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Abstract Interval temporal logics formalize reasoning a- cover full FG?|N, =, <, ], but, unexpectedly, the latter (and
bout interval structures over linearly (or partially) ordé  hence the former) turns out to be undecidable.

domains, where time intervals are the primitive ontologi-

cal entities and truth of formulae is defined relative to time

intervals, rather than time points. In this paper, we intro-| |ntroduction

duce and study Metric Propositional Neighborhood Logic

(MPNL) over natural numbers. MPNL features two modal-|nterval temporal logics provide a natural framework fante
ities referring, respectively, to an interval that is “mgf'b  poral reasoning about interval structures over linearly (o
the current one and to an interval that “meets” the currenpartially) ordered domains. They take time intervals as the
one, plus an infinite set of length constraints, regarded agrimitive ontological entities and define truth of formulae
atomic propositions, to constrain the lengths of interMls  relative to time intervals, rather than time points. Ingrv
argue that MPNL can be successfully used in different areaggics feature modal operators that correspond to various
of computer science to combine qualitative and quant#ativrelations between pairs of intervals. In particular, thelwe
interval temporal reasoning, thus providing a viable alter known logic HS, introduced by Halpern and Shoham in [23],
native to well-established logical frameworks such as Dufeatures a set of modal operators that makes it possible to
ration Calculus. We show that MPNL is decidable in dou-express all Allen’s interval relations [1].

ble exponential ime and expressively complete with respec  |nterval-based formalisms have been extensively used
to a well-defined sub-fragment of the two-variable fragmentn various areas of computer science and artificial intelli-

FO?[N, =, <,9 offirst-order logic for linear orders with suc- gence, such as, for instance, formal specification and veri-
cessor function, interpreted over natural numbers. M@EoV fication of complex systems, temporal databases, planning
we show that MPNL can be extended in a natural way tgand plan validation, theories of action and change, natural
language processing, and constraint satisfaction prablem

However, most of them are subjected to severe syntactic
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and semantic restrictions that considerably weaken thkeir e
pressive power. Interval temporal logics relax these igstr
tions, thus allowing one to cope with much more complex
application domains and scenarios. Unfortunately, many of
them, including HS and the majority of its fragments, turn
out to be undecidable (a comprehensive survey can be found
in [7]). One of the few cases of decidable interval logic with
truly interval semantics, i.e., not reducible to point-dxse-
mantics, is Propositional Neighborhood Logic (PNL), inter
preted over various classes of interval structures (afisde
and discrete linear orders, integers, natural numberg) [20
PNL is a fragment of HS with only two modalities, corre-
sponding to Allen’s relationseetsandmet by Basic log-



ical properties of PNL (representation theorems, axiotnati  turn outto be very expressive and natural to reason about
systems) have been investigated by Goranko et al. in [20]. interval structures over natural numbers;
The satisfiability problem for PNL has been addressed byjii) expressive completeness of MPNL with respect to
Bresolin et al. in [10]. NEXPTIME-completeness with re-  FO?[N,=,<,s|, a proper fragment of the two-variable
spect to the classes of all linearly ordered domains, well- fragment F3|N, =, <, ] of FO with equality, order, suc-
ordered domains, finite linearly ordered domains, and natu- cessor, and any family of binary relations, interpreted on
ral numbers has been proved via a reduction to the satisfi- natural numbers. We also show how to extend MPNL to
ability problem for the two-variable fragment of first-orde obtain an interval logic MPNL which is expressively
logic for binary relational structures over ordered dorsain  complete with respect to full FIN, =, <, s];
[32]. Finally, a tableau system for the right-neighborhood(iii) decidability and complexity of the satisfiability pioe
fragment of PNL, interpreted over the natural numbers, has lem for MPNL, and undecidability of the satisfiability
been developed in [14]; such a system has been later ex- problem for MPNL', and thus for F@N,=, <.g;
tended to full PNL over the integers [12]. (iv) analysis and classification of the expressive power of
Various metric extensions to point-based temporal logics  all the proposed metric extensions of PNL.
have been proposed in the literature. They include Time
Propositional Temporal Logic (TPTL), introduced by Alur
and Henzinger in [2], Montanari et al.'s two-sorted metric
temporal logics [28, 29], Hirshfeld and Rabinovich’s Quant
tative Monadic Logic of Order [25], and Owakine and Wor-

q‘he results in this paper can be compared with analogous re-
sults for PNL and F@=, <] (the two-variable fragment of
FO with equality on linear orders with a family of uninter-
preted binary relations), given in [9,10]. Unlike Fl&, <],
, . . . . which was already known to be decidable [32], the decid-
rell's Metric Temporal Logic [33], which refines and ex- ~ . ) o

P gic [33] ability of FO?[N,=, <, g is a consequence of the decidabil-

tends Koymans' Metric Temporal Logic [27]. Little work | .
y P gic [27] ity and expressive completeness results for MPNL. At the

in that respect has been done in the interval logic settingf][j t of our knowledae. this result is new and of independent
Among the few contributions, we mention the extension of, estol ourknowledge, this resuitis new and o epende

Allen’s Interval Algebra with a notion of distance develodpe Interest.

by Kautz and Ladkin in [26]. The most important quantita- 'I]Tehpager.ls ?rganlzed ?i),f\lolilows(.jlnhSectlon 2, we f'rit
tive interval temporal logic is Duration Calculus (DC) [24 recall the basic features o » and then we present the

38], an interval logic for real-time systems originally ey metric language MPNL. In Section 3, we illustrate various

oped by Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn [16 hoszble.(;ap;).:!fatl(;rlrs] OfIMF_’NLéNeXt’ n Section |4,twe prove
based on Moszkowski's ITL [31], which is quite expressive, € decidabiiity of the logic. Expressive compieleness re-

but generally undecidable. A number of variants and frag-SUItS are given in Section 5. Finally, in Section 6, we chyssi

ments of DC have been proposed to model and to reasovﬁ";triousfragments of MPNL with respect to their expressive
wer. In the conclusions, we provide an assessment of the

about real-time processes and systems [5,15,17,38]. Ma K and i bl

of them recover decidability by imposing semantic restric- ork and we mention open probiems.
tions, such as thbocality principle, that essentially reduce
the interval system to a point-based one.

In this paper, we present a family of non-conservativ
metric extensions of PNL, which allow one to expresst-
ric propertiesof interval structures over natural numbers.
e ma!nly fpcus our attent|op on the most expressive Ian"I'he language of the propositional neighborhood logics PNL
guage in this class, callddetric PNL (MPNL, for short). . . i, .

. . . . consists of a sedP of atomic propositions, the proposi-

MPNL features a family of special atomic propositions rep-,. .

T . - ; - tional connectives-, v, and the modal operatogs and{,
resenting integer constraints (equalities and ineqaa)itbn . ) . N

. . corresponding to the Allen’s relatiomeetsand its inverse

the length of the intervals over which they are evaluated, o :

) . . L met-by[1]. The other propositional connectives, as well as
MPNL is particularly suitable for quantitative intervalare ,

_ . . . the logical constants (true) and L (false), and the dual
soning, and thus it emerges as a viable alternative to ex- ' .
isting logical systems for quantitative temporal reasgnin modal operator&ly andL, are defined as usual, Proposi-

g logical Sy N P 9 tional neighborhood logics have been studied both in the
The right-neighborhood fragment of MPNL has been intro- o-calledstrict semanticswhich excludes point-intervals
duced and studied in [11]; full MPNL has been consideredS ’

. . ) ) nd in thenon-strictone, which includes them. In the latter
in [8] — the main precursor of this paper, which extends and’j‘

. . . - case, it is natural to include in the language a special atomi
strengthens it substantially. The main contributions @& th " .
paper are: proposition (modal constant), usually denotedhyo iden-

tify point-intervals (PNLT). The differences in expressive
(i) the proposal of a number of extensions of PNL with met-power in the various cases have been studied in [20]. In this
ric modalities and with interval length constraints, which paper, we focus on the non-strict semantics. fdrenulag

& PNL and MPNL

2.1 Propositional Neighborhood Interval Logics: PNL



denoted byp, Y, ..., are generated by the following gram- For each~¢ {<, <, =, >, >}, we introduce the length
mar: constrainten., with the following semantics:
pu=m[p[=¢ [PV [0 [O¢. M., [i, j] IF lenw iff (i, ]) ~ k.
‘Given a linearly ordered domaib = (D, <), a (hon- Note that equality and inequality constraints are mutu-
strict) intervaloverD is any ordered pail, j] such that < j. ally definable:

set of all intervals oveD. The semantics of PNL is given M,]i, ] Ik —lensy fork =0
in terms of modelsof the formM = (D,I(D),V), where
(D,I(D)) is an interval structure and : AP — 2I(®) js a
valuation function assigning to every atomic propositioa t

M
M
set of intervals over which it holds. We recursively defineM
M
M

An interval structureis a pair(D,I(D)), wherel(D) is the
i,j]IFlen—y < M,]i,

[i,j]IFlen— < M,]i, j] IF lensk—1 A —lensy fork > 0
fi,]

fi,]

[

[

] ]
] ]
] ]
] ]
i, ] ]
] ]

IFlenck < M, i, j] IFlenco V... Vlen—x_1

IFlen—o V...Vlen—g

)
)
)

the satisfiability relatiof- as follows: Ly §] 1F lensk < MU, j] IF —len<y

S0 J] IF lensk < ML I j] IF —lencg

[

[
IFlenck < M, [i, ]

