
Pushing runtime verification to the limit
May process semantics be with us

Dario Della Monica1 Adrian Francalanza2

1University of Udine, Italy
dario.dellamonica@uniud.it

2University of Malta, Malta
adrian.francalanza@um.edu.mt

OVERLAY 2019

Rende, November 19, 2019



Outline

A quick introduction to runtime verification (monitoring)

Monitoring HML

Extending runtime verification applicability
A failed attempt
A promising road using process semantics

Conclusions



Outline

A quick introduction to runtime verification (monitoring)

Monitoring HML

Extending runtime verification applicability
A failed attempt
A promising road using process semantics

Conclusions



Runtime verification

monitoring a single partial execution and try to give a verdict

eventually p



Runtime verification

monitoring a single partial execution and try to give a verdict

eventually p
¬p



Runtime verification

monitoring a single partial execution and try to give a verdict

eventually p
¬p

?



Runtime verification

monitoring a single partial execution and try to give a verdict

eventually p
¬p

?

¬p

?



Runtime verification

monitoring a single partial execution and try to give a verdict

eventually p
¬p

?

¬p

?

¬p

?



Runtime verification

monitoring a single partial execution and try to give a verdict

eventually p
¬p

?

¬p

?

¬p

?

p



Runtime verification

monitoring a single partial execution and try to give a verdict

eventually p
¬p

?

¬p

?

¬p

?

p
yes



Runtime verification

monitoring a single partial execution and try to give a verdict

eventually p
¬p

?

¬p

?

¬p

?

p
yes

¬p

?

¬p

?

¬p

?



Runtime verification

monitoring a single partial execution and try to give a verdict

eventually p
¬p

?

¬p

?

¬p

?

p
yes

¬p

?

¬p

?

¬p

?

¬p

?



Runtime verification

monitoring a single partial execution and try to give a verdict

eventually p
¬p

?

¬p

?

¬p

?

p
yes

¬p

?

¬p

?

¬p

?

¬p

?

¬p

?



Runtime verification

monitoring a single partial execution and try to give a verdict

eventually p
¬p

?

¬p

?

¬p

?

p
yes

¬p

?

¬p

?

¬p

?

¬p

?

¬p

? ? ?



Runtime verification

monitoring a single partial execution and try to give a verdict

eventually p
¬p

?

¬p

?

¬p

?

p
yes

¬p

?

¬p

?

¬p

?

¬p

?

¬p

? ? ?

always p
p

?

p

?

p

?

¬p
no



Runtime verification

monitoring a single partial execution and try to give a verdict

eventually p
¬p

?

¬p

?

¬p

?

p
yes

¬p

?

¬p

?

¬p

?

¬p

?

¬p

? ? ?

always p
p

?

p

?

p

?

¬p
no

p

?

p

?

p

?

p

?

p

? ? ?



Runtime verification

monitoring a single partial execution and try to give a verdict

eventually p
¬p

?

¬p

?

¬p

?

p
yes

¬p

?

¬p

?

¬p

?

¬p

?

¬p

? ? ?

always p
p

?

p

?

p

?

¬p
no

p

?

p

?

p

?

p

?

p

? ? ?

p until q
p p p

? ? ?

q
yes



Runtime verification

monitoring a single partial execution and try to give a verdict

eventually p
¬p

?

¬p

?

¬p

?

p
yes

¬p

?

¬p

?

¬p

?

¬p

?

¬p

? ? ?

always p
p

?

p

?

p

?

¬p
no

p

?

p

?

p

?

p

?

p

? ? ?

p until q
p p p

? ? ?

q
yes

p p p

? ? ?
∅

no



Runtime verification

monitoring a single partial execution and try to give a verdict

eventually p
¬p

?

¬p

?

¬p

?

p
yes

¬p

?

¬p

?

¬p

?

¬p

?

¬p

? ? ?

always p
p

?

p

?

p

?

¬p
no

p

?

p

?

p

?

p

?

p

? ? ?

p until q
p p p

? ? ?

q
yes

p p p

? ? ?
∅

no

p p p p p

? ? ? ? ? ? ?



