Pushing runtime verification to the limit
May process semantics be with us

Dario Della Monica' Adrian Francalanza?

"University of Udine, Italy
dario.dellamonica@uniud.it

2University of Malta, Malta
adrian. francalanza@um. edu.mt

OVERLAY 2019

Rende, November 19, 2019

Outline

A quick introduction to runtime verification (monitoring)

Monitoring HML

Extending runtime verification applicability
A failed attempt

A promising road using process semantics

Conclusions

Outline

A quick introduction to runtime verification (monitoring)

Runtime verification

monitoring a single partial execution and try to give a verdict

eventually p

Runtime verification

monitoring a single partial execution and try to give a verdict

eventually p ﬁ-p

Runtime verification

monitoring a single partial execution and try to give a verdict

-p

eventually p :

Runtime verification

monitoring a single partial execution and try to give a verdict

-p p
eventually p s

Runtime verification

monitoring a single partial execution and try to give a verdict

eventually p [-

Runtime verification

monitoring a single partial execution and try to give a verdict

eventually p R L

Runtime verification

monitoring a single partial execution and try to give a verdict

eventually p R N

Runtime verification

monitoring a single partial execution and try to give a verdict

D A I

eventually p R SRR S 7y?as
P —p =P

Runtime verification

monitoring a single partial execution and try to give a verdict

P P —p P
eventually p ;7”;”,;,,,%3

Runtime verification

monitoring a single partial execution and try to give a verdict

P P —p P
eventually p ;7”;”,;,,,%3

S R A R

7 7 2 2 2

Runtime verification

monitoring a single partial execution and try to give a verdict

P P —p P

eventually p ;7”;”,;,,,%3
-p 1P 71107 B 1P -p

? ? ? ? ? ? ?

Runtime verification

monitoring a single partial execution and try to give a verdict

b -p —-p P
eventually p .-

3K
? 2 7 yes

-p 1P 71P” 1P -p
? ? ? ? ?

14 p p P
always p

Runtime verification

monitoring a single partial execution and try to give a verdict

P P —p P
eventually p ;7”;”,;,,&%3

-p -p -—p -—p P
PP
? 2 2 2 2 2 2

always p

Runtime verification

monitoring a single partial execution and try to give a verdict

P P —p P
eventually p L SRR wy*es

=P -p -p -p P
PP
2 R S S S B

always p

p until q - - &--——8-———_8

Runtime verification

monitoring a single partial execution and try to give a verdict

P P —p P
eventually p L SRR wy*es

-p -p -—p -—p P
I
? 2 2 2 2 2 2

always p

until E,,,f,,,fw,‘.’ 'f,,,f,,,f,,,,@
P q ? ? ? yes ? ? ? no

Runtime verification

monitoring a single partial execution and try to give a verdict

P P —p P
eventually p ;7”;”,;,,3@3
-p 1P 71P7 B 1P -p
? ? ? ? ? ? ?

always p__RP_P_7P
ys p 5 3 3 o
L S S S S
? ? ? ? ? ? ?
. 14 14 14 q 14 14 p 0
p until q *---&---‘o-—__q I, -
? ? ? yes ? ? 2 no

Monitorability

Definition (monitorability)

¢ is monitorable := ¢ is suitable to be runtime verified

= either
there exists a witness for ¢-satisfaction whenever ¢ is true
or
there exists a witness for ¢-violation whenever ¢ is false

witness for y-satisfaction: finite trace s.t. every system featuring it satisfies ¢

witness for ¢-violation: finite trace s.t. every system featuring it violates ¢

Outline

Monitoring HML

The branching time logic HML

w, ¢ € HML .=
tt (truth) | ff (falsehood)
| oV (disjunction) | oA (conjunction)
| (@)p (possibility) | [a]e (necessity)

The maximal monitorable subset *

n,w € cHML::= tt | ff | TV | (@)
9,9 € sHML::= tt | ff | OAD | [a]6

TFrancaIanza, Aceto, Ingolfsdéttir, On verifying Hennessy-Milner logic with recursion at runtime. In Runtime
Verification, 2015.

