Towards A Hybrie (Combined?) Approach to
Software Verification

Dario Della Monica' Adrian Francalanza?

"ICE-TCS, School of Computer Science, Reykjavik University, Iceland
dariodm@ru.is

2University of Malta, Malta
adrian. francalanza@um. edu.mt

NWPT 2015
Reykjavik, 23 October 2015

Outline

Introduction: model checking vs. runtime verification (motivations)

Runtime verification for uHML (= u-calculus)

Extending runtime verification applicability: fybrigt (combined?)
approach

Outline

Introduction: model checking vs. runtime verification (motivations)

Model checking

system property

Model checking

system

state-
transition
model

Ps

property

logical
formalism

Model checking

system

state-
transition
model

Ps

property

logical
formalism

Model checking

system property
state- logical
transition formalism
model

Ps = ®

unfeasible for most real-world applications
(state explosion problem)

Runtime verification
monitoring a single partial execution and try to give a verdict

eventually p

Runtime verification
monitoring a single partial execution and try to give a verdict

eventually p —|.p

Runtime verification
monitoring a single partial execution and try to give a verdict

eventually p —|;p

Runtime verification
monitoring a single partial execution and try to give a verdict

eventually p —:;p E——

Runtime verification

monitoring a single partial execution and try to give a verdict

eventually p LRREl SEED

Runtime verification

monitoring a single partial execution and try to give a verdict

eventually p R R

Runtime verification
monitoring a single partial execution and try to give a verdict

eventually p R T

Runtime verification
monitoring a single partial execution and try to give a verdict

eventually p R T

Runtime verification
monitoring a single partial execution and try to give a verdict

eventually p R T

Runtime verification
monitoring a single partial execution and try to give a verdict

eventually p R T

Runtime verification
monitoring a single partial execution and try to give a verdict

eventually p R T

Runtime verification
monitoring a single partial execution and try to give a verdict

eventually p R T

always p e e

Runtime verification
monitoring a single partial execution and try to give a verdict

eventually p R S Y

always p e e

[(p or q) until r]
or (always p)

Runtime verification
monitoring a single partial execution and try to give a verdict

eventually p R S Y

always p e e

[(p or q) until r] ’2, 73 E r
or (alwaysp) ? ? ? yes

Runtime verification
monitoring a single partial execution and try to give a verdict

eventually p R S Y

always p e e

[porq)untiir] P P P r p P P 0
or(alwaysp) ? ? ? yes ? 2?2 2?2 no

Runtime verification
monitoring a single partial execution and try to give a verdict

eventually p _';’07”4”,4,,,,

*---@®-------0-—-------
? ? ? ? ? ? ?
1% p p P

always p SRRl REEL Shh

[(porq)untilr] P P P r p P P 0
or(alwaysp) 7 2 2 yes 2 2 % o
p p P P P
R T S - S T

q q q q q
N T S S-S T

Outline

Runtime verification for uHML (= u-calculus)

Monitorability

Definition (monitorability)

¢ is monitorable

@ is suitable to be runtime verified
either

there exists

a finite witness for satisfaction
whenever g is true

or

there exists

a finite witness for violation
whenever g is false

The branching time logic uHML

0, ¢ € uHML ::=
tt (truth) | ff (falsehood)
| oV o (disjunction) | oA (conjunction)
| {@)p (possibility) | [e]e (necessity)
| minX.e (min. fixpoint) | maxX.¢ (max. fixpoin)
| X (rec. variable)

The maximal monitorable subset

mwecHML :=tt |ff |ave |{@r |minXnx |X
0,9 esHML ==ttt [ff [60A9 |[2]0 |maxX.® |X

Francalanza, Aceto, Ingolfsdéttir, On verifying Hennessy-Milner logic with
recursion at runtime. In Runtime Verification, 2015

The branching time logic uHML

0, ¢ € uHML ::=
tt (truth) | ff (falsehood)
| oV o (disjunction) | oA (conjunction)
| {@)p (possibility) | [e]e (necessity)
| minX.e (min. fixpoint) | maxX.¢ (max. fixpoin)
| X (rec. variable)

The maximal monitorable subset

mwecHML =t |ff |ave |{(ax |minXnx | X
0,9 € sHML :=tt [ff | OAD |[@]0 |maxX.0 |X

Francalanza, Aceto, Ingolfsdéttir, On verifying Hennessy-Milner logic with
recursion at runtime. In Runtime Verification, 2015

