
An Algorithm for Enumerating Maximal Models

of Horn Theories with an Application to Modal

Logics⋆

Luca Aceto1, Dario Della Monica1, Anna Ingólfsdóttir1, Angelo Montanari2,
and Guido Sciavicco3

1 ICE-TCS, School of Computer Science
Reykjavik University, Reykjavik, Iceland – {luca,dariodm,annai}@ru.is

2 Department of Mathematics and Computer Science
University of Udine, Udine, Italy – angelo.montanari@uniud.it
3 Department of Information, Engineering and Communications

University of Murcia, Murcia, Spain – guido@um.es

Abstract. The fragment of propositional logic known as Horn theories
plays a central role in automated reasoning. The problem of enumerating
the maximal models of a Horn theory (MaxMod) has been proved to be
computationally hard, unless P = NP. To the best of our knowledge, the
only algorithm available for it is the one based on a brute-force approach.
In this paper, we provide an algorithm for the problem of enumerating
the maximal subsets of facts that do not entail a distinguished atomic
proposition in a positive Horn theory (MaxNoEntail). We show that
MaxMod is polynomially reducible to MaxNoEntail (and vice versa),
making it possible to solve also the former problem using the proposed
algorithm. Addressing MaxMod via MaxNoEntail opens, inter alia,
the possibility of benefiting from the monotonicity of the notion of entail-
ment. (The notion of model does not enjoy such a property.) We also dis-
cuss an application of MaxNoEntail to expressiveness issues for modal
logics, which reveals the effectiveness of the proposed algorithm.

1 Introduction

Propositional logic is the most basic tool in computer science and artificial in-
telligence. Despite its limited expressive power, it allows one to formalize several
interesting scenarios. In particular, the fragment of propositional logic known as
Horn theories [8] plays a central role in the search for efficient reasoning meth-
ods thanks to its good computational properties: the entailment problem can be

⋆ The authors acknowledge the support from the Spanish fellowship program ‘Ra-

mon y Cajal’ RYC-2011-07821 and the Spanish MEC project TIN2009-14372-C03-

01 (G. Sciavicco), the project Processes and Modal Logics (project nr. 100048021)
of the Icelandic Research Fund (L. Aceto, D. Della Monica, and A. Ingólfsdóttir),
the project Decidability and Expressiveness for Interval Temporal Logics (project
nr. 130802-051) of the Icelandic Research Fund (D. Della Monica), and the Italian
GNCS project Extended Game Logics (A. Montanari).

2

solved in linear time [7,14], while it is NP-complete for full propositional logic.
A Horn theory is a conjunction of clauses (that is, disjunctions of literals) such
that every clause has, at most, one positive literal.

Horn theories can be applied to a number of different fields, such as plan-
ning [11], case based reasoning [15], or diagnosis [4]. A common problem is that
of enumerating the models of a given theory with a particular property, e.g.,
maximality or minimality. As an example, the concepts of propositional circum-
scription and minimal/maximal diagnosis are related to this problem [5,6]. A
model of a Horn theory is a truth assignment for all its atomic propositions that
satisfies the theory. A model is maximal if extending its set of true propositions
has the effect of losing the property of being a model. The problem of enumerat-
ing the maximal models of a given Horn theory, called here MaxMod, has been
studied in [12]. Since the problem has, in general, an output whose dimension
(number of solutions returned) is exponential in the size of the input, one can
hope, at best, to have an output-polynomial algorithm, that is, an algorithm
whose complexity is polynomial in the size of both input and output. (A survey
on the relationship between the output complexity hierarchy and the classical
complexity hierarchy can be found in [13,16].) In [12], it has been proved that,
unless P=NP, no output-polynomial algorithm can be devised for MaxMod.
This discouraged further investigation in the search for efficient algorithms for
MaxMod. As a consequence, to the best of our knowledge, the only algorithm
available for it is the one based on a brute-force approach. It explores the space
of truth assignments over the set of atomic propositions searching for maximal
models. The trivial way to do so is in two steps: first, by identifying those as-
signments that are models, and then by checking them for maximality. Since the
number of assignments is the size of the powerset of the set of propositions, the
algorithm runs in exponential time.

In this paper, we establish a connection between MaxMod and the prob-
lem of enumerating all maximal subsets of atomic propositions (facts) that do
not entail a distinguished proposition in a given positive Horn theory (a the-
ory where all clauses contain exactly one positive literal). The outcome of the
latter problem, called here MaxNoEntail, can be intuitively interpreted as
follows: all maximal sets of causes that do not have atomic proposition X as
a consequence. We show that MaxMod and MaxNoEntail are polynomially
equivalent; thus, every algorithm for MaxNoEntail is also an algorithm for
MaxMod. It is worth noticing that the notion of entailment is monotone: if a
set of facts entails a proposition, also each of its extensions does. Consequently,
in order to check the maximality of a set F of facts that do not entail a given
proposition X in a positive Horn theory, it is enough to check that every exten-
sion obtained by adding a single new proposition to F does entail X . On the
other hand, the notion of model (and thus the notion of non-model) does not
enjoy a similar property and thus, in order to verify the maximality of a model
M of a Horn theory, it is necessary to verify that all the valuations extending M
(i.e., the valuations for which the set of true propositions is an extension of the
set of true propositions of M) are not models of the theory. Thanks to the mono-

3

tonicity of entailment, the brute-force algorithm for MaxNoEntail performs
better than the brute-force approach for MaxMod. Thus, reducing MaxMod

to MaxNoEntail immediately gives us a faster, yet trivial, solution to Max-

Mod. Furthermore, we present an alternative algorithm for MaxNoEntail that
performs better than the brute-force approach, as it minimizes the number of
candidate solutions that are tested before producing the next solution.

Another benefit resulting from approaching MaxMod via MaxNoEntail is
that the latter problem is closely related to expressiveness issues for modal logics
[3]. Indeed, such a relation between Horn theories and modal logics motivated
this study in the first place [1,9]. A major issue in modal logic is that of finding
out which modalities can be expressed in terms of others, in order to classify
all expressively different sub-logics with respect to, e.g., expressive power or
complexity of the satisfiability problem. A common approach to this problem
consists of two steps: first, identifying as many inter-definabilities as possible,
and then trying to prove completeness of such a set of inter-definabilities. The
second step has two possible outcomes: either one is able to prove completeness,
or the failure in proving it might suggest new inter-definabilities, giving rise
to a new, extended set of inter-definabilities to be checked for completeness.
In any case, the second step requires the identification of all maximal subsets
of modalities that, within the current set of known inter-definabilities, do not
express a specific modality. Since a set of inter-definabilities between modalities
can be thought of as a positive Horn theory (where atomic propositions play the
role of the modalities), identifying such maximal subsets of modalities amounts
to solving MaxNoEntail. We provide empirical evidence that the proposed
algorithm for MaxNoEntail is particularly efficient when applied to the study
of the expressive power of modal logics, as described above, allowing us to solve
instances that were intractable with the brute-force approach.