The branching time logic HML

w, ¢ € HML .=
tt (truth) | ff (falsehood)
| oV (disjunction) | oA (conjunction)
| (@)p (possibility) | [a]e (necessity)

The maximal monitorable subset *

n,w € cHML::= tt | ff | nV@ | (@)
0,9 € sHML::= tt | ff | OAD | [a]6

TFrancaIanza, Aceto, Ingolfsdéttir, On verifying Hennessy-Milner logic with recursion at runtime. In Runtime
Verification, 2015.

Monitorability: examples

The maximal monitorable subset

n,w € cHML ::=tt | ff | nvVTo

6,9 € sHML ::= tt | ff | AT
Examples
(a)tt

positively monitorable

| (a)r
| [a]6

Monitorability: examples

The maximal monitorable subset

n,w € cHML ::=tt | ff | nvVTo
0,9 € sHML ::= tt | ff | OAD
Examples
(ajtt [a]ff

positively monitorable negatively monitorable

| (a)r
| [a]6

Monitorability: examples

The maximal monitorable subset

n,w € cHML ::=tt | ff | nvVTo
0,9 € sHML ::= tt | ff | OAD
Examples
(att [a]ff (a)ttv(b)it

positively monitorable negatively monitorable positively monitorable

| (a)r
| [a]6

Monitorability: examples

The maximal monitorable subset

n,w € cHML ::=tt | ff | nvVTo
0,9 € sHML ::= tt | ff | OAD
Examples
(att [a]ff (a)ttv(b)it

positively monitorable negatively monitorable positively monitorable

| (a)r
| [a]6

(a)[b]ft

Monitorability: examples

The maximal monitorable subset

n,w € cHML ::=tt | ff | nvVTo | {a)m
0,9 € sHML ::= tt | ff | OAD | [@]0
Examples
(att [a]ff (a)ttv(b)it (a)[b]ff

positively monitorable negatively monitorable positively monitorable

(a)[b]ffis false (a)[b]ffis true

Monitorability: examples

The maximal monitorable subset

n,w € cHML ::=tt | ff | nvVTo | {a)m
6,9 € sHML ::= tt | ff | OAD | [@]0
Examples
(att [a]ff (a)ttv(b)it { ff
—a> /aV / a
\ \ b

(a)[b]ffis false (a)[b]ffis true

Limitations of monitoring

(a)({b)ttv[c]ff): not monitorable, do model checking

Limitations of monitoring

(a)({b)ttv[c]ff): not monitorable, do model checking

(@(btv[c]f) = (axbit v (a[c]ff

Limitations of monitoring

(a)({b)ttv[c]ff): not monitorable, do model checking

(@(btv[c]f) = (axbit v (a[c]ff

monitorable: not monitorable:
do runtime verification do model checking

Outline

Extending runtime verification applicability
A failed attempt
A promising road using process semantics

The problem: Maximal monitorable semantic sub-formula
yo=t gV YAy [(e | [aly

Input: a formula ¢ of HML

MON (

Output: ¢ a maximal monitorable semantic sub-formula of ¢)

The problem: Maximal monitorable semantic sub-formula
[Skip J

Input: a formula ¢ of HML g o=t vy [yay [(| [ely

MON (

Output: ¢ a maximal monitorable semantic sub-formula of ¢)

» monitorable: oMON e cHML Y=t fflyvy | (W

The problem: Maximal monitorable semantic sub-formula

Input: a formula ¢ of HML Y=t gV [gAY | (| [e]y

Output: @MON (a maximal monitorable semantic sub-formula of ¢)

» monitorable: ¢MON € cHML Y=t fflyvy | (W

» semantic fragment (every process that satisfies MOV

satisfies ¢): [¢MON] C [[¢]

, also

The problem: Maximal monitorable semantic sub-formula

Input: a formula ¢ of HML Y=t gV [gAY | (| [e]y

Output: "N (a monitorable semantic sub-formula of ¢)

» monitorable: ¢MON € cHML Y=t fflyvy | (W

» semantic fragment (every process that satisfies MOV

satisfies ¢): [¢MON] C [[¢]

, also

> © Yyl € el — [yl < [eVON]

The problem: Maximal monitorable semantic sub-formula

Input: a formula ¢ of HML Y=t gV [gAY | (| [e]y

Output: "N (a monitorable semantic sub-formula of ¢)

» monitorable: ¢MON € cHML Y=t fflyvy | (W

» semantic fragment (every process that satisfies MOV

satisfies ¢): [¢MON] C [[¢]

