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Abstract. Interval temporal logics are based on temporal structures
where time intervals, rather than time instants, are the primitive onto-
logical entities. They employ modal operators corresponding to various
relations between intervals, known as Allen’s relations. Technically, va-
lidity in interval temporal logics translates to dyadic second-order logic,
thus explaining their complex computational behavior. The full modal
logic of Allen’s relations, called HS, has been proved to be undecidable
by Halpern and Shoham under very weak assumptions on the class of
interval structures, and this result was discouraging attempts for prac-
tical applications and further research in the field. A renewed interest
has been recently stimulated by the discovery of interesting decidable
fragments of HS. This paper contributes to the characterization of the
boundary between decidability and undecidability of HS fragments. It
summarizes known positive and negative results, it describes the main
techniques applied so far in both directions, and it establishes a number
of new undecidability results for relatively small fragments of HS.

1 Introduction

Interval temporal logics are based on interval structures over linearly ordered
domains, where time intervals, rather than time instants, are the primitive onto-
logical entities. The variety of relations between intervals in linear orders was first
studied systematically by Allen [1], who explored their use in systems for time
management and planning. Interval reasoning arises naturally in various other
fields of artificial intelligence, such as theories of action and change, natural lan-
guage analysis and processing, and constraint satisfaction problems. Temporal
logics with interval-based semantics have also been proposed as a useful for-
malism for the specification and verification of hardware [21] and of real-time
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systems [11]. Thus, the relevance of interval temporal logics in many areas of
artificial intelligence and computer science is nowadays widely recognized.

Interval temporal logics feature modal operators corresponding to various
possible relations over intervals. A special role is played by the thirteen different
binary relations (on linear orders) known as Allen’s relations. In [15], Halpern
and Shoham introduce a modal logic for reasoning about interval structures,
called HS, with modal operators corresponding to Allen’s interval relations. For-
mulas of HS are evaluated at intervals, i.e., pairs of points, and, consequently,
they translate into binary relations in interval models. Accordingly, validity in HS
translates to dyadic second-order logic, thus causing its complex and generally
bad computational behavior, where undecidability is the common case and decid-
ability is usually achieved by imposing severe restrictions on the interval-based
semantics, which essentially reduce it to a point-based one. More precisely, HS
turns out to be undecidable under very weak assumptions on the class of inter-
val structures [15]: we get undecidability for any class of interval structures over
linear orders that contains at least one linear order with an infinite ascending
(or descending) chain, thus including all natural numerical time-flows N,Z,Q,
and R.

For a long time, such a sweeping undecidability result has discouraged at-
tempts for practical applications and further research on interval logics. A re-
newed interest in the area has been recently stimulated by the discovery of some
interesting decidable fragments of HS [3,4,5,6,7,9]. As an effect, the identification
of expressive enough decidable fragments of HS has been added to the current
research agenda for (interval) temporal logic. While the algebra of Allen’s rela-
tions, the so-called Allen’s Interval Algebra, has been extensively studied and
completely classified from the point of view of computational complexity [17]
(tractability/intractability of the consistency problem for fragments of Interval
Algebra), the characterization of decidable/undecidable fragments of the modal
logic of Allen’s relations (HS) is considerably harder.

This paper aims at contributing to the identification of the boundary between
decidability and undecidability of HS fragments. It summarizes known positive
and negative results, it presents the main techniques so far exploited in both
directions, and it establishes new undecidability results. Two important param-
eters of the proposed classification are the set of modalities of the fragment and
the class of linearly ordered sets in which it is interpreted. We shall take into
consideration the full set of modal operators corresponding to Allen’s relations
as defined in HS, apart for the trivial one corresponding to equality, plus two
definable modalities, namely, those for the proper during relation and its inverse
proper contains (the interval logic of the proper during relation has been recently
shown to be decidable on dense orders [3]).