The paper is organized as follows. In Section 2, we give the preliminaries.
In Section 3, we prove that MaxMod and MaxNoEntail are polynomially
equivalent. We also present there the brute-force algorithm for MaxNoEntail,
that gives us a more efficient solution for MaxMod. In Section 4, we present
an alternative algorithm for MaxNoEntail and we prove its correctness. In
Section 5, we give evidence of the effectiveness of the proposed method when
applied to expressiveness issues for modal logics. Finally, in Section 6, we give
an assessment of the work and outline future research directions.

2 Preliminaries

Throughout the paper, P denotes a finite, non-empty set of atomic propositions.
A Boolean expression over P is a formula built using propositions from P and
the classic Boolean operators of negation, conjunction, and disjunction. Every
Boolean expression can be transformed into an equivalent formula in conjunctive
normal form (CNF), where the outermost operator is the conjunction and each
conjunct is a disjunction of literals, that is, atomic propositions (positive literals)
or their negation (negative literals). A Horn theory (or Horn expression) over P is

4

a Boolean expression over P in CNF whose conjuncts have at most one positive
literal. Conjuncts of a Horn theory are referred to as clauses. It is common
practice to think of a Horn theory K as the set {δ1, . . . , δk} of its clauses. The
atomic propositions occurring negated in a clause are called antecedents of the
clause; the positive literal, if any, is called consequent of the clause. A clause
δi = ¬Ai

1 ∨ . . . ∨ ¬Ai
mi

∨ Ai of a Horn theory can be seen as the implication of
the consequent by the antecedents, written as Ai

1, . . . , A
i
mi

⇒ Ai. A clause with
exactly one literal is a fact. A clause ¬Ai

1∨. . .∨¬A
i
m1

with no positive literal can
be seen as Ai

1, . . . , A
i
mi

⇒ ⊥. Thus, it is useful to think of ⊥ as a distinguished
atomic proposition in P , whose truth value is 0 in each truth assignment (see
below for a formal definition of the notion of assignment). A theory in which
every clause contains exactly one positive literal is said to be positive. Given a
clause δ, we denote by antδ its set of antecedents, and by consδ the singleton
containing the consequent. Finally, by HTP (resp., PHTP), we denote the set
of all (resp., positive) Horn theories over the set of atomic propositions P .

An assignment M over P is defined as a function M : P → {0, 1}, assigning
a truth value to every proposition in P . An assignment M over P is a model of
a Horn theory K ∈ HTP , denoted by M |= K, if and only if it satisfies all the
clauses of K. A Horn theory is satisfiable if and only if there exists a model for it.
Moreover, we say that K entails a literal l, denoted |=K l, if and only if K∪{¬l}
is not satisfiable. Here, we are mainly interested in entailment of positive literals.
Given a Horn theory K ∈ HTP , a subset of P is also referred to as a fragment
(of P). Thus, a fragment is a set of positive literals. Given a fragment F of P ,
a positive literal X ∈ P , and a Horn theory K ∈ HTP , we say that F entails
X in K, denoted by F |=K X , if and only if K ∪ F ∪ {¬X} is unsatisfiable,
that is, every model M of K ∪ F is such that M(X) = 1. Given an assignment
M over P , we define the fragment induced by M , denoted by η(M), as the one
containing exactly the propositions that are true in M . On the other hand, given
a fragment F of P , the assignment induced by F , denoted by µ(F), is obtained
by setting to 1 the propositions in F , and to 0 the ones in P \ F . It obviously
holds that F = η(µ(F)) and M = µ(η(M)), for each fragment F of P and for
each assignment M over P . The notion of entailment can now be extended from
fragments to assignments: M entails X in K, denoted by M |=K X , if and only
if η(M) |=K X . Similarly, the order over fragments induced by the set inclusion
operation ⊂ can be extended to assignments as follows: M ≺ M ′ if and only
if η(M) ⊂ η(M ′). Notice also that entailment is monotonic: if F |=K X (resp.,
M |=K X) holds for some fragment F (resp., model M), then F ′ |=K X (resp.,
M ′ |=K X) holds for every F ′ such that F ⊂ F ′ (resp., M ′ such that M ≺ M ′).

Given a Horn theory K, a model M of K is maximal if and only if M ′ 6|= K
for every assignment M ′ such that M ≺ M ′. A fragment F is X-incomplete in
K if and only if F 6|=K X , and it is maximally X-incomplete in K if and only if it
is X-incomplete in K and F ′ |=K X for every fragment F ′ such that F ⊂ F ′. We
will sometimes omit the specification of the Horn theory if it is clear from the
context. Clearly, the monotonicity of entailment implies the monotonicity of X-
incompleteness (if F is X-incomplete, then each of its subsets is X-incomplete,

5

proc BruteForceMaxMod (P,K)

S ← ∅
for each assignment M over P
do
{

if M |= K
then S ← S ∪ {M}

for M ∈ S
do
{

if ∃M ′ ∈ S s.t. M ≺M ′

then S ← S \ {M}
return S

proc BruteForceMaxNoEntail (P,K, X)

S ← ∅
for F ⊆ P
do

if F 6|=K X
then

{

if ∀A ∈ P \ F it holds F ∪ {A} |=K X
then S ← S ∪ {F}

return S

Fig. 1. The brute-force algorithm for MaxMod (left-hand side), and the one, more
efficient, for MaxNoEntail (right-hand side).

as well). Therefore, the notion of maximal incompleteness can be rephrased in
the following equivalent way: F is maximally X-incomplete if and only if it is X-
incomplete and F ∪ {A} |=K X for each A ∈ P \ F . On the contrary, the notion
of model of a generic theory does not enjoy such a property. As an example,
consider the theory K, featuring the only clause A,B ⇒ C: the assignment M ,
which sets all the propositions to 0, is a model of K; the assignment M ′, which
extends the set of true propositions of M by setting A and B to 1, is not a model
of K; the assignment M ′′, which in turn extends the set of true propositions of
M ′ by setting also C to 1, is another model of K.

We are now ready to formally define the enumeration problems MaxMod

and MaxNoEntail, that are the aim of this study.

Definition 1. Given a set of atomic propositions P and a Horn theory K ∈
HTP , the problem MaxMod is defined as the problem of enumerating all and
only the assignments over P that are maximal models of K. Similarly, given a
set of atomic propositions P, a positive Horn theory K ∈ PHTP , and a distin-
guished atomic proposition X ∈ P, the problem MaxNoEntail is defined as the
problem of enumerating all and only the fragments F of P that are maximally
X-incomplete in K.