Monitorability

Definition (monitorability)

ϕ is monitorable := ϕ is suitable to be runtime verified

:= either
there exists a witness for ϕ-satisfaction whenever ϕ is true

or
there exists a witness for ϕ-violation whenever ϕ is false

witness for ϕ-satisfaction: finite trace s.t. every system featuring it satisfies ϕ

witness for ϕ-violation: finite trace s.t. every system featuring it violates ϕ



Outline

A quick introduction to runtime verification (monitoring)

Monitoring HML

Extending runtime verification applicability
A failed attempt
A promising road using process semantics

Conclusions



The branching time logic HML

ϕ, φ ∈ HML ::=

tt (truth) | ff (falsehood)

| ϕ∨ φ (disjunction) | ϕ∧ φ (conjunction)

| 〈α〉ϕ (possibility) | [α]ϕ (necessity)

The maximal monitorable subset †

π,$ ∈ cHML::= tt | ff | π∨$ | 〈α〉π

θ, ϑ ∈ sHML::= tt | ff | θ∧ϑ | [α]θ

†Francalanza, Aceto, Ingólfsdóttir, On verifying Hennessy-Milner logic with recursion at runtime. In Runtime
Verification, 2015.



The branching time logic HML

ϕ, φ ∈ HML ::=

tt (truth) | ff (falsehood)

| ϕ∨ φ (disjunction) | ϕ∧ φ (conjunction)

| 〈α〉ϕ (possibility) | [α]ϕ (necessity)

The maximal monitorable subset †

π,$ ∈ cHML::= tt | ff | π∨$ | 〈α〉π

θ, ϑ ∈ sHML::= tt | ff | θ∧ϑ | [α]θ

†Francalanza, Aceto, Ingólfsdóttir, On verifying Hennessy-Milner logic with recursion at runtime. In Runtime
Verification, 2015.



Monitorability: examples

The maximal monitorable subset

π,$ ∈ cHML ::= tt | ff | π∨$ | 〈α〉π

θ, ϑ ∈ sHML ::= tt | ff | θ∧ϑ | [α]θ

Examples

〈a〉tt
positively monitorable

a
a

b

〈a〉[b]ff is false

a
a

a
b

〈a〉[b]ff is true



Monitorability: examples

The maximal monitorable subset

π,$ ∈ cHML ::= tt | ff | π∨$ | 〈α〉π

θ, ϑ ∈ sHML ::= tt | ff | θ∧ϑ | [α]θ

Examples

〈a〉tt [a]ff
positively monitorable negatively monitorable

a
a

b

〈a〉[b]ff is false

a
a

a
b

〈a〉[b]ff is true



Monitorability: examples

The maximal monitorable subset

π,$ ∈ cHML ::= tt | ff | π∨$ | 〈α〉π

θ, ϑ ∈ sHML ::= tt | ff | θ∧ϑ | [α]θ

Examples

〈a〉tt [a]ff 〈a〉tt∨〈b〉tt
positively monitorable negatively monitorable positively monitorable

a
a

b

〈a〉[b]ff is false

a
a

a
b

〈a〉[b]ff is true



Monitorability: examples

The maximal monitorable subset

π,$ ∈ cHML ::= tt | ff | π∨$ | 〈α〉π

θ, ϑ ∈ sHML ::= tt | ff | θ∧ϑ | [α]θ

Examples

〈a〉tt [a]ff 〈a〉tt∨〈b〉tt 〈a〉[b]ff
positively monitorable negatively monitorable positively monitorable

a
a

b

〈a〉[b]ff is false

a
a

a
b

〈a〉[b]ff is true



Monitorability: examples

The maximal monitorable subset

π,$ ∈ cHML ::= tt | ff | π∨$ | 〈α〉π

θ, ϑ ∈ sHML ::= tt | ff | θ∧ϑ | [α]θ

Examples

〈a〉tt [a]ff 〈a〉tt∨〈b〉tt 〈a〉[b]ff
positively monitorable negatively monitorable positively monitorable

a
a

b

〈a〉[b]ff is false

a
a

a
b

〈a〉[b]ff is true



Monitorability: examples

The maximal monitorable subset

π,$ ∈ cHML ::= tt | ff | π∨$ | 〈α〉π

θ, ϑ ∈ sHML ::= tt | ff | θ∧ϑ | [α]θ

Examples

〈a〉tt [a]ff 〈a〉tt∨〈b〉tt 〈a〉[b]ff〈a〉[b]ff
positively monitorable negatively monitorable positively monitorable not monitorable