The paper is structured as follows. In the next section, we introduce the
framework of interval-based temporal logic with unary modalities. In Section 3,
we give an up-to-date survey of known decidable fragments. In Section 4, we first
summarize known undecidability results and then we provide a number of new



Op. Semantics

〈A〉 M, [a, b]  〈A〉φ⇔ ∃c(b < c.M, [b, c]  φ)

〈L〉 M, [a, b]  〈L〉φ⇔ ∃c, d(b < c < d.M, [c, d]  φ)

〈B〉 M, [a, b]  〈B〉φ⇔ ∃c(a ≤ c < b.M, [a, c]  φ)

〈E〉 M, [a, b]  〈E〉φ⇔ ∃c(a < c ≤ b.M, [c, b]  φ)

〈D〉 M, [a, b]  〈D〉φ ⇔ ∃c, d(a < c ≤ d <
b.M, [c, d]  φ)

〈O〉 M, [a, b]  〈O〉φ⇔ ∃c, d(a < c ≤ b < d.M, [c, d] 
φ)

〈D〉@ M, [a, b]  〈D〉@φ ⇔ ∃c, d(a ≤ c ≤ d ≤
b.M, [c, d]  φ ∧ [c, d] 6= [a, b])

Fig. 1. Formal semantics for some interval operators.

undecidability results for other fragments of HS by reduction from the octant
and the N× N tiling problems.

2 Interval Logics over Linearly Ordered Sets

Let D = 〈D,<〉 be a linearly ordered set. An interval over D is an ordered pair
[a, b], where a, b ∈ D and a ≤ b. Intervals of the type [a, a] are called point
intervals; if these are excluded, the resulting semantics is called strict interval
semantics (non-strict otherwise). In this paper, we take the more standard non-
strict semantics as default. The language of a propositional interval logic consists
of a set AP of propositional letters, any complete set of classical operators
(such as ∨ and ¬), and a set of modal operators 〈X1〉,. . . ,〈Xk〉, each of them
associated with a specific binary relation over intervals5. Formulas are defined
by the following grammar:

ϕ ::= p | π | ¬ϕ | ϕ ∨ ϕ | 〈X1〉ϕ | . . . | 〈Xk〉ϕ,

where π is a modal constant, true precisely at point intervals. We omit π when
it is definable in the language or when the strict semantics is adopted.

The semantics of an interval-based temporal logic is given in terms of interval
models M = 〈I(D), V 〉, where I(D) is the set of all intervals over D and the
valuation function V : AP 7→ 2I(D) assigns to every p ∈ AP the set of intervals
V (p) over which it holds. The truth of a formula over a given interval [a, b] in a
model M is defined by structural induction on formulas:

– M, [a, b]  π iff a = b;
– M, [a, b]  p iff [a, b] ∈ V (p), for all p ∈ AP;
– M, [a, b]  ¬ψ iff it is not the case that M, [a, b]  ψ;

5 In this paper, we restrict our attention to unary modal operators only (decidability
issues for binary modal operators are addressed in [16]).



– M, [a, b]  ϕ ∨ ψ iff M, [a, b]  ϕ or M, [a, b]  ψ;
– M, [a, b]  〈Xi〉ψ iff there exists an interval [c, d] such that [a, b] RXi

[c, d],
and M, [c, d]  ψ,

where RXi is the (binary) interval relation corresponding to the modal operator
〈Xi〉. In Figure 1 we list the most common unary interval operators and their
semantics. Moreover, we denote by 〈X〉 the transpose of each modal operator
〈X〉, which corresponds to the inverse of the relation RX . Except for proper
during and its inverse [3], these are precisely Allen’s interval relations [1]. It is
easy to show that some of these modal operators are definable in terms of others
(some of these definitions do not work with the strict semantics), e.g., 〈D〉p =
〈B〉〈E〉p, 〈D〉@p = 〈B〉p ∨ 〈E〉p ∨ 〈B〉〈E〉p, 〈A〉p = 〈E〉([B]⊥ ∧ 〈B〉p) ∨ ([E]⊥ ∧
〈B〉p), 〈L〉p = 〈A〉〈A〉p, 〈O〉p = 〈E〉〈B〉p, and likewise for their transposes.
Moreover, the modal constant π is definable in most sufficiently rich languages,
viz.:

π = [B]⊥ = [E]⊥ = [O]⊥ = [O]⊥ = [D]@⊥. (1)

Thus, eventually, all operators corresponding to Allen’s interval relations turn
out to be definable in terms of 〈B〉,〈E〉, and their transposes (as a matter of
fact, 〈A〉 was included in the original formulation of HS; its definability in terms
of the other operators was later shown in [23]).

Here we will consider all HS fragments and for that purpose we will assume
all operators listed in Figure 1 (and their transposes) to be primitive in the
language. In general, when referring to a specific fragment of HS, we name it by
its modal operators. For example, the fragment featuring the operators 〈B〉, 〈E〉
will be denoted by BE.