, also

> © Yyl € el — [yl < [eVON]

MON

Then ¢ = ¢MN v g uwon where > " is monitorable

> ¢ mon must be model checked

Outline

Extending runtime verification applicability
A failed attempt

The decomposition procedure

1. Identify highest universal nodes
2. Remove subtrees rooted in highest universal nodes
3. Remove new leaves

The decomposition procedure

1. Identify highest universal nodes
2. Remove subtrees rooted in highest universal nodes
3. Remove new leaves

The decomposition procedure

1. Identify highest universal nodes
2. Remove subtrees rooted in highest universal nodes
3. Remove new leaves

The decomposition procedure

1. Identify highest universal nodes
2. Remove subtrees rooted in highest universal nodes
3. Remove new leaves

The decomposition procedure

1. Identify highest universal nodes
2. Remove subtrees rooted in highest universal nodes
3. Remove new leaves

The decomposition procedure

1. Identify highest universal nodes
2. Remove subtrees rooted in highest universal nodes
3. Remove new leaves

The decomposition procedure

1. Identify highest universal nodes
2. Remove subtrees rooted in highest universal nodes
3. Remove new leaves

A counterexample

((aytA[b]ff)v([a]ffA(b)tt) v((a)ta(bitt) = (a)ttv(b)tt
A / /‘\ \ A \%
/\ /\ /\ /\
(@ [b] [a] (by (&) (b = (@ (b)

\ \ \ \ \ \ \ \
o ff ff ot ottt ot

A counterexample

((a)tA[b]ff)v([a]ffA(b)tt) v ((a)ttA(b)tt)

(a)ttv(b)tt

A counterexample

((a)tA[b]ff)v([a]ffA(b)tt) v ((a)ttA(b)tt)

(a)ttv(b)tt

Outline

Extending runtime verification applicability

A promising road using process semantics

Modal transition systems might hold the answer

> Our approach was purely syntactic
> Formulas are semantics object but difficult to manipulate

» Syntactic trees of formulas can be manipulated but they are...
well... too syntactic
> We needed a representation of formulas that
> is easy to manipulate

> carries semantics information about formulas and their
relationship

Modal transition systems might hold the answer

> Our approach was purely syntactic
> Formulas are semantics object but difficult to manipulate

> Syntactic trees of formulas can be manipulated but they are...
well... too syntactic

> We needed a representation of formulas that
> is easy to manipulate
> carries semantics information about formulas and their
relationship
Then... process semantics

... but which one?

Modal transition systems might hold the answer

> Our approach was purely syntactic
> Formulas are semantics object but difficult to manipulate

> Syntactic trees of formulas can be manipulated but they are...
well... too syntactic

> We needed a representation of formulas that

> is easy to manipulate
> carries semantics information about formulas and their
relationship

Then... process semantics

... but which one?

Modal transition systems (MTS)

Why MTS?

> Several process semantics (simulation, trace, bisimulation, ...)
> Branching-time... still many of them (from simulation up to bisimulation)
» Complete for HML: bisimulation is a possible candidate

Why MTS?

> Several process semantics (simulation, trace, bisimulation, ...)
> Branching-time... still many of them (from simulation up to bisimulation)
» Complete for HML: bisimulation is a possible candidate

> problem: all characteristic formulas are out of the monitorable fragment

> problem: bisimulation induces equivalence (rather than preorder) relations

over processes (LTS’s)
> you can only talk of single processes (up to bisimilarity)

Why MTS?

v

Several process semantics (simulation, trace, bisimulation, ...)
> Branching-time... still many of them (from simulation up to bisimulation)

v

Complete for HML: bisimulation is a possible candidate

> problem: all characteristic formulas are out of the monitorable fragment

> problem: bisimulation induces equivalence (rather than preorder) relations
over processes (LTS’s)

> you can only talk of single processes (up to bisimilarity)

> A more suitable graphical representation of formulas of HML is given by
modal transition systems (MTS’s) and modal refinement defined over them

Why MTS?

v

Several process semantics (simulation, trace, bisimulation, ...)
> Branching-time... still many of them (from simulation up to bisimulation)

v

Complete for HML: bisimulation is a possible candidate

> problem: all characteristic formulas are out of the monitorable fragment

> problem: bisimulation induces equivalence (rather than preorder) relations
over processes (LTS’s)

> you can only talk of single processes (up to bisimilarity)

> A more suitable graphical representation of formulas of HML is given by
modal transition systems (MTS’s) and modal refinement defined over them

> every formula of HML is representable as a (finite set of) MTS

> atranslation back from MTS’s into formulas also exists

> modal refinement over MTS'’s is a preorder that carries the semantics
information about formulas and their relationship

What are MTS’s?

