Pushing runtime verification to the limit May process semantics be with us

Dario Della Monica¹ Adrian Francalanza²

¹University of Udine, Italy dario.dellamonica@uniud.it

²University of Malta, Malta adrian.francalanza@um.edu.mt

OVERLAY 2019

Rende, November 19, 2019

A quick introduction to runtime verification (monitoring)

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Monitoring HML

Extending runtime verification applicability A failed attempt A promising road using process semantics

Conclusions

Outline

A quick introduction to runtime verification (monitoring)

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Monitoring HML

Extending runtime verification applicability A failed attempt A promising road using process semantics

Conclusions

monitoring a single partial execution and try to give a verdict

eventually p

monitoring a single partial execution and try to give a verdict

eventually p

monitoring a single partial execution and try to give a verdict

eventually p $\begin{array}{c} \neg p \\ \bullet \\ ? \end{array}$

monitoring a single partial execution and try to give a verdict

eventually p
$$\begin{array}{c} \neg p & \neg p \\ \bullet & - & - \\ ? & ? \end{array}$$

monitoring a single partial execution and try to give a verdict

eventually p
$$\begin{array}{c} \neg p & \neg p & \neg p \\ \bullet & \ddots & \bullet \\ ? & ? & ? \end{array}$$

monitoring a single partial execution and try to give a verdict

monitoring a single partial execution and try to give a verdict

monitoring a single partial execution and try to give a verdict

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

monitoring a single partial execution and try to give a verdict

monitoring a single partial execution and try to give a verdict

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

monitoring a single partial execution and try to give a verdict

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

monitoring a single partial execution and try to give a verdict

▲□▶▲□▶▲□▶▲□▶ ■ のへで

monitoring a single partial execution and try to give a verdict

monitoring a single partial execution and try to give a verdict

・ロト・四ト・ヨト・ヨト・ 日・ つへぐ

monitoring a single partial execution and try to give a verdict

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

monitoring a single partial execution and try to give a verdict

Definition (monitorability)

 φ is monitorable := φ is suitable to be runtime verified

either
 there exists a witness for φ-satisfaction whenever φ is true
 or
 there exists a witness for φ-violation whenever φ is false

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

witness for φ -satisfaction: finite trace s.t. every system featuring it satisfies φ witness for φ -violation: finite trace s.t. every system featuring it violates φ

A quick introduction to runtime verification (monitoring)

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで

Monitoring HML

Extending runtime verification applicability A failed attempt A promising road using process semantics

Conclusions

The branching time logic HML

 $\varphi,\phi\in \mathit{HML}::=$

tt	(truth)	ff	(falsehood)
$\mid \varphi \lor \phi$	(disjunction)	$\mid \varphi \wedge \phi$	(conjunction)
$ \langle \alpha \rangle \varphi$	(possibility)	$\mid [lpha] \varphi$	(necessity)

The maximal monitorable subset [†]

 $\pi, \varpi \in \mathsf{cHML} ::= \mathsf{tt} \qquad | \mathsf{ff} \qquad | \pi \lor \varpi \qquad | \langle \alpha \rangle \pi$ $\theta, \vartheta \in \mathsf{sHML} ::= \mathsf{tt} \qquad | \mathsf{ff} \qquad | \theta \land \vartheta \qquad | [\alpha] \theta$

[†]Francalanza, Aceto, Ingólfsdóttir, *On verifying Hennessy-Milner logic with recursion at runtime*. In **Runtime** Verification, 2015.