Besides the usual N,Z, and Q, we introduce a suitable notation for some
common classes of strict linear orders:

– Lin = the class of all linear orders;
– Fin = the class of all finite linear orders;
– Den = the class of all dense linear orders;
– Dis = the class of all discrete linear orders;
– Asc = the class of all linear orders with an infinite ascending sequence;
– Des = the class of all linear orders with an infinite descending sequence.

3 Decidable Fragments of HS

In this section, we briefly survey the maximal known decidable fragments of HS.
All early decidability results about interval logics were based on severe re-

strictions of the interval-based semantics, essentially reducing it to a point-based
one. Such restrictions include locality, according to which all atomic propositions
are point-wise and truth over an interval is defined as truth at its initial point,
and homogeneity, according to which truth of a formula over an interval implies
truth of that formula over every sub-interval. By imposing such constraints, de-
cidability of HS can be proved by embedding it into linear temporal logic [21,23].



Decidability can also be achieved by constraining the class of temporal structures
over which the logic is interpreted. This is the case with split-structures, where
any interval can be “chopped” in at most one way. The decidability of various
interval logics, including HS, interpreted over split-structures, has been proved
by embedding them into first-order decidable theories of time granularity [20].

For some simple fragments of HS, like BB and EE, decidability has been ob-
tained without any semantic restriction by means of direct translation to the
point-based semantics and reduction to decidability of respective point-based
temporal logics [14]. In any of these logics, one of the endpoints of every inter-
val related to the current one remains fixed, thereby reducing the interval-based
semantics to the point-based one by mapping every interval of the generated
sub-model to its non-fixed endpoint. Consequently, these fragments can be poly-
nomially translated to the linear time Temporal Logic with Future and Past
TL[F,P], thus proving that they are NP-complete when interpreted on the class
of all linearly ordered sets or on any of N, Q, and R [12,14].

Decidability results for fragments of HS with unrestricted interval-based se-
mantics, non-reducible to point-based one, have been recently obtained by means
of a translation method. This is the case with AA, also known as Propositional
Neighborhood Logic (PNL) [13]6. In [6,7], decidability in NEXPTIME of AA has
been proved by translation to the two-variable fragment of first-order logic with
binary relations over linear domains FO2[<] and reference to the NEXPTIME-
complete decidability result for FO2[<] by Otto [22] (for proof details and
NEXPTIME-hardness, we refer the reader to [6,7]). Otto’s results, and con-
sequently the decidability of AA, apply not only to the class of all linear orders,
but also to some natural subclasses of it, such as the class of all well-founded
linear orders, the class of all finite linear orders, and N.

Finally, decidability of some fragments of HS has been demonstrated by tak-
ing advantage of the small model property with respect to suitable classes of
satisfiability preserving pseudo-models. This method has been successfully ap-
plied to the logics of subintervals D and D@, interpreted over dense linear or-
ders [3,4,5], and to the logic AA (resp., A), interpreted over Z (resp., N) [8,10].
In [3,4,5], Bresolin et al. make use of this technique to develop optimal tableau
systems for D and D@ that work in PSPACE. (NEXPTIME) tableau-based de-
cision procedures for AA over Z and A over N have been developed in [8,10].
The tableau system for A over N has been recently generalized to the case of all
linearly ordered domains [9].

4 Undecidable Fragments of HS

Undecidable fragments of HS are much more common than decidable ones. In
the following, we first summarize some well-known undecidability results, which
have been proved by means of a reduction from the non-halting problem for
Turing Machines. Then, we recall recent undecidability results for 6 fragments
6 Since L and L are definable in AA, decidability of this fragment actually implies

decidability of AALL.



of HS that properly extend AA, namely, AABE, AAEB, and AAD∗, where D∗ ∈
{D,D,D@,D@}, interpreted over any class of linear orders containing a linear
order with an infinite chain, which have been obtained by means of an encoding
from the octant tiling problem [7]. Next, we show that a similar reduction from
the octant tiling problem can be exploited to prove the undecidability of other
24 fragments of HS, namely, AD∗E, AD∗E, and AD∗O (over any class of linear
orders containing a linear order with an infinite ascending chain), AD∗B, AD∗B,
and AD∗O (over any class of linear orders containing a linear order with an
infinite descending chain). Finally, we take advantage of a reduction from the
N × N tiling problem to prove the undecidability of BE, BE, and BE over the
appropriate classes of linear orders, thus improving the results for AABE and
AAEB given in [7].