a
a

b

〈a〉[b]ff is false

a
a

a
b

〈a〉[b]ff is true



Limitations of monitoring

〈a〉(〈b〉tt∨[c]ff): not monitorable, do model checking

〈a〉(〈b〉tt∨[c]ff) ≡ 〈a〉〈b〉tt ∨ 〈a〉[c]ff

monitorable:
do runtime verification

not monitorable:
do model checking



Limitations of monitoring

〈a〉(〈b〉tt∨[c]ff): not monitorable, do model checking

〈a〉(〈b〉tt∨[c]ff) ≡ 〈a〉〈b〉tt ∨ 〈a〉[c]ff

monitorable:
do runtime verification

not monitorable:
do model checking



Limitations of monitoring

〈a〉(〈b〉tt∨[c]ff): not monitorable, do model checking

〈a〉(〈b〉tt∨[c]ff) ≡ 〈a〉〈b〉tt ∨ 〈a〉[c]ff

monitorable:
do runtime verification

not monitorable:
do model checking



Outline

A quick introduction to runtime verification (monitoring)

Monitoring HML

Extending runtime verification applicability
A failed attempt
A promising road using process semantics

Conclusions



The problem: Maximal monitorable semantic sub-formula

Skip

Input: a formula ϕ of HML ψ ::= tt | ff | ψ∨ψ | ψ∧ψ | 〈α〉ψ | [α]ψ

Output: ϕMON (a maximal monitorable semantic sub-formula of ϕ)

I monitorable: ϕMON ∈ cHML ψ ::= tt | ff | ψ∨ψ | 〈α〉ψ

I semantic fragment (every process that satisfies ϕMON, also
satisfies ϕ): ~ϕMON� ⊆ ~ϕ�

I maximal: ∀ψ.~ψ� ⊆ ~ϕ�→ ~ψ� ⊆ ~ϕMON�

Then ϕ ≡ ϕMON ∨ ϕ|ϕMON where I ϕMON is monitorable
I ϕ|ϕMON must be model checked



The problem: Maximal monitorable semantic sub-formula

Skip

Input: a formula ϕ of HML ψ ::= tt | ff | ψ∨ψ | ψ∧ψ | 〈α〉ψ | [α]ψ

Output: ϕMON (a maximal monitorable semantic sub-formula of ϕ)

I monitorable: ϕMON ∈ cHML ψ ::= tt | ff | ψ∨ψ | 〈α〉ψ

I semantic fragment (every process that satisfies ϕMON, also
satisfies ϕ): ~ϕMON� ⊆ ~ϕ�

I maximal: ∀ψ.~ψ� ⊆ ~ϕ�→ ~ψ� ⊆ ~ϕMON�

Then ϕ ≡ ϕMON ∨ ϕ|ϕMON where I ϕMON is monitorable
I ϕ|ϕMON must be model checked



The problem: Maximal monitorable semantic sub-formula

Skip

Input: a formula ϕ of HML ψ ::= tt | ff | ψ∨ψ | ψ∧ψ | 〈α〉ψ | [α]ψ

Output: ϕMON (a maximal monitorable semantic sub-formula of ϕ)

I monitorable: ϕMON ∈ cHML ψ ::= tt | ff | ψ∨ψ | 〈α〉ψ

I semantic fragment (every process that satisfies ϕMON, also
satisfies ϕ): ~ϕMON� ⊆ ~ϕ�

I maximal: ∀ψ.~ψ� ⊆ ~ϕ�→ ~ψ� ⊆ ~ϕMON�

Then ϕ ≡ ϕMON ∨ ϕ|ϕMON where I ϕMON is monitorable
I ϕ|ϕMON must be model checked



The problem: Maximal monitorable semantic sub-formula

Skip

Input: a formula ϕ of HML ψ ::= tt | ff | ψ∨ψ | ψ∧ψ | 〈α〉ψ | [α]ψ

Output: ϕMON (a maximal monitorable semantic sub-formula of ϕ)

I monitorable: ϕMON ∈ cHML ψ ::= tt | ff | ψ∨ψ | 〈α〉ψ

I semantic fragment (every process that satisfies ϕMON, also
satisfies ϕ): ~ϕMON� ⊆ ~ϕ�

I maximal: ∀ψ.~ψ� ⊆ ~ϕ�→ ~ψ� ⊆ ~ϕMON�

Then ϕ ≡ ϕMON ∨ ϕ|ϕMON where I ϕMON is monitorable
I ϕ|ϕMON must be model checked



The problem: Maximal monitorable semantic sub-formula

Skip

Input: a formula ϕ of HML ψ ::= tt | ff | ψ∨ψ | ψ∧ψ | 〈α〉ψ | [α]ψ

Output: ϕMON (a maximal monitorable semantic sub-formula of ϕ)