For the sake of completeness, before concluding the section we provide, in
Fig. 1, left-hand side, the pseudo-code of a trivial, brute-force algorithm for
MaxMod. It is clear that the algorithm described there is highly inefficient,
and obviously not output-polynomial (in [12] it is proven that, unless P=NP, no
output-polynomial algorithm exists for this problem): even if the set of solutions
is small, or even empty, the algorithm requires an exponential number of steps.
Moreover, the algorithm performs two iterations: the one on the space of the val-
uations over P , whose size is exponential in the one of the input, and the other on
the space of the models of the Horn theory K, whose size is possibly exponential
in the one of the input, as well. In what follows, we first present a brute-force
algorithm for MaxNoEntail (see Fig. 1, right-hand side) that, thanks to the
monotonicity of entailment, avoids the second iteration step, thus having bet-
ter performance than the one for MaxMod. Then, we propose a more efficient

6

solution for MaxNoEntail. Since, as we will show, MaxMod is polynomially
reducible to MaxNoEntail, the proposed algorithms for MaxNoEntail apply
to MaxMod, too.

3 Solving MaxMod through MaxNoEntail

In this section, we provide a polynomial reduction from MaxMod to Max-

NoEntail, and the other way around. This allows us to employ the brute-force
algorithm for MaxNoEntail, depicted in Fig. 1 (right-hand side), to solve Max-

Mod, thus obtaining a more efficient, yet trivial, solution for it that benefits from
the monotonicity of entailment. A MaxMod instance is a pair 〈P ,K〉, where
P is a set of propositions and K ∈ HTP . A MaxNoEntail instance is a triple
〈P ,K, X〉, where P is a set of propositions, K ∈ PHTP , and X ∈ P . In what
follows, we define the functions τ and γ that are used to transform MaxMod

instances into MaxNoEntail ones, and vice versa.

Definition 2. τ : HTP → PHTP∪{X}, where X is a distinguished atomic
proposition not belonging to P, is defined as follows: for each Horn theory K ∈
HTP , τ(K) is the smallest theory such that: (i) for each clause δ ∈ K that con-
tains one positive literal, δ belongs to τ(K), and (ii) for each clause δ ∈ K of the
type antδ ⇒ ⊥ (i.e., δ does not contain positive literals), the clause antδ ⇒ X
belongs to τ(K). γ : PHTP × P → HTP is defined as follows: for each positive
Horn theory K ∈ PHTP and proposition X ∈ P, γ(K, X) = K ∪ {¬X}.

Our goal is to show that, for every MaxMod instance 〈P ,K〉, with X /∈ P ,
the set of solutions of MaxMod on 〈P ,K〉 coincides with the set of solutions
of MaxNoEntail on 〈P ∪ {X}, τ(K), X〉, and that, for every MaxNoEntail

instance 〈P ,K, X〉, the set of solutions of MaxNoEntail on 〈P ,K, X〉 coin-
cides with the set of solutions of MaxMod on 〈P , γ(K, X)〉. Let us give, first, a
technical lemma (whose proof is given in Appendix A).

Lemma 1. Let K ∈ HTP and A ∈ P. The following results hold.

(a) Let F be a fragment of P that is maximally X-incomplete in K. Then, A ∈ F
if and only if F |=K A.

(b) Let M be a model of K. Then, M(A) = 1 if and only if M |=K A.

Let us denote by M〈P,K〉 the set of solutions for MaxMod on the generic
instance 〈P ,K〉 and by I〈P,K,X〉 the set of solutions for MaxNoEntail on the
generic instance 〈P ,K, X〉. In the following two lemmas, we prove that MaxMod

is reducible to MaxNoEntail (Lemma 2) and vice versa (Lemma 3).

Lemma 2. Let 〈P ,K〉 be a generic instance of MaxMod, with X /∈ P. Then,
M〈P,K〉 = {µ(F) | F ∈ I〈P∪{X},τ(K),X〉}.

Proof. We proceed in two steps: first, we show that µ(F) ∈ M〈P,K〉, for each
F ∈ I〈P∪{X},τ(K),X〉; then, we prove that, for each model M ∈ M〈P,K〉, there
exists a fragment F ∈ I〈P∪{X},τ(K),X〉 such that µ(F) = M .

7

To prove the former claim, let us assume F ∈ I〈P∪{X},τ(K),X〉, which means
that F is maximally X-incomplete in τ(K). We want to show that µ(F) belongs
to M〈P,K〉, that is, µ(F) is a maximal model for K.

– To prove that µ(F) is a model of K, i.e., µ(F) |= K, let δ be a clause of K.
We shall argue show that µ(F) satisfies δ. We distinguish two cases.

• δ is of the form antδ ⇒ A, for some A ∈ P . If µ(F) does not satisfy antδ,
then we are done. Assume that µ(F) does satisfy antδ. We shall show
that µ(F)(A) = 1. Since µ(F) satisfies antδ, we have that antδ ⊆ F .
This means that {δ} ∪ F ∪ {¬A} is unsatisfiable and thus F |=τ(K) A
holds, because δ is also a clause of τ(K), by construction. By Lemma
1(a), A ∈ F and therefore µ(F)(A) = 1, as claimed.

• δ is of the form antδ ⇒ ⊥. We claim that µ(F) does not satisfy antδ.
To see this, let us assume, towards a contradiction, that µ(F) satisfies
antδ. Then, antδ ⊆ F . By construction of τ(K), the clause antδ ⇒ X
belongs to τ(K). Now, we have that {δ}∪F ∪ {¬X} is unsatisfiable and
thus F |=τ(K) X holds, contradicting the X-incompleteness of F .

Since µ(F) satisfies each clause of K, we have that µ(F) |= K holds.
– To prove the maximality of µ(F), let us assume, towards a contradiction,

that there exists a model M of K such that µ(F) ≺ M . By the definition
of η(·), this implies F ⊂ η(M). We claim that η(M) is X-incomplete in
τ(K), thus obtaining a contradiction with the fact that F is maximally X-
incomplete. Indeed, since M is a model of K, it does not satisfy any of the
sets antδ, where δ ∈ K is of the form antδ ⇒ ⊥. Thus, η(M) 6⊆ antδ, for
every δ ∈ τ(K) of the form antδ ⇒ X , which yields η(M) 6|=K X . This,
in turn, means that η(M) is X-incomplete in τ(K), which contradicts the
maximality of F .