= 900

The branching time logic HML

 $\varphi,\phi\in \mathit{HML}::=$

tt	(truth)	ff	(falsehood)
$\mid \varphi \lor \phi$	(disjunction)	$\mid \varphi \wedge \phi$	(conjunction)
$ \langle \alpha \rangle \varphi$	(possibility)	$\mid [lpha] \varphi$	(necessity)

The maximal monitorable subset [†]

 $\pi, \varpi \in \mathsf{cHML} ::= \mathsf{tt} \qquad | \mathsf{ff} \qquad | \pi \lor \varpi \qquad | \langle \alpha \rangle \pi$ $\theta, \vartheta \in \mathsf{sHML} ::= \mathsf{tt} \qquad | \mathsf{ff} \qquad | \theta \land \vartheta \qquad | [\alpha] \theta$

^T Francalanza, Aceto, Ingólfsdóttir, *On verifying Hennessy-Milner logic with recursion at runtime*. In **Runtime** Verification, 2015.

The maximal monitorable subset

$$\pi, \varpi \in \mathsf{cHML} ::= \mathsf{tt} \qquad | \mathsf{ff} \qquad | \pi \lor \varpi \qquad | \langle \alpha \rangle \pi$$
$$\theta, \vartheta \in \mathsf{sHML} ::= \mathsf{tt} \qquad | \mathsf{ff} \qquad | \theta \land \vartheta \qquad | [\alpha] \theta$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Examples

positively monitorable

The maximal monitorable subset

$$\begin{array}{ll} \pi, \varpi \in \mathsf{cHML} ::= \mathsf{tt} & | \mathsf{ff} & | \pi \lor \varpi & | \langle \alpha \rangle \pi \\ \theta, \vartheta \in \mathsf{sHML} ::= \mathsf{tt} & | \mathsf{ff} & | \theta \land \vartheta & | [\alpha] \theta \end{array}$$

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Examples <a>tt [a]ff positively monitorable

The maximal monitorable subset

$\pi, \varpi \in cHML ::= tt$	ff	$ \pi \lor \varpi$	$ \langle \alpha \rangle \pi$
$\theta, \vartheta \in sHML ::= tt$	ff	$\mid \theta \wedge \vartheta$	$ [\alpha] \theta$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Examples

The maximal monitorable subset

$\pi, \varpi \in cHML ::= tt$	ff	$ \pi \lor \varpi$	$ \langle \alpha \rangle \pi$
$\theta, \vartheta \in sHML ::= tt$	ff	$ \theta \land \vartheta$	$ [\alpha] \theta$

Examples

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The maximal monitorable subset

$\pi, \varpi \in cHML ::= tt$	ff	$ \pi \lor \varpi$	$ \langle \alpha \rangle \pi$
$\theta, \vartheta \in sHML ::= tt$	ff	$ \theta \land \vartheta$	$ [\alpha] \theta$

Examples

The maximal monitorable subset

$\pi, \varpi \in cHML ::= tt$	ff	$ \pi \lor \varpi$	$ \langle \alpha \rangle \pi$
$\theta, \vartheta \in sHML ::= tt$	ff	$ \theta \land \vartheta$	$ [\alpha] \theta$

Examples

$\langle a \rangle (\langle b \rangle tt \lor [c]ff)$: not monitorable, do model checking

▲□▶▲□▶▲□▶▲□▶ ■ のへで

 $\langle a \rangle (\langle b \rangle tt \lor [c] ff)$: not monitorable, do model checking $\langle a \rangle (\langle b \rangle tt \lor [c] ff) \equiv \langle a \rangle \langle b \rangle tt \lor \langle a \rangle [c] ff$

▲□▶▲□▶▲□▶▲□▶ ■ のへで

$\langle a \rangle (\langle b \rangle tt \lor [c] ff)$: not monitorable, do model checking

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

A quick introduction to runtime verification (monitoring)

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Monitoring HML

Extending runtime verification applicability A failed attempt A promising road using process semantics

Conclusions

The problem: Maximal monitorable semantic sub-formula

Skip

Input: a formula φ of HML $\psi ::= \text{tt} | \text{ff} | \psi \lor \psi | \psi \land \psi | \langle \alpha \rangle \psi | [\alpha] \psi$ Output: φ^{MON} (a maximal monitorable semantic sub-formula of φ)