4.1 Reduction from the Non-halting Problem

The undecidability of HS with respect to most classes of linear orders has been
proved by means of a reduction from the non-halting problem for Turing Ma-
chines [15] (in fact, the reduction is to any of the fragments ABE and ABE).

Theorem 1 (Halpern and Shoham [15]). The satisfiability problem for ABE
is undecidable in any class of linear orders that contains at least one linear order
with an infinite ascending sequence (in particular, in Lin,Den,Dis,Z,Q,R, Asc,
and N). Similarly, the satisfiability problem for ABE is undecidable in each of
the classes Lin,Den,Dis,Z,Q,R, Des, and Z−.

The undecidability of the satisfiability problem for HS in all the classes Theorem
1 refers to immediately follows.

In [18], Lodaya shows that a suitable sharpening of the reduction technique
from [15] can be exploited to prove the undecidability of the fragment BE over
dense linear orders (thus strengthening Halpern and Shoham’s result in this
restricted setting). As a preliminary result, he proves that the logic with the
binary chop operator C, that splits an interval in two parts (and is not definable
in HS), and the modal constant π is undecidable by means of an adaptation of
the proof for HS. Then, he shows that the operators 〈B〉 and 〈E〉, which can
be easily defined in terms of C and π, suffice for undecidability. In [14] it was
observed that this result actually applies to the class of all linear orders.

Theorem 2 (Lodaya, Goranko et al. [14,18]). The satisfiability problem for
BE is undecidable in the classes Lin and Den.

4.2 Reduction from the Octant Tiling Problem

The undecidability of a number of HS fragments has been proved by using vari-
ations of a reduction from the unbounded tiling problem for the second octant O
of the integer plane. This is the problem of establishing whether a given finite
set of tile types T = {t1, . . . , tk} can tile O = {(i, j) : i, j ∈ N∧ 0 ≤ i ≤ j}. This



problem can be shown to be undecidable by a simple application of the König’s
Lemma in the same way as it was used in [2] to show the undecidability of the
N × N tiling problem from that of Z × Z one. For every tile type ti ∈ T , let
right(ti), left(ti), up(ti), and down(ti) be the colors of the corresponding sides
of ti. To solve the problem, one must find a function f : O → T such that

right(f(n,m)) = left(f(n+ 1,m))

and
up(f(n,m)) = down(f(n,m+ 1)).

In [7], a reduction from the unbounded tiling problem for the second octant O of
the integer plane has been applied to prove the undecidability of the extensions
of AA with any of the operators 〈D〉, 〈D〉, 〈D〉@, and 〈D〉@, or with the pairs of
operators 〈B〉〈E〉 or 〈B〉〈E〉, interpreted in any class of linear orders containing
a linear order with an infinite (ascending or descending) chain.

Theorem 3 (Bresolin et al. [7]). The satisfiability problem for each of the
fragments AAD∗, AABE, and AAEB is undecidable in each of the classes Lin,
Den,Dis,Z,Q,R, Des, Asc, N, and Z−.

In the following, we will show that similar reductions can be exploited to
prove the undecidability of other meaningful fragments of HS.

Theorem 4. The satisfiability problem for each of the fragments AD∗E, AD∗E,
and AD∗O is undecidable in any class of linear orders containing a linear order
with an infinite ascending chain. Likewise, the satisfiability problem for the
fragments AD∗B, AD∗B, and AD∗O is undecidable in any class of linear orders
containing a linear order with an infinite descending chain.

We give the details of the proof for the case ADE; the other cases are quite
similar. We consider a signature containing, inter alia, the special propositional
letters u, tile, Id, t1, . . . , tk, bb, be, eb, and corr.

Unit-intervals. We set our framework by forcing the existence of a unique
infinite chain of so-called unit-intervals (for short, u-intervals) on the linear order,
which covers an initial segment of the model. These u-intervals will be labeled
by the propositional variable u. They will be used as cells to arrange the tiling.
First of all, we define an always in the future modality which captures future
intervals only:

[G]p = p ∧ [A]p ∧ [A][A]p.