[

[

= (M[i, j] IF miff i = ;)
— M,[i,j] IF piff peV(]i,]j]), foranyp e AP; In Section 4, we will limit ourselves to constraints of
— M,[i, j] IF ¢ iff itis not the case thal¥l, i, j] I ¢; typelen_y, without taking into account the increase in length
- M,[i,j]IF @V yiff M,[i,j]IF¢ orM,[i,j]IFy; of formulae due to the above translation.
— M,[i,j] IF Or ¢ iff there existsh > j such thaM, [j,h] IF

¢;
— M,[i, j] IF ¢ ¢ iff there existsh < i such thaM, [h,i] IF¢. 3 MPNL at Work

It is worth pointing out that the operators corresponding td=inding an optimal balance between expressive power and
Allen’s relationsbeforeandlater can be easily expressed by computational complexity is a challenge for every knowl-
the formulagd, (~1TA Or ) andQ (-TA O @), respectively.  edge representation and reasoning formalism. Interval tem

We say that a PNL-formulé is satisfiablef there exists ~ poral logics are not an exception in this respect. We believe
amodeM and an intervalb, € such thaM, [b, €] IF . that MPNL offers a good compromise between these two

The logics PNL and PNT have been studied in [9,20], requirements. In the following, we show that MPNL makes
where the decidability of their satisfiability problem haen it possible to encodenfetric versionf) basic operators of
shown. A tableau-based method for deciding satisfiabitity i Point-based linear temporal logic (LTL) as well as interval
the right-neighborhood fragment of PNL, called RPNL, hagnodalities corresponding to Allen’s relations; in additio
been presented in [14], and subsequently extended to the fifye show that it allows one to express limited forms of fuzzi-
PNL/PNL™ in [12]. In this paper, we focus our attention on N€SS.

the class of interval structures over the ordering of thenat ~ First, MPNL is expressive enough to encode the strict
ral numbersN = (w, <). sometimes in the futufeesp..sometimes in the pgsipera-

tor of LTL:

Or (Ien>0 A Or (Ien:() N p))
2.2 Metric PNL: MPNL
Moreover, length constraints allow one to define a met-
In this section, we introduce metric extensions of proposi#ic version of theuntil (resp.,sincg operator. For instance,
tional neighborhood logics interpreted ouér Depending the condition: p is true at a point in the future at distance
on the choice of the metric operators, a hierarchy of lank from the current interval and, until that point, q is true
guages can be built. In Section 6, we will study the relativepointwise) can be expressed as follows:
expressive power of these languages.
From now on, we denote by the distancefunction Or(len—i A Or (len—o A p)) ALk (len<ic — Or (len—o A Q).

onN: §:Nx N — N, defined ai(i, j) = [i — j[. The re- MPNL can also be used to constrain interval length and
sults presented here may be suitably rephrased for any fungs express metric versions of basic interval relationsstFir
tion o satisfying the standard properties of distance ovefye can constrain the length of the intervals over which a
a linear ordering. The most expressive metric extension ofyen property holds to be at least (resp., at most, exaktly)
PNL is based omtomic propositions for length constraints  ag an example, the following formula constraipso hold

These are pre-interpreted propositional letters refgrtan only over intervals of length with k < | <K
the length of the current interval. Such propositions can be o

seen as the metric generalizations of the modal constant [G](p — len>k Alency), (bl)



where theuniversal modalityG] (for all intervals) is defined  express some basic safety requirements of the clagssal

as in [20]. By exploiting such a capability, a metric versionburner exampléa formalization of such an example in DC
of all, but one (theduring relation), Allen’s relations can can be found in [38]). Let the propositional let®as(resp.,

be expressed. As an example, we can state thaoldsonly  Flame Leak) be used to state that gas is flowing (resp., burn-
over intervals of length I, with K | <K, and any p-interval ing, leaking), e.g.M, [i, j] I Gasmeans that gas is flowing

begins a g-intervalas follows: over the intervali, j]. The formula
K [G](Leak— GasA —Flame)
(bl) A [G] /\(p/\ len—; — O1Or (lens; AQ)).
i=k states that.eakholds over an interval if and only if gas is

As another example, a metric version of Allen's relationflowing and not burning c_)verth_at interval. The con(_jitidn: ‘.
contains(the inverse of the ‘during’ relation) can be ex- N€Ver happens that gas is leaking for more than k time units

pressed by pairing (bl) with: can be expressed as:
K [G](—(len>k ALeak).
G Alen—; — len—; A Or(len_y A .
[ ]i/:\k(p " #O,j\(j,(jl Orten—; 1 Or (len—y @) Similarly, the condition: the gas burner will not leak un-

interruptedly for k time units after the last leakagan be
The relationships between the satisfiability problem foffgrmalized as:

PNL and the consistency problem for Allen’s Interval Net-
works have been investigated in some detail in [34] (in [13][G](Leak— —¢; (len A O Leak)).
Bresolin et al. consider the spatial generalization of saich

problem to Weak Spatial PNL and Rectangle Algebra). In Wg CO”EIUde the s?ctlon by me”“?l”'”%? two applllcatlon
general, the satisfiability problem for an expressing ehougdomaInSW ere MPNL features are well-suited, namely, med-

interval temporal logic is much harder than the problem ofcal guidelines and gmb|ent_|ntell|gence_. In the fo’rmelaare
checking the consistency of a constraint network. The highe(see [35])' evgnts W'th durat|on_, e.g.unnlng a feve; pos-
complexity of the former is balanced by the expressivenes’i,"_bly paired with meiric constra_lnts, e.gf,a patient IS un-
ofthe interval logic that allows one to deal with, forinstan M"Y @ fever for more than k time units, then administrate

negative and disjunctive constraints. In [34], the auther e him/her drug D, are qu!te common. In general, many rel-
ploits the universal modality to simulateominals which evant phenomena are inherently interval-based as there are

can then be used to force two specific intervals to satisfy Qo geniral rulesf to deduc?lthe-w-occurr.encg frolrp pointebase
given Allen’s relation. Notice that there is no contradicti data. The use of temporal logic in ambient intelligence; spe

between the limits to PNL expressive power and its abiIitylelcally in the area of Smart Homes [3, 19], has been advo-

to encode (the consistency problem for) constraint netsiork cated by Combi et al. in [181' MPNL can b_e succe_ssfu_lly
PNL allows one to capture Allen’s relations amongjrite used to express safety requirements referring to situstion

number of intervals only (you need a nominal for each inter-that can be properly modeled only in terms of time intervals,

val). The addition of a metric dimension makes it possiblee'g" being in the kitchen
to avoid the use of nominals, but it forces one to assign a
finite set of possible values for the length of involved inter 4 Decidability of MPNL

vals (possibly infinitely many). Whenever there exist some

natural bo_undsforthe given finite se:t of intgrvals, constra | his section, we use a model-theoretic argument to show
petworks myolvmg all but one Allens reIapons can be eas,; the satisfiability problem for MPNL has a bounded-
ily encoded in MPNL (the resulting (_ancodmg turns out to bemodel property with respect to finitely presentable ultiehat
much more natural than the one using nominals). _periodic models, and it is therefore decidable. From now on,

Finally, MPNL allows one to express some form of fuzzij; 6 be any MPNL-formula and le4P be the set of propo-
ness’. As an example, the conditioq: is true over the cur- sition letters of the language

rent interval and q is true over some interval close to it

where by ‘close’ we mean that the right endpoint of flke  Definition 1 The closureof ¢ is the setCL(¢) of all sub-
interval is at distance at moktfrom the left endpoint of the  formulae of(; ¢ and their negations (we identify- with
g-interval, can be expressed as follows: ). Let® € {Or, 01,0, 0, }. The set okemporal requests

DA (0501 (len < A 01 0rQ) v Or (len i A Or Q). fromCL(¢) isthe seffTF(¢)={OyY | OY CL(9)}.

Definition 2 A ¢-atomis a setA C CL(¢) such that for ev-
MPNL capabilities suffice to cope with various applica- ery ¢y € CL(¢), ¢ € Aiff = ¢ A and for every, V (), €
tion domains. As a source of illustration, we show how toCL(¢), g1V Y € Aiff 1 € Aor P, € A
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We denote the set of af})-atoms byAy. One can eas-
ily prove that|CL(¢)[ < 2(|¢| +1), [TF(¢)| < 2/¢|, and
|Ag| < 2/#+1 We now introduce a suitable labeling of inter-
val structures based aftratoms.

Definition 3 A (¢-)labeled interval structuréLIS for short)
is a structurd. = (D, I(D), £), where(D,I(ID)) is the inter-

that|REQ¢)| = 2™. Moreover, given any set of temporal
requestREQ}(j) (resp.,REQ(i)), it can be easily proved
that all of them can be satisfied using at mostifferent
points greater thap (resp., less tha).

Now, consider any MPNL-formulé such that is satis-
fiable on a finite model. We have to show that we can restrict

val structure over natural numbers (or over a finite subse®ur attention to models with a bounded size.

of it) and £ : I(D) — Ay is alabeling functionsuch that
for every pair of neighboring intervalg j], [j,h] € I(D), if
Oy € L([i, j]), theny € L([j,h]), and if Ty € L([j,h]),
theny € L([i, j]).