To complete the proof, let us consider a model M ∈ M〈P,K〉, that is, M is
a maximal model of K. Our aim is to show that there exists a fragment F ∈
I〈P∪{X},τ(K),X〉 such that µ(F) = M . We claim that η(M) ∈ I〈P∪{X},τ(K),X〉.
Since µ(η(M)) = M , the thesis follows from this claim. First, we prove that η(M)
is X-incomplete in τ(K), i.e., η(M) 6|=τ(K) X . To this end, let M ′ be the valuation
over P ∪ {X} obtained from M as follows: M ′(Y) = M(Y) for each Y ∈ P and
M ′(X) = 0. It is easy to see that M ′ is a model for τ(K) ∪ η(M) ∪ {¬X}.
Thus, τ(K) ∪ η(M) ∪ {¬X} is satisfiable, which implies η(M) 6|=τ(K) X . Now,
in order to prove that η(M) is maximally X-incomplete, we have to show that
η(M)∪{A} |=τ(K) X , for each A ∈ (P∪{X})\η(M). If A = X , the thesis trivially
follows from the definition of entailment. Otherwise, let us suppose, towards a
contradiction, that η(M) ∪ {A} 6|=τ(K) X , for some A ∈ (P ∪ {X}) \ η(M), with
A 6= X . This means that τ(K) ∪ η(M) ∪ {A} ∪ {¬X} is satisfiable. Let M ′ be a
model for it. Since M ′ is a model of τ(K) and M ′(X) = 0, it is also a model of
K (by construction of τ(K), X syntactically replaces the symbol ⊥). Moreover,
it is easy to convince oneself that η(M ′) ⊇ η(M) ∪ {A}. Thus M ′ is a model
of K such that M ≺ M ′, contradicting the maximality of M . Hence η(M) is
maximally X-incomplete in τ(K), and the thesis follows. ⊓⊔

8

Lemma 3. Let 〈P ,K, X〉 be a generic instance of MaxNoEntail. Then,
I〈P,K,X〉 = {η(M) | M ∈ M〈P,γ(K,X)〉}.

Proof. We prove the statement in two steps: first, we show that η(M) ∈ I〈P,K,X〉,
for each M ∈ M〈P,γ(K,X)〉; then, we show that, for each fragment F ∈ I〈P,K,X〉,
there exists a model M ∈ M〈P,γ(K,X)〉 such that η(M) = F .

To prove the former claim, let us assume M ∈ M〈P,γ(K,X)〉, which means
that M is a maximal model of γ(K, X). As a preliminary step, we observe that,
by construction of γ(K, X), every model of γ(K, X) is also a model of K. We
want to show that η(M) belongs to I〈P,K,X〉, that is, η(M) is maximally X-
incomplete in K. First, we show that η(M) is X-incomplete in K, and then that
it is maximally X-incomplete in K. To show the X-incompleteness of η(M),
suppose, towards a contradiction, that η(M) |=K X . This means that M |=K X
and, by Lemma 1(b) and by the fact that M is also a model of K, it follows that
M(X) = 1, which implies that M is not a model of γ(K, X). This contradicts
the assumption that M ∈ M〈P,γ(K,X)〉. So, we have that η(M) is X-incomplete
in K. Now, suppose, towards a contradiction, that η(M) is not maximally X-
incomplete. Thus, η(M)∪{A} 6|=K X holds, for some A ∈ P \ η(M). This means
that K ∪ η(M) ∪ {A} ∪ {¬X} is satisfiable. Let M ′ be a model for it. Since M ′

satisfies K and {¬X}, it is also a model of γ(K, X). Moreover, it is easy to see
that η(M) ⊂ η(M ′). Thus, M ′ is a model of γ(K, X) such that M ≺ M ′, which
contradicts the maximality of M .

To complete the proof, let us consider a fragment F ∈ I〈P,K,X〉, that is, F
is maximally X-incomplete in K. Our goal is to show that there exists a model
M ∈ M〈P,γ(K,X)〉 such that η(M) = F . We claim that µ(F) ∈ M〈P,γ(K,X)〉.
Since η(µ(F)) = F , the thesis follows from this claim. First, we show that µ(F)
is a model of γ(K, X). By construction, γ(K, X) = K∪{¬X}. By Lemma 1(a) and
by the assumption that F is maximally X-incomplete, it follows X /∈ F , which
means that µ(F)(X) = 0. Thus, µ(F) satisfies {¬X}. Now, let us show that µ(F)
also satisfies K. Let δ be a generic clause in K. It is of the form A1, . . . , Am ⇒ A.
We distinguish two cases. If Ai /∈ F for some i ∈ {1, . . . ,m}, then µ(F)(Ai) = 0,
which means that δ is satisfied by µ(F). Otherwise, {A1, . . . , Am} ⊆ F , which
means that F |=K A. Therefore, by Lemma 1(a), A ∈ F , which implies that
µ(F)(A) = 1. So, µ(F) |= δ and, since δ was chosen arbitrarily, µ(F) is a model
of K. Since we showed that it is also a model of {¬X}, we have that µ(F) is a
model of γ(K, X). To prove the maximality of µ(F), let us suppose, towards a
contradiction, that there exists a model M ′ of γ(K, X), such that µ(F) ≺ M ′,
which means F ⊂ η(M ′). Since M ′ is a model of γ(X , X), it is both a model
of K and {¬X}. In particular, the latter implies M ′(X) = 0. By Lemma 1(b),
M ′ 6|=K X holds, which means η(M ′) 6|=K X . Thus, η(M ′) is a fragment that is
X-incomplete in K such that F ⊂ η(M ′). This contradicts the assumption that
F is maximally X-incomplete. Hence, µ(F) is a maximal model of γ(K, X). ⊓⊔

The following theorem follows from Lemma 2, Lemma 3, and Definition 2.

Theorem 1. MaxMod and MaxNoEntail are polynomially equivalent.

9

Thanks to the above reduction, it is possible to use the brute-force algo-
rithm for MaxNoEntail, depicted in Fig. 1, right-hand side, to solve Max-

Mod. While it is still based on a brute-force approach, such an algorithm turns
out to be much more effective than the one described in Fig. 1, left-hand side.
Indeed, in searching for fragments that are maximally X-incomplete in the given
theory, one can easily verify the maximality of a candidate (i.e., an X-incomplete
fragment) by checking if adding exactly one element to it preserves its incom-
pleteness. This allows us to avoid a second pass on the set of potential results.

4 An algorithm for MaxNoEntail

In this section we present an alternative algorithm for MaxNoEntail, called
AlgMaxNoEn (see Fig. 2). We prove that our algorithm is correct and, in the
next section, we give experimental evidence of its effectiveness when applied to
expressiveness issues for modal logics (see the discussion in Section 1).

We begin by giving some definitions that will be useful in what follows. Since
only positive Horn theories occur in MaxNoEntail instances, throughout the
section we assume that all Horn theories are positive, unless otherwise specified.

Definition 3. Let K ∈ PHTP be a Horn theory, δ be a clause, and F be a
fragment of P, with A ∈ F . We say that: (i) A deactivates δ if A belongs to
antδ; (ii) A is (F, δ)-useful if A deactivates δ and no other proposition in F
does; (iii) A is (F,K)-useful if A is (F, δ′)-useful for some δ′ ∈ K; (iv) F is
K-useful if X is (F,K)-useful for every X ∈ F .

Notice that, for a given clause δ and fragment F , there can be at most one
proposition in F that is (F, δ)-useful. More precisely, such a proposition exists
if and only if |F ∩ antδ| = 1. In what follows, we will simply say that F is useful
(in place of K-useful) when the theory is clear from the context. The important
property relating the notions of maximal X-incompleteness and usefulness is
stated by the following lemma.