The problem: Maximal monitorable semantic sub-formula

Skip

Input: a formula φ of HML $\psi ::= \text{tt} | \text{ff} | \psi \lor \psi | \psi \land \psi | \langle \alpha \rangle \psi | [\alpha] \psi$ Output: φ^{MON} (a maximal monitorable semantic sub-formula of φ)

• monitorable: $\varphi^{MON} \in cHML$

 $\psi ::= \mathsf{tt} \mid \mathsf{ff} \mid \psi \lor \psi \mid \langle \alpha \rangle \psi$

The problem: Maximal monitorable semantic sub-formula

Skip

Input: a formula φ of HML $\psi ::= \text{tt} | \text{ff} | \psi \lor \psi | \psi \land \psi | \langle \alpha \rangle \psi | [\alpha] \psi$ Output: φ^{MON} (a maximal monitorable semantic sub-formula of φ)

• monitorable: $\varphi^{MON} \in cHML$

 $\psi ::= \mathsf{tt} \mid \mathsf{ff} \mid \psi \lor \psi \mid \langle \alpha \rangle \psi$

semantic fragment (every process that satisfies φ^{MON}, also satisfies φ): [[φ^{MON}]] ⊆ [[φ]]
Skip

Input: a formula φ of HML $\psi ::= \text{tt} | \text{ff} | \psi \lor \psi | \psi \land \psi | \langle \alpha \rangle \psi | [\alpha] \psi$ Output: φ^{MON} (a maximal monitorable semantic sub-formula of φ)

• monitorable: $\varphi^{MON} \in cHML$

 $\psi ::= \mathsf{tt} \mid \mathsf{ff} \mid \psi \lor \psi \mid \langle \alpha \rangle \psi$

- semantic fragment (every process that satisfies φ^{MON}, also satisfies φ): [[φ^{MON}]] ⊆ [[φ]]
- maximal: $\forall \psi. \llbracket \psi \rrbracket \subseteq \llbracket \varphi \rrbracket \rightarrow \llbracket \psi \rrbracket \subseteq \llbracket \varphi^{MON} \rrbracket$

Skip

Input: a formula φ of HML $\psi ::= \text{tt} | \text{ff} | \psi \lor \psi | \psi \land \psi | \langle \alpha \rangle \psi | [\alpha] \psi$ Output: φ^{MON} (a maximal monitorable semantic sub-formula of φ)

• monitorable: $\varphi^{MON} \in cHML$

 $\psi ::= \mathsf{tt} \mid \mathsf{ff} \mid \psi \lor \psi \mid \langle \alpha \rangle \psi$

- semantic fragment (every process that satisfies φ^{MON}, also satisfies φ): [[φ^{MON}]] ⊆ [[φ]]
- maximal: $\forall \psi. \llbracket \psi \rrbracket \subseteq \llbracket \varphi \rrbracket \rightarrow \llbracket \psi \rrbracket \subseteq \llbracket \varphi^{MON} \rrbracket$

Then $\varphi \equiv \varphi^{MON} \lor \varphi_{|\varphi^{MON}}$ where $\blacktriangleright \varphi^{MON}$ is monitorable

• $\varphi_{|\varphi^{MON}}$ must be model checked

A quick introduction to runtime verification (monitoring)

Monitoring HML

Extending runtime verification applicability A failed attempt

A promising road using process semantics

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Conclusions

- 1. Identify highest universal nodes
- 2. Remove subtrees rooted in highest universal nodes
- 3. Remove new leaves

1. Identify highest universal nodes

- 2. Remove subtrees rooted in highest universal nodes
- 3. Remove new leaves

- 1. Identify highest universal nodes
- 2. Remove subtrees rooted in highest universal nodes
- 3. Remove new leaves

- 1. Identify highest universal nodes
- 2. Remove subtrees rooted in highest universal nodes
- 3. Remove new leaves

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

- 1. Identify highest universal nodes
- 2. Remove subtrees rooted in highest universal nodes
- 3. Remove new leaves