Notice that every interval modéll induces a LIS, whose
labeling function is the valuation function:

we L, iy,

Thus, LIS can be thought of agiasi-modelgor ¢, in
which the truth of formulae containing neithéf, | nor

i]) iff M. Ji,

length constraints is determined by the labeling (due to the
definitions of¢-atom and LIS). To obtain a model, we must

also guarantee that the truth of the other formulae is in a
cordance with the labeling. To this end, we introduce the
notion of fulfilling LIS.

Definition 4 A LIS L = (D,I(D), £) is fulfilling iff:

— for every length constrairen_, € CL(¢) and interval
[i,j] € (D), len—x € L(]i, ]]) iff &(i,]) =k;

— for every temporal formul@;, ¢ (resp.,0 ) in TF(¢)
and intervali, j] € I(D), if O, (resp.,01) in L([i, j]),
then there existh > j (resp.,h <i) such thaty € L([],
h)) (resp..£([h, ).

Clearly, every interval model is a fulfilling LIS. Convergel
every fulfilling LISL = (D, I(ID), £) can be transformed into
a modelM(L) by defining the valuation in accordance with
the labeling. Then, one can prove that for everrg CL(¢)
and intervali, j] € I(D),

we L([i,j]) iff ML), [i, j] = o

by a routine induction ow.

Definition 5 Given a LISL = (D,I(D), £) and a poini €

D, the set ofeft (resp. right) temporal requestati, denoted
by REQH(i)
lae of the forms) ¢, O, ¢ (resp.,Or 9, Trd) in TF(¢) be-
longing to the labeling of any interval beginningiiresp.,
ending ini). For anyj € D, we writeREQ(j) for REQ(j)

UREGQ(j)-

We denote byREQ¢) the set of all possible sets of
temporal requests ov&L(¢). Let m be ‘TF | andk be

C_

(resp.,REQR(i)), is the set of temporal formu- '

Definition 6 Given any LISL = (D,I(D), L), we say that
a k-sequence ik is a sequence ok consecutive points
in D. Given ak-sequence in L, its sequence of requests
REQo0) is defined as th&-sequence of temporal requests
at the points ino. We say that € L starts a k-sequenae if
the temporal requests at..,i+k— 1 form an occurrence
of REQ o). Moreover, the sequence of requeREQ o)

is said to beabundantin L iff it has at least 2 (m? 4+ m) -
|IREQ(¢)| + 1 disjoint occurrences iD.

Lemmal LetL = (D,I(D),£) be any LIS such that the se-
quence RE@) is abundantin it. Then, there exists an index
g such that for each elemeRte {REQU) |ig < d <igs1},
where j and ig;.1 begin the g-th and the-g 1-th occurrence
f o, respectivelyR occurs at least f+m times beforegyi
and at least i+ m times afterqq +k— 1.

Proof To prove this property, we proceed by contradiction.
Suppose thaREQ o) is abundant, that is, it occurs> 2-
(m?+m)-|REQ )| times inD and, for eacly with 1 < q <

n, there exists a poird(q) with iq < d(q) < igs1, such that
REQ(d(q)) occurs less tha(m? +m) times beforég or less
than (m? -+ m) times afterjq1 +k— 1. LetA = {d(q)|1 <

g < n} the set of all such points. By hypothesis, there cannot
be anyR € REQ¢) such thafR occurs more than-Zn? +

m) times inA. Then|A| < 2- (m?+m) - |[REQ¢)|, which is

a contradiction. O

Lemma 2 LetL = (D,I(D),£) be a fulfilling LIS that sat-
isfies¢. Suppose that there exists an abundant k-sequence
of requests RE(Y) and let g be the index whose existence
is guaranteed by Lemma 1. Then, there exists a fulfilling LIS
L = (D,I(D), £) that satisfiesp such thaD =D\ {ig, ...,

igr1—1}.

Proof Let us fix a fulfilling LISL = (D,I(D), L) satisfy-
ing ¢ at some(i, j], an abundank-sequenceREQ o) in

L, and the indexq identified by Lemma 1. Now, ledD~ =
{ig,-..,igr1—1} andD’ =D\ D~ and, consequently, the set
of all intervalsI(ID’). For sake of readability, the pointsii

will be denoted by the same numbers aBiNow, we have
the problem of suitably re-defining the evaluation of all in-
tervals orD’ in a way preserving the temporal requests at all

the maximum among the natural numbers occurring in th@oints inD’ and still satisfyingp.

length constraints igp. For example, ih = Or(lenszs A p—
O1(lenss Aq)), thenm =2 andk = 5. It is easy to show

First, we consider all pointd < iq and for each of them,
for all p such that 6< p <k—1, we putl’([d,ig+1+ p]) =
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L([d,ig+ p]). In such a way, we guarantee that the intervalsf L satisfying the formula. Since(;¢ € CL(¢), we have
whose length has been shortened as an effect of the elimintrat O, ¢ € REQ). If d is still present inL, then, since
tion of the points inD~ have a correct labeling in terms of the final LIS is fulfilling, we have that there must exists an
all length constraints of the formen_,, and—len_,,. More- interval[d,d”] labelled with¢. If d is not a point of_, then
over, since the requests (in both directions)iatiq;1+p  Lemma 1 guarantees that there exists another i L
are equal to the requests igt+ p, this operation is safe such thaREQd") = REQd). Again, sinceL is fulfilling,
with respect to universal and existential requirements. Fiwe have that there must exists an interje#l, d”’] labelled
nally, since the lengths of intervals beginning befgrand  with ¢. O

ending afteliq 1 +k—1 are greater thakboth inL and in o
L’, there is no need to change their labeling. (Notice that, iy he lemma above guarantees that we can eliminate sequences

D', iq41 tUrns out to be the immediate successoief 1.) of requests that occur ‘sufficiently many’ times in a LIS,
The structurd — (I, (1Y), £} defined so far is obvi- without spomng the LIS. This eventually gllows_ us to_pm
L ! . the following small-model theorem for finite satisfiabiliy
ously a LIS, but it is not necessarily a fulfilling one. The re-

moval of the points in the s&~ and the relabelling needed MPRL.

to guarantee correctness w.r.t. length constraints may gefheorem 1 (Small-Model Theorem) If ¢ is any finitely
eratedefectsthat is, situations in which there exist a point saisfiable formula of MPNL, then there exists a fulfilling,
d <iq (resp.,d > iq+1+K) and a formula of the typ@ry finjte LISL = (D, 1(D), £) that satisfiesp such that|D| <
(resp.,01 ) belonging toREQ(d), such thaty was satis- IREQ¢)[%- (2- (mP+m)- [REQ@)|+1) -k+k—1.

fied inL by some intervald,d’] (resp.,[d’,d]), and it is not

satisfied inL’, either becausd’ € D, or because the la- Proof LetL = (D,I(ID),£) be any finite fulfilling LIS that
belling of[d,d’] (resp.[d’,d]) has changed due to the above satisfiesp. If |D| < |REQ¢)|“(2(mP+m)|REQ )|+ 1)k+
relabeling. We have to show how to repair such defectk— 1, then we are done. Otherwise, by an application of the
Suppose that there exists< iq (the case when > iq1  pigeonhole principle, for at least one sequeR&Q o) of

is similar) and some formulg, € REQ4) that it is not  lengthk, we have thaREQ o) is abundant. In this case, we
satisfied anymore il.’. Sincel is a fulfilling LIS, then  apply Lemma 2 sufficiently many times to get the requested
there exists an intervad,d’] such thaty € £(|d,d']) and  maximum length. O
eitherd’ € D~ or ¢ ¢ £'([d,d']). Notice that, for this to be _ o o
the cased(d’,d) > kin L. By Lemma 1, there are at least To deal with formulae that_are satisfiable only over |pf!-
n=n? +m points {dy,dp,...,dn} afterhg,;+k—1 such Nite .moldels, we need_to provide these models with a f|n|t§
thatREQ(d) = REQ(d') for i = 1,...,n. We will chose a (per.IOdIC) representation, and to bound the lengths of thei
point of the typed; to satisfy the request. To prevent such aprefix and period.

change making one or more request®EQ (d) no longer Definition 7 ALIS L = (D,I(D), £) is ultimately periodi¢

satisfied, we have to preliminarily redefine the labelitig ) : . . :
First, we take a minimal set of poin®! ¢ D' such that, V.Vlt_h prefix L, period P, andthreshold kif, for every interval

for each( 1 € REQ(d), there exists a poirg € P4 such [ 11,

thatt € £([e,d]). Now, for each poinec P4, letPd be a - if i > L, thenZ([i,j]) = L([i+ P, j+P]);

minimal set of points such that, for eve¢yé € REQ(e), —if j >Lando(j,i) >k, thenl(]i,]j]) = L([i, |+ P]).

there exists a poirtt € P9 such tha€ < £([e, f]). Finally, let _ o _ _ o
Q=Upgcpu pg; by the minimality requirements, we have that It is V\_/orth notlglng that, in every ultimately perlo_d|c LIS,
IQ| < m?, since each set of requests can be satisfied using RE Qi) = REQi +P), fori > L, and that every ultimately
mostm points. Similarly, requests IRE R(d) need at most per|o.d|c LIS is f|n|teI¥ presen.ta.ble: it sufflcgs to define its
mpoints to be satisfied. Consider theet: {dy,dz,....d,}\ |aPeling only on the interval§, j| such thatj <L +P+
Q: since, by constructioni| > m, there must be some point MaXk,P); thereafter, it can be uniquely extended by peri-
dn € H such that irl_ the intervalld, dy] satisfies only those 0diCity. Furthermore, we can identify a finite LIS with an
Or-formulae ofREQ(), if any, that are satisfied at other in- ultimately periodic one with a peride = 0.

tervals starting al. Thus we can put’([d, dy]) = L ([d, ), Lemma 3 LetL = (N,I(N), £) be an infinite fulfilling LIS

and correct this defect without creating a new one. Since g : L
= . : : : overN that satisfies a formulg. Then, there exists an infi-
0(dh,d) > kin L’, this operation does not introduce incon-

sistencies with the length constraints in the labelindnezit nite ultlmgtgly periodic fulfilling LIS. = (N, I(N), £) over
N that satisfiesp.