> Fix alphabet ©
> An LTS is a pair (P, —), where

> P is afinite set of processes
> SCPXXYIXxP

What are MTS’s?

> Fix alphabet © we focus on acyclic LTS
> An LTS is a pair (P, —), where (as we consider HML rather than uHML)

> P is afinite set of processes
> SCPXXYIXxP

What are MTS’s?

> Fix alphabet © we focus on acyclic LTS
> An LTS is a pair (P, —), where (as we consider HML rather than uHML)

> P is afinite set of processes
> SCPXXYIXxP

> An MTS is a triple (P, —,--»), where

> P is afinite set of processes
> SCPXXxP
> ->CPXxXYxPand—C--»

What is a modal refinement preorder relation?

Let M, M’ be MTS’s (processes)

M’ is a refinement of M (denoted M C M) iff

» M’ must do everything M must do (—)
> M may do everything M’ may do (--»)

What is a modal refinement preorder relation?

Let M, M’ be MTS’s (processes)

M’ is a refinement of M (denoted M C M) iff

» M’ must do everything M must do (—)
> M may do everything M’ may do (--»)

Y - is the weakest process (w E M’ for every MTS M’),
© called the universal process and denoted by w

What is a modal refinement preorder relation?

Let M, M’ be MTS’s (processes)

M’ is a refinement of M (denoted M C M) iff

» M’ must do everything M must do (—)
> M may do everything M’ may do (--»)

Y - is the weakest process (w E M’ for every MTS M’),
© called the universal process and denoted by w

IS

What is a modal refinement preorder relation?

Let M, M’ be MTS’s (processes)

M’ is a refinement of M (denoted M C M) iff

» M’ must do everything M must do (—)
> M may do everything M’ may do (--»)

Y - is the weakest process (w E M’ for every MTS M’),
© called the universal process and denoted by w

IS

(we focus on acyclic MTS)

The problem: Maximal monitorable semantic sub-formula

Input: a formula ¢ of HML Y=t gV gAY [(o | [e]y

MON (

Output: ¢ a maximal monitorable semantic sub-formula of ¢)

The problem: Maximal monitorable semantic sub-formula

Input: a formula ¢ of HML Y=t gV gAY [(o | [e]y

MON (

Output: ¢ a maximal monitorable semantic sub-formula of ¢)

> monitorable: oMON € cHML e SN AT AR

The problem: Maximal monitorable semantic sub-formula

Input: a formula ¢ of HML Y=t gV gAY [(o | [e]y

MON (

Output: ¢ a maximal monitorable semantic sub-formula of ¢)

> monitorable: oMON € cHML e SN AT AR

MON

> semantic fragment (every process that satisfies ¢"'~"", also

satisfies ¢): [e"ON] C [l

The problem: Maximal monitorable semantic sub-formula

Input: a formula ¢ of HML Y=t gV gAY [(o | [e]y

MON (

Output: ¢ a maximal monitorable semantic sub-formula of ¢)

> monitorable: oMON € cHML e SN AT AR

MON

> semantic fragment (every process that satisfies ¢"'~"", also

satisfies ¢): [e"ON] C [l

> maximal: Yy wl C [ell = [vl € [¢MON]

The problem: Maximal monitorable semantic sub-formula

Input: a formula ¢ of HML Y=t gV gAY [(o | [e]y

Output: pMON (a monitorable semantic sub-formula of)

» monitorable: @MON € cHML e SN AT AR

MON

> semantic fragment (every process that satisfies ¢"'~"", also

satisfies ¢): [eMON] C [l

> D Yevd € el = [l € [MOV]

Then ¢ = gMON v g uov where > "N is monitorable
> ¢ mon must be model checked

The solution idea

> o MTS(p) ¥ (transform ¢ into a set of MTS’s)

> MTS(¢) = {My,..., My} is afinite set of MTS s.t.
M satisfies ¢ iff M; C M for some i
for all MTS M

(wlog. we can assume MTS(¢) = {M,} to be a singleton)

TBoudoI, Larsen, Graphical Versus Logical Specifications. Theor. Comput. Sci. 106(1)::3:20 (1992).