Then, u-intervals can be encoded as follows:

B1 = ¬u ∧ 〈A〉u ∧ [G](u→ (¬π ∧ 〈A〉u ∧ ¬〈D〉u ∧ ¬〈D〉〈A〉u)),
B2 = [G]

∧
p∈AP((p ∨ 〈A〉p)→ 〈A〉u).

Formula B2 restricts our domain of ‘legitimate intervals’ to those composed of u-
intervals, while B1 guarantees the existence of an infinite sequence of consecutive
u-intervals, thus implying the following lemma.
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Fig. 2. A schema of the encoding (we abbreviate tile as t).

Lemma 1. Suppose that M, [a, b]  B1. Then, there exists an infinite sequence
of points b0 < b1 < . . . in M, such that b0 = b, for each i, M, [bi, bi+1]  u,
and no other interval [c, d], with c 6= d, in M satisfies u, unless c > bi for every
i ∈ N, or c < b.

Encoding a tile. Every u-interval will represent either a tile or a special marker,
denoted by ∗, that identifies the border between two Id-intervals (Id-intervals
represent the rows of the tiling and will be defined later). Formally, we put:

B3 = [G](u↔ (∗ ∨ tile)) ∧ [G](∗ → ¬tile) ∧ [G]¬(∗ ∧ 〈A〉∗),
B4 = [G](tile↔ (

∨k
i=1 ti ∧

∧k
i,j=1,i6=j ¬(ti ∧ tj))).

If a tile is placed on a u-interval [a, b], we call a and b respectively the beginning
point and the ending point of that tile.

Encoding rows of the tiling. An Id-interval (or just Id) is an interval consisting
of a finite sequence of at least two u-subintervals. Each Id represents a row
(level) of the tiling of O. The first u-subinterval in an Id is a ∗-interval and every
following u-subinterval is the encoding of a tile (see Figure 2). The Id-intervals
representing the bottom-up consecutive levels of the tiling of O are arranged one
after another in a chain. The first Id is composed by a single tile. To prevent the
existence of interleaving sequences of Id-intervals, we do not allow occurrences
of ∗-subintervals inside an Id. These conditions are imposed by the following
formulas:

B5 = [G]((Id→ (¬u ∧ 〈A〉Id ∧ ¬〈D〉〈A〉Id))) ∧ [G](〈A〉Id↔ 〈A〉∗),
B6 = 〈A〉(∗ ∧ 〈A〉(tile ∧ 〈A〉∗)),
B7 = B1 ∧B2 ∧B3 ∧B4 ∧B5 ∧B6.

Lemma 2. Let M, [a, b]  B7. Then, there is a sequence of points b = b01 <
b11 < . . . bk1

1 = b02 < b12 < . . . < bk2
2 = b03 < . . ., such that k1 = 2 and for every j:

1. M, [b0j , b
kj

j ]  Id and no other interval [c, d], with c 6= d, in M is an Id-

interval, unless possibly for c > b
kj

j for every j ∈ N, or c < b;
2. M, [b0j , b

1
j ]  ∗ and no other interval [c, d], with c 6= d, in M is a ∗-interval,

unless possibly for c > b
kj

j for every j ∈ N, or c < b;
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Fig. 3. A representation of bb, be, and eb-intervals.

3. for every i such that 0 < i < kj, M, [bij , b
i+1
j ]  tile, and no other interval

[c, d], with c 6= d, in M is a tile-interval, unless possibly for c > b
kj

j for every
j ∈ N, or c < b.

Definition 1. Let M, [a, b]  B7 and b01 < b11 < . . . bk1
1 = b02 < b12 < . . . < bk2

2 =
b03 . . . be the sequence of points whose existence is guaranteed by Lemma 2. For
any j, the interval [b0j , b

kj

j ] is the j-th Id-interval of the sequence and, for any

i ≥ 1, the interval [bij , b
i+1
j ] is the i-th tile of the Id-interval [b0j , b

kj

j ].

Corresponding tiles. So far we have that, given a starting interval, the formula
B7 forces the underlying linearly ordered set to be, in the future of the current
interval, a sequence of Id’s, the first one of which containing exactly one tile.
Now, we want to make sure that each tile at a certain level in O (i.e., Id) always
has its corresponding tile at the immediate upper level. To this end, we will
take advantage of some auxiliary propositional variables, namely, bb, which is to
connect the beginning point of a tile to the beginning point of the corresponding
tile above, be, which is to connect the beginning point of a tile to the ending point
of the corresponding tile above, and eb, which is to connect the ending point of
a tile to the beginning point of the corresponding tile above. If an interval is
labeled with any of bb, eb, or be, we call it a corresponding interval, abbreviated
corr-interval. A pictorial representation is given in Figure 3. The next formulas
force corr-intervals to respect suitable properties so that all models satisfying
them encode a correct tiling.