Now, if we repeat the above procedure sufficiently many
times, we obtain a finite sequence of LISs, the last one oProof First of all, let[b, €] be the interval satisfying in L.
which is the required.. To conclude the proof, we have to We define the SeREQq¢(¢) as the subset REQ¢) con-
show thatL is still a LIS for ¢. Let [d,d’] be the interval taining all and only the sets of requests that occurs infinite
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often inL. Let L € N be the first point inL such that the M + P. It is straightforward to check that the labeling

following conditions are met: so defined respects all length constraileis_,, and their
L>eg negations for all intervals, and that the resulting streestu
ii) for each pointr > L, REQr) € REQn¢(¢); L = (N,I(N), £) is an ultimately periodic fulfilling LIS sat-
iii) each set of requestR € REQn(¢), occurs at least isfying ¢ on [b, €. 0
m? 4+ mtimes beford, and at leastr? + mtimes betweeh

Theorem 2 (Small Periodic Model Theorem)If ¢ is any
) f h boini < L. and ‘ | REQ satisfiable formula of MPNL, then there exists a fulfilling,
Iv) for each poini <L, and any formula T € REQ(), ultimately periodic LIS satisfying such that both the length

Tis satisfied on some intervi j] Wherej. <M;and, L of the prefix and the length P of the period are less or equal
v) thek-sequences of requests starting @nd atM are IREQ¢)[%- (2- (MP+m)-|REQ¢)|+1) -k+k—1.
the same.

We putP = M — L. We will build an infinite ultimately  Proof Existence of an ultimately periodic fulfilling LIS is
periodic structuré. over the domaiiN with prefixL, period  guaranteed by Lemma 3. The bound on the prefix and of the
P and threshold. To this end, first, for all pointd < M we  period can be proved by exploiting Lemma 2. O
putREQd) = REQd). Then, for all pointsM -+ n, where R _
0<n< P, we putREQM +n) = REQL +n) (by con- Corollaryl T_he satisfiability problem for MPNL, interpreted
dition (v), this is already the case with<On < k). Now,  OVerN, is decidable.
we will define the labeling. For all intervalg j] such that

Jj <M we putL([i, j]) = L([i, j]). As for any intervali, j], exponential time nondeterministic procedure for checking
W'Fh M<] <.N.I +P, (@)ifi > M,.w.e pu.tﬁ([|, i)=L£(i- the satisfiability of any MPNL-formula. Such a proce-
,P’J i FT])’ (b)ifi <M, we m_ust. d.IStInng.h .three cases. (bl)dure nondeterministically checks models whose size is in
it 5(i, ) = k , then we pulL([i, J1) = £([1, ]) (asREQ() generalo(2?k), where|@| is the length of the formula to
has not b_een moqmed aREQ(j) = RE_q.J ). by conc_imon be checked for satisfiability. It has been shown in [11] that,
(V)); (b2) if k < &, J)S_k*_ P, we putL([i, j]) = L([i,h]) in the case in whiclk is represented in binary, the right-
for someh SL_JCh thatREQj) ~ REQH) and a(i,h) > _k_' neighborhood fragment of MPNL is complete for the class
VYheTe the exlstencej of such s guaranteed by f:ondmon EXPSPACE. This means that, in the general case, the com-
.(") (!n_fact, FM<j< I\_/I+K we can takeh = J?; (b3) plexity for MPNL is located somewhere in between EX-
i 6(|’.J> > k+ P, we quL‘([u 1) =L(i,j - I,D])' This con- PSPACE and 2NEXPTIME (the exact complexity is still
struction labels all subintervals {® M + P] in a way that an open problem). It is worth noticing that, whenekes

is consistent with the definition of LIS, but that is not NeC-5 constant, it does not influence the complexity class and
essgrily fulfilling. It could be the case .that for some _pointthus’ since we have a NTIME) procedure for satisfiabil-
L<i<M a_md_some formula, ¢ € REQ.(') there are no In- ity and a NEXPTIME-hardness result [14], we can conclude
tervals satisfyingp, because the only interval(s) satisfying that MPNL is NEXPTIME-complete. Similarly, whekis

itin L are of the typgi, d whered > M+P andé(d, 1) >_k' expressed in unary, the valueloihcreases linearly with the
We fix suchdefectsas follows. SinceREQ(i) = REQ(), length of the formula and thus NTIME(2)=NTIME(2#);

there exists a point > i such thap & L({i, j]) in the orig-  yorafore as in the previous case, MPNL is NEXPTIME-
inal model. By condition iii), there exists at leasf +m complete

points betweeM andM + P with the same set of requests

of j, and at leastr? + m points betweeh. andM with the

same set of requests pfWe proceed exactly as in the proof 5 MPNL and Two-Variable Fragments of First Order

of Lemma 2, and we fix the defect choosing a paihbe- Logic for (N, <,s)

tweenM andM + P, putting £([i,d']) = £([i,d]). By repeat-

ing such a procedure sufficiently many times going from lefts 1 PNL and Two-Variable Fragments of First Order Logic
to right, we build a LIS where every request of every point

i <M is fulfilled beforeM + P. To conclude the construc- Here we will recall some results from [10] which will then
tion we extend the so defingloverT(N) in the unique way be extended to MPNL. Let us denote by #©] the frag-
satisfying the conditions in Definition 7 for an ultimate per ment of first-order logic with equality whose language con-
odic LIS with prefixL, periodP, and threshold, that is: for  tains only two distinct variables. We denote its formulae by
everyi > M+ P we putREQ(i) = REQi —n-P)wherenis  a,f,.... For example, the formubex(P(x) — Vy3axQ(x,y))

the least non-negative integer such thatn-P < M +P;  belongs to F®, and the formularx(P(x) — Vy3z(Q(z y) A
and, for every intervali, j] such thatj > M + P, we put Q(zX))) does not. We first focus our attention on the exten-
L([i,j]) =L([i—n-P,j —qg-P]), wheren andq are the least sion F&[=, <] of FO?|=] over a purely relational vocabu-
non-negative integers such that nP< M andj—qP < lary {=,<,P,Q,...} including equality and a distinguished

andM;

The results of this section immediately give a double




binary relation< interpreted as alinear ordering. Since atomsf formulae in interval models is evaluated only on ordered
in the two-variable fragment can involve at most two digtinc pairsi, j], with i < j, while in relational models there is no
variables, we may further assume without loss of generalitguch constraint. To deal with this problem, we associate two
that the arity of every relation in the considered vocalyular propositional lettergp= and p= of the interval logic with

is exactly 2. Letk andy be the two variables of the language. every binary relatior.

The formulae of F&[=, <] can be defined recursively as fol- o . )
lows: Definition 9 ([9]) Given a relational mode¥l = (D,V),

. the corresponding interval modél(M) is a pair (I(D),
a:=Ao|A|-alavp|3xa|ya Vz(my) such that for any binary relatioR and any interval
Ao i=X=X[X=y|ly=X]y=y[x<y|y<x li, j],we have thali, j] € Vz v (p=) iff (i, j) € Vm(P) and that
Ar = P(X) [ P(xY) | P(Y,%) | P(Y,Y), [i,i] € Ve (p=) iff (j,1) € M (P).

WhergAl deals W,ith (uninterpreted) binary predif:ates. l:OrDefinition 10 Given an interval logic L and a first-order
technical convenience, we assume that both variabéesl

y occur as (possibly vacuous) free variables in every formul
a € FO?[<], thatis,a = a(x,y). Formulas of F@[=, <] are
interpreted overelational modelf the formM = (D, V),
whereD = (D, <) is a linearly ordered set, aMis avalua-
tion functionthat assigns to every binary relatiBra subset
of D x D. When we evaluate a formuta(x,y) on a pair of
elements, b, we writea(a,b) for a[x:=a,y:=b].

logic Lgo, we say that kg is at least as expressive &s,
Jenoted by L < Lgo, if there exists an effective transla-
tion T from L, to Lo such that for any interval modéd,
any intervalla, b], and any formula of L, M, [a,b] IF ¢ iff
n(M) = 1(¢)(a,b). Conversely, we say that Lis at least
as expressive akrp, denote by ko < L, if there exists
an effective translatiom’ from Lgo to L, such that for any
relational modeM, any pair(i, j) of elements, and any for-
The satisfiability problem for FOwithout equality was mulag¢ of Lro, M |= ¢ (i, ) iff J(M),[i, j]IF T'(¢)if i < jor
proved decidable by Scott [36] by a satisfiability preserv-{(M),[j,i] IF T'(¢) otherwise. We say thatlis as expres-
ing reductL?n of any F&formula to a formula of the form  sive asLgo, denoted by L= Lro, if L; < Lro and Lgg <

VXYW A A W3y, which belongs to the Godel's prefix- L1- Then, Lk < Lro and Lro < L, are defined as expected.
i=1

defined dlecidable class of first-order formulae, shown byrheorem 3 ([9])PNL" = FO?|=, <], when interpreted over
Godel to have decidable satisfiability problem [6]. Later o any class of linearly ordered sets.