Lemma 4. If a fragment F of P is maximally X-incomplete in K, then its
complement P \ F is useful.

Notice that the the converse does not necessarily hold. Indeed, if F is X-
incomplete and its complement is useful, then F is not necessarily maximally
X-incomplete. As an example, consider the theory K = {A,B ⇒ X,C ⇒ A}.
The fragment A is X-incomplete and its complement BC is useful, but A is not
maximally X-incomplete, as AC is X-incomplete, as well. Moreover, observe
that, if a fragment F is not useful, then any fragment F ′ such that F ⊂ F ′ is
not useful, either. This follows from the fact that if a proposition A ∈ F is not
(F,K)-useful, then it is not (F ′,K)-useful for any F ′ such that F ⊂ F ′.

Definition 4. Given a Horn theory K = {δ1, . . . , δk} and a fragment F , the
utility vector of F in K, usually denoted by u, is a vector of size k such that, for
each index i, u[i] is equal to {A} if A is (F, δi)-useful, and it is equal to null if
|F ∩ antδi | 6= 1.

10

proc AlgMaxNoEn (P,K,X)

L ← ∅
P ← P \ {X}
N ← 〈∅,P〉
AlgMaxNoEnR(N ,L,P,K, X)
return L

proc compUtilityVec (K, F)

F̂ ← F
for i = 1 to k
{

u[i]← null

for i = 1 to k

let δi be the ith clause of K
if |F ∩ antδi | = 1

then u[i]← F ∩ antδi
for i = 1 to k
{

F̂ ← F̂ \ u[i]

if F̂ = ∅
then return true

else return false

proc AlgMaxNoEnR (N = 〈F, V 〉,L,P,K, X)

if compUtilityV ec(K, F) = false

then return ‘non-maximally incomplete’

if (P \ (F ∪ V)) |=K X
then return ‘no solution’

if (P \ F) 6|=K X
then

if 6 ∃A ∈ F s.t. ((P \ F) ∪ {A}) 6|=K X
then

{

L ← L ∪ {P \ F}
return ‘solution found’

else return ‘non-maximally incomplete’
// Here, F ∪ V is X-incomplete but F is not, thus V 6= ∅

flagSol ← false

flagNoMax ← false

keep ← true

while V 6= ∅ and keep

let Y be an element of V
V ← V \ {Y }
F ′ ← F ∪ {Y }
N ′ ← 〈F ′, V 〉
AddChild(N ,N ′)
ret ← AlgMaxNoEnR(N ′,L,P,K, X)
if ret = ‘solution found’

then flagSol ← true

if ret = ‘non-maximally incomplete’

then flagNoMax ← true

if ret = ‘no solution’
then keep ← false

if flagSol
then return ‘solution found’

if flagNoMax
then return ‘non-maximally incomplete’

return ‘no solution’

Fig. 2. Pseudo-code for the algorithms AlgMaxNoEn (left-hand side, top), compUtili-

tyVec (left-hand side, bottom), and AlgMaxNoEnR (right-hand side).

Intuitively, the utility vector is the tool used to detect that a fragment is not
useful: F is useful if and only if all the propositions in F occur in u.

We are now ready to describe the proposed algorithm AlgMaxNoEn (Fig. 2).
The intuitive idea of the algorithm is to produce candidate solutions (i.e., frag-
ments) and verify whether they are actual solutions, that is, if they are maximally
X-incomplete fragments. Candidate solutions are produced by incrementally re-
moving propositions from the set P , which from now on we assume does not
contain X (as X cannot occur in any solution). Once a proposition is removed,
the status of the resulting fragment is checked: if it is maximally X-incomplete,
then it is added to the solution set; otherwise, either the computation continues
by refining the candidate solution through the removal of another proposition
or, if refining this candidate is considered not promising (according to criteria
that will be defined later on), the analysis of this candidate ends and we focus
on a new candidate.

The process is carried out in a recursive fashion, AlgMaxNoEnR being the
recursive function and AlgMaxNoEn being the wrapper function, which executes
the first call to AlgMaxNoEnR (see Fig. 2). The parameters of the recursion are

11

the fragment F , representing the propositions that have been already removed
(thus the candidate under analysis is its complement P \ F), and the fragment
V , which is a (not necessarily strict) subset of P \F and represents the proposi-
tions that can still be removed to refine the current candidate. (The additional
parameters of AlgMaxNoEnR can be thought of as global variables, as they are
not involved in the recursion process: L collects the solutions, while P , K, and X
represent the instance given as input to AlgMaxNoEn.) Thus, a generic recursive
call on F and V analyses, as a candidate, the complement of F , which can be
possibly refined, in successive recursive calls, through the removal of (some of)
the propositions in V . In this way, the recursive function searches for solutions
contained in the whole set of sub-fragment of P \ F .

Given an instance 〈P ,K, X〉 of MaxNoEntail as input, the wrapper func-
tion AlgMaxNoEn (Fig. 2, left-hand side, top) executes the first recursive call
to AlgMaxNoEnR on the recursive parameters F = ∅ and V = P . The function
AlgMaxNoEnR recursively builds a tree isomorphic to its own recursion tree.
Such a structure is actually useless for the purposes of the algorithm, but it
will be handy for the correctness analysis. In what follows, nodes of the above-
mentioned tree are identified by the pair 〈F, V 〉 of recursive parameters on which
the call is performed. Thus, there is a one-to-one correspondence between nodes
and calls to AlgMaxNoEnR. For the sake of simplicity, we will sometimes refer
to a call to AlgMaxNoEnR through its corresponding node, and vice versa. For
example, we will say that “a node N returns the exit-value r”, meaning that
the corresponding call returns r. A call to AlgMaxNoEnR may produce one of
three outcomes: ‘solution found’, ‘no solution’, or ‘non-maximally incomplete’.
Intuitively, the value ‘solution found’ is returned by a node when a solution has
been found in its own sub-tree (i.e., in the sub-tree rooted at it); if this is the
case, we also say that the node sees a solution. Otherwise, if a fragment that is
maximally X-incomplete in K has been analysed in its own sub-tree, the value
‘non-maximally incomplete’ is returned. The value ‘no solution’ is returned when
none of the two cases above applies.

As a first step, the algorithm checks if one of the base-case conditions is met.
Clearly, if a base-case condition is met inside a call, then that call corresponds
to a leaf of the recursion tree. Base-case conditions allow the algorithm to end
the analysis of a candidate, with no further refinements (and thus avoiding the
exploration of the set of its sub-fragments), because either the candidate itself is
a solution or its refinement is not promising. The refinement of a solution P\F by
removing propositions in V is not promising when the corresponding node 〈F, V 〉
does not see any solution. Clearly, this is the case when P \ (F ∪V) |=K X : if the
weakest fragment P\(F ∪V) of the set of sub-fragments of P\F entails X , then,
due to the monotonicity of entailment, all the fragments of the set do, meaning
that none of them is X-incomplete. Another case in which refining a candidate
is not promising is when the candidate F is X-incomplete but not maximally
X-incomplete: if F is not maximally X-incomplete, then all its sub-fragments
are not, either. We are interested in detecting such non-promising situations as
soon as possible, to reduce the number of candidates analysed by the algorithm.