- 1. Identify highest universal nodes
- 2. Remove subtrees rooted in highest universal nodes
- 3. Remove new leaves

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- 1. Identify highest universal nodes
- 2. Remove subtrees rooted in highest universal nodes
- 3. Remove new leaves

A counterexample

 $(\langle a \rangle tt \land [b] ff) \lor ([a] ff \land \langle b \rangle tt) \lor (\langle a \rangle tt \land \langle b \rangle tt) \equiv \langle a \rangle tt \lor \langle b \rangle tt$

ヘロト 人間 トメヨトメヨト

E 990

A counterexample

$(\langle a \rangle tt \land [b] ff) \lor ([a] ff \land \langle b \rangle tt) \lor (\langle a \rangle tt \land \langle b \rangle tt) \equiv \langle a \rangle tt \lor \langle b \rangle tt$

V

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

A counterexample

$(\langle a \rangle tt \land [b] ff) \lor ([a] ff \land \langle b \rangle tt) \lor (\langle a \rangle tt \land \langle b \rangle tt) \equiv \langle a \rangle tt \lor \langle b \rangle tt$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

A quick introduction to runtime verification (monitoring)

Monitoring HML

Extending runtime verification applicability

A failed attempt

A promising road using process semantics

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusions

Modal transition systems might hold the answer

- Our approach was purely syntactic
- Formulas are semantics object but difficult to manipulate
- Syntactic trees of formulas can be manipulated but they are... well... too syntactic
- We needed a representation of formulas that
 - is easy to manipulate
 - carries semantics information about formulas and their relationship

Modal transition systems might hold the answer

- Our approach was purely syntactic
- Formulas are semantics object but difficult to manipulate
- Syntactic trees of formulas can be manipulated but they are... well... too syntactic
- We needed a representation of formulas that
 - is easy to manipulate
 - carries semantics information about formulas and their relationship

Then... process semantics

... but which one?

Modal transition systems might hold the answer

- Our approach was purely syntactic
- Formulas are semantics object but difficult to manipulate
- Syntactic trees of formulas can be manipulated but they are... well... too syntactic
- We needed a representation of formulas that
 - is easy to manipulate
 - carries semantics information about formulas and their relationship

Then... process semantics

... but which one?

Modal transition systems (MTS)

- Several process semantics (simulation, trace, bisimulation, ...)
- Branching-time... still many of them (from simulation up to bisimulation)

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Complete for HML: bisimulation is a possible candidate

- Several process semantics (simulation, trace, bisimulation, ...)
- Branching-time... still many of them (from simulation up to bisimulation)
- Complete for HML: bisimulation is a possible candidate
 - **problem: all** characteristic formulas are out of the monitorable fragment
 - problem: bisimulation induces equivalence (rather than preorder) relations over processes (LTS's)

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

you can only talk of single processes (up to bisimilarity)

- Several process semantics (simulation, trace, bisimulation, ...)
- Branching-time... still many of them (from simulation up to bisimulation)
- Complete for HML: bisimulation is a possible candidate
 - **problem: all** characteristic formulas are out of the monitorable fragment
 - problem: bisimulation induces equivalence (rather than preorder) relations over processes (LTS's)
 - you can only talk of single processes (up to bisimilarity)
- A more suitable graphical representation of formulas of HML is given by modal transition systems (MTS's) and modal refinement defined over them

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Several process semantics (simulation, trace, bisimulation, ...)
- Branching-time... still many of them (from simulation up to bisimulation)
- Complete for HML: bisimulation is a possible candidate
 - **problem: all** characteristic formulas are out of the monitorable fragment
 - problem: bisimulation induces equivalence (rather than preorder) relations over processes (LTS's)
 - you can only talk of single processes (up to bisimilarity)
- A more suitable graphical representation of formulas of HML is given by modal transition systems (MTS's) and modal refinement defined over them
 - every formula of HML is representable as a (finite set of) MTS
 - a translation back from MTS's into formulas also exists
 - modal refinement over MTS's is a preorder that carries the semantics information about formulas and their relationship

What are MTS's?