I monitorable: ϕMON ∈ cHML ψ ::= tt | ff | ψ∨ψ | 〈α〉ψ

I semantic fragment (every process that satisfies ϕMON, also
satisfies ϕ): ~ϕMON� ⊆ ~ϕ�

I maximal: ∀ψ.~ψ� ⊆ ~ϕ�→ ~ψ� ⊆ ~ϕMON�

Then ϕ ≡ ϕMON ∨ ϕ|ϕMON where I ϕMON is monitorable
I ϕ|ϕMON must be model checked



Outline

A quick introduction to runtime verification (monitoring)

Monitoring HML

Extending runtime verification applicability
A failed attempt
A promising road using process semantics

Conclusions



The decomposition procedure

•

•

• •

• • • •

• • • • •

• • •

• • • •

1. Identify highest universal nodes

2. Remove subtrees rooted in highest universal nodes

3. Remove new leaves



The decomposition procedure

•

•

• •

• • • •

• • • • •

• • •

• • • •

1. Identify highest universal nodes

2. Remove subtrees rooted in highest universal nodes

3. Remove new leaves



The decomposition procedure

•

•

• •

• • • •

• • • • •

• • •

• • • •

1. Identify highest universal nodes

2. Remove subtrees rooted in highest universal nodes

3. Remove new leaves



The decomposition procedure

•

•

• •

• • • •

• • • • •

• • •

• • • •

1. Identify highest universal nodes

2. Remove subtrees rooted in highest universal nodes

3. Remove new leaves



The decomposition procedure

•

•

• •

•

• •

• •

• • • •

1. Identify highest universal nodes

2. Remove subtrees rooted in highest universal nodes

3. Remove new leaves



The decomposition procedure

•

•

• •

•

• •

• •

• • • •

1. Identify highest universal nodes

2. Remove subtrees rooted in highest universal nodes

3. Remove new leaves



The decomposition procedure

•

•

•

•

• •

• •

• • • •

1. Identify highest universal nodes

2. Remove subtrees rooted in highest universal nodes

3. Remove new leaves



A counterexample

(〈a〉tt∧[b]ff)∨([a]ff∧〈b〉tt)∨(〈a〉tt∧〈b〉tt) ≡ 〈a〉tt∨〈b〉tt

∨

∧

〈a〉 [b]

tt ff

∧

[a] 〈b〉

ff tt

∧

〈a〉 〈b〉

tt tt

≡

∨

〈a〉 〈b〉

tt tt



A counterexample

(〈a〉tt∧[b]ff)∨([a]ff∧〈b〉tt)∨(〈a〉tt∧〈b〉tt) ≡ 〈a〉tt∨〈b〉tt

∨

∧

〈a〉 [b]

tt ff

∧

[a] 〈b〉

ff tt

∧

〈a〉 〈b〉

tt tt

≡

∨

〈a〉 〈b〉

tt tt



A counterexample

(〈a〉tt∧[b]ff)∨([a]ff∧〈b〉tt)∨(〈a〉tt∧〈b〉tt) ≡ 〈a〉tt∨〈b〉tt

∧

〈a〉 [b]

tt ff

∧

[a] 〈b〉

ff tt

∧

〈a〉 〈b〉

tt tt

≡

∨

〈a〉 〈b〉

tt tt



Outline

A quick introduction to runtime verification (monitoring)

Monitoring HML

Extending runtime verification applicability
A failed attempt
A promising road using process semantics

Conclusions



Modal transition systems might hold the answer

I Our approach was purely syntactic
I Formulas are semantics object but difficult to manipulate
I Syntactic trees of formulas can be manipulated but they are...

well... too syntactic
I We needed a representation of formulas that

I is easy to manipulate
I carries semantics information about formulas and their

relationship

Then... process semantics

... but which one?

Modal transition systems (MTS)



Modal transition systems might hold the answer

I Our approach was purely syntactic
I Formulas are semantics object but difficult to manipulate
I Syntactic trees of formulas can be manipulated but they are...

well... too syntactic
I We needed a representation of formulas that

I is easy to manipulate
I carries semantics information about formulas and their

relationship

Then... process semantics

... but which one?