B8 = [G]((bb ∨ be ∨ eb)↔ corr),
B9 = [G]¬(corr ∧ Id),
B10 = [G]((corr→ ¬〈D〉Id) ∧ (Id→ ¬〈D〉corr)),
B11 = [G]((corr→ ¬〈A〉Id) ∧ (〈A〉(bb ∨ be)→ ¬〈A〉Id)),
B12 = B8 ∧B9 ∧B10 ∧B11.

Lemma 3. Let M, [a, b]  B7 ∧ B12. Then, no Id-interval in M coincides with
a corr-interval, nor is properly contained in a corr-interval, nor a corr-interval is
properly contained in an Id-interval, unless it is an eb-interval beginning an Id.



The next set of formulas guarantees that the corr-intervals satisfy the respec-
tive correspondences.

B13 = [G](〈A〉tile↔ 〈A〉bb),
B14 = [A](〈A〉(tile ∧ 〈A〉tile)↔ 〈E〉bb),
B15 = [G](〈A〉tile↔ 〈A〉be),
B16 = [A]((〈E〉tile ∧ 〈A〉tile)↔ 〈E〉be),
B17 = [G](u→ (tile↔ 〈A〉eb)),
B18 = [A](〈A〉(tile ∧ 〈A〉tile)↔ 〈E〉eb),
B19 = B13 ∧B14 ∧B15 ∧B16 ∧B17 ∧B18.

Lemma 4. Let M, [a, b]  B7 ∧ B12 ∧ B19 and let b01 < b11 < b21 = b02 < b12 <
. . . < bk2

2 = b03 < . . . be the sequence of points whose existence is guaranteed by
Lemma 2. Then, for every i ≥ 0, j ≥ 1:

1. bij is the beginning point of a bb and a be iff 1 ≤ i ≤ kj − 1.
2. bij is the beginning point of an eb iff 2 ≤ i ≤ kj.
3. bij is the ending point of a bb and an eb iff 1 ≤ i ≤ kj − 2.
4. bij is the ending point of a be iff 2 ≤ i ≤ kj − 1.

Definition 2. Given two tile-intervals [c, d] and [e, f ] in a model M, we say that
[c, d] corresponds to [e, f ] if M, [c, e]  bb and M, [c, f ]  be and M, [d, e]  eb.

The following formulas state the basic relationships between the three types
of correspondence:

B20 = [G]
∧

c,c′∈{bb,eb,be},c6=c′ ¬(c ∧ c′),
B21 = [G](bb→ ¬〈D〉bb ∧ ¬〈D〉eb ∧ ¬〈D〉be),
B22 = [G](eb→ ¬〈D〉bb ∧ ¬〈D〉eb ∧ ¬〈D〉be),
B23 = [G](be→ 〈D〉eb ∧ ¬〈D〉bb ∧ ¬〈D〉be),
B24 = B20 ∧B21 ∧B22 ∧B23.

Lemma 5. Let M, [a, b]  B7∧B12∧B19∧B24. Then, for any j ≥ 1 and i ≥ 1:

1. the i-th tile of the j-th Id-interval corresponds to the i-th tile of the j + 1-th
Id-interval.

2. there are exactly j tiles in the j-th Id-interval.
3. no tile of the j-th Id-interval corresponds to the last tile of the j + 1-th Id-

interval.

Encoding the tiling problem. We are now ready to show how to encode the
octant tiling problem. Let φT be the conjunction of B7, B12, B19, B24, B25, and
B26, where B25 and B26 are the following two formulas:

B25 = [G]((tile ∧ 〈A〉tile)→
∨

right(ti)=left(tj)
(ti ∧ 〈A〉tj)),

B26 = [G](〈A〉tile→
∨

up(ti)=down(tj)
(〈A〉ti ∧ 〈A〉(bb ∧ 〈A〉tj))).

Lemma 6. Given any finite set of tiles T , the formula ΦT is satisfiable if and
only if T can tile the second octant O.



