,b′] 6 ♦<1

o p, which means that the formula
♦<1

o p cannot be expressed intMPNL(),ε for any t,N ∈ N.
Thus, we have the result. ⊓⊔
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♦≥k
o ψ ⇔ ♦<1

o ψ ∨♦>0
o ψ k = 0 ♦<k

o ψ ⇔ ♦
[0,k−1]
o ψ k > 0

♦>k−1
o ψ k > 0 ⊥ k = 0

♦
(k,k′)
o ψ ⇔ ♦=k+1

o ψ ∨ . . .∨♦=k′−1
o ψ ∨⊥ k 6= ∞ ♦>k

o ψ ⇔ ♦
[k+1,∞]
o ψ

♦>k
o ψ k = ∞ ♦

[k,k′]
o ψ ⇔ ♦o(len≥k ∧ len≤k′ ∧ψ) k′ 6= ∞

♦
[k,k′]
o ψ ⇔ ♦

(k−1,k′+1)
o ψ k > 0,k′ 6= ∞ ♦o(len≥k ∧ψ) k′ = ∞

♦<k′+1
o ψ k = 0,k′ 6= ∞ ♦=k

o ψ ⇔ ♦o(len=k ∧ψ)

♦
(k−1,k′)
o ψ k > 0,k′ = ∞ ♦

(k,k′)
o ψ ⇔ ♦o(len>k ∧ len<k′ ∧ψ) k′ 6= ∞

♦
(k,k′)
o ψ ∨♦<1

o ψ k = 0,k′ = ∞ ♦o(len>k ∧ψ) k′ = ∞
♦≥k

o ψ ⇔ ♦oψ k = 0
♦>k−1

o ψ k > 0

Table 4 More equivalences between metric operators,o∈ {r, l}.

MPNLε ≡ PNL

MPNL<,ε MPNL>,ε

MPNL=,ε MPNL<,> MPNL(),ε

MPNL[]

MPNL<

MPNL=

MPNL>

MPNL()

MPNL=
l MPNL()

l

MPNLl

Fig. 3 Relative expressive power of the metric languages belonging to MPNL. Fragments inside the boxes belong to wMPNL (see Fig. 2).

PNLπ NEXPTIME FO2[=,<] [9] NEXPTIME
complete complete [32]

MPNL 2NEXPTIME, FO2
r [N,=,<,s] 3NEXPTIME,

NEXPTIME NEXPTIME
hard hard

MPNL+ undecidable FO2[N,=,<,s] undecidable

Table 5 Complexity and expressive completeness results.

7 Concluding remarks

In this paper we have presented and studied metric exten-
sions of Propositional Neighborhood Logic over the inter-
val structure of natural numbersN. We have demonstrated
that these are expressive and natural languages to reason
about that structure by proving the complexity and expres-
sive completeness results summarized in Table 5. First, we
have considered the most expressive language of this class,
MPNL, and shown the decidability of its satisfiability prob-
lem. Then, we have considered an appropriate fragment,
called FO2

r [N,=,<,s], of FO2[N,=,<,s], that is, the two-
variable fragment of first order logic with equality, order,
successor, and any family of binary relations, interpreted
on the structure of natural numbers, and have proved that
MPNL is expressively complete for it. As a consequence, we

have obtained a decidability result for FO2
r [N,=,<,s]. We

have then showed how to extend MPNL to obtain an interval
logic expressively complete for the entire FO2[N,=,<,s],
which we have proved to be undecidable. Finally, we have
discussed the variety of metric logics and their expressive-
ness. The results obtained here are amenable to some fairly
straightforward generalizations, e.g., fromN to Z.

One important open problem is to find the exact com-
plexity of the satisfiability problem for MPNL, when con-
straints are represented in binary, and the identification of
the fragment(s) of MPNL where the complexity jumps oc-
cur. Another interesting open problem is to identify more
precisely the (un)decidability border amongst the family of
MPNL logics.
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