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unfeasible for most real-world applications
(state explosion problem)
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Runtime verification for uHML (= u-calculus)



Monitorability

Definition (monitorability)

¢ is monitorable

@ is suitable to be runtime verified
either

there exists

a finite witness for satisfaction
whenever g is true

or

there exists

a finite witness for violation
whenever g is false



The branching time logic uHML

0, ¢ € uHML ::=
tt (truth) | ff (falsehood)
| oV o (disjunction) | oA (conjunction)
| {@)p (possibility) | [e]e (necessity)
| minX.e  (min. fixpoint) | maxX.¢ (max. fixpoin)
| X (rec. variable)

The maximal monitorable subset
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monitorable: not monitorable:
do runtime verification do model checking
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Conclusions and future direction

Contribution
» A decomposition of uHML formulae into:

» a runtime verification formula
» a model checking formula

» Runtime verification is applicable to a larger set of formulae

Future work
» Formal correctness proof
» Empirical tests for efficiency
» Extending the approach to other formalisms
» Expressiveness study of induced uHML fragments/hierarchy



The end

Thank you
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