Modal transition systems (MTS)



Modal transition systems might hold the answer

I Our approach was purely syntactic
I Formulas are semantics object but difficult to manipulate
I Syntactic trees of formulas can be manipulated but they are...

well... too syntactic
I We needed a representation of formulas that

I is easy to manipulate
I carries semantics information about formulas and their

relationship

Then... process semantics

... but which one?

Modal transition systems (MTS)



Why MTS?

I Several process semantics (simulation, trace, bisimulation, ...)
I Branching-time... still many of them (from simulation up to bisimulation)
I Complete for HML : bisimulation is a possible candidate

I problem: all characteristic formulas are out of the monitorable fragment
I problem: bisimulation induces equivalence (rather than preorder) relations

over processes (LTS’s)
I you can only talk of single processes (up to bisimilarity)

I A more suitable graphical representation of formulas of HML is given by
modal transition systems (MTS’s) and modal refinement defined over them

I every formula of HML is representable as a (finite set of) MTS
I a translation back from MTS’s into formulas also exists
I modal refinement over MTS’s is a preorder that carries the semantics

information about formulas and their relationship



Why MTS?

I Several process semantics (simulation, trace, bisimulation, ...)
I Branching-time... still many of them (from simulation up to bisimulation)
I Complete for HML : bisimulation is a possible candidate

I problem: all characteristic formulas are out of the monitorable fragment
I problem: bisimulation induces equivalence (rather than preorder) relations

over processes (LTS’s)
I you can only talk of single processes (up to bisimilarity)

I A more suitable graphical representation of formulas of HML is given by
modal transition systems (MTS’s) and modal refinement defined over them

I every formula of HML is representable as a (finite set of) MTS
I a translation back from MTS’s into formulas also exists
I modal refinement over MTS’s is a preorder that carries the semantics

information about formulas and their relationship



Why MTS?

I Several process semantics (simulation, trace, bisimulation, ...)
I Branching-time... still many of them (from simulation up to bisimulation)
I Complete for HML : bisimulation is a possible candidate

I problem: all characteristic formulas are out of the monitorable fragment
I problem: bisimulation induces equivalence (rather than preorder) relations

over processes (LTS’s)
I you can only talk of single processes (up to bisimilarity)

I A more suitable graphical representation of formulas of HML is given by
modal transition systems (MTS’s) and modal refinement defined over them

I every formula of HML is representable as a (finite set of) MTS
I a translation back from MTS’s into formulas also exists
I modal refinement over MTS’s is a preorder that carries the semantics

information about formulas and their relationship



Why MTS?

I Several process semantics (simulation, trace, bisimulation, ...)
I Branching-time... still many of them (from simulation up to bisimulation)
I Complete for HML : bisimulation is a possible candidate

I problem: all characteristic formulas are out of the monitorable fragment
I problem: bisimulation induces equivalence (rather than preorder) relations

over processes (LTS’s)
I you can only talk of single processes (up to bisimilarity)

I A more suitable graphical representation of formulas of HML is given by
modal transition systems (MTS’s) and modal refinement defined over them

I every formula of HML is representable as a (finite set of) MTS
I a translation back from MTS’s into formulas also exists
I modal refinement over MTS’s is a preorder that carries the semantics

information about formulas and their relationship



What are MTS’s?

I Fix alphabet Σ
I An LTS is a pair (P,→), where

I P is a finite set of processes
I →⊆ P ×Σ × P

a
a

b

a
a

a
b

I An MTS is a triple (P,→,d), where
I P is a finite set of processes
I →⊆ P ×Σ × P
I d⊆ P ×Σ × P and→⊆d

a
a

b

b

a
a

a
b

ω

b

a

b

ω

*



What are MTS’s?

I Fix alphabet Σ
I An LTS is a pair (P,→), where

I P is a finite set of processes
I →⊆ P ×Σ × P

a
a

b

a
a

a
b

we focus on acyclic LTS
(as we consider HML rather than µHML )

I An MTS is a triple (P,→,d), where
I P is a finite set of processes
I →⊆ P ×Σ × P
I d⊆ P ×Σ × P and→⊆d

a
a

b

b

a
a

a
b

ω

b

a

b

ω

*



What are MTS’s?

I Fix alphabet Σ
I An LTS is a pair (P,→), where

I P is a finite set of processes
I →⊆ P ×Σ × P

a
a

b

a
a

a
b

we focus on acyclic LTS
(as we consider HML rather than µHML )

I An MTS is a triple (P,→,d), where
I P is a finite set of processes
I →⊆ P ×Σ × P
I d⊆ P ×Σ × P and→⊆d

a
a

b

b

a
a

a
b

ω

b

a

b

ω

*



What is a modal refinement preorder relation?