As the model construction in the above proof can be carried out on any linear
ordering containing an infinite ascending chain of points, Theorem 4 for the logic
ADE immediately follows.

As for the other logics considered in the first half of Theorem 4, it suffices
to modify the formulas involving 〈D〉 (see [7]) and the formulas B14, B16, and
B18, which involve 〈E〉. As an example, in the case of the logic ADO, formulas
B14, B16, and B18 must be replaced with the following ones:

B′14 = [G](〈A〉(tile ∧ 〈A〉tile)↔ 〈A〉(tile ∧ 〈O〉bb)),
B′16 = [G](〈A〉(tile ∧ 〈A〉tile)↔ 〈A〉(tile ∧ 〈A〉〈O〉be)),
B′18 = [G](〈A〉(tile ∧ 〈A〉tile)↔ 〈A〉(tile ∧ 〈O〉eb)).

In the cases of the fragments where A is replaced with A and E (resp., E) is re-
placed with B (resp., B), the proof is perfectly symmetric and it takes advantage
of the existence of an infinite descending sequence.

4.3 Reduction from the N × N Tiling Problem

In this section, we strengthen some of the results of Theorem 3 by showing that
the satisfiability problem for the fragments BE, BE, and BE is undecidable (the
case of BE was already dealt with by Theorem 2 for the classes Lin and Den).
The proof is based on a reduction from the N×N tiling problem, which is a non-
trivial adaptation of the reduction from the same problem provided by Marx
and Reynolds to prove the undecidability of Compass Logic [19].

Theorem 5. The satisfiability problem for BE (respectively, BE) is undecid-
able in any class of linear orders that contains a linear order with an infinite
ascending (respectively, descending) chain. The satisfiability problem for BE is
undecidable in any class of linear orders that contains a linear order with an
infinite chain indexed by the integers.

The encoding of the quadrant N×N is close to that given in [19] (it is based
on a suitable enumeration of its elements). From such a work, we also borrow
the set of propositional variables p, q, right, left, above, floor, and wall used in the
proof.

Hereafter, we restrict ourselves to the easiest case of BE (however, the proof
can be adapted to the other two fragments). The operators of BE can be natu-
rally mapped into those of Compass Logic as follows: if M, [a, b]  〈B〉ψ, then
M, [a, c]  ψ for some c > b and thus 〈B〉 corresponds to 3 in Compass Logic,
and if M, [a, b]  〈E〉ψ, then M, [c, b]  ψ for some a < c ≤ b and thus 〈E〉
corresponds to 3.

First, we define the always in the future operator [G]:

[G]ϕ = ϕ ∧ [E]ϕ ∧ [B](ϕ ∧ [E]ϕ).

The properties of p and q, that respectively encode the elements of the quad-
rant and the successor relation over them (with respect to the given enumera-
tion), are expressed by the following formulas:



N1 = p,
N2 = [G](p→ [B]¬p),
N3 = [G](p→ [E]¬p),
N4 = [G](〈B〉p→ [E]¬p),
N5 = [G](p→ [E]([B]¬p),
N6 = [G](q→ [B]¬q),
N7 = [G](p→ 〈B〉q),
N8 = [G](q→ 〈E〉p),
N9 = [G](〈B〉q→ [E]¬p).

As an immediate consequence from N1-N9, we have:

N10 = [G](q→ [B]¬p).

The above formulas state that both p and q are injective functions, that is, if
M, [a, b]  p, then for each c 6= b M, [a, c]  ¬p and for each d 6= a M, [d, b] 
¬p, and similarly for q, that p-intervals cannot be subintervals of p-intervals
(and they do not overlap), that q and p have the same domain and range, that
is, M, [a, b]  p if and only if there exists c > b such that M, [a, c]  q and
M, [a, b]  p if and only if there exists c < a such that M, [c, b]  q, and, finally,
that a p-interval cannot be a subinterval of a q-interval.

Lemma 7. For every model M and every interval [a, b] such that M, [a, b] 
N1 ∧ . . .∧N9 there exists a sequence of intervals [a, b] = [a0, b0], [a1, b1], . . . such
that, for every n ≥ 0: (1) bn ≤ an+1; (2) M, [an, bn]  p; (3) M, [an, bn+1]  q;
(4) if M, [a′, b′]  p and b0 ≤ b′ < bn, then there exists m < n such that
[a′, b′] = [am, bm].