The solution idea

> ¢ — MTS(¢) (transform ¢ into a set of MTS’s)
> MTS(¢) = {My,..., My} is afinite set of MTS s.t.
M satisfies ¢ iff M; C M for some i
for all MTS M

(wlog. we can assume MTS(¢) = {M,} to be a singleton)

» PROBLEM: the logical representation of an MTS M

(characteristic formula of M, denoted y(M)) is not guaranteed
to be in cHML

The solution idea

>

>

¢ — MTS(y) (transform ¢ into a set of MTS’s)

MTS(¢) = {My, ..., Mp} is a finite set of MTS s.t.
M satisfies ¢ iff M; C M for some i

for all MTS M

(wlog. we can assume MTS(¢) = {M,} to be a singleton)

PROBLEM: the logical representation of an MTS M
(characteristic formula of M, denoted y(M)) is not guaranteed
to be in cHML

consider almost-universal MTS’s, i.e.,

> every state has may transitions to w (1-step-universal):
characteristic formulas are in cHML + A

> every state (except w) has exactly one outgoing must transition

characteristic formulas are in cHML

The solution idea (cont'd)

> Let almost-un be the set of almost-universal MTS’s
> Let refinements(M,,) be the set of refinements of M,

The solution idea (cont'd)

> Let almost-un be the set of almost-universal MTS’s
> Let refinements(M,,) be the set of refinements of M,

Theorem (soundness — claim)
Let M € almost-un be a refinement of M. Then, [x(M)] < [[¢]

The solution idea (cont'd)

> Let almost-un be the set of almost-universal MTS’s
> Let refinements(M,,) be the set of refinements of M,

Theorem (soundness — claim)
Let M € almost-un be a refinement of M. Then, [x(M)] < [[¢]

Corollary
[V M e amost-un n refinements(M¢)X(M)]] C lel

The solution idea (cont'd)

> Let almost-un be the set of almost-universal MTS’s
> Let refinements(M,,) be the set of refinements of M,

Theorem (soundness — claim)
Let M € almost-un be a refinement of M. Then, [x(M)] < [[¢]
Corollary

[V M e amost-un n refinements(M¢)X(M)]] C lel

Theorem (finiteness — claim)

Let M be an MTS. If M is not almost-universal, then none of its
refinements is almost-universal either

The solution idea (cont'd)

> Let almost-un be the set of almost-universal MTS’s
> Let refinements(M,,) be the set of refinements of M,

Theorem (soundness — claim)
Let M € almost-un be a refinement of M. Then, [x(M)] < [[¢]
Corollary

[V M e amost-un n refinements(M¢)X(M)]] C lel

Theorem (finiteness — claim)

Let M be an MTS. If M is not almost-universal, then none of its
refinements is almost-universal either

Corollary
[V u e aimost-un n refinements(Mw)X(M)]] =[Vm e amost-un n le}X(M)]] C lel

The solution idea (cont'd)

Maximality follows from a continuity property

Lemma (claim)

Let M be an almost-universal MTS. If all of its ultimate refinements
(i.e., --»=—) satisfy an HML formula y, then M satisfies y, too

Corollary (maximality)
VM e aimost-un n MTs(¢) X (M) is the maximal monitorable semantic
sub-formula of a given HML formula ¢, i.e.,

VM e almost-un n MTS((p)X(M) = ’PMON

Outline

Conclusions

What is missing?

> To extend the approach to full uHML
> MTS’s with cycles

> Even in the context of HML, extend monitoring abilities

> a monitor knows when a process terminates
(complete-simulation)

» a monitor knows which are the next (1-step) possible states
(ready-simulation)

> Complexity analysis
> comparison with a (doubly exponential) recent approach
(not published yet)

	A quick introduction to runtime verification (monitoring)
	Monitoring HML
	Extending runtime verification applicability
	A failed attempt
	A promising road using process semantics

	Conclusions