Let M, M′ be MTS’s (processes)

M′ is a refinement of M (denoted M v M′) iff

I M′ must do everything M must do (→)
I M may do everything M′ may do (d)

ω

* is the weakest process (ω v M′ for every MTS M′),
called the universal process and denoted by ω

a
a

a
b

ω

b

a

b

v

A

a
a

b

b

(we focus on acyclic MTS)



What is a modal refinement preorder relation?

Let M, M′ be MTS’s (processes)

M′ is a refinement of M (denoted M v M′) iff

I M′ must do everything M must do (→)
I M may do everything M′ may do (d)

ω

* is the weakest process (ω v M′ for every MTS M′),
called the universal process and denoted by ω

a
a

a
b

ω

b

a

b

v

A

a
a

b

b

(we focus on acyclic MTS)



What is a modal refinement preorder relation?

Let M, M′ be MTS’s (processes)

M′ is a refinement of M (denoted M v M′) iff

I M′ must do everything M must do (→)
I M may do everything M′ may do (d)

ω

* is the weakest process (ω v M′ for every MTS M′),
called the universal process and denoted by ω

a
a

a
b

ω

b

a

b

v

A

a
a

b

b

(we focus on acyclic MTS)



What is a modal refinement preorder relation?

Let M, M′ be MTS’s (processes)

M′ is a refinement of M (denoted M v M′) iff

I M′ must do everything M must do (→)
I M may do everything M′ may do (d)

ω

* is the weakest process (ω v M′ for every MTS M′),
called the universal process and denoted by ω

a
a

a
b

ω

b

a

b

v

A

a
a

b

b

(we focus on acyclic MTS)



The problem: Maximal monitorable semantic sub-formula

Input: a formula ϕ of HML ψ ::= tt | ff | ψ∨ψ | ψ∧ψ | 〈α〉ψ | [α]ψ

Output: ϕMON (a maximal monitorable semantic sub-formula of ϕ)

I monitorable: ϕMON ∈ cHML ψ ::= tt | ff | ψ∨ψ | 〈α〉ψ

I semantic fragment (every process that satisfies ϕMON, also
satisfies ϕ): ~ϕMON� ⊆ ~ϕ�

I maximal: ∀ψ.~ψ� ⊆ ~ϕ�→ ~ψ� ⊆ ~ϕMON�

Then ϕ ≡ ϕMON ∨ ϕ|ϕMON where I ϕMON is monitorable
I ϕ|ϕMON must be model checked



The problem: Maximal monitorable semantic sub-formula

Input: a formula ϕ of HML ψ ::= tt | ff | ψ∨ψ | ψ∧ψ | 〈α〉ψ | [α]ψ

Output: ϕMON (a maximal monitorable semantic sub-formula of ϕ)

I monitorable: ϕMON ∈ cHML ψ ::= tt | ff | ψ∨ψ | 〈α〉ψ

I semantic fragment (every process that satisfies ϕMON, also
satisfies ϕ): ~ϕMON� ⊆ ~ϕ�

I maximal: ∀ψ.~ψ� ⊆ ~ϕ�→ ~ψ� ⊆ ~ϕMON�

Then ϕ ≡ ϕMON ∨ ϕ|ϕMON where I ϕMON is monitorable
I ϕ|ϕMON must be model checked



The problem: Maximal monitorable semantic sub-formula

Input: a formula ϕ of HML ψ ::= tt | ff | ψ∨ψ | ψ∧ψ | 〈α〉ψ | [α]ψ

Output: ϕMON (a maximal monitorable semantic sub-formula of ϕ)

I monitorable: ϕMON ∈ cHML ψ ::= tt | ff | ψ∨ψ | 〈α〉ψ

I semantic fragment (every process that satisfies ϕMON, also
satisfies ϕ): ~ϕMON� ⊆ ~ϕ�

I maximal: ∀ψ.~ψ� ⊆ ~ϕ�→ ~ψ� ⊆ ~ϕMON�

Then ϕ ≡ ϕMON ∨ ϕ|ϕMON where I ϕMON is monitorable
I ϕ|ϕMON must be model checked



The problem: Maximal monitorable semantic sub-formula

Input: a formula ϕ of HML ψ ::= tt | ff | ψ∨ψ | ψ∧ψ | 〈α〉ψ | [α]ψ

Output: ϕMON (a maximal monitorable semantic sub-formula of ϕ)