12

To this end, we use the above-mentioned property that the complement of a
maximally X-incomplete fragment is useful (Lemma 4). This implies that, if a
fragment F is not useful, that is, some of its propositions do not occur in its
utility vector, then neither P \ F nor any of its sub-fragments is a solution, and
thus the analysis of P \F ends with no further refinement. Thus, there are three
base-case conditions. (i) If compUtilityVec (see Fig. 2, left-hand side, bottom)
returns false, then F is not useful, and the function returns ‘non-maximally
incomplete’. (ii) If P \ (F ∪ V) entails X , then refining P \ F cannot lead to a
solution, and the function returns ‘no solution’. (iii) If the complement of F is
X-incomplete, then it may be a solution. Its maximality is checked, exploiting
the monotonicity of entailment, and, depending on the result of this test, either it
is added to the solution set L and ‘solution found’ is returned, or ‘non-maximally
incomplete’ is returned.

If none of the above base-case conditions is met, the refinement of the candi-
date is performed (while loop in AlgMaxNoEnR, in Fig. 2). At each iteration, an
element Y of V is selected. Each iteration corresponds to an attempt to extend F
with the new proposition Y and the new node 〈F ∪{Y }, V \{Y }〉 (corresponding
to the recursive call on F ∪{Y } and V \ {Y }) is created as a child of the current
one. Depending on the value returned from a recursive call, the local variables
flagSol , flagNoMax , and keep are suitably updated. Intuitively, FlagSol is true
if and only if the current node sees a solution. If the current node sees no solu-
tions, but at least one of the nodes in its own sub-tree returned ‘non-maximally
incomplete’, then flagNoMax is true. Finally, keep is set to false as soon as
a call returns ‘no solution’. In this last case, thanks to the monotonicity of the
entailment, we can exit the current loop, as no other solution can be produced
by refining the current candidate P \ F . The return value after the loop is then
returned depending on the values of flagSol and flagNoMax .

In the what follows, let T be the tree rooted at the node 〈∅,P〉, as generated
by the first call to the recursive function AlgMaxNoEn. The following theorem
states that the proposed algorithm is sound and complete.

Theorem 2. Let 〈P ,K, X〉 be an instance of MaxNoEntail. Then, a fragment
is included in the set of solutions returned by the algorithm AlgMaxNoEn on input
〈P ,K, X〉 if and only if it is maximally X-incomplete in K.

Proof. The soundness of AlgMaxNoEn follows from the description of the algo-
rithm: a fragment is included in the set of solutions returned by AlgMaxNoEn
only if the test for its maximal X-incompleteness succeeds.

To prove the completeness of AlgMaxNoEn, let us consider a generic max-
imally X-incomplete fragment F . We show that a node N = 〈F , V 〉, where
F = P \F , is eventually created and processed, for some V ⊆ F . As F is indeed
a maximally X-incomplete fragment, the corresponding base-case condition ap-
plies, and F is added to the solution set. Let us consider the ordering over P
according to which the elements are selected inside the while loop of the al-
gorithm AlgMaxNoEnR (see Fig. 2). Let A be the first occurrence in P of an
element of F and let B1, . . . , Bs be the elements preceding A in P (according to

13

the above-mentioned ordering). We have to show that the child NA = 〈{A}, VA〉,
where VA = (P \ {A}) \ {Bi | 1 ≤ i ≤ s}, is eventually processed. Notice that
P \ (VA ∪ {A}) ⊆ F holds, as F ⊆ VA ∪ {A}. Thus, P \ (VA ∪ {A}) is X-
incomplete, as well (as F is and by monotonicity of the entailment). Suppose,
towards a contradiction, that NA is never processed. Then, one of its left siblings
NBi

= 〈{Bi}, VBi
〉, for some i ∈ {1, . . . , s}, where VBi

= P\{Bj | 1 ≤ j ≤ i}, has
returned ‘no solution’. Since P \(VA∪{A}) is X-incomplete and VA∪{A} ⊆ VBi

holds, there exists a path from NBi
to a leaf corresponding to a candidate that

is X-incomplete. Such a leaf returns either ‘solution found’ or ‘non-maximally
incomplete’, and thus NBi

does not return ‘no solution’, leading to contradic-
tion. As the same argument can be iterated for every other element of F , we can
conclude that NA is processed, and we are done. ⊓⊔

5 Applications and experimental results

The algorithm for MaxNoEntail given in Section 4 outperforms brute-force
ones given in Fig. 1. Moreover, thanks to the reduction provided in Section 3,
it can also be exploited to solve MaxMod. In this section, we show a further
application of AlgMaxNoEn as a tool to compare the expressive power of modal
logics (see Section 1).

Given a set of modalities, an inter-definability (among them) describes how
to define a modality in terms of others. An inter-definability can be thought of as
a clause of a positive Horn theory (where atomic propositions play the role of the
modalities). Consequently, a set of inter-definabilities is nothing but a positive
Horn theory. Thus, the task of identifying the maximal subsets of modalities
that, within a given set of inter-definabilities, do not express a specific modality
amounts to solving MaxNoEntail. Actually, it was this very problem that
motivated us to carry out this study, in the search for a better solution than the
one based on the brute-force approach. While in modal logics with few operators
and inter-definabilities, the above-mentioned task can be easily carried out by
hand (as it has been done, e.g., in [9]), in modal logics with many operators
and several inter-definabilities, it may require a big and error-prone effort. Even
though most modal logics have a small set of modalities, there are meaningful
ones that feature tens of modalities (see, e.g., [2,10]). In [1], the authors proposed,
and used, a naïve, brute-force algorithm similar to the ones presented in Fig. 1
to perform the aforementioned task. Even if this approach was efficient enough
for the particular modal logic studied in [1], it turned out to be unsuitable to
deal with logics with larger sets of modalities, such as the one studied in [2],
featuring more than 20 modalities.

We have carried out an experimental comparison of the efficiency of the algo-
rithm AlgMaxNoEn vis-a-vis those given in Fig. 1. We summarize the outcomes
of our experiments4 in Fig. 3. (A more detailed account is given in Table 1 in Ap-
pendix B.) For each pair of values n and k, ranging, respectively, between 12 and

4 All the experiments were executed on a PC system with an IntelR© CoreTMi3-2120
CPU @ 3.30GHz × 4 and 7.7 GB of RAM, under Ubuntu Linux 12.04 (precise) 64-

14

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0
5

10
15
20
25
30
35
40
45
50
55
60

n (size of P)

T
im

e
(i
n

se
co

n
d
s) BruteForceMaxMod

BruteForceMaxNoEn
AlgMaxNoEn

Fig. 3. Running times of the three algorithms on randomly-generated instances.