Monitorability: examples

The maximal monitorable subset
mwecHML .=ttt [ff |ave |[{(a)n

0,0 esHML ==t [ff |0A9 |[e]0

Examples
(a)tt

| min X.r
| max X.0

| X
| X

Monitorability: examples

The maximal monitorable subset
mwecHML .=ttt |[ff |ave |[{(a)r |minXnx

0,9 csHML :=1tt |ff [0A9 |[e]0 | maxX.0

Examples
(att [a]ff

| X
| X

Monitorability: examples

The maximal monitorable subset
mwecHML .=ttt |[ff |ave |[{(a)r |minXnx

0,9 csHML :=1tt |ff [0A9 |[e]0 | maxX.0

Examples
(att [a]ff (attv({b)tt

| X
| X

Monitorability: examples

The maximal monitorable subset
mwecHML .=ttt [ff |ave |[{(a)n

0,0 esHML ==t [ff |0A9 |[e]0

Examples
(att [a]ff (attv({b)tt

IminX.x | X
[max X.0 | X

(a)((b)ttv[c]ff)

Monitorability: examples

The maximal monitorable subset
mwecHML .=ttt |[ff |aveo |[{ar |minXx |X
6,9 sHML ==1tt [ff |6A9 |[a]d |maxX.6 |X

Examples
(a)tt [a]ff (ayttv(bitt (@) ff)

Outline

Extending runtime verification applicability: fybrigt (combined?)
approach

Where runtime verification can reach so far

(a)({b)ttv[c]ff): not monitorable, do model checking

Where runtime verification can reach so far

(a)({b)ttv[c]ff): not monitorable, do model checking

(@(btv[c]f) = (axbit v (a[c]ff

Where runtime verification can reach so far

(a)({b)ttv[c]ff): not monitorable, do model checking

(@(btv[c]f) = (axbit v (a[c]ff

monitorable: not monitorable:
do runtime verification do model checking

An (RV/MC)decomposition
¥ = @Rv {; YmMC

Universal: A, [a], max X
Existential: Vv, (@), min X

An (RV/MC)decomposition
¥ = @Rv {; YmMC

Universal: A, [a], max X
Existential: Vv, (@), min X

min X.{(a)((b)ttv{c)X Vv[d]ff)

min X
(a)
/N
(b) \%

/ \
tt (c) [d
\ \

An (RV/MC)decomposition
¥ = @Rv {; YmMC

Universal: A, [a], max X
Existential: Vv, (@), min X

min X
|
min X (a)({b)ttv{c)XV[d]ff) <?>
(min X(@)((b)ttv(c)X)) V| ? | /V\
(b) \%
| / \
tt (c) [d
|
X ff

An (RV/MC)decomposition
¥ = @Rv {; YmMC

Universal: A, [a], max X
Existential: Vv, (@), min X

min X.{(a)((b)ttv{c)X Vv[d]ff)

(min X (a)(<b)ttv(c)X)) v (min X (a)([d]ffv(c)X))

min X
(a)
/N
(b) \%

/ \
tt (c) [d
\ \

The decomposition procedure

The decomposition procedure

The decomposition procedure

1. Remove subtrees rooted
in high univ. nodes

2. Remove new leaves

The decomposition procedure

1. Remove subtrees rooted
in high univ. nodes

2. Remove new leaves

»N

The decomposition procedure

1. Remove subtrees rooted
in high univ. nodes

2. Remove new leaves

The decomposition procedure

1. Remove subtrees rooted
in high univ. nodes

2. Remove new leaves

»N

The decomposition procedure

1. Remove subtrees rooted
in high univ. nodes

2. Remove new leaves

The decomposition procedure

1. Remove subtrees rooted 1. Collect subtrees rooted
in high univ. nodes in high univ. nodes
2. Remove new leaves 2. Closure under bindings

The decomposition procedure

1. Remove subtrees rooted 1. Collect subtrees rooted
in high univ. nodes in high univ. nodes
2. Remove new leaves 2. Closure under bindings
°
°
° °

The decomposition procedure

1. Remove subtrees rooted 1. Collect subtrees rooted
in high univ. nodes in high univ. nodes
2. Remove new leaves 2. Closure under bindings

