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Monitorability

Definition (monitorability)

¢ is monitorable := ¢ is suitable to be runtime verified

= either
there exists a witness for ¢-satisfaction whenever ¢ is true
or
there exists a witness for ¢-violation whenever ¢ is false

witness for y-satisfaction: finite trace s.t. every system featuring it satisfies ¢

witness for ¢-violation: finite trace s.t. every system featuring it violates ¢
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The branching time logic HML

w, ¢ € HML .=
tt (truth) | ff (falsehood)
| oV (disjunction) | oA (conjunction)
| (@)p (possibility) | [a]e (necessity)

The maximal monitorable subset *

n,w € cHML::= tt | ff | TV | (@)
9,9 € sHML::= tt | ff | OAD | [a]6

TFrancaIanza, Aceto, Ingolfsdéttir, On verifying Hennessy-Milner logic with recursion at runtime. In Runtime
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Examples
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Limitations of monitoring

(a)({b)ttv[c]ff): not monitorable, do model checking

(@(btv[c]f) = (axbit v (a[c]ff

monitorable: not monitorable:
do runtime verification do model checking
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The problem: Maximal monitorable semantic sub-formula

Input: a formula ¢ of HML Y=t gV [ gAY | (| [e]y

Output: "N (a monitorable semantic sub-formula of ¢)

» monitorable: ¢MON € cHML Y=t fflyvy | (W

» semantic fragment (every process that satisfies MOV

satisfies ¢): [¢MON] C [[¢]

, also

> © Yyl € el — [yl < [eVON]

MON

Then ¢ = ¢MN v g uwon where > " is monitorable

> ¢ mon must be model checked
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The decomposition procedure

1. Identify highest universal nodes
2. Remove subtrees rooted in highest universal nodes
3. Remove new leaves




A counterexample
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Modal transition systems might hold the answer

> Our approach was purely syntactic
> Formulas are semantics object but difficult to manipulate

> Syntactic trees of formulas can be manipulated but they are...
well... too syntactic

> We needed a representation of formulas that

> is easy to manipulate
> carries semantics information about formulas and their
relationship

Then... process semantics

... but which one?

Modal transition systems (MTS)
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Why MTS?

v

Several process semantics (simulation, trace, bisimulation, ...)
> Branching-time... still many of them (from simulation up to bisimulation)

v

Complete for HML: bisimulation is a possible candidate

> problem: all characteristic formulas are out of the monitorable fragment

> problem: bisimulation induces equivalence (rather than preorder) relations
over processes (LTS’s)

> you can only talk of single processes (up to bisimilarity)

> A more suitable graphical representation of formulas of HML is given by
modal transition systems (MTS’s) and modal refinement defined over them

> every formula of HML is representable as a (finite set of) MTS

> atranslation back from MTS’s into formulas also exists

> modal refinement over MTS'’s is a preorder that carries the semantics
information about formulas and their relationship
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> P is afinite set of processes
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> ->CPXxXYxPand—C--»
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What is a modal refinement preorder relation?

Let M, M’ be MTS’s (processes)

M’ is a refinement of M (denoted M C M) iff

» M’ must do everything M must do (—)
> M may do everything M’ may do (--»)

Y - is the weakest process (w E M’ for every MTS M’),
© called the universal process and denoted by w

IS

(we focus on acyclic MTS)



The problem: Maximal monitorable semantic sub-formula

Input: a formula ¢ of HML Y=t gV gAY [ (o | [e]y

MON (

Output: ¢ a maximal monitorable semantic sub-formula of ¢)



The problem: Maximal monitorable semantic sub-formula

Input: a formula ¢ of HML Y=t gV gAY [ (o | [e]y

MON (

Output: ¢ a maximal monitorable semantic sub-formula of ¢)

> monitorable:  oMON € cHML e SN AT AR



The problem: Maximal monitorable semantic sub-formula

Input: a formula ¢ of HML Y=t gV gAY [ (o | [e]y

MON (

Output: ¢ a maximal monitorable semantic sub-formula of ¢)

> monitorable:  oMON € cHML e SN AT AR

MON

> semantic fragment (every process that satisfies ¢"'~"", also

satisfies ¢): [e"ON] C [l



The problem: Maximal monitorable semantic sub-formula

Input: a formula ¢ of HML Y=t gV gAY [ (o | [e]y

MON (

Output: ¢ a maximal monitorable semantic sub-formula of ¢)

> monitorable:  oMON € cHML e SN AT AR

MON

> semantic fragment (every process that satisfies ¢"'~"", also

satisfies ¢): [e"ON] C [l

> maximal: Yy wl C [ell = [vl € [¢MON]



The problem: Maximal monitorable semantic sub-formula

Input: a formula ¢ of HML Y=t gV gAY [ (o | [e]y

Output: pMON (a monitorable semantic sub-formula of )

» monitorable: @MON € cHML e SN AT AR

MON

> semantic fragment (every process that satisfies ¢"'~"", also

satisfies ¢): [eMON] C [l

> D Yevd € el = [l € [MOV]

Then ¢ = gMON v g uov where > "N is monitorable
> ¢ mon must be model checked
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The solution idea

>

>

¢ — MTS(y) (transform ¢ into a set of MTS’s)

MTS(¢) = {My, ..., Mp} is a finite set of MTS s.t.
M satisfies ¢ iff M; C M for some i

for all MTS M

(wlog. we can assume MTS(¢) = {M,} to be a singleton)

PROBLEM: the logical representation of an MTS M
(characteristic formula of M, denoted y(M)) is not guaranteed
to be in cHML

consider almost-universal MTS’s, i.e.,

> every state has may transitions to w (1-step-universal):
characteristic formulas are in cHML + A

> every state (except w) has exactly one outgoing must transition

characteristic formulas are in cHML
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The solution idea (cont'd)

> Let almost-un be the set of almost-universal MTS’s
> Let refinements(M,,) be the set of refinements of M,

Theorem (soundness — claim)
Let M € almost-un be a refinement of M. Then, [x(M)] < [[¢]
Corollary

[V M e amost-un n refinements(M¢)X(M)]] C lel

Theorem (finiteness — claim)

Let M be an MTS. If M is not almost-universal, then none of its
refinements is almost-universal either

Corollary
[V u e aimost-un n refinements(Mw)X(M)]] =[Vm e amost-un n le}X(M)]] C lel



The solution idea (cont'd)

Maximality follows from a continuity property

Lemma (claim)

Let M be an almost-universal MTS. If all of its ultimate refinements
(i.e., --»=—) satisfy an HML formula y, then M satisfies y, too

Corollary (maximality)
VM e aimost-un n MTs(¢) X (M) is the maximal monitorable semantic
sub-formula of a given HML formula ¢, i.e.,

VM e almost-un n MTS((p)X(M) = ’PMON
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What is missing?

> To extend the approach to full uHML
> MTS’s with cycles

> Even in the context of HML, extend monitoring abilities

> a monitor knows when a process terminates
(complete-simulation)

» a monitor knows which are the next (1-step) possible states
(ready-simulation)

> Complexity analysis
> comparison with a (doubly exponential) recent approach
(not published yet)
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