Lemma 7 corresponds to Claim 5.2, Section 5.4 in [19]. To prove Claim 5.3, we
translate formulas A6-A18 in [19] to the language BE. For a given formula ϕ, let
F (ϕ) be the conjunction of the following formulas:

[G](ϕ→ [B]¬ϕ),
[G](ϕ→ [E]¬ϕ),
[G](p→ 〈B〉ϕ),
[G](ϕ→ 〈E〉p),
[G](q→ [E](〈B〉ϕ→ p).

The above formulas state that ϕ is an injective function, that the domain of p
is included in the domain of ϕ, that the range of ϕ is included in the range of p,
and that the domain of ϕ is included in the domain of p (that is, the domain of
p and that of ϕ coincide).
Formulas A6-A18 can be encoded as follows:



A6 = F (right),
A7 = F (above),
A8 = [G](〈B〉right→ [E]¬right),
A9 = [G](right→ 〈B〉above),
A10 = [G](right→ [B](〈B〉above→ [E]¬p)),

which impose that both right and above are total injective functions from p-
intervals to p-intervals, that right is strictly monotone, and that above is the
composition of right and q, and:

A11 = floor ∧ wall,
A12 = [B]¬(floor ∧ wall) ∧ [E]¬(floor ∧ wall) ∧ [B][E]¬(floor ∧ wall),
A13 = [G]((floor ∨ wall)→ p),
A14 = [G](wall→ [B](q→ [E](p→ floor))),
A15 = [G](wall→ 〈B〉(above ∧ 〈E〉wall)),
A16 = [G]((p ∧ ¬wall)→ [B](above→ [E]¬wall)),
A17 = [G](right→ [E]¬wall),
A18 = [B](〈E〉(p ∧ ¬wall)→ right ∨ 〈E〉(right ∧ 〈E〉(p ∧ ¬wall))),

which state the properties of floor and wall. Intuitively, we have the following
properties: the initial interval is labeled with floor and wall and this is not the
case with any other interval; both floor and wall are p-intervals; the successor of
a wall is a floor; above every wall there is a wall, and, with the exception of the
initial interval, every wall is above a wall; right never goes to the wall, and every
non-wall p-interval has a p-interval on the left.

Finally, let φT be the conjunction of formulas N1-N9, A6-A18, and A19-A22

below:

A19 = [G](p↔
∨k

i=1 ti),
A20 = [G]

∧
i 6=j ¬(ti ∧ tj),

A21 =
∧

up(ti)6=down(tj)
[G]¬(ti ∧ 〈B〉(above ∧ 〈E〉tj)),

A22 =
∧

right(ti)6=left(tj)
[G]¬(ti ∧ 〈B〉(right ∧ 〈E〉tj)).

The proof of the next lemma repeats, mutatis mutandis, the one in [19].

Lemma 8. A set of tiles T can tile N× N if and only if φT is satisfiable.

This concludes the proof of Theorem 5 for the case BE. A similar construction
can be carried out for the logics BE and BE. As for BE, it suffices to replace
the first quadrant with the second one, where the operator 〈B〉 corresponds to
the operator 3 and the operator 〈E〉 corresponds to the operator 3 of Compass
Logic. As for BE, the construction of the model is obtained in the third quadrant
instead of the second one.



5 Concluding Remarks

In this paper, we have taken into consideration the variety of HS fragments
that can be obtained by choosing suitable subsets of the set of the twelve basic
modal operators (corresponding to Allen’s relations) extended with two addi-
tional operators for subintervals. We have focused our attention on the problem
of classifying them with respect to decidability/undecidability (first raised by
Halpern and Shoham in [15], Problem 3). Besides a summary of the state of
the art, we have given a number of new undecidability results based on suitable
reductions from tiling problems.

The proposed classification is naturally related to definability/undefinability
relations among operators. Known definability relations reduce the number of
fragments from over 16 thousands to less than 5 thousands, and the results
reported in this paper cover more than half of these cases. Our study not only
makes a substantial contribution to the complete solution of the classification
problem inherited from [15], but it also suggests some directions to explore in
the search of other decidable interval logics.

It is worth pointing out that all undecidability results reported here hinge
on the existence of an infinite ascending/descending chain of intervals. Decid-
ability problems for interval logics over finite interval structures are still largely
unexplored. Some positive results for PNL can be found in [6,7,8,9,10].
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