30 and between ⌊n/3⌋ and n, the running times of the three algorithms presented
in this papers (i.e., BruteForceMaxMod, BruteForceMaxNoEntail, and AlgMax-
NoEn) are compared with respect to a set of seven randomly-generated Horn
theories K over P , where |P| = n and |K| = k (to be precise, BruteForceMaxMod
is run on randomly-generated instances of the form 〈P ,K〉, while BruteForce-
MaxNoEntail and AlgMaxNoEn on instances of the form 〈P ∪ {X}, τ(K), X〉,
obtained from the instances used for testing BruteForceMaxMod through the re-
duction described in Section 3). The chart in Fig. 3 reports the average running
times of the three algorithms for the different values of n (size of P). In spite
of a similar, exponential trend exhibited by the three algorithms (notice that
such a behaviour is unavoidable as the problems can produce outputs whose
size is, in general, exponential in the size of the input), our tests show that the
two algorithms based on a brute-force approach become inefficient already for
instances over set of propositions of size 15 and 20, respectively, and are thus
unable to deal, for instance, with the logic studied in [2]. On the other hand,
AlgMaxNoEn can deal with all tested instances in reasonable time.

6 Conclusions

In this paper we have studied the problem of enumerating the maximal models of
a Horn theory (MaxMod) and we established a connection between this problem
and the problem of enumerating the maximal subsets of facts that do not entail
a distinguished atomic proposition in a positive Horn theory (MaxNoEntail).
We first showed that the two problems are polynomially equivalent and then
we presented an algorithm for MaxNoEntail that performs better than the
ones based on a brute-force approach. As the problems can produce an output
of size, in general, exponential in the size of the input, it not possible to avoid
the exponential trend shown by the algorithms in Fig. 3. Moreover, in [12], it
has been proved that, unless P=NP, no output-polynomial algorithm can be
devised for MaxMod (and thus for MaxNoEntail), meaning that it is not

bit. On the web-page http://www.di.unisa.it/dottorandi/dario.dellamonica/

download/lpar13_code.zip it is possible to download the source code in C++.

15

even possible to devise an algorithm that runs in polynomial time in terms of
both the sizes of input and output. Nevertheless, our approach is efficient enough
to allow us to deal with some expressiveness issues for modal logics that were
intractable with the brute-force approach, as shown by empirical evidence.

The proposed algorithm can be improved by conceiving suitable heuristics to
drive the construction of the candidate solution (e.g, heuristics for the choice of
the next atomic proposition to be removed from the fragment) and by suitably
reducing, on the fly, the Horn theory depending on the current candidate under
analysis. We plan to explore both such possibilities in future work. We also intend
to investigate the behaviour of the proposed algorithm on special instances of
MaxNoEntail, i.e., on Horn theories whose clauses have the same consequent.
Such a restriction makes the MaxNoEntail problem equivalent to the well-
known problem of finding the minimal hitting sets of a hyper-graph, for which
it is still an open question whether an output-polynomial algorithm exists.

References

1. L. Aceto, D. Della Monica, A. Ingólfsdóttir, A. Montanari, and G. Sciavicco. A
complete classification of the expressiveness of interval logics of Allen’s relations
over dense linear orders. In Proc. of the 20th TIME, 2013.

2. P. Balbiani, V. Goranko, and G. Sciavicco. Two-sorted point-interval temporal
logics. Electr. Notes Theor. Comput. Sci., 278:31–45, 2011.

3. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University
Press, 2002.

4. R. Brachman and H. Levesque. Knowledge Representation and Reasoning. Morgan
Kaufmann Publishers Inc., 2004.

5. V. Brusoni, L. Console, P. Terenziani, and D. Theseider Dupré. Characterizing
temporal abductive diagnosis. In Proc. of the 6th DX, pages 34–40, 1995.

6. M. Cadoli. The complexity of model checking for circumscriptive formulae. Infor-

mation Processing Letters, 44:113–118, 1992.
7. C. Chang and R.C. Lee. Symbolic Logic and Mechanical Theorem Proving. Aca-

demic Press, Inc., 1st edition, 1997.
8. S. Cook. The complexity of theorem proving procedures. In Proc. of the 3rd Annual

ACM Symposium on Theory of Computing, pages 151–158, 1971.
9. D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco. Expressiveness of

the interval logics of Allen’s relations on the class of all linear orders: Complete
classification. In Proc. of the 22nd IJCAI, pages 845–850, 2011.

10. J. Halpern and Y. Shoham. A propositional modal logic of time intervals. Journal

of the ACM, 38(4):935–962, 1991.
11. H. Kautz, D. Mcallester, and B. Selman. Encoding plans in propositional logic. In

Proc. of the 5th KR, pages 374–384, 1996.
12. D. J. Kavvadias, M. Sideri, and E.C. Stavropoulos. Generating all maximal models

of a Boolean expression. Inf. Process. Lett., 74(3–4):157–162, 2000.
13. D.E. Knuth. The Art of Computer Programming: Combinatorial Algorithms, Part

1, volume 4A. Addison-Wesley Professional, 1st edition, 2011.
14. J.W. Lloyd. Foundations of Logic Programming. Springer, 2nd edition, 1987.
15. C.K. Riesbeck and R.C. Schank. Inside Case-based Reasoning. Artificial intelli-

gence series. Lawrence Erlbaum, 1989.
16. J. Schmidt. Enumeration: Algorithms and complexity. Unpublished, 2009.

16

Appendix

A Proof of Lemma 1

Proof. (a) Let F be a fragment of P that is maximally X-incomplete in K.
If A ∈ F , then F ∪ {¬A} is unsatisfiable, and therefore F |=K A follows by
the definition of entailment. To prove the converse implication, let us suppose,
for the sake of contradiction, that F |=K A and A /∈ F . By the definition of
entailment, it follows that K ∪ F ∪ {¬A} is unsatisfiable, that is, every model
M of K ∪ F is such that M(A) = 1. Since F is X-incomplete, F 6|=K X holds,
which means that K ∪ F ∪ {¬X} is satisfiable. Now, consider a model M that
satisfies K ∪ F ∪ {¬X}. Clearly, it satisfies K ∪ F , as well. Thus, we have that
M(A) = 1. Then, K∪F ∪{A}∪{¬X} is satisfiable, which implies F ∪{A} 6|=K X ,
contradicting the assumption that F is maximally X-incomplete.