Mortimer extended this result by including equality in the

language [30]. More recently, Gradel, Kolaitis, and Vardi

improved Mortimer’s result by lowering the complexity [22] 5-2 The Logic FG[N, =, <,

Finally, by building on techniques from [22] and taking ad- ) ) )

vantage of an in-depth analysis of the basic 1-types and 21€ré We consider the extension of #e, <] interpreted
types in F&[=, <]-models, Otto proved the decidability of OverN with the successor functics) denoted by FEN, =
FO?|=, <] over various classes of orderings, and in partic- <5 The terms of the language PO, =, <5 are of the
ular over the natural numbers. It has been shown in [9] thelyPe s(2), wherez € {x,y} ands(z) denotesz whenk =
FO?|=, <] is expressively complete with respect to PNL 0 ands(s(...s(z)...)) whenk > 0. Then, the formulae of
For the comparison of these logics suitable truth-presgrvi k

model transformations between interval models and reladFO?[N, =, <,s| can be defined as in the case of the logic
tional models have been defined. We will sketch this transFO?[=, <], mutatis mutandis. Using 2-pebble games and a
formations here, since they will be used to extend the resuftandard model-theoretic argument, it is possible to prove
to expressive completeness of MPNL with respect to a suithat FG[N, =, <, is strictly more expressive than B>

able extension of F&)=, <]. ,<]. That result, however, is also a direct consequence of the

In order to define the mapping from interval models toe;p;reersswe completeness results established in [9] aiisin t

relational models, we associate a binary relafomith ev-
ery_propositional variablp € AP of the considered interval Theorem 4 The satisfiability problem foFQ?[N, =, <.,

logic [37]. interpreted over any class of linearly ordered sets with at
Definition 8 ([9]) Given an interval mode¥ = (I(D),Vy,),  |east one infinite ascending or descending sequence, is un-
the corresponding relational modg{M) is a pair of the decidable.

type (D,V;m)), where for allp e AP, V) (P) = {(i,]) €

N Proof For the sake of simplicity, we assume that =
DxD:i,j] €Vm(p)}. prey s

,<,9 is interpreted oveN; nevertheless, the proof can be
To define the mapping from relational models to inter-adapted to any class of linearly ordered sets with at least on
val ones, we have to solve a technical problem: the trutiinfinite ascending or descending sequence®et {(i, ) :



i,j e NAO<i < j} be the second octant of the integer planeof a; and the following formulae:
7 x Z. Thetiling problem for© is the problem of establish-
ing whether a given finite set of tile typ&s = {ti,...,t%} Wy = sz(x) Ald(x,y)) (6)
can tileO. For every tile typd; € 7, letright(t), left(t;), (

VX, y(1dp(X, S(y)) AX <y — ldp(X,Y)) (13)

b
Using Konig's lemma one can prove that a tiling system tiles? ¥((Ide(x,S(y)) V1da(x,8(y))) Ax <y —Tdg(xy)) (14)
O if and only if it tiles arbitrarily large squares if and only
ifittiles N x N if and only if it tiles Z x Z. The undecidabil-
ity of the first of these tiling problems immediately follows — — —
from that of the last one [6]. The reduction from the tiling V% Y((Idp(xy) V1de(x,y) V1da(x,y)) — =ld(xy)) (15)
problem for© to the satisfiability problem for FON,=  Vx,y /\ (1dy(x,y) — =ldy(x,Y)). (16)
,<,9| takes advantage of some special relational symbols, v.ue{bde},v#u
namely those in the séet= {x, Tile,Id, Ide, Idy, Idg,Corr,

T1,T2,..., Tc}. The reduction consists of three main stepsiThe formulaa, builds a chain ofd, in such a way that it
(i) the encoding of an infinite chain that will be used to rep-holdsld (xo,s), eachld is followed by anotherd, for each
resent the tiles, (ii) the encoding of the above-neighblarre pairx < y such thatd(x,y) thenx(x,x+ 1), and ifId(x,y)
tion by means of the relatio@orr, and (iii) the encoding of then—ld(zt), forallx < z<t <y((x,y) # (zt)). The rela-
the right-neighbor relation, which will make use of the suc-tions of the typdd, are used to ensure the last condition. For
cessor function. Pairs of successive points are used &s celyample, ifid(x,y), then, for allx < z < y we putldy(x,2),

to arrange the tiling. Next, we use the relati@hto repre-  gnqd similarly forlde andTdg; then, we impose that no pair
sent a row of the octant. Anld consists of a sequence of of points is labeled byd, andid,, at the same time, thus
intervals, each one of which is used either to representta Pasreventing twdd to be one inside, overlapping, starting, or

of the plane or to separate twds. In the former case, it ending the other. As a third step, let be the conjunction
is labeled with the relatiofile, while, in the latter case, it of o, with the following formulae:

is labeled with the relation. Consider now the following

up(t), anddowrt;) be the colors of the corresponding sides"® y(ld(xy) = *(v.8(y))) (7)
of ;. To solve the problem, one must find a functibon® — VX Y(Id(X,y) — *(x,s(x))) 8)
7 such that VX, Y(x(X,y) — Jy(s(X) < yAld(x,y))) 9)
vx,y(1d(xy) — 1de(s(X),Y)) (10)
right(f(n,m)) = left(f(n+1,m)), withn<m and  YXY(Ide(x.y) AS(x) <y — Tde(s(x),y)) (11)
up(f(n,m)) =down f(n,m-+1)). X, y(1d (x,8(y)) — Idp(%,Y)) (12)

(ids —

(

formulae: vx,y(ld(x,y) — Corr(s(x),s(y))) a7
X, y(Corr(x,y) — Tile(x,s(x)) A Tile(y,s(y))) (18)
vx, y(Corr(x,y) A (s(x),s%(x)) —

vxy A\ (P(xy) < x<y) @) Tile(y,s(y)) A Tile(s(y),s*(y)) A *(°(x),S°(x))) (19)

PeLet VX, Y(Corr(x,y) A= (S(x), (X)) — Corr(s(x),s(y))) (20)

VX, Y(y = s(X) < #(x,y) v Tile(x,y)) @ vy y(1d(x,y) — ~Corr(x,y)). (21)

VX, Y(x(x,y) — —Tile(x,y)) 3)

y = S(x) Ax(x,y) ANVX3y(y = S(x)) ) i Tile(x,y) andTile(z,t), we say that the two tiles aebove

IX(x = s(y) ATile(y,x) A=(s(y),s(X))) (5)  connectedf and only if Corr(x,z). If as holds, then, as a

first consequence, we have that the first tile of eltlis
above connected with the first tile of the succeskivd hen,
by taking advantage of the successor function, from this ini
tial connection we make sure that edet Tile of anyId
The conjunctiona; of the above formulae, guarantees thatis above connected with theth Tile of the successivéd,
there exists an infinite sequenegxs, . . . , X, Of points. More- and, finally, the second formula of the above set enures that
over,a; guarantees that each paijrx;; is labelled either eachld has exactly one tile less than the successive one.
by « or by Tile, but not both. Finally, we have thatxg,x1),  This means that, ifr3 holds, thej-th Id codifies exactly the
Tile(x1,X%2), and«(xp, x3). Now, consider the conjunctiamp j-th layer of the octant. Finally, let7 be the conjunction of
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o3 and the following formulae:

vx y(Tile(x,y) —
\/ T(Xay) A /\ ﬁ(T(va) /\T/(Xay)) (22)
TeT TTeT TAT
VX, Y(T (%, y) ATile(s(x),s(y)) — (23)
V T'(s(x),s(y)))
T/eT right(T)=left(T’)
VX, y(Corr(x,y) AT(x,5(x))) —
V T'(y,8(y)))- (24)

T'eT up(T)=downT")

Given any set of tile§ the formulaa is satisfiable if and
only if 7 can tileO, as claimed. Thus, the satisfiability prob-
lem of FO’[N, =, <, g is undecidable. o

5.3 Expressive completeness of MPNL for a fragment of
FOZ[sza <7S]

Let FOP[N,=, <, be the fragment of FEN, =, <, s with
the foIIOW|ng restriction: if both variables andy occur in

the scope of an occurrence of a binary relation, other than afi

= and <, then the successor functisrcannot occur in the

scope of that occurrence. As an example, each of the formu-

lae $¢(x) = s™(y), () < s™(y), P(X(x),s™(x)),P(x,y) be-
longsto FG[N, =, <, 9, but none oP(x,s(y)) andP(s(x), )

does. By using 2-pebble games and a standard model-theo-

retic argument, one can show that:

FO[=,<] < FO?|N,=, <, < FO?|N, =, <.9].

