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Monitorability

Definition (monitorability)

ϕ is monitorable := ϕ is suitable to be runtime verified

:= either
there exists a witness for ϕ-satisfaction whenever ϕ is true

or
there exists a witness for ϕ-violation whenever ϕ is false

witness for ϕ-satisfaction: finite trace s.t. every system featuring it satisfies ϕ

witness for ϕ-violation: finite trace s.t. every system featuring it violates ϕ
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The branching time logic HML

ϕ, φ ∈ HML ::=

tt (truth) | ff (falsehood)

| ϕ∨ φ (disjunction) | ϕ∧ φ (conjunction)

| 〈α〉ϕ (possibility) | [α]ϕ (necessity)

The maximal monitorable subset †

π,$ ∈ cHML::= tt | ff | π∨$ | 〈α〉π

θ, ϑ ∈ sHML::= tt | ff | θ∧ϑ | [α]θ

†Francalanza, Aceto, Ingólfsdóttir, On verifying Hennessy-Milner logic with recursion at runtime. In Runtime
Verification, 2015.
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do runtime verification

not monitorable:
do model checking



Limitations of monitoring

〈a〉(〈b〉tt∨[c]ff): not monitorable, do model checking

〈a〉(〈b〉tt∨[c]ff) ≡ 〈a〉〈b〉tt ∨ 〈a〉[c]ff

monitorable:
do runtime verification

not monitorable:
do model checking



Limitations of monitoring

〈a〉(〈b〉tt∨[c]ff): not monitorable, do model checking

〈a〉(〈b〉tt∨[c]ff) ≡ 〈a〉〈b〉tt ∨ 〈a〉[c]ff

monitorable:
do runtime verification

not monitorable:
do model checking



Outline

A quick introduction to runtime verification (monitoring)

Monitoring HML

Extending runtime verification applicability
A failed attempt
A promising road using process semantics

Conclusions



The problem: Maximal monitorable semantic sub-formula

Skip

Input: a formula ϕ of HML ψ ::= tt | ff | ψ∨ψ | ψ∧ψ | 〈α〉ψ | [α]ψ

Output: ϕMON (a maximal monitorable semantic sub-formula of ϕ)

I monitorable: ϕMON ∈ cHML ψ ::= tt | ff | ψ∨ψ | 〈α〉ψ

I semantic fragment (every process that satisfies ϕMON, also
satisfies ϕ): ~ϕMON� ⊆ ~ϕ�

I maximal: ∀ψ.~ψ� ⊆ ~ϕ�→ ~ψ� ⊆ ~ϕMON�

Then ϕ ≡ ϕMON ∨ ϕ|ϕMON where I ϕMON is monitorable
I ϕ|ϕMON must be model checked
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A counterexample
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Modal transition systems might hold the answer

I Our approach was purely syntactic
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I We needed a representation of formulas that
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I carries semantics information about formulas and their
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Why MTS?

I Several process semantics (simulation, trace, bisimulation, ...)
I Branching-time... still many of them (from simulation up to bisimulation)
I Complete for HML : bisimulation is a possible candidate

I problem: all characteristic formulas are out of the monitorable fragment
I problem: bisimulation induces equivalence (rather than preorder) relations

over processes (LTS’s)
I you can only talk of single processes (up to bisimilarity)

I A more suitable graphical representation of formulas of HML is given by
modal transition systems (MTS’s) and modal refinement defined over them

I every formula of HML is representable as a (finite set of) MTS
I a translation back from MTS’s into formulas also exists
I modal refinement over MTS’s is a preorder that carries the semantics

information about formulas and their relationship
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What is a modal refinement preorder relation?

Let M, M′ be MTS’s (processes)

M′ is a refinement of M (denoted M v M′) iff

I M′ must do everything M must do (→)
I M may do everything M′ may do (d)

ω

* is the weakest process (ω v M′ for every MTS M′),
called the universal process and denoted by ω
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The solution idea

I ϕ 7→ MTS(ϕ) † (transform ϕ into a set of MTS’s)

I MTS(ϕ) = {M1, . . . ,Mn} is a finite set of MTS s.t.

M satisfies ϕ iff Mi v M for some i

for all MTS M

(wlog. we can assume MTS(ϕ) = {Mϕ} to be a singleton)

I PROBLEM: the logical representation of an MTS M
(characteristic formula of M, denoted χ(M)) is not guaranteed
to be in cHML

I consider almost-universal MTS’s, i.e.,
I every state has may transitions to ω (1-step-universal):

characteristic formulas are in cHML + ∧

I every state (except ω) has exactly one outgoing must transition

characteristic formulas are in cHML

†Boudol, Larsen, Graphical Versus Logical Specifications. Theor. Comput. Sci. 106(1): 3-20 (1992).
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The solution idea (cont’d)

I Let almost-un be the set of almost-universal MTS’s
I Let refinements(Mϕ) be the set of refinements of Mϕ

Theorem (soundness – claim)
Let M ∈ almost-un be a refinement of Mϕ. Then, ~χ(M)� ⊆ ~ϕ�

Corollary
~
∨

M ∈ almost-un ∩ refinements(Mϕ) χ(M)� ⊆ ~ϕ�

Theorem (finiteness – claim)
Let M be an MTS. If M is not almost-universal, then none of its
refinements is almost-universal either

Corollary
~
∨

M ∈ almost-un ∩ refinements(Mϕ) χ(M)� = ~
∨

M ∈ almost-un ∩ {Mϕ}
χ(M)� ⊆ ~ϕ�
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The solution idea (cont’d)

Maximality follows from a continuity property

Lemma (claim)
Let M be an almost-universal MTS. If all of its ultimate refinements
(i.e.,d=→) satisfy an HML formula ψ, then M satisfies ψ, too

Corollary (maximality)∨
M ∈ almost-un ∩ MTS(ϕ) χ(M) is the maximal monitorable semantic

sub-formula of a given HML formula ϕ, i.e.,∨
M ∈ almost-un ∩ MTS(ϕ) χ(M) = ϕMON
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What is missing?

I To extend the approach to full µHML

I MTS’s with cycles

I Even in the context of HML , extend monitoring abilities

I a monitor knows when a process terminates
(complete-simulation)

I a monitor knows which are the next (1-step) possible states
(ready-simulation)

I Complexity analysis
I comparison with a (doubly exponential) recent approach

(not published yet)
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