(b) Let M be a model of K. If M(A) = 1, then A ∈ η(M), which, in turn,
implies η(M) |=K A, and thus M |=K A. To prove the converse implication, let
us assume that M |=K A. By the definition of entailment, η(M) ∪ K ∪ {¬A} is
unsatisfiable. This means that each model of K ∪ η(M) is such that M(A) = 1.
Since M is a model of K (by our assumption) and M is a model of η(M) (by
the definition of η(M)), it follows that M(A) = 1, which was to be shown. ⊓⊔

B Detailed account of the experiments

The following table contains a detailed account of our tests. The parameter n
corresponds to the size of the set of atomic propositions P and ranges between 12
and 30. The parameter k corresponds to the number of clauses of the Horn theory
and ranges between ⌊n/3⌋ and n. For each pair of values n and k, seven instances
〈P ,K〉 of MaxMod are randomly generated and the algorithm BruteForceMax-
Mod is run on each of them. Then, each of such instances is transformed into
an instance of MaxNoEntail of the form 〈P ∪ {X}, τ(K), X〉, by applying the
reduction described in Section 3. On this latter set of instances, the algorithms
BruteForceMaxNoEntail and AlgMaxNoEn are executed. The table reports, for
each pair of values n and k, the average running times, in seconds and rounded to
the third decimal digit, of the three algorithms on the set of randomly-generated
instances. Moreover, the last column shows the average running times of the
algorithms for any fixed value of n (this values are the ones used for the chart
in Fig. 3). In each entry of the table, the first (resp., second, third) row corre-
sponds to the average running time of the algorithm BruteForceMaxMod (resp.,
BruteForceMaxNoEntail, AlgMaxNoEn). A blank entry of the table means that
no instances were generated for that pair of values n and k. An hyphen in one
of the entries means that the corresponding algorithm timed out, that is, it ran
for more than 30 minutes, on that set of instances.

1
7

n
k

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Av.

12

0.091 0.201 1.157 1.897 0.736 1.483 1.113 0.871 1.75 1.033

0.014 0.034 0.096 0.156 0.136 0.253 0.283 0.317 0.404 0.188

0 0.003 0.001 0.009 0.007 0.011 0.017 0.013 0.026 0.01

13

1.053 5.646 4.506 3.523 1.714 5.881 6.781 8.277 4.361 3.037 4.478

0.044 0.146 0.144 0.213 0.28 0.49 0.599 0.663 0.653 0.886 0.412

0.006 0.003 0.007 0.006 0.007 0.014 0.017 0.02 0.031 0.03 0.014

14

46.25912.86132.60146.60133.261 7.029 28.457 48.509 26.52 11.683 27.889 29.243

0.21 0.231 0.284 0.5 0.689 0.673 0.973 1.329 1.386 1.577 2.001 0.896

0.004 0 0.004 0.009 0.011 0.011 0.037 0.041 0.06 0.047 0.1 0.029

15

7.717 92.466 − − − − − − − − − −
0.276 0.704 1.145 1.593 1.969 2.296 2.237 3.314 3.771 3.617 4.001 2.266

0.003 0.007 0.025 0.039 0.036 0.036 0.034 0.104 0.091 0.089 0.104 0.052

16

− − − − − − − − − − − − −
0.51 0.451 1.089 1.864 4.866 4.537 6.233 5.813 6.953 9.323 8.94 10.519 5.092

0.006 0.009 0.006 0.021 0.029 0.069 0.084 0.086 0.1 0.18 0.187 0.151 0.077

17

− − − − − − − − − − − − − −
0.62 2.049 2.51 7.33 4.931 12.427 9.54 14.521 12.52 14.836 17.493 18.064 22.849 10.745

0.006 0.013 0.019 0.037 0.036 0.09 0.076 0.1 0.12 0.247 0.254 0.266 0.204 0.113

18

− − − − − − − − − − − − − −
6.607 9.281 9.441 16.37113.419 17.793 27.48929.349 30.16 37.143 36.42 50.483 57.163 26.240

0.013 0.031 0.034 0.067 0.094 0.111 0.173 0.237 0.176 0.41 0.549 0.529 0.531 0.227

19

− − − − − − − − − − − − − − −
8.284 35.89 16.20730.61339.523 40.76 47.31657.939 79.539 78.7 88.126 102.786 106.2 115.561 60.532

0.036 0.071 0.079 0.074 0.129 0.179 0.207 0.171 0.477 0.569 0.591 0.811 0.674 1.221 0.378

20

− − − − − − − − − − − − − − − −
22.49718.96619.47477.46962.401142.47795.103178.64105.016176.824187.417219.826207.391 − − −
0.03 0.051 0.051 0.109 0.156 0.237 0.397 0.493 0.473 0.517 0.613 1.356 0.867 1.437 1.549 0.556

21

− − − − − − − − − − − − − − − −
− − − − − − − − − − − − − − − −

0.056 0.116 0.111 0.161 0.334 0.497 0.461 0.894 1.043 1.09 0.934 1.53 1.444 1.631 2.52 0.855

22

− − − − − − − − − − − − − − − − −
− − − − − − − − − − − − − − − − −

0.036 0.103 0.189 0.329 0.296 0.703 0.664 0.756 1.32 1.893 1.346 2.314 2.374 2.923 3.02 3.163 1.339

23

− − − − − − − − − − − − − − − − − −
− − − − − − − − − − − − − − − − − −

0.07 0.137 0.237 0.394 0.597 0.72 1.109 1.286 1.351 2.074 2.834 3.621 4.763 5.021 2.553 6.366 3.851 2.176

24

− − − − − − − − − − − − − − − − − −
− − − − − − − − − − − − − − − − − −

0.144 0.39 0.44 0.886 0.694 1.491 1.3 2.764 2.117 4.21 4.997 5.25 5.796 8.616 4.47 7.061 9.249 3.522

25

− − − − − − − − − − − − − − − − − − −
− − − − − − − − − − − − − − − − − − −

0.196 0.42 0.299 0.591 0.767 0.761 2.267 3.261 4.53 3.729 4.606 3.73 4.629 9.453 9.151 13.08 15.78311.114 4.909

26

− − − − − − − − − − − − − − − − − − − −
− − − − − − − − − − − − − − − − − − − −

0.336 0.241 0.474 0.874 1.044 1.296 2.463 3.557 4.676 7.714 6.089 5.989 12.30113.60311.35716.20716.02320.811 34.237 8.384

27

− − − − − − − − − − − − − − − − − − − −
− − − − − − − − − − − − − − − − − − − −
0.5 0.514 1.151 1.493 2.274 3.39 1.874 5.346 6.059 15.029 13.17 15.74910.70725.57428.52126.95128.251 33.033 31.801 13.231

28

− −
− −

0.466 0.857 1.036 2.03 4.541 5.274 4.104 5.389 10.757 5.233 18.759 23.09327.07420.26316.87624.347 68.16 58.693 48.851 62.25 20.403

29

− −
− −

0.46 0.999 1.729 2.896 4.46 5.827 7.89 10.484 19.524 15.26 26.79 17.57420.66724.23137.98649.06319.827 36.014 20.529 129.76 72.223 24.962

30

− −
− −

1.466 2.297 2.77 3.133 7.066 7.74 10.507 10.17 15.059 17.9 22.51920.12634.51441.96641.44146.057131.967112.599145.011121.006122.6 43.710

T
a
b
le

1
.
E

x
p
erim

en
ta

l
resu

lts.