First, we define the standard translat®h y of MPNL,-
formulae into FG|N, =, <., as follows:

SThy(d) =x<yAST ()

wherex, y are the two first-order variables in I?{N, =,<,9,
and

STy(P)  =P(xy)
S'l;’y(len:k) =X =y

STy(¢ V) =ST (¢ )VS'K,y(AU)
S-lZy(_‘(P) = _‘S-l;

ST, (019) =3y(y< X/\ ST.(¢
ST, (Ord) = IX(Y<XAST,(¢

Lemma 4 For any MPNL-formula ¢, any interval model
= (N,I(N),V), and any intervala,b] in M:

M, [a,b] IF ¢ iff n(M) |= Sky(¢)

Proof Routine structural induction of1.

[X:=a,y:=bhl.

Now, the inverse translation from FO?[N, =, <,g| to

Lemma 5 For everyFO?[N
FO?N, =, <,s-modelM
with i < j:

)M [ ) (0] I Tx yl(a),
and

(i) M |= ), [, J1 - Ty, X (@).

Proof The proof is by structural induction on the complex-
ity of a (for the sake of simplicity, we only prove claim (i);
the other one can be proved similarly):

,=,<,9-formulaa(x,y), every
= (N, V) and every pairjj € N,

a(i,j) if and only if (M

a(j,i) ifand only if((M

— a = (X(x) =s"(x)). If k=m, then botho and its trans-

lationT[x,y](ar) = T are true, while ik £ m, thena and

7[X,y](a) = L are both false; the same applies whes

used instead of,

a = (s¢(x) < S"(x)). If k=m, then bothor and its trans-

lation 7[x,y](a) = L are false, while ifk # m, thena

andt[x,y](a) = T are both true; the same applies when

X is used instead of;

a = (X(x) = s"(y)). Assumingi < j, if k < m then

(i) < s"(j), and, sinceM = a(i, j) iff (i) < s™(j),

we have thaM = a(i, j); on the other hand[x,y](a) =

L. Ifm<k (i) =s"(j) iff j—i=k—m, thatisM =
(M), [i, j] E len—x_m. Likewise for the cases

(X)), a = ($(x) =s™(y)), a = (s"(y) <

i,j)iff ¢
a = (s™(y)
$(x);

a = (P(sX(x),s™(x))). Assumingi < j, if k < m then
we have thag™(x) — $¢(x) = m—k, and thas*(x) —x =

k. Thus,M k= a(i, j) iff P is true over the paifs(i),

ST K(E(0))), thatisM = a(i, ) i Z(M), i, ] IF 010
(len—x A Or (len—m—k A P=)). A S|m|Iar reasoning can be
followed for the case o < k. If k = m, thens‘(x) =
s™(x), so P must be true over a point-interval, specifi-
cally, identified by the paifs‘(i),s(i)). Thus, we have
thatM = a(i, j) iff (M), i, j] IF O1Or (len—k A Or (len—o
APS A p?)). Likewise, whery substitute;

o = P(x,y) or a = P(y,x). The claim follows from the
valuation ofp= andpz;

The Boolean cases are straightforward;

o =3xB. Supposetha?l E=a(i, j). Then, thereise M
such thatM | (1, ). There are two (non-exclusive)
cases:j <l andl < j. If b < ¢, by the inductive hy-
pothesis, we have thgt(M),[j,I] IF 7[y,x](B8) and thus
CM)TLJTIF O (Y, X (B)). Likewise, ifl < j, by thein-
ductive hypothesis, we have thgtM), [l, j] IF T[x,y](8)

and thus for everysuch that <r, {(M),[j,r]IF 01 (T[X,
yl(B)), that is, {(M),[a,b] IF OO (T[x,¥](B)). Hence
Z(M )a [Ia J] I QV(T[an](B)) 4 |:|r<>| (T[va](B))’ that iS,
{(M),[i,j] IF T[xy](a). For the converse direction, it
suffices to note that the intervidl j| has at least one right
neighbor, viz[j, j], and thus the above argument can be
reversed,;

— a = JyB. Analogous to the previous case.

N4

MPNL, is givenin Table 1, and we have the following lemma.
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Y@ =5"@2) =T (ze{xy}), ifk=m txyl(aVpB) =Ttlxyl(a)VTxY(B)
=1 (ze{xy}, ifk#m Ty (3B) = O (v (B)) v T 01 (T[x.Y] (B))
Y2 <s"(@) =L (ze{xy}), ifk=m %, Y13y, )=<> (tly,X(B)) VO O (T[x Y1 (B))
=T (ze{xy}), ifk<m T[%, Y (P(84(X),S™(X))) = O10r (lenzi A Or (len—p i A PS)),  ifk<m
T[x, Y (K(x) =s"(y)) = L, if k<m = 010r(len—k AOr(lenzg A PS ApP2)), ifk=m
Ien =k—m? ifk>m = <>|<>r (Ien:m A <>I’ (Ien:k,m A pZ)), ifk>m
T[x,Y($(x) <s™(y) = if k<m X YI(P(S(y),S™(¥))) = Or (len—ic A Or (len—m i A P%)), if k<m
Ien>k,m, ifk>m =Or(lenc  AOr(leng APS APZ)), ifk=m
% y](S"(y) < (X)) = L if k<m = Or(lenzm A Or (len—i_m A P2)), if k>m
=lenjm, if k>m % Y|(P(xy)) = p=
Txyl(~a) = —Tix.yj(a) T YI(P(y.x) = p*
Table 1 Translation clauses from BN, =, <, to MPNL.
0pk0e™ W ifk<m CDT - RO <]
E:en>o/\<>/\<> ) ELef:n)O/\Obe(p_/\p ), if k=m \< \<
ensk m p=)v + O?IN. —
(len—_m A (k m(p AP2)V MPNL FO’IN,=,<.§
(len-i._ m/\<> <> if k> m N S
MPNL = FO?|N, =, <,5
Table 2 Extending the translation from @V, =, <, s to MPNL: the
clause forr[x,y](P(s(x),s™(y))) AN _ N
PNL* — FOAN, =, <]

Corollary 2 For everyFQ?|N, =, <, g-formulaa(x,y) and
everyFO?[N, =, <,-model M= (N, Vi), M = V¥xvya (x,y)
if and only if (M) IF T[x,y](a) A T[y,X](a).

Theorem 5 FO?|N, =, <, = MPNL.

5.4 Extension of MPNL expressively complete for
FOZ[Nv =<, S]

A natural way to extend MPNL to cover the entire HI, =

Fig. 1 Expressive completeness results for interval logics.

,<,9]. Conversely, we can now extend the translatioof
FO?N,=,<,s into MPNL to a translation of FEIN, =, <

,§ into MPNL" by adding the clauses for the atomic formu-
lae in Table 2. The extensions of the expressive complete-
ness results are routine.

To conclude this subsection, we recall that Venema [37]
has shown in a similar way that the interval temporal logic
CDT, involving binary modalities based on the ternary in-

,<,s would be to add diamond modalities that shift respecierval relation ‘chop’ and its residuals (denoted respebfi
t|vely the beginning, the end, or both endpoints of the curC, D and T) is expressively complete for the fragment of

rent interval to the right by a prescribed distance, viz:

— M, [i,j] IF &KW iff M[i,j+K -y
—M,[,]IFO*ktplﬁ(lengandM,[iJrk,j]IH,U)or
(i+k>jandM [J,1+K IF ).
M, [i, j] IF Ogkw iff M, fi+k, j+K IF@

We denote the resulting language as MPNIhe stan-
dard translatior8T;,, of MPNL-formulae into FG[N, =
,§ extends to MPNL as follows, wherex[t/Z] is the result
of simultaneous substitution of the tetrfor all free occur-
rences okzin a.

ST (0& W) = STy (¥ )[ (¥)/yl-
S-l; <>+k = S-lZy X /X]
STy (Ope STy(w )[ (/% 8(y) /Y]

Note that ifST, () € FO?[N, =, <, 5] thenST,, () [s(X) /.
s"(y)/y] € FO?|N, =, <, for anyk,me N, so the transla-
tion of all formulae of MPNL will remain within FO’[N, =

first-order logic with equality with three variables of whic

at most two are free, denoted by /@, <]. Note that, when
interpreted inN the successor function is definable in this
fragment, which therefore strictly extends ﬁ@,:, <,9.
Thus, a hierarchy of expressive completeness resultsarise
depicted in Fig. 1. Note also that the proposed translations
from the first order languages towards the interval ones are
exponential in the size of the input formula in all three case
due to the clauses for the existential quantifier

6 Classifying the Expressive Power of Metric
Propositional Neighborhood Interval Logics

In the previous sections, we discussed the expressive power
and the computational properties of MPNL. A natural ques-
tion is whether there exist other interesting variants of PN

1 At present we do not know whether a polynomial translatian fo
any of these cases exists.
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Osfye  L(k=0) Ol 0% We will denote by MPNI the extension of MPNE with
05 1w (k> 0) 08y the length constraints (this means that MPN&_exactly the
oMKy e Oy (K =) Oy = O?iw VooV language MPNL of the previous sections). For the sake of
KD B OE;W simplicity, we will omit the curly brackets in the supersatsi
) 0o 4 (K # e0) Oik‘p‘:’ ng:f for example, ifS= {<, >}, we will write simply MPNL<>
Gl e L[k('gj] 0) 0" Og(m) v instead of MPNLL<>}. Thus, we have that MPNI=PNL
Ofk’k,] (K'>0) 0 v and MPNL=MPNL,. Moreover, by the following lemma,
Oo™ 'Y (K' = o0) ngl}l@» Oo” Y we can reduce the number of interesting fragments:
06 e 0§ My £w) | 06 pe LK =0)
0%y (K = o) QLKL (K > 0) Lemma 6 If o € {r,1}, whenevesk (resp., 0l oK)
08 e LK =0) OBy (K = ) is included in the language, thepgX (resp.,ogk’k/),og)k’k,))
0%‘;‘;’” (K >0) can be defined, and the other way around.
00 Y (K = o)

Proof See Table 3, left column. O
Table 3 Equivalences between metric operatars;, {r,1}.