I monitorable: ϕMON ∈ cHML ψ ::= tt | ff | ψ∨ψ | 〈α〉ψ

I semantic fragment (every process that satisfies ϕMON, also
satisfies ϕ): ~ϕMON� ⊆ ~ϕ�

I maximal: ∀ψ.~ψ� ⊆ ~ϕ�→ ~ψ� ⊆ ~ϕMON�

Then ϕ ≡ ϕMON ∨ ϕ|ϕMON where I ϕMON is monitorable
I ϕ|ϕMON must be model checked



The problem: Maximal monitorable semantic sub-formula

Input: a formula ϕ of HML ψ ::= tt | ff | ψ∨ψ | ψ∧ψ | 〈α〉ψ | [α]ψ

Output: ϕMON (a maximal monitorable semantic sub-formula of ϕ)

I monitorable: ϕMON ∈ cHML ψ ::= tt | ff | ψ∨ψ | 〈α〉ψ

I semantic fragment (every process that satisfies ϕMON, also
satisfies ϕ): ~ϕMON� ⊆ ~ϕ�

I maximal: ∀ψ.~ψ� ⊆ ~ϕ�→ ~ψ� ⊆ ~ϕMON�

Then ϕ ≡ ϕMON ∨ ϕ|ϕMON where I ϕMON is monitorable
I ϕ|ϕMON must be model checked



The solution idea

I ϕ 7→ MTS(ϕ) † (transform ϕ into a set of MTS’s)

I MTS(ϕ) = {M1, . . . ,Mn} is a finite set of MTS s.t.

M satisfies ϕ iff Mi v M for some i

for all MTS M

(wlog. we can assume MTS(ϕ) = {Mϕ} to be a singleton)

I PROBLEM: the logical representation of an MTS M
(characteristic formula of M, denoted χ(M)) is not guaranteed
to be in cHML

I consider almost-universal MTS’s, i.e.,
I every state has may transitions to ω (1-step-universal):

characteristic formulas are in cHML + ∧

I every state (except ω) has exactly one outgoing must transition

characteristic formulas are in cHML

†Boudol, Larsen, Graphical Versus Logical Specifications. Theor. Comput. Sci. 106(1): 3-20 (1992).



The solution idea

I ϕ 7→ MTS(ϕ) (transform ϕ into a set of MTS’s)

I MTS(ϕ) = {M1, . . . ,Mn} is a finite set of MTS s.t.

M satisfies ϕ iff Mi v M for some i

for all MTS M

(wlog. we can assume MTS(ϕ) = {Mϕ} to be a singleton)

I PROBLEM: the logical representation of an MTS M
(characteristic formula of M, denoted χ(M)) is not guaranteed
to be in cHML

I consider almost-universal MTS’s, i.e.,
I every state has may transitions to ω (1-step-universal):

characteristic formulas are in cHML + ∧

I every state (except ω) has exactly one outgoing must transition

characteristic formulas are in cHML



The solution idea

I ϕ 7→ MTS(ϕ) (transform ϕ into a set of MTS’s)

I MTS(ϕ) = {M1, . . . ,Mn} is a finite set of MTS s.t.

M satisfies ϕ iff Mi v M for some i

for all MTS M

(wlog. we can assume MTS(ϕ) = {Mϕ} to be a singleton)

I PROBLEM: the logical representation of an MTS M
(characteristic formula of M, denoted χ(M)) is not guaranteed
to be in cHML

I consider almost-universal MTS’s, i.e.,
I every state has may transitions to ω (1-step-universal):

characteristic formulas are in cHML + ∧

I every state (except ω) has exactly one outgoing must transition

characteristic formulas are in cHML



The solution idea (cont’d)

I Let almost-un be the set of almost-universal MTS’s
I Let refinements(Mϕ) be the set of refinements of Mϕ

Theorem (soundness – claim)
Let M ∈ almost-un be a refinement of Mϕ. Then, ~χ(M)� ⊆ ~ϕ�

Corollary
~
∨

M ∈ almost-un ∩ refinements(Mϕ) χ(M)� ⊆ ~ϕ�

Theorem (finiteness – claim)
Let M be an MTS. If M is not almost-universal, then none of its
refinements is almost-universal either