- Fix alphabet Σ
- An LTS is a pair (P, \rightarrow) , where
 - P is a finite set of processes
 - $\blacktriangleright \rightarrow \subseteq P \times \Sigma \times P$

What are MTS's?

- Fix alphabet Σ
- An LTS is a pair (P, \rightarrow) , where
 - P is a finite set of processes
 - $\blacktriangleright \rightarrow \subseteq P \times \Sigma \times P$

we focus on acyclic LTS (as we consider HML rather than $\mu HML)$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで

What are MTS's?

- Fix alphabet Σ
- An LTS is a pair (P, \rightarrow) , where
 - P is a finite set of processes
 - $\blacktriangleright \rightarrow \subseteq P \times \Sigma \times P$

• An MTS is a triple (P, \rightarrow, \dots) , where

- P is a finite set of processes
- $\blacktriangleright \rightarrow \subseteq P \times \Sigma \times P$
- $\neg \neg \subseteq P \times \Sigma \times P$ and $\rightarrow \subseteq \neg \rightarrow$

Let *M*, *M'* be MTS's (processes)

M' is a refinement of M (denoted $M \sqsubseteq M'$) iff

- *M'* must do everything *M* must do (\rightarrow)
- ► M may do everything M' may do (----)

Let *M*, *M'* be MTS's (processes)

M' is a refinement of M (denoted $M \sqsubseteq M'$) iff

- M' must do everything M must do (\rightarrow)

is the weakest process ($\omega \sqsubseteq M'$ for every MTS M'), called the universal process and denoted by ω

Let M, M' be MTS's (processes)

M' is a refinement of M (denoted $M \sqsubseteq M'$) iff

- M' must do everything M must do (\rightarrow)

is the weakest process ($\omega \sqsubseteq M'$ for every MTS M'), called the universal process and denoted by ω

・ロト ・ 一下・ ・ ヨト

Let M, M' be MTS's (processes)

M' is a refinement of M (denoted $M \sqsubseteq M'$) iff

- *M'* must do everything *M* must do (\rightarrow)
- ► M may do everything M' may do (----)

is the weakest process ($\omega \sqsubseteq M'$ for every MTS M'), called the universal process and denoted by ω

・ ロ ト ・ 伊 ト ・ ヨ ト ・ ヨ ト

(we focus on acyclic MTS)

Input: a formula φ of HML $\psi ::= \text{tt} | \text{ff} | \psi \lor \psi | \psi \land \psi | \langle \alpha \rangle \psi | [\alpha] \psi$ Output: φ^{MON} (a maximal monitorable semantic sub-formula of φ)

Input: a formula φ of HML $\psi ::= \text{tt} | \text{ff} | \psi \lor \psi | \psi \land \psi | \langle \alpha \rangle \psi | [\alpha] \psi$ Output: φ^{MON} (a maximal monitorable semantic sub-formula of φ)

• monitorable: $\varphi^{MON} \in cHML$

 $\psi ::= \mathsf{tt} \mid \mathsf{ff} \mid \psi \lor \psi \mid \langle \alpha \rangle \psi$

Input: a formula φ of HML $\psi ::= \text{tt} | \text{ff} | \psi \lor \psi | \psi \land \psi | \langle \alpha \rangle \psi | [\alpha] \psi$ Output: φ^{MON} (a maximal monitorable semantic sub-formula of φ)

• monitorable: $\varphi^{MON} \in cHML$

$$\psi ::= \mathsf{tt} \mid \mathsf{ff} \mid \psi \lor \psi \mid \langle \alpha \rangle \psi$$

semantic fragment (every process that satisfies φ^{MON}, also satisfies φ): [[φ^{MON}]] ⊆ [[φ]]