Thus, without loss of generality, from now on we can fo-
cus our attention on languages characterized by subsets of
that can be further analyzed. In this section we define a famfe, <, =, >, > [],()}. As we will see, some languages will
ily of metric languages, and we compare their expressivee expressive enough to embed non-metric PNL, and some
power. As it will be proved in the following, MPNL is able others will not. We will use the terifeak Metric Proposi-
to encode all the languages in the family, thus being the mosional Neighborhood LogicevMPNL) to denote the latter.
expressive metric extension of PNL.

Let ~¢ {<,<,=,>,>}, ke N, andk’ € NU{e}. We
consider a set ofetric modalitiesof the type®r, Qik’w],
QMK oIK) 6K as well as their inversesrk, o/,
Ol(k’k/), Ol[k’k/), <>|(k’k,], with the following semantics:

— M, [i, j]IF Op*w iff there existan > j such thad(j,m) ~
kandM,[j,m| I- ¢;
- M, i, j] IF Qﬁk’w]w iff there existsm > j such thatk <

o(j,m) <K andM,[j,m] I y;

- M,[i,j] IF Oﬁk’k/)tp iff there existsm > j such thatk <
5(j,m)

Definition 11 Let L and L' be two languages for interval
logic. We say that L’ isat least as expressive ésdenoted
by L < L, if there exists an effective translatianfrom L to

L’ (usually, defined inductively on the structure of forme)a
such that for every formulg of L, M, [i, j] I- ¢ if and only
if M,[i,j]IF 1(¢), and we say that L ias expressive as,
denoted by L= L, if both L < L'and L' < L, while we say
that L is strictly more expressive thdn denoted by L< L,
ifL <LandLl AL.

In order to compare the expressive power of interval
languages, we use bisimulation games [21] and bisimula-

(i,m) <k andM, [j,m] I y;
KK KK tion [4]; since the former can be considered a generalizatio
The truth clauses fopr™ " andOr" ", as well as those for ¢ e latter, we give here a quick remind of bisimulation

the inverse modalities, are defined likewise. It is easy t‘bames (defined here for interval logics).
show that all metric modalities are definable by exploiting

the length constraints, e.g.:
e (for the interval logic L) to be played by two players, Player
o @ i=Or(WAleny), | and Player Il, on a pair of L-models!, M’, with M =
and thus that all languages of the family are fragments of,1(D),V) andM’ = (I, I(D’), V). The game starts from
MPNL. Letk € { <k, <k =k >k, >k, [k K],(k K),[k k), ~ @giveninitial configuration where aconfigurationis a pair
(k, K]}, and letoX be any of the two operatotg or Of. The ~ Of intervals([a,b], [&, ), with [a,b] € I(D) and [&,b]
dual operators are defined as usual, thaflfgy = ~0X—y.  I(D’). Aconfiguration([a, b], [&',b']) is matchingf [a,b] and
Let & be a special symbol such thatk = ¢, and Ok = ¢, [@,b] satisfy the same atomic propositions in their respec-
for anyk and letSC {e,<,<,=,>,>,[,(),),(]}. We will  tive models. Thenovesof the game depend on the modal
denote by MPNE the language that features: operators of L: for eack) in the language of L, wherg,
is the (interval) relation on whickp is based, Player | can
play the corresponding move: chodde(resp.,M’), and an
interval [c,d] (resp.,|c’,d']) such thafa,b] Ry [c,d] (resp.,
[a,b'] Ry [c/,d']). Player Il must reply by choosing an inter-
val [c/,d'] (resp.,[c,d]) in M’ (resp.,M), which leads to the
new configuration[c,d],[c/,d']). If after any given round
the current configuration is not matching, Player | wins the

We define the notion of &l-moves bisimulation game

(i) the modal operator§;™ andO;* for eachk € N and
~€e Sn{e, <, <,=,>,>}

(ii)y the modal operatorsl[k’m andop"k/] (resp.,ofk’w) and
o), oK) and o), oK1 and o), for each
keN, K e NU{ew}, if | € S(resp.,() €S [) €S
(le9.
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game; otherwise, afteX rounds, Player Il wins the game. MPNL;" = MPNL; MPNL{ = MPNL>
Intuitively, Player Il has avinning strategyin the N-moves T T
bisimulation game on the model and M’ with a given MPNL= MPNLO
initial configuration if she can win regardless of the moves

played by Player I; otherwise, Player | has a winning strat- T T

egy. A formal definition of winning strategy can be found MPNL= MPNL~

in [21]. The following key property of thé&l-move games Fig. 2 Relative expressive power of the metric languages belgngin

can be proved routinely, in analogy with similar resultsabo wMPNL. An arrow going from L to I_ denotes that Lis strictly more
- - - . expressive than L. Languages that are no connected thraygpagh
bisimulation games in modal logic [21] are incomparable.

Proposition 1 Let L be a finite interval language. For all

N >0, Player Il has a winning strategy in the N-move L- MpPNL;= of infinite length. For example, it is possible to ex-
bisimulation game on M and Mwith initial configuration press the formuld, p of PNL by means the infinite formu-
([a,b], [, b]) iff [a,b] and[a’, b'] satisfy the same N-formulas jae 6=0pv ¢=1pv...07 pV ... Nevertheless, suppose, by
over L with modal depth at most N. contradiction, that there exists a finite formglaa MPNL;~

such thatp = O, p. This means thap contains a finite num-

ber of modal operators. Leéte N be the largest number
6.1 The class of Weak Metric Propositional Neighborhood g,ch thath;t or Ot occurs ing, and, for anyt € N, define
Logics 'MPNL [~ as the restriction of MPNE to the set of modali-

_ ties {07, 07k | 0 < k <t}. Now, letM = (D = N,I(D),V)

Here we analyze the set of languages in WMPNL. Formallyg,qn/ — (Y = N,I(D'),V"), AP = {p}, V(p) = {[L,t+
WMPNL is the subset of MPNL defined as follows: 2]}, V/(p) = 0, andZ ¢ [(D) x I(D') defined aZ = {([i, ],
[i”,i') ] d(i,j) <t}.ltis possible to show that is a bisimu-
lation for'MPNL =. SinceM, [1, 1] I- O p, M/, [1, L] I Or p,
1,1] is Z-related with[1’, 1], we have a contradiction.

WMPNL = {L | L € MPNL and PNLZ£ L}.

The following lemma states some basic results which wéndl

will use to classify languages in WMPNL. PNL £ MPNL f). Again, suppose that for songec MPNLlo

Lemma 7 If o € {r,1}, whenever any of the modalities in itis the case thap = O;p. ConsideM = (D =N, I(DD),V),
K =k _p kK K) kK M’ = (D' = N, I(D"),V’), AP = {p}, V(p) = {[1,1]}, and
{03506} (resp..{05*, 06™}, {05%,06%) 06 T), are aly Py, V2 o
included in the language, thefy, (resp.,05K, 0¥) can be \_/'(P) = 0 vv_hlleZ cI(D) x H_(D') IS _defme_d aZ = {([i, J%,
defined. Similarly, whenever!) is included, thenps*, L[> ) |1 # i} As beforeZ is a bisimulation for MPNL.
koo ) be defined © SinceM, [0,1] IF Oy p, M’, [0, '] I# Or p, and[0, 1] is Z-related
05", andgo™ " can be defined. with [0, 1'], we have a contradiction.

Proof See Table 3, right column. 0  Now,we show that no other language belongs to wMPNL,
that is, neither MPNE nor MPNL belongs to wMPNL for
anyS¢ Sy. LetSC {¢,<,=,>,>,[],()} such thalS¢ S.

We must show that PNIX MPNLS and PNL < MPNL}.
Since MPNL® < MPNLS, it suffices to show that PNIx

Theorem 6 LetSy = {{<},{>},{=}.{()}}. We have that
WMPNL = {MPNLS,MPNL| S€ Sy}.