The decomposition procedure

1. Remove subtrees rooted 1. Collect subtrees rooted
in high univ. nodes in high univ. nodes

2. Remove new leaves 2. Closure under bindings

min X

The decomposition procedure

1. Remove subtrees rooted 1. Collect subtrees rooted
in high univ. nodes in high univ. nodes

2. Remove new leaves 2. Closure under bindings

min X

The decomposition procedure

1. Remove subtrees rooted 1. Collect subtrees rooted
in high univ. nodes in high univ. nodes

2. Remove new leaves 2. Closure under bindings

min X

minY

The decomposition procedure

1. Remove subtrees rooted 1. Collect subtrees rooted
in high univ. nodes in high univ. nodes

2. Remove new leaves 2. Closure under bindings

min X

minY

The decomposition procedure

1. Remove subtrees rooted 1. Collect subtrees rooted
in high univ. nodes in high univ. nodes

2. Remove new leaves 2. Closure under bindings

min X

minY

(RV/MC)-decomposition at work

min X (a)({b)ttv(c)X Vv[d]ff)

(min X (a)((b)ttv(c)X)) v (min X.(a)([d]ffv(c)X))

(RV/MC)-decomposition at work

min X.(a)({b)ttv(c)X v[d]ff)

(min X (a)(¢b)ttv(c)X)) v (min X.(a)([d]ffv(c)X))

(b) \
| /
t (o
I

X

ld]

(RV/MC)-decomposition at work

min X
min X .(a)({b)ttv{c) X V[d]ff) @
(min X.@)(¢b)ttv(c)X)) v (min X (@)([d]ffv(c)X)) ® \/v\
t‘t (c) [d]
X
Y N
min X min X
\ \
(a) (a)
\ \
\% \Y
/N 7N\
(b) \Y% (b) \%
\ / N\ \ /\
tt (c) |[d] tt (c) |[d]
o o
X ff X ff

(RV/MC)-decomposition at work

min X
min X .(a)({b)ttv{c) X V[d]ff) @
(min X.@)(¢b)ttv(c)X)) v (min X(a)([d]ffv(c)X)) by \v\
t (¢ [d]
X
Y N
min X min X
\ \
(a) (a)
\ \
Vv Vv
/7 N\ 7N\
(b) \Y (b) \Y,
\ / \ /\
tt (¢ tt (c) |[d]
\ |
X X ff

(RV/MC)-decomposition at work

min X (a)({b)ttv(c)X Vv[d]ff)

(min X (a)((b)ttv(c)X)) v (min X.(a)([d]ffv(c)X))

— S —
min X min X
\ \
(a) (a)
\ \
v v
7\ AN
(b) \Y% \
\ / \
t () [d]
\ \
X ff

(by \%
| /
tt (o
|

X ff

[d]

(RV/MC)-decomposition at work

min X
min X .(a)({b)ttv{c) X V[d]ff) @
(min X.@)(¢b)ttv(c)X)) v (min X (@)([d]ffv(c)X)) ® \/v\
t © [
X
Y N
min X min X
\ \
(a) (a)
\
! !
/ N\ \
(b) \Y \Y
L/ /\
t (¢ ey [d]
\ o
X X ff

(RV/MC)-decomposition at work

min X (a)({b)ttv(c)X Vv[d]ff)

(min X(@)((b)ttv(c)X)) v (min X (a)([d]ffv(c)X))

(b) \Y
I /N
t () [d]
1 1

X ff

(RV/MC)-decomposition at work

min X (a)({b)ttv(c)X Vv[d]ff)

(min X (a)((b)ttv(c)X)) v (min X.a)([d]ffv(c)X))

(b) \Y
I /N
t () [d]
1 1

X ff

Correctness

Claim (correctness)

YRy V. OMC (existential)
PRV N OMC (universal)

2
>

Correctness

Claim (correctness)

YRy V. OMC (existential)
YRY N OMC (universal)

2
>

V&

WORK IN PROGRESS

Conclusions and future direction

Contribution
» A decomposition of uHML formulae into:

» a runtime verification formula
» a model checking formula

» Runtime verification is applicable to a larger set of formulae

Future work
» Formal correctness proof
» Empirical tests for efficiency
» Extending the approach to other formalisms
» Expressiveness study of induced uHML fragments/hierarchy

The end

Thank you

	Introduction: model checking vs. runtime verification (motivations)
	Runtime verification for recHML (= mu-calculus)
	Extending runtime verification applicability: hybrid (combined?) approach