Corollary
~
∨

M ∈ almost-un ∩ refinements(Mϕ) χ(M)� = ~
∨

M ∈ almost-un ∩ {Mϕ}
χ(M)� ⊆ ~ϕ�



The solution idea (cont’d)

I Let almost-un be the set of almost-universal MTS’s
I Let refinements(Mϕ) be the set of refinements of Mϕ

Theorem (soundness – claim)
Let M ∈ almost-un be a refinement of Mϕ. Then, ~χ(M)� ⊆ ~ϕ�

Corollary
~
∨

M ∈ almost-un ∩ refinements(Mϕ) χ(M)� ⊆ ~ϕ�

Theorem (finiteness – claim)
Let M be an MTS. If M is not almost-universal, then none of its
refinements is almost-universal either

Corollary
~
∨

M ∈ almost-un ∩ refinements(Mϕ) χ(M)� = ~
∨

M ∈ almost-un ∩ {Mϕ}
χ(M)� ⊆ ~ϕ�



The solution idea (cont’d)

I Let almost-un be the set of almost-universal MTS’s
I Let refinements(Mϕ) be the set of refinements of Mϕ

Theorem (soundness – claim)
Let M ∈ almost-un be a refinement of Mϕ. Then, ~χ(M)� ⊆ ~ϕ�

Corollary
~
∨

M ∈ almost-un ∩ refinements(Mϕ) χ(M)� ⊆ ~ϕ�

Theorem (finiteness – claim)
Let M be an MTS. If M is not almost-universal, then none of its
refinements is almost-universal either

Corollary
~
∨

M ∈ almost-un ∩ refinements(Mϕ) χ(M)� = ~
∨

M ∈ almost-un ∩ {Mϕ}
χ(M)� ⊆ ~ϕ�



The solution idea (cont’d)

I Let almost-un be the set of almost-universal MTS’s
I Let refinements(Mϕ) be the set of refinements of Mϕ

Theorem (soundness – claim)
Let M ∈ almost-un be a refinement of Mϕ. Then, ~χ(M)� ⊆ ~ϕ�

Corollary
~
∨

M ∈ almost-un ∩ refinements(Mϕ) χ(M)� ⊆ ~ϕ�

Theorem (finiteness – claim)
Let M be an MTS. If M is not almost-universal, then none of its
refinements is almost-universal either

Corollary
~
∨

M ∈ almost-un ∩ refinements(Mϕ) χ(M)� = ~
∨

M ∈ almost-un ∩ {Mϕ}
χ(M)� ⊆ ~ϕ�



The solution idea (cont’d)

I Let almost-un be the set of almost-universal MTS’s
I Let refinements(Mϕ) be the set of refinements of Mϕ

Theorem (soundness – claim)
Let M ∈ almost-un be a refinement of Mϕ. Then, ~χ(M)� ⊆ ~ϕ�

Corollary
~
∨

M ∈ almost-un ∩ refinements(Mϕ) χ(M)� ⊆ ~ϕ�

Theorem (finiteness – claim)
Let M be an MTS. If M is not almost-universal, then none of its
refinements is almost-universal either

Corollary
~
∨

M ∈ almost-un ∩ refinements(Mϕ) χ(M)� = ~
∨

M ∈ almost-un ∩ {Mϕ}
χ(M)� ⊆ ~ϕ�



The solution idea (cont’d)

Maximality follows from a continuity property

Lemma (claim)
Let M be an almost-universal MTS. If all of its ultimate refinements
(i.e.,d=→) satisfy an HML formula ψ, then M satisfies ψ, too

Corollary (maximality)∨
M ∈ almost-un ∩ MTS(ϕ) χ(M) is the maximal monitorable semantic

sub-formula of a given HML formula ϕ, i.e.,∨
M ∈ almost-un ∩ MTS(ϕ) χ(M) = ϕMON



Outline

A quick introduction to runtime verification (monitoring)

Monitoring HML

Extending runtime verification applicability
A failed attempt
A promising road using process semantics

Conclusions



What is missing?

I To extend the approach to full µHML

I MTS’s with cycles

I Even in the context of HML , extend monitoring abilities

I a monitor knows when a process terminates
(complete-simulation)

I a monitor knows which are the next (1-step) possible states
(ready-simulation)

I Complexity analysis
I comparison with a (doubly exponential) recent approach

(not published yet)


	A quick introduction to runtime verification (monitoring)
	Monitoring HML
	Extending runtime verification applicability
	A failed attempt
	A promising road using process semantics

	Conclusions