Input: a formula φ of HML $\psi ::= \text{tt} | \text{ff} | \psi \lor \psi | \psi \land \psi | \langle \alpha \rangle \psi | [\alpha] \psi$ Output: φ^{MON} (a maximal monitorable semantic sub-formula of φ)

• monitorable: $\varphi^{MON} \in cHML$

$$\psi ::= \mathsf{tt} \mid \mathsf{ff} \mid \psi \lor \psi \mid \langle \alpha \rangle \psi$$

- semantic fragment (every process that satisfies φ^{MON}, also satisfies φ): [[φ^{MON}]] ⊆ [[φ]]
- ► maximal: $\forall \psi. \llbracket \psi \rrbracket \subseteq \llbracket \varphi \rrbracket \rightarrow \llbracket \psi \rrbracket \subseteq \llbracket \varphi^{MON} \rrbracket$

Input: a formula φ of HML $\psi ::= \text{tt} | \text{ff} | \psi \lor \psi | \psi \land \psi | \langle \alpha \rangle \psi | [\alpha] \psi$ Output: φ^{MON} (a maximal monitorable semantic sub-formula of φ)

• monitorable: $\varphi^{MON} \in cHML$

$$\psi ::= \mathsf{tt} \mid \mathsf{ff} \mid \psi \lor \psi \mid \langle \alpha \rangle \psi$$

semantic fragment (every process that satisfies φ^{MON}, also satisfies φ): [[φ^{MON}]] ⊆ [[φ]]

► maximal:
$$\forall \psi. \llbracket \psi \rrbracket \subseteq \llbracket \varphi \rrbracket \rightarrow \llbracket \psi \rrbracket \subseteq \llbracket \varphi^{MON} \rrbracket$$

Then
$$\varphi \equiv \varphi^{MON} \lor \varphi_{|\varphi^{MON}}$$
 where $\blacktriangleright \varphi^{MON}$ is monitorable
 $\blacktriangleright \varphi_{|\varphi^{MON}}$ must be model checked

The solution idea

• $\varphi \mapsto MTS(\varphi)$ † (transform φ into a set of MTS's)

► MTS(φ) = { $M_1, ..., M_n$ } is a finite set of MTS s.t. *M* satisfies φ iff $M_i \sqsubseteq M$ for some *i* for all MTS *M*

(wlog. we can assume $MTS(\varphi) = \{M_{\varphi}\}$ to be a singleton)

^T Boudol, Larsen, Graphical Versus Logical Specifications. Theor. Comput. Sci. d06(1): 🕉 20 (1992): 🧃 📃 🚽 🖓 🔍 🖓

The solution idea

- $\varphi \mapsto MTS(\varphi)$ (transform φ into a set of MTS's)
- ► MTS(φ) = { M_1, \ldots, M_n } is a finite set of MTS s.t. *M* satisfies φ iff $M_i \sqsubseteq M$ for some *i* for all MTS *M*

(wlog. we can assume $MTS(\varphi) = \{M_{\varphi}\}$ to be a singleton)

PROBLEM: the logical representation of an MTS M (characteristic formula of M, denoted \(\chi(M)\)) is not guaranteed to be in cHML

ション 小田 マイビット ビー シックション

The solution idea

- $\varphi \mapsto \mathsf{MTS}(\varphi)$ (transform φ into a set of MTS's)
- ► MTS(φ) = { $M_1, ..., M_n$ } is a finite set of MTS s.t. *M* satisfies φ iff $M_i \sqsubseteq M$ for some *i* for all MTS *M*

(wlog. we can assume $MTS(\varphi) = \{M_{\varphi}\}$ to be a singleton)

- PROBLEM: the logical representation of an MTS M (characteristic formula of M, denoted \(\chi(M)\)) is not guaranteed to be in cHML
- consider almost-universal MTS's, i.e.,
 - every state has may transitions to ω (1-step-universal): characteristic formulas are in *cHML* + \wedge
 - every state (except ω) has exactly one outgoing must transition

characteristic formulas are in cHML
Let almost-un be the set of almost-universal MTS's

