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Abstract

In several domains, the execution of systems is associated
with the generation of continuous streams of data. The
streams may contain important telemetry information, which
can be used to perform tasks like predictive maintenance and
preemptive failure detection, in order to issue early warnings.
In critical contexts, formal methods have been recognized as
an effective approach to ensure the correct behaviour of a sys-
tem. However, they have at least two significant weaknesses:
(i) a complete, hand-made specification of all the properties
that have to be guaranteed during the execution of the system
turns out to be often out of reach when complex systems have
to be handled and, for the same complexity reasons, (ii) it may
be difficult to derive a complete model of the system against
which to check the properties of interest. To overcome these
limitations, some approaches that complement formal veri-
fication with model-based testing and monitoring have been
recently proposed. In this paper, we argue for the opportu-
nity of pairing monitoring with machine learning techniques
in order to improve its ability of detecting critical system be-
haviours in an on-line, data streaming setting.

1 Introduction
Typically, during its execution, a system generates several
streams of data, which may contain important telemetry in-
formation. As an example, this is the case with logs pro-
duced by web servers, smart sensors, or machinery in mod-
ern industrial plants. System behaviours may be arbitrarily
convoluted, as they can be the result of the interaction among
several components, and between these components and the
surrounding environment.

In such a complex setting, formal methods can be ex-
ploited as effective tools for the automatic verification
of software and hardware systems, a task which is of
paramount importance in many critical domains. However,
the inherent complexity of system’s components and of their
interactions make it very difficult (and sometimes impossi-
ble) to specify in advance all the relevant properties that have
to be guaranteed (or, dually, avoided) during their execution.
In addition, the definition of a complete model of the system
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against which to check the properties of interest may also be
out of reach.

To overcome these limitations, some approaches that
complement formal verification with model-based testing
and monitoring have been recently proposed in the literature
(see, for instance, (Cassar et al. 2017; Gerhold, Hartmanns,
and Stoelinga 2019)).

In this work, we focus on monitoring (Leucker and
Schallhart 2009), a runtime verification technique which is
gaining more and more attention within the formal verifi-
cation community. The key feature of monitoring is that
it allows one to detect satisfaction or violation of a prop-
erty (typically expressed by some temporal logic formula)
by analyzing a single run of the system. This makes such a
technique naturally applicable to data streaming contexts.

In the remainder, we outline a novel framework for on-
line system verification that integrates monitoring with ma-
chine learning and can be applied in preemptive failure de-
tection and predictive maintenance tasks in data streaming
contexts1. As we shall see, the proposed approach allows a
domain expert to start with the specification of the most im-
portant and natural properties to monitor. Then, the frame-
work autonomously discovers new relevant properties by
means of an iterative refinement process, becoming capable,
over time, of identifying undesired behaviours in advance,
with a considerably higher level of detail and coverage than
the original specification.

2 Online System Verification
As it is emerging from the most recent literature in the field,
machine and statistical learning solutions can be success-
fully combined with formal methods techniques to deal with
complex real-world problems (Jansen et al. 2018). In the
following, we briefly outline a possible integration of mon-
itoring and machine learning, developing a framework that
can be exploited for online system verification.

2.1 The Framework
The framework operation consists of five main phases.
Specification of the initial set of properties. Domain ex-
perts are asked to specify the most significant (monitorable)

1For more details, see (Brunello, Della Monica, and Montanari
2019) and references therein.



properties that the system under consideration should ex-
hibit. These properties are then formalized in a suitable tem-
poral logic and a monitor that checks them against incoming
execution traces is synthesized.
Monitoring of system properties. The monitor checks
whether the system satisfies/violates the specified properties
during its execution.
Detection of a failure. Traces for which the monitor reaches
a verdict of failure are collected. These are considered to be
failure traces. In addition, traces generated by the system
during previous normal behaviour are extracted, and consid-
ered to be normal traces. Of course, the length of the time
window that is used to extract failure traces depends on the
specific application domain, and it must be carefully chosen
according to the results of a dedicated tuning phase, possibly
with the help of domain experts.
Mining of the relevant behaviour patterns. Failure and
normal traces are put together to generate a dataset for
supervised machine learning. Each instance is character-
ized by a (possibly multivariate) trace that can contain nu-
merical (as in the case of a temperature signal) or cate-
gorical (this is the case, for instance, with a sequence of
system calls made in a Unix system) values. Moreover,
each instance is labeled with a binary class, that can be
either failure or normal behaviour. Traces are first con-
verted into timelines (see, e.g., (Sciavicco, Stan, and Vac-
cari 2019)). Then, pattern mining algorithms are run on
the dataset of labeled timelines, with the goal of extract-
ing the (temporal) logic formulas that best characterize and
discriminate between the two classes (following, for in-
stance, the approaches described in (Bresolin et al. 2018;
Brunello, Sciavicco, and Stan 2019)).
Extension of the pool of properties. The (temporal) logic
formulas extracted during the mining phase are added to the
monitoring pool of properties, and the process restarts from
the monitoring phase.

The proposed framework works in an iterative way, which
we may refer to as its online phase, in which incoming traces
are considered. It starts from a set of basic properties, and
new ones are then added over time. The discovered logi-
cal properties are closely related to the original ones and, in
principle, they should allow the system to discover anoma-
lous behaviours earlier and with ever increasing accuracy
and coverage.

On the basis of the organization of the above five steps, we
can identify different framework phases and learning modes.

2.2 Warmup and Online Execution Phases
Sometimes, data pertaining to past system failures may be
available, or approximate data may be generated by means
of simulations. In that case, it makes sense to exploit these
pieces of information to perform monitor learning even be-
fore its online phase. To do that, intuitively, it is sufficient
to mimic the continual arrival of the available traces, and to
iteratively follow the five steps which we described. Thanks
to this initial warmup phase, the framework can then deal
with the subsequent online phase starting with an already-
extended pool of properties.

2.3 Semi-supervised and Unsupervised Learning
Let us focus on the task of preemptive machinery fault detec-
tion. According to the first step of the framework, a domain
expert may be required to specify an initial set of properties
which should be monitored against the execution of the sys-
tem, thus acting, in her/his vision, as fault early warnings.
Since there is, at first, a human intervention, we can refer to
this strategy as a kind of semi-supervised learning.

Nevertheless, domain expert knowledge may sometimes
not be available. In such a case, the monitor is initialized
with just a single, trivial property, that is, “the machinery is
in operation”. Then, once a failure is detected (indeed not
in a preemptive way), the framework may proceed with the
usual steps in order to detect some properties that may help
it in forecasting the fault before it actually happens. Since in
this operation mode there is no human intervention (except
for the trivial, initial, “machinery in operation” property),
we can refer to it as a kind of unsupervised learning.
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