Proof First, we show that MPNE and MPNL® belong to S S
WMPNL for eachS € Sy,. We have to show that PNK '\JPNL ’ Lf € € S then clearly PNL= MPNL ,_smce I_DNL
MPNLlS for eachS e Sy. As a consequence, we also have MPNLE. If > Sor [ € S then the result |mmeq||a.tely
that PNLZ MPNLS for eachSe S,. By Lemma 7, we have fOHO\_NS from Lemma 7. If{<,>} C S the_n the theils im-
that MPNLS < MPNL~ and MPNL < MPNLlo. Thus, it gwfématelyfollows by the fact that,  is defined by); - Vv

5 W for eacho € {r,1}. The rest of the cases are conse-
suffices to show that PNIZ MPNL™ and PNLZ MPNL",  guences of the others and of previous lemmas. O
as follows.
We now establish how the various languages of wWMPNL

PNL ZMPNL . Itis easy to show that classical, non-metric ) .
glate to each other in terms of expressive power.

modal operators of PNL can be expressed using formulae $

2 We refer to the notion of modal depth of a L-formuja which ~ Theorem 7 The relative expressive power of the languages
is defined in the usual way. Let us denotehdeptti$) the modal  of the class WMPNL is as depicted in Fig. 2, where each

depth of¢. It can be inductively defined as follows: (i) mdepth(p) : :
= 0, for eachp & AP (i) mdepthi-¢) — mdeptti). mdeptlig v arrow means that the language at the top is strictly more

W) = maxmdeptti¢), mdeptiiy)}, mdeptio$) — mdeptiip)+1,  €XPressive than the one at the bottom.
for each{ of the language
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Proof By Lemma 7, we already know that MPNL=
MPNL=, MPNL;* < MPNL;", MPNL> < MPNL", and that

2)']) in the N-moves bisimulation game fdMPNL=. But
M,[a,a+ 1] IF len—; and M’,[&,(a+ 2)'] Iff len—1, which

MPNL> =< MPNLl(). To complete the proof, it remains to Means thatthe formulan_, cannot be expressed in the lan-

show that MPNE Z MPNL<, MPNL~ < MPNLF,
MPNLO # MPNL>, and MPNL’ < MPNL;.

MPNL = £ MPNL <. It suffices to show thap; % cannot be
defined in MPNL=. Suppose the contrary, and Mt= (D =
N, I(D),V), M’ = <D, = {O/}a H(D,)7VI>1 AP ={p},V(p) =
I(D), V/(p) =1(D') = {[0/,0]}, andZ = (D) x (D). ltis
possible to show that is a bisimulation for MPNLE. Since
it holds thatM, [0,0] IF 7 tp, M’,[0/,0] I¥ O7tp, and [0, O]
is Z-related to[0’, 0], we have a contradiction.

MPNL 0 £ MPNL >. Consider, for any € N, the language
'MPNL>, that is, as before, the restriction of MPRiLto
the set of modalitiegO;*, 07k [0 <k <t}. LetM = (D =
N,I(D),V), M’ = (I = N, I(D'),V'), AP = {p}, V(p) =
{01,111 8(i. ) is odd and5(i, ) <t + N+ 1}, V'(p) = {[i,
i'l16(,j)isodd,a(i,j) <t+N+1,and[i,j] #[a—1,a]},
wherea= N(t+N+ 1), and consider the relatiah= {([i, j],
K1) oG, )) =0(k 1) <t+N+1andk,l] #[a—1,a}U
{([i,i],[",K]) 1 8(i,j) >t+N+1andd(i,k) >t+N+1}uU
{(a—1.a][(a—3).a)).(la—La.[(a- 1), (a+ 2]} U
{([i,jl,[(@—12),&]) | 4(i,j) = 2}. It is possible to show

guage MPNL= for anyt,N € N. Thus, we have the result.
By exploiting a very similar argument, it is possible to show
that MPNL £ MPNLO. 0

6.2 Expressive Power of Languages of the Class MPNL

In this section we deal with the problem of classifying aél th
fragments of the class MPNL with respect to their relative
expressive power. Fig. 3 shows how the various languages
are related to each other.

Lemma 8 The following equivalences hold:

1. MPNL<> = MPNL<2;

2. MPNL<0 = MPNL=0 = MPNL=> = MPNL== =
MPNLU:

3. MPNL>*€ = MPNLZ;

4. MPNL>0 = MPNLO,

thatZ represents a winning strategy for Player Il at the ini-Proof It suffices to use Lemma 7 and the equivalences in

tial configurarion([a, b], [&,b']) (for anyb) in the N-moves
bisimulation game fofMPNL>. But M, [a, b] I- <>|<O’2) p and
M’ [, b IF <>|(0’2) p, which means that the formukéq(o’z)p
cannot be expressediMPNL> for anyt,N € N. Thus, we
have the result.

MPNL~ < MPNL =, MPNL < MPNL?. This is imme-
diate by observing that, for eaahe {r,1}, O5%y is de-
fined by Okt (len_y A ), and thatoék’w)w is defined by
OZ*(len i A Q) (if K # o) or by Ok (if K = ).

We have MPNLE < MPNL=, MPNL* = MPNL~, MPNL~

Table 4 (left column). O

Corollary 3 If S={¢g,<,=,>,>,(),[]}, then we have that
MPNLS = MPNL! and MPNLS = MPNL].

Theorem 8 The relative expressive power of the languages
of the class MPNL is as depicted in Fig. 3, where each arrow
means that the language at the top is strictly more expressiv
than the one at the bottom.

Proof To prove this result, one can use very similar argu-

< MPNLO, and MPNL = MPNLl() as a consequence of ments based on bisimulations (and bisimulation games) as

the above results. Now, we want to show that each languad

in the set{MPNL<, MPNL=, MPNL;"} is incomparable
with any of the languages of the seMPNL>, MPNLU,

MPNLl()}. To this end it suffices to show that MPNLA

MPNL! and MPNL> £ MPNL;, which can be done as in
Theorem 6. Finally, we must show that MPNIx MPNL;

and MPNL) < MPNLlo. It is easy to see that MPNL=<

MPNL;~ and MPNL) < MPNL,. To show that MPN[ #
MPNL=, consider, for any € N, the languagéMPNL=,
defined as usual. L&t = (D =N, I(D),V), M’ = (D' =N,
I(D),v"), AP =0,V (p) =V’'(p) =0, and consider the re-
lation Z = {([i, j],[",']) | i, € N} U{([a,a+1],[a, (a+
2D} UL (i, 1,16+ 1), (1+1)]) |i,j € N}, wherea = Nt.

R the previous theorems, plus the equivalences in Table 4,
right column, and all the above results. As an example, we
present here only the proof of one case, namely MPNL
MPNLO€, To this end, consider, for anye N, the language
'tMPNLU¢, defined as usual. L&t = (D = N, I(D),V), M’ =

(D' =N, I(D"),V", AP =p, V(p) = {[i,i],[i,i+1]|ie
N}V/(p) = {[I, ], (i +1)] | i € N}\ {[a, ]}, where
a=N(t+2N), and consider the relatiah= {([i, j], [K,']) |
8(i.j) = 3(k,1) and[k,I] # [a,a]} U {([a,a]. [, (a+ 1)),
([a,al], [((a—1),a]) U {([i,i+2], [@,a]) | i € N}. Itis pos-
sible to show thaZ represents a winning strategy for Player
Il at the initial configuratior{[a, b], [&,b]) (for anyb) in the
N-moves bisimulation game foMPNLO-€. But M, [a,b] I+
OstpandM’,[d,b] I Og5tp, which means that the formula

It is possible to show tha represents a winning strategy O5'p cannot be expressed iMPNLU for anyt,N € N.

for Player Il at the initial configurariof[a,a+ 1], [a/, (a+

Thus, we have the result. a
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Ofwe  05lwv oty k=0 Oy Ob Ty k>0
Sy k>0 1 k=0
Oékk’)w o O;kJrlev v ng’—lwv L k £ o0 ngw N <>([)k+1s°°]w
0%y k= oo Ol Oollensy Alency A ) K+ oo
S k> 0,K # o Oollensi A ) K=o
oK1y k=0,K # oo Ooky & Qo(len—k A )
<>c,k Wy k> 0,K = oo 0¥y e Ogllensy Alen_w A ) K + oo
“yvosty k=0,K = oo Oo(len- A ) K=e
Ogky = <>ow k=0
05ty k>0
Table 4 More equivalences between metric operators,{r,|}.
MPNL= | MPNLI "~ meNL)
MPNL=¢ MPNL<~> MPNLO:
MPNL= MPNL<:£ MPNL>€ MPNLO
MPNL=< MPNL? = PNL MPNL~>

Fig. 3 Relative expressive power of the metric languages belgngi®mPNL. Fragments inside the boxes belong to WMPNL (see Fig

PNLT [ NEXPTIME | FO’[=,<][9] | NEXPTIME have obtained a decidability result for I, =, <,s. We
complete complete [32] have then showed how to extend MPNL to obtain an interval
MPNL | 2NEXPTIME, | FO?[N,=,<,s | 3NEXPTIME, lodi Vel lete for th . 5 —
NEXPTIME NEXPTIME ogic expressively comp ete for t e entire ‘F[ ,=,<,9,
hard hard which we have proved to be undecidable. Finally, we have
MPNLT | undecidable | FO?[N,=,<,s | undecidable discussed the variety of metric logics and their expressive
Table 5 Complexity and expressive completeness results. ness. The results obtained here are amenable to some fairly

straightforward generalizations, e.g., froiio Z.

One important open problem is to find the exact com-

7 Concluding remarks plexity of the satisfiability problem for MPNL, when con-

straints are represented in binary, and the identificatfon o
In this paper we have presented and studied metric extetihe fragment(s) of MPNL where the complexity jumps oc-
sions of Propositional Neighborhood Logic over the inter-cur. Another interesting open problem is to identify more
val structure of natural numbel$. We have demonstrated precisely the (un)decidability border amongst the family o
that these are expressive and natural languages to reasdi?’NL logics.
about that structure by proving the complexity and expres-

sive completeness results summarized in Table 5. First, we
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