• Let refinements (M_{φ}) be the set of refinements of M_{φ}

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- Let almost-un be the set of almost-universal MTS's
- Let *refinements*(M_{φ}) be the set of refinements of M_{φ}

Theorem (soundness – claim)

Let $M \in \text{almost-un}$ be a refinement of M_{φ} . Then, $[[\chi(M)]] \subseteq [[\varphi]]$

Let almost-un be the set of almost-universal MTS's

• Let *refinements*(M_{φ}) be the set of refinements of M_{φ}

Theorem (soundness – claim)

Let $M \in \text{almost-un}$ be a refinement of M_{φ} . Then, $\llbracket \chi(M) \rrbracket \subseteq \llbracket \varphi \rrbracket$

Corollary

$$\llbracket \bigvee_{M \in almost-un \cap refinements(M_{\varphi})} \chi(M) \rrbracket \subseteq \llbracket \varphi \rrbracket$$

Let almost-un be the set of almost-universal MTS's

• Let refinements (M_{φ}) be the set of refinements of M_{φ}

Theorem (soundness – claim)

Let $M \in \text{almost-un}$ be a refinement of M_{φ} . Then, $\llbracket \chi(M) \rrbracket \subseteq \llbracket \varphi \rrbracket$

Corollary

$$\llbracket \bigvee_{M \in almost-un \cap refinements(M_{\varphi})} \chi(M) \rrbracket \subseteq \llbracket \varphi \rrbracket$$

Theorem (finiteness - claim)

Let M be an MTS. If M is not almost-universal, then none of its refinements is almost-universal either

Let almost-un be the set of almost-universal MTS's

• Let refinements (M_{φ}) be the set of refinements of M_{φ}

Theorem (soundness - claim)

Let $M \in \text{almost-un}$ be a refinement of M_{φ} . Then, $\llbracket \chi(M) \rrbracket \subseteq \llbracket \varphi \rrbracket$

Corollary

$$\llbracket \bigvee_{M \in almost-un \cap refinements(M_{\varphi})} \chi(M) \rrbracket \subseteq \llbracket \varphi \rrbracket$$

Theorem (finiteness - claim)

Let M be an MTS. If M is not almost-universal, then none of its refinements is almost-universal either

Corollary

 $\llbracket \bigvee_{M \in almost-un \ \cap \ refinements(M_{\varphi})} \chi(M) \rrbracket = \llbracket \bigvee_{M \in almost-un \ \cap \ \{M_{\varphi}\}} \chi(M) \rrbracket \subseteq \llbracket \varphi \rrbracket$

Maximality follows from a continuity property

Lemma (claim)

Let M be an almost-universal MTS. If all of its ultimate refinements (i.e., $\rightarrow = \rightarrow$) satisfy an HML formula ψ , then M satisfies ψ , too

Corollary (maximality)

 $\bigvee_{M \in almost-un \cap MTS(\varphi)} \chi(M)$ is the maximal monitorable semantic sub-formula of a given HML formula φ , i.e.,

$$igarpropto \mathsf{M} \in \mathsf{almost} ext{-un} \cap \mathsf{MTS}(arphi) \chi(M) = arphi^{\mathsf{MON}}$$

A quick introduction to runtime verification (monitoring)

▲□▶ ▲圖▶ ▲匡▶ ★匡▶ = 臣 = のへで

Monitoring HML

Extending runtime verification applicability A failed attempt A promising road using process semantics

Conclusions

What is missing?

To extend the approach to full µHML

MTS's with cycles

Even in the context of HML, extend monitoring abilities

- a monitor knows when a process terminates (complete-simulation)
- a monitor knows which are the next (1-step) possible states (ready-simulation)

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Complexity analysis

 comparison with a (doubly exponential) recent approach